%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2000-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(beam_lib).
-behaviour(gen_server).
%% Avoid warning for local function error/1 clashing with autoimported BIF.
-compile({no_auto_import,[error/1]}).
%% Avoid warning for local function error/2 clashing with autoimported BIF.
-compile({no_auto_import,[error/2]}).
-export([info/1,
cmp/2,
cmp_dirs/2,
chunks/2,
chunks/3,
all_chunks/1,
diff_dirs/2,
strip/1,
strip_files/1,
strip_release/1,
build_module/1,
version/1,
md5/1,
format_error/1]).
%% The following functions implement encrypted debug info.
-export([crypto_key_fun/1, clear_crypto_key_fun/0]).
-export([init/1,handle_call/3,handle_cast/2,handle_info/2,
terminate/2,code_change/3]).
-export([make_crypto_key/2, get_crypto_key/1]). %Utilities used by compiler
-export_type([attrib_entry/0, compinfo_entry/0, labeled_entry/0]).
-import(lists, [append/1, delete/2, foreach/2, keysort/2,
member/2, reverse/1, sort/1, splitwith/2]).
%%-------------------------------------------------------------------------
-type beam() :: module() | file:filename() | binary().
-type forms() :: [erl_parse:abstract_form()].
-type abst_code() :: {AbstVersion :: atom(), forms()} | 'no_abstract_code'.
-type dataB() :: binary().
-type index() :: non_neg_integer().
-type label() :: integer().
-type chunkid() :: nonempty_string(). % approximation of the strings below
%% "Abst" | "Attr" | "CInf" | "ExpT" | "ImpT" | "LocT" | "Atom".
-type chunkname() :: 'abstract_code' | 'attributes' | 'compile_info'
| 'exports' | 'labeled_exports'
| 'imports' | 'indexed_imports'
| 'locals' | 'labeled_locals'
| 'atoms'.
-type chunkref() :: chunkname() | chunkid().
-type attrib_entry() :: {Attribute :: atom(), [AttributeValue :: term()]}.
-type compinfo_entry() :: {InfoKey :: atom(), term()}.
-type labeled_entry() :: {Function :: atom(), arity(), label()}.
-type chunkdata() :: {chunkid(), dataB()}
| {'abstract_code', abst_code()}
| {'attributes', [attrib_entry()]}
| {'compile_info', [compinfo_entry()]}
| {'exports', [{atom(), arity()}]}
| {'labeled_exports', [labeled_entry()]}
| {'imports', [mfa()]}
| {'indexed_imports', [{index(), module(), Function :: atom(), arity()}]}
| {'locals', [{atom(), arity()}]}
| {'labeled_locals', [labeled_entry()]}
| {'atoms', [{integer(), atom()}]}.
%% Error reasons
-type info_rsn() :: {'chunk_too_big', file:filename(),
chunkid(), ChunkSize :: non_neg_integer(),
FileSize :: non_neg_integer()}
| {'invalid_beam_file', file:filename(),
Position :: non_neg_integer()}
| {'invalid_chunk', file:filename(), chunkid()}
| {'missing_chunk', file:filename(), chunkid()}
| {'not_a_beam_file', file:filename()}
| {'file_error', file:filename(), file:posix()}.
-type chnk_rsn() :: {'unknown_chunk', file:filename(), atom()}
| {'key_missing_or_invalid', file:filename(),
'abstract_code'}
| info_rsn().
-type cmp_rsn() :: {'modules_different', module(), module()}
| {'chunks_different', chunkid()}
| 'different_chunks'
| info_rsn().
%%-------------------------------------------------------------------------
%%
%% Exported functions
%%
-spec info(Beam) -> [InfoPair] | {'error', 'beam_lib', info_rsn()} when
Beam :: beam(),
InfoPair :: {'file', Filename :: file:filename()}
| {'binary', Binary :: binary()}
| {'module', Module :: module()}
| {'chunks', [{ChunkId :: chunkid(),
Pos :: non_neg_integer(),
Size :: non_neg_integer()}]}.
info(File) ->
read_info(beam_filename(File)).
-spec chunks(Beam, ChunkRefs) ->
{'ok', {module(), [chunkdata()]}} |
{'error', 'beam_lib', chnk_rsn()} when
Beam :: beam(),
ChunkRefs :: [chunkref()].
chunks(File, Chunks) ->
read_chunk_data(File, Chunks).
-spec chunks(Beam, ChunkRefs, Options) ->
{'ok', {module(), [ChunkResult]}} |
{'error', 'beam_lib', chnk_rsn()} when
Beam :: beam(),
ChunkRefs :: [chunkref()],
Options :: ['allow_missing_chunks'],
ChunkResult :: chunkdata() | {ChunkRef :: chunkref(), 'missing_chunk'}.
chunks(File, Chunks, Options) ->
try read_chunk_data(File, Chunks, Options)
catch Error -> Error end.
-spec all_chunks(beam()) -> {'ok', 'beam_lib', [{chunkid(), dataB()}]}.
all_chunks(File) ->
read_all_chunks(File).
