aboutsummaryrefslogblamecommitdiffstats
path: root/lib/stdlib/src/dets_utils.erl
blob: 12394bd1ad620e9f674800cf39a8ea2832931fa5 (plain) (tree)
1
2
3
4
5
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783

                   
                                                        
   









                                                                           




                                                         
                                                 



                                                                      
                                                    















                                                                          























































































































































































                                                                           




                                       











































                                                                   
                                                     























                                                                         











                                                           
                               
                                                 
                               






                                                   
                       











































                                                                      
                                                                         







                                                      
                                                                    


















































                                                                  
                                                      



























                                                                              





























































































































































































































































                                                                              
                                                        




































































































































































































































                                                                                