-spec cmp(Beam1, Beam2) -> 'ok' | {'error', 'beam_lib', cmp_rsn()} when
Beam1 :: beam(),
Beam2 :: beam().
cmp(File1, File2) ->
try cmp_files(File1, File2)
catch Error -> Error end.
-spec cmp_dirs(Dir1, Dir2) ->
{Only1, Only2, Different} | {'error', 'beam_lib', Reason} when
Dir1 :: atom() | file:filename(),
Dir2 :: atom() | file:filename(),
Only1 :: [file:filename()],
Only2 :: [file:filename()],
Different :: [{Filename1 :: file:filename(), Filename2 :: file:filename()}],
Reason :: {'not_a_directory', term()} | info_rsn().
cmp_dirs(Dir1, Dir2) ->
catch compare_dirs(Dir1, Dir2).
-spec diff_dirs(Dir1, Dir2) -> 'ok' | {'error', 'beam_lib', Reason} when
Dir1 :: atom() | file:filename(),
Dir2 :: atom() | file:filename(),
Reason :: {'not_a_directory', term()} | info_rsn().
diff_dirs(Dir1, Dir2) ->
catch diff_directories(Dir1, Dir2).
-spec strip(Beam1) ->
{'ok', {module(), Beam2}} | {'error', 'beam_lib', info_rsn()} when
Beam1 :: beam(),
Beam2 :: beam().
strip(FileName) ->
try strip_file(FileName)
catch Error -> Error end.
-spec strip_files(Files) ->
{'ok', [{module(), Beam}]} | {'error', 'beam_lib', info_rsn()} when
Files :: [beam()],
Beam :: beam().
strip_files(Files) when is_list(Files) ->
try strip_fils(Files)
catch Error -> Error end.
-spec strip_release(Dir) ->
{'ok', [{module(), file:filename()}]}
| {'error', 'beam_lib', Reason} when
Dir :: atom() | file:filename(),
Reason :: {'not_a_directory', term()} | info_rsn().
strip_release(Root) ->
catch strip_rel(Root).
-spec version(Beam) ->
{'ok', {module(), [Version :: term()]}} |
{'error', 'beam_lib', chnk_rsn()} when
Beam :: beam().
version(File) ->
case catch read_chunk_data(File, [attributes]) of
{ok, {Module, [{attributes, Attrs}]}} ->
{vsn, Version} = lists:keyfind(vsn, 1, Attrs),
{ok, {Module, Version}};
Error ->
Error
end.
-spec md5(Beam) ->
{'ok', {module(), MD5}} | {'error', 'beam_lib', chnk_rsn()} when
Beam :: beam(),
MD5 :: binary().
md5(File) ->
case catch read_significant_chunks(File, md5_chunks()) of
{ok, {Module, Chunks0}} ->
Chunks = filter_funtab(Chunks0),
{ok, {Module, erlang:md5([C || {_Id, C} <- Chunks])}};
Error ->
Error
end.
-spec format_error(Reason) -> io_lib:chars() when
Reason :: term().
format_error({error, Error}) ->
format_error(Error);
format_error({error, Module, Error}) ->
Module:format_error(Error);
format_error({unknown_chunk, File, ChunkName}) ->
io_lib:format("~tp: Cannot find chunk ~p~n", [File, ChunkName]);
format_error({invalid_chunk, File, ChunkId}) ->
io_lib:format("~tp: Invalid contents of chunk ~p~n", [File, ChunkId]);
format_error({not_a_beam_file, File}) ->
io_lib:format("~tp: Not a BEAM file~n", [File]);
format_error({file_error, File, Reason}) ->
io_lib:format("~tp: ~tp~n", [File, file:format_error(Reason)]);
format_error({missing_chunk, File, ChunkId}) ->
io_lib:format("~tp: Not a BEAM file: no IFF \"~s\" chunk~n",
[File, ChunkId]);
format_error({invalid_beam_file, File, Pos}) ->
io_lib:format("~tp: Invalid format of BEAM file near byte number ~p~n",
[File, Pos]);
format_error({chunk_too_big, File, ChunkId, Size, Len}) ->
io_lib:format("~tp: Size of chunk \"~s\" is ~p bytes, "
"but only ~p bytes could be read~n",
[File, ChunkId, Size, Len]);
format_error({chunks_different, Id}) ->
io_lib:format("Chunk \"~s\" differs in the two files~n", [Id]);
format_error(different_chunks) ->
"The two files have different chunks\n";
format_error({modules_different, Module1, Module2}) ->
io_lib:format("Module names ~p and ~p differ in the two files~n",
[Module1, Module2]);
format_error({not_a_directory, Name}) ->
io_lib:format("~tp: Not a directory~n", [Name]);
format_error({key_missing_or_invalid, File, abstract_code}) ->
io_lib:format("~tp: Cannot decrypt abstract code because key is missing or invalid",
[File]);
format_error(badfun) ->
"not a fun or the fun has the wrong arity";
format_error(exists) ->
"a fun has already been installed";
format_error(E) ->
io_lib:format("~tp~n", [E]).
%%
%% Exported functions for encrypted debug info.
%%
-type mode() :: 'des3_cbc'.
-type crypto_fun_arg() :: 'init'
| 'clear'
| {'debug_info', mode(), module(), file:filename()}.
-type crypto_fun() :: fun((crypto_fun_arg()) -> term()).
-spec crypto_key_fun(CryptoKeyFun) -> 'ok' | {'error', Reason} when
CryptoKeyFun :: crypto_fun(),
Reason :: badfun | exists | term().
crypto_key_fun(F) ->
call_crypto_server({crypto_key_fun, F}).
-spec clear_crypto_key_fun() -> 'undefined' | {'ok', Result} when
Result :: 'undefined' | term().
clear_crypto_key_fun() ->
call_crypto_server(clear_crypto_key_fun).
-spec make_crypto_key(mode(), string()) ->
{binary(), binary(), binary(), binary()}.
make_crypto_key(des3_cbc=Type, String) ->
<<K1:8/binary,K2:8/binary>> = First = erlang:md5(String),
<<K3:8/binary,IVec:8/binary>> = erlang:md5([First|reverse(String)]),
{Type,[K1,K2,K3],IVec,8}.
%%
%% Local functions
%%
read_info(File) ->
try
{ok, Module, Data} = scan_beam(File, info),
[if
is_binary(File) -> {binary, File};
true -> {file, File}
end, {module, Module}, {chunks, Data}]
catch Error -> Error end.
diff_directories(Dir1, Dir2) ->
{OnlyDir1, OnlyDir2, Diff} = compare_dirs(Dir1, Dir2),
diff_only(Dir1, OnlyDir1),
diff_only(Dir2, OnlyDir2),
foreach(fun(D) -> io:format("** different: ~tp~n", [D]) end, Diff),
ok.
diff_only(_Dir, []) ->
ok;
diff_only(Dir, Only) ->
io:format("Only in ~tp: ~tp~n", [Dir, Only]).
%% -> {OnlyInDir1, OnlyInDir2, Different} | throw(Error)
compare_dirs(Dir1, Dir2) ->
R1 = sofs:relation(beam_files(Dir1)),
R2 = sofs:relation(beam_files(Dir2)),
F1 = sofs:domain(R1),
F2 = sofs:domain(R2),
{O1, Both, O2} = sofs:symmetric_partition(F1, F2),
OnlyL1 = sofs:image(R1, O1),
OnlyL2 = sofs:image(R2, O2),
B1 = sofs:to_external(sofs:restriction(R1, Both)),
B2 = sofs:to_external(sofs:restriction(R2, Both)),
Diff = compare_files(B1, B2, []),
{sofs:to_external(OnlyL1), sofs:to_external(OnlyL2), Diff}.
compare_files([], [], Acc) ->
lists:reverse(Acc);
compare_files([{_,F1} | R1], [{_,F2} | R2], Acc) ->
NAcc = case catch cmp_files(F1, F2) of
{error, _Mod, _Reason} ->
[{F1, F2} | Acc];
ok ->
Acc
end,
compare_files(R1, R2, NAcc).
beam_files(Dir) ->
ok = assert_directory(Dir),
L = filelib:wildcard(filename:join(Dir, "*.beam")),
[{filename:basename(Path), Path} || Path <- L].
%% -> ok | throw(Error)
cmp_files(File1, File2) ->
{ok, {M1, L1}} = read_all_but_useless_chunks(File1),
{ok, {M2, L2}} = read_all_but_useless_chunks(File2),
if
M1 =:= M2 ->
cmp_lists(L1, L2);
true ->
error({modules_different, M1, M2})
end.
cmp_lists([], []) ->
ok;
cmp_lists([{Id, C1} | R1], [{Id, C2} | R2]) ->
if
C1 =:= C2 ->
cmp_lists(R1, R2);
true ->
error({chunks_different, Id})
end;
cmp_lists(_, _) ->
error(different_chunks).
strip_rel(Root) ->
ok = assert_directory(Root),
strip_fils(filelib:wildcard(filename:join(Root, "lib/*/ebin/*.beam"))).
%% -> {ok, [{Mod, BinaryOrFileName}]} | throw(Error)
strip_fils(Files) ->
{ok, [begin {ok, Reply} = strip_file(F), Reply end || F <- Files]}.
%% -> {ok, {Mod, FileName}} | {ok, {Mod, binary()}} | throw(Error)
strip_file(File) ->
{ok, {Mod, Chunks}} = read_significant_chunks(File, significant_chunks()),
{ok, Stripped0} = build_module(Chunks),
Stripped = compress(Stripped0),
case File of
_ when is_binary(File) ->
{ok, {Mod, Stripped}};
_ ->
FileName = beam_filename(File),
case file:open(FileName, [raw, binary, write]) of
{ok, Fd} ->
case file:write(Fd, Stripped) of
ok ->
ok = file:close(Fd),
{ok, {Mod, FileName}};
Error ->
ok = file:close(Fd),
file_error(FileName, Error)
end;
Error ->
file_error(FileName, Error)
end
end.
build_module(Chunks0) ->
Chunks = list_to_binary(build_chunks(Chunks0)),
Size = byte_size(Chunks),
0 = Size rem 4, % Assertion: correct padding?
{ok, <<"FOR1", (Size+4):32, "BEAM", Chunks/binary>>}.
build_chunks([{Id, Data} | Chunks]) ->
BId = list_to_binary(Id),
Size = byte_size(Data),
Chunk = [<<BId/binary, Size:32>>, Data | pad(Size)],
[Chunk | build_chunks(Chunks)];
build_chunks([]) ->
[].
pad(Size) ->
case Size rem 4 of
0 -> [];
Rem -> lists:duplicate(4 - Rem, 0)
end.
%% -> {ok, {Module, Chunks}} | throw(Error)
read_all_but_useless_chunks(File0) when is_atom(File0);
is_list(File0);
is_binary(File0) ->
File = beam_filename(File0),
{ok, Module, ChunkIds0} = scan_beam(File, info),
ChunkIds = [Name || {Name,_,_} <- ChunkIds0,
not is_useless_chunk(Name)],
{ok, Module, Chunks} = scan_beam(File, ChunkIds),
{ok, {Module, lists:reverse(Chunks)}}.
is_useless_chunk("CInf") -> true;
is_useless_chunk(_) -> false.
%% -> {ok, {Module, Chunks}} | throw(Error)
read_significant_chunks(File, ChunkList) ->
case read_chunk_data(File, ChunkList, [allow_missing_chunks]) of
{ok, {Module, Chunks0}} ->
Mandatory = mandatory_chunks(),
Chunks = filter_significant_chunks(Chunks0, Mandatory, File, Module),
{ok, {Module, Chunks}}
end.
filter_significant_chunks([{_, Data}=Pair|Cs], Mandatory, File, Mod)
when is_binary(Data) ->
[Pair|filter_significant_chunks(Cs, Mandatory, File, Mod)];
filter_significant_chunks([{Id, missing_chunk}|Cs], Mandatory, File, Mod) ->
case member(Id, Mandatory) of
false ->
filter_significant_chunks(Cs, Mandatory, File, Mod);
true ->
error({missing_chunk, File, Id})
end;
filter_significant_chunks([], _, _, _) -> [].
filter_funtab([{"FunT"=Tag, <<L:4/binary, Data0/binary>>}|Cs]) ->
Data = filter_funtab_1(Data0, <<0:32>>),
Funtab = <<L/binary, (iolist_to_binary(Data))/binary>>,
[{Tag, Funtab}|filter_funtab(Cs)];
filter_funtab([H|T]) ->
[H|filter_funtab(T)];
filter_funtab([]) -> [].
filter_funtab_1(<<Important:20/binary,_OldUniq:4/binary,T/binary>>, Zero) ->
[Important,Zero|filter_funtab_1(T, Zero)];
filter_funtab_1(Tail, _) when is_binary(Tail) -> [Tail].
read_all_chunks(File0) when is_atom(File0);
is_list(File0);
is_binary(File0) ->
try
File = beam_filename(File0),
{ok, Module, ChunkIds0} = scan_beam(File, info),
ChunkIds = [Name || {Name,_,_} <- ChunkIds0],
{ok, Module, Chunks} = scan_beam(File, ChunkIds),
{ok, Module, lists:reverse(Chunks)}
catch Error -> Error end.
read_chunk_data(File0, ChunkNames) ->
try read_chunk_data(File0, ChunkNames, [])
catch Error -> Error end.
%% -> {ok, {Module, Symbols}} | throw(Error)
read_chunk_data(File0, ChunkNames0, Options)
when is_atom(File0); is_list(File0); is_binary(File0) ->
File = beam_filename(File0),
{ChunkIds, Names} = check_chunks(ChunkNames0, File, [], []),
AllowMissingChunks = member(allow_missing_chunks, Options),
{ok, Module, Chunks} = scan_beam(File, ChunkIds, AllowMissingChunks),
AT = ets:new(beam_symbols, []),
T = {empty, AT},
try chunks_to_data(Names, Chunks, File, Chunks, Module, T, [])
after ets:delete(AT)
end.
%% -> {ok, list()} | throw(Error)
check_chunks([ChunkName | Ids], File, IL, L) when is_atom(ChunkName) ->
ChunkId = chunk_name_to_id(ChunkName, File),
check_chunks(Ids, File, [ChunkId | IL], [{ChunkId, ChunkName} | L]);
check_chunks([ChunkId | Ids], File, IL, L) -> % when is_list(ChunkId)
check_chunks(Ids, File, [ChunkId | IL], [{ChunkId, ChunkId} | L]);
check_chunks([], _File, IL, L) ->
{lists:usort(IL), reverse(L)}.
%% -> {ok, Module, Data} | throw(Error)
scan_beam(File, What) ->
scan_beam(File, What, false).
%% -> {ok, Module, Data} | throw(Error)
scan_beam(File, What0, AllowMissingChunks) ->
case scan_beam1(File, What0) of
{missing, _FD, Mod, Data, What} when AllowMissingChunks ->
{ok, Mod, [{Id, missing_chunk} || Id <- What] ++ Data};
{missing, FD, _Mod, _Data, What} ->
error({missing_chunk, filename(FD), hd(What)});
R ->
R
end.
%% -> {ok, Module, Data} | throw(Error)
scan_beam1(File, What) ->
FD = open_file(File),
case catch scan_beam2(FD, What) of
Error when error =:= element(1, Error) ->
throw(Error);
R ->
R
end.
scan_beam2(FD, What) ->
case pread(FD, 0, 12) of
{NFD, {ok, <<"FOR1", _Size:32, "BEAM">>}} ->
Start = 12,
scan_beam(NFD, Start, What, 17, []);
_Error ->
error({not_a_beam_file, filename(FD)})
end.
scan_beam(_FD, _Pos, [], Mod, Data) when Mod =/= 17 ->
{ok, Mod, Data};
scan_beam(FD, Pos, What, Mod, Data) ->
case pread(FD, Pos, 8) of
{_NFD, eof} when Mod =:= 17 ->
error({missing_chunk, filename(FD), "Atom"});
{_NFD, eof} when What =:= info ->
{ok, Mod, reverse(Data)};
{NFD, eof} ->
{missing, NFD, Mod, Data, What};
{NFD, {ok, <<IdL:4/binary, Sz:32>>}} ->
Id = binary_to_list(IdL),
Pos1 = Pos + 8,
Pos2 = (4 * trunc((Sz+3) / 4)) + Pos1,
get_data(What, Id, NFD, Sz, Pos1, Pos2, Mod, Data);
{_NFD, {ok, _ChunkHead}} ->
error({invalid_beam_file, filename(FD), Pos})
end.
get_data(Cs, "Atom"=Id, FD, Size, Pos, Pos2, _Mod, Data) ->
NewCs = del_chunk(Id, Cs),
{NFD, Chunk} = get_chunk(Id, Pos, Size, FD),
<<_Num:32, Chunk2/binary>> = Chunk,
{Module, _} = extract_atom(Chunk2),
C = case Cs of
info ->
{Id, Pos, Size};
_ ->
{Id, Chunk}
end,
scan_beam(NFD, Pos2, NewCs, Module, [C | Data]);
get_data(info, Id, FD, Size, Pos, Pos2, Mod, Data) ->
scan_beam(FD, Pos2, info, Mod, [{Id, Pos, Size} | Data]);
get_data(Chunks, Id, FD, Size, Pos, Pos2, Mod, Data) ->
{NFD, NewData} = case member(Id, Chunks) of
true ->
{FD1, Chunk} = get_chunk(Id, Pos, Size, FD),
{FD1, [{Id, Chunk} | Data]};
false ->
{FD, Data}
end,
NewChunks = del_chunk(Id, Chunks),
scan_beam(NFD, Pos2, NewChunks, Mod, NewData).
del_chunk(_Id, info) ->
info;
del_chunk(Id, Chunks) ->
delete(Id, Chunks).
%% -> {NFD, binary()} | throw(Error)
get_chunk(Id, Pos, Size, FD) ->
case pread(FD, Pos, Size) of
{NFD, eof} when Size =:= 0 -> % cannot happen
{NFD, <<>>};
{_NFD, eof} when Size > 0 ->
error({chunk_too_big, filename(FD), Id, Size, 0});
{_NFD, {ok, Chunk}} when Size > byte_size(Chunk) ->
error({chunk_too_big, filename(FD), Id, Size, byte_size(Chunk)});
{NFD, {ok, Chunk}} -> % when Size =:= size(Chunk)
{NFD, Chunk}
end.
chunks_to_data([{Id, Name} | CNs], Chunks, File, Cs, Module, Atoms, L) ->
{_Id, Chunk} = lists:keyfind(Id, 1, Chunks),
{NewAtoms, Ret} = chunk_to_data(Name, Chunk, File, Cs, Atoms, Module),
chunks_to_data(CNs, Chunks, File, Cs, Module, NewAtoms, [Ret | L]);
chunks_to_data([], _Chunks, _File, _Cs, Module, _Atoms, L) ->
{ok, {Module, reverse(L)}}.
chunk_to_data(attributes=Id, Chunk, File, _Cs, AtomTable, _Mod) ->
try
Term = binary_to_term(Chunk),
{AtomTable, {Id, attributes(Term)}}
catch
error:badarg ->
error({invalid_chunk, File, chunk_name_to_id(Id, File)})
end;
chunk_to_data(compile_info=Id, Chunk, File, _Cs, AtomTable, _Mod) ->
try
{AtomTable, {Id, binary_to_term(Chunk)}}
catch
error:badarg ->
error({invalid_chunk, File, chunk_name_to_id(Id, File)})
end;
chunk_to_data(abstract_code=Id, Chunk, File, _Cs, AtomTable, Mod) ->
case Chunk of
<<>> ->
{AtomTable, {Id, no_abstract_code}};
<<0:8,N:8,Mode0:N/binary,Rest/binary>> ->
Mode = list_to_atom(binary_to_list(Mode0)),
decrypt_abst(Mode, Mod, File, Id, AtomTable, Rest);
_ ->
case catch binary_to_term(Chunk) of
{'EXIT', _} ->
error({invalid_chunk, File, chunk_name_to_id(Id, File)});
Term ->
{AtomTable, {Id, Term}}
end
end;
chunk_to_data(atoms=Id, _Chunk, _File, Cs, AtomTable0, _Mod) ->
AtomTable = ensure_atoms(AtomTable0, Cs),
Atoms = ets:tab2list(AtomTable),
{AtomTable, {Id, lists:sort(Atoms)}};
chunk_to_data(ChunkName, Chunk, File,
Cs, AtomTable, _Mod) when is_atom(ChunkName) ->
case catch symbols(Chunk, AtomTable, Cs, ChunkName) of
{ok, NewAtomTable, S} ->
{NewAtomTable, {ChunkName, S}};
{'EXIT', _} ->
error({invalid_chunk, File, chunk_name_to_id(ChunkName, File)})
end;
chunk_to_data(ChunkId, Chunk, _File,
_Cs, AtomTable, _Module) when is_list(ChunkId) ->
{AtomTable, {ChunkId, Chunk}}. % Chunk is a binary
chunk_name_to_id(atoms, _) -> "Atom";
chunk_name_to_id(indexed_imports, _) -> "ImpT";
chunk_name_to_id(imports, _) -> "ImpT";
chunk_name_to_id(exports, _) -> "ExpT";
chunk_name_to_id(labeled_exports, _) -> "ExpT";
chunk_name_to_id(locals, _) -> "LocT";
chunk_name_to_id(labeled_locals, _) -> "LocT";
chunk_name_to_id(attributes, _) -> "Attr";
chunk_name_to_id(abstract_code, _) -> "Abst";
chunk_name_to_id(compile_info, _) -> "CInf";
chunk_name_to_id(Other, File) ->
error({unknown_chunk, File, Other}).
%% Extract attributes
attributes(Attrs) ->
attributes(keysort(1, Attrs), []).
attributes([], R) ->
reverse(R);
attributes(L, R) ->
K = element(1, hd(L)),
{L1, L2} = splitwith(fun(T) -> element(1, T) =:= K end, L),
V = append([A || {_, A} <- L1]),
attributes(L2, [{K, V} | R]).
%% Extract symbols
symbols(<<_Num:32, B/binary>>, AT0, Cs, Name) ->
AT = ensure_atoms(AT0, Cs),
symbols1(B, AT, Name, [], 1).
symbols1(<<I1:32, I2:32, I3:32, B/binary>>, AT, Name, S, Cnt) ->
Symbol = symbol(Name, AT, I1, I2, I3, Cnt),
symbols1(B, AT, Name, [Symbol|S], Cnt+1);
symbols1(<<>>, AT, _Name, S, _Cnt) ->
{ok, AT, sort(S)}.
symbol(indexed_imports, AT, I1, I2, I3, Cnt) ->
{Cnt, atm(AT, I1), atm(AT, I2), I3};
symbol(imports, AT, I1, I2, I3, _Cnt) ->
{atm(AT, I1), atm(AT, I2), I3};
symbol(labeled_exports, AT, I1, I2, I3, _Cnt) ->
{atm(AT, I1), I2, I3};
symbol(labeled_locals, AT, I1, I2, I3, _Cnt) ->
{atm(AT, I1), I2, I3};
symbol(_, AT, I1, I2, _I3, _Cnt) ->
{atm(AT, I1), I2}.
atm(AT, N) ->
[{_N, S}] = ets:lookup(AT, N),
S.
%% AT is updated.
ensure_atoms({empty, AT}, Cs) ->
{_Id, AtomChunk} = lists:keyfind("Atom", 1, Cs),
extract_atoms(AtomChunk, AT),
AT;
ensure_atoms(AT, _Cs) ->
AT.
extract_atoms(<<_Num:32, B/binary>>, AT) ->
extract_atoms(B, 1, AT).
extract_atoms(<<>>, _I, _AT) ->
true;
extract_atoms(B, I, AT) ->
{Atom, B1} = extract_atom(B),
true = ets:insert(AT, {I, Atom}),
extract_atoms(B1, I+1, AT).
extract_atom(<<Len, B/binary>>) ->
<<SB:Len/binary, Tail/binary>> = B,
{list_to_atom(binary_to_list(SB)), Tail}.
%%% Utils.
-record(bb, {pos = 0 :: integer(),
bin :: binary(),
source :: binary() | string()}).
open_file(<<"FOR1",_/binary>>=Binary) ->
#bb{bin = Binary, source = Binary};
open_file(Binary0) when is_binary(Binary0) ->
Binary = uncompress(Binary0),
#bb{bin = Binary, source = Binary};
open_file(FileName) ->
case file:open(FileName, [read, raw, binary]) of
{ok, Fd} ->
read_all(Fd, FileName, []);
Error ->
file_error(FileName, Error)
end.
read_all(Fd, FileName, Bins) ->
case file:read(Fd, 1 bsl 18) of
{ok, Bin} ->
read_all(Fd, FileName, [Bin | Bins]);
eof ->
ok = file:close(Fd),
#bb{bin = uncompress(reverse(Bins)), source = FileName};
Error ->
ok = file:close(Fd),
file_error(FileName, Error)
end.
pread(FD, AtPos, Size) ->
#bb{pos = Pos, bin = Binary} = FD,
Skip = AtPos-Pos,
case Binary of
<<_:Skip/binary, B:Size/binary, Bin/binary>> ->
NFD = FD#bb{pos = AtPos+Size, bin = Bin},
{NFD, {ok, B}};
<<_:Skip/binary, Bin/binary>> when byte_size(Bin) > 0 ->
NFD = FD#bb{pos = AtPos+byte_size(Bin), bin = <<>>},
{NFD, {ok, Bin}};
_ ->
{FD, eof}
end.
filename(BB) when is_binary(BB#bb.source) ->
BB#bb.source;
filename(BB) ->
list_to_atom(BB#bb.source).
beam_filename(Bin) when is_binary(Bin) ->
Bin;
beam_filename(File) ->
filename:rootname(File, ".beam") ++ ".beam".
uncompress(Binary0) ->
{ok, Fd} = ram_file:open(Binary0, [write, binary]),
{ok, _} = ram_file:uncompress(Fd),
{ok, Binary} = ram_file:get_file(Fd),
ok = ram_file:close(Fd),
Binary.
compress(Binary0) ->
{ok, Fd} = ram_file:open(Binary0, [write, binary]),
{ok, _} = ram_file:compress(Fd),
{ok, Binary} = ram_file:get_file(Fd),
ok = ram_file:close(Fd),
Binary.
%% -> ok | throw(Error)
assert_directory(FileName) ->
case filelib:is_dir(FileName) of
true ->
ok;
false ->
error({not_a_directory, FileName})
end.
-spec file_error(file:filename(), {'error',atom()}) -> no_return().
file_error(FileName, {error, Reason}) ->
error({file_error, FileName, Reason}).
-spec error(term()) -> no_return().
error(Reason) ->
throw({error, ?MODULE, Reason}).
%% The following chunks must be kept when stripping a BEAM file.
significant_chunks() ->
["Line" | md5_chunks()].
%% The following chunks are significant when calculating the MD5
%% for a module. They are listed in the order that they should be MD5:ed.
md5_chunks() ->
["Atom", "Code", "StrT", "ImpT", "ExpT", "FunT", "LitT"].
%% The following chunks are mandatory in every Beam file.
mandatory_chunks() ->
["Code", "ExpT", "ImpT", "StrT", "Atom"].
%%% ====================================================================
%%% The rest of the file handles encrypted debug info.
%%%
%%% Encrypting the debug info is only useful if you want to
%%% have the debug info available all the time (maybe even in a live
%%% system), but don't want to risk that anyone else but yourself
%%% can use it.
%%% ====================================================================
-record(state, {crypto_key_f :: crypto_fun()}).
-define(CRYPTO_KEY_SERVER, beam_lib__crypto_key_server).
decrypt_abst(Type, Module, File, Id, AtomTable, Bin) ->
try
KeyString = get_crypto_key({debug_info, Type, Module, File}),
Key = make_crypto_key(Type, KeyString),
Term = decrypt_abst_1(Key, Bin),
{AtomTable, {Id, Term}}
catch
_:_ ->
error({key_missing_or_invalid, File, Id})
end.
decrypt_abst_1({Type,Key,IVec,_BlockSize}, Bin) ->
ok = start_crypto(),
NewBin = crypto:block_decrypt(Type, Key, IVec, Bin),
binary_to_term(NewBin).
start_crypto() ->
case crypto:start() of
{error, {already_started, _}} ->
ok;
ok ->
ok
end.
get_crypto_key(What) ->
call_crypto_server({get_crypto_key, What}).
call_crypto_server(Req) ->
try
gen_server:call(?CRYPTO_KEY_SERVER, Req, infinity)
catch
exit:{noproc,_} ->
%% Not started.
call_crypto_server_1(Req);
exit:{normal,_} ->
%% The process finished just as we called it.
call_crypto_server_1(Req)
end.
call_crypto_server_1(Req) ->
gen_server:start({local,?CRYPTO_KEY_SERVER}, ?MODULE, [], []),
erlang:yield(),
call_crypto_server(Req).
-spec init([]) -> {'ok', #state{}}.
init([]) ->
{ok, #state{}}.
-type calls() :: 'clear_crypto_key_fun'
| {'crypto_key_fun', _}
| {'get_crypto_key', _}.
-spec handle_call(calls(), {pid(), term()}, #state{}) ->
{'noreply', #state{}} |
{'reply', 'error' | {'error','badfun' | 'exists'}, #state{}} |
{'stop', 'normal', 'undefined' | {'ok', term()}, #state{}}.
handle_call({get_crypto_key, _}=R, From, #state{crypto_key_f=undefined}=S) ->
case crypto_key_fun_from_file() of
error ->
{reply, error, S};
F when is_function(F) ->
%% The init function for the fun has already been called.
handle_call(R, From, S#state{crypto_key_f=F})
end;
handle_call({get_crypto_key, What}, From, #state{crypto_key_f=F}=S) ->
try
Result = F(What),
%% The result may hold information that we don't want
%% lying around. Reply first, then GC, then noreply.
gen_server:reply(From, Result),
erlang:garbage_collect(),
{noreply, S}
catch
_:_ ->
{reply, error, S}
end;
handle_call({crypto_key_fun, F}, {_,_} = From, S) ->
case S#state.crypto_key_f of
undefined ->
%% Don't allow tuple funs here. (They weren't allowed before,
%% so there is no reason to allow them now.)
if is_function(F), is_function(F, 1) ->
{Result, Fun, Reply} =
case catch F(init) of
ok ->
{true, F, ok};
{ok, F1} when is_function(F1) ->
if
is_function(F1, 1) ->
{true, F1, ok};
true ->
{false, undefined,
{error, badfun}}
end;
{error, Reason} ->
{false, undefined, {error, Reason}};
{'EXIT', Reason} ->
{false, undefined, {error, Reason}}
end,
gen_server:reply(From, Reply),
erlang:garbage_collect(),
NewS = case Result of
true ->
S#state{crypto_key_f = Fun};
false ->
S
end,
{noreply, NewS};
true ->
{reply, {error, badfun}, S}
end;
OtherF when is_function(OtherF) ->
{reply, {error, exists}, S}
end;
handle_call(clear_crypto_key_fun, _From, S) ->
case S#state.crypto_key_f of
undefined ->
{stop,normal,undefined,S};
F ->
Result = (catch F(clear)),
{stop,normal,{ok,Result},S}
end.
-spec handle_cast(term(), #state{}) -> {'noreply', #state{}}.
handle_cast(_, State) ->
{noreply, State}.
-spec handle_info(term(), #state{}) -> {'noreply', #state{}}.
handle_info(_, State) ->
{noreply, State}.
-spec code_change(term(), #state{}, term()) -> {'ok', #state{}}.
code_change(_OldVsn, State, _Extra) ->
{ok, State}.
-spec terminate(term(), #state{}) -> 'ok'.
terminate(_Reason, _State) ->
ok.
crypto_key_fun_from_file() ->
case init:get_argument(home) of
{ok,[[Home]]} ->
crypto_key_fun_from_file_1([".",Home]);
_ ->
crypto_key_fun_from_file_1(["."])
end.
crypto_key_fun_from_file_1(Path) ->
case f_p_s(Path, ".erlang.crypt") of
{ok, KeyInfo, _} ->
try_load_crypto_fun(KeyInfo);
_ ->
error
end.
f_p_s(P, F) ->
case file:path_script(P, F) of
{error, enoent} ->
{error, enoent};
{error, {Line, _Mod, _Term}=E} ->
error("file:path_script(~tp,~tp): error on line ~p: ~ts~n",
[P, F, Line, file:format_error(E)]),
ok;
{error, E} when is_atom(E) ->
error("file:path_script(~tp,~tp): ~ts~n",
[P, F, file:format_error(E)]),
ok;
Other ->
Other
end.
try_load_crypto_fun(KeyInfo) when is_list(KeyInfo) ->
T = ets:new(keys, [private, set]),
foreach(
fun({debug_info, Mode, M, Key}) when is_atom(M) ->
ets:insert(T, {{debug_info,Mode,M,[]}, Key});
({debug_info, Mode, [], Key}) ->
ets:insert(T, {{debug_info, Mode, [], []}, Key});
(Other) ->
error("unknown key: ~p~n", [Other])
end, KeyInfo),
fun({debug_info, Mode, M, F}) ->
alt_lookup_key(
[{debug_info,Mode,M,F},
{debug_info,Mode,M,[]},
{debug_info,Mode,[],[]}], T);
(clear) ->
ets:delete(T);
(_) ->
error
end;
try_load_crypto_fun(KeyInfo) ->
error("unrecognized crypto key info: ~p\n", [KeyInfo]).
alt_lookup_key([H|T], Tab) ->
case ets:lookup(Tab, H) of
[] ->
alt_lookup_key(T, Tab);
[{_, Val}] ->
Val
end;
alt_lookup_key([], _) ->
error.
error(Fmt, Args) ->
error_logger:error_msg(Fmt, Args),
error.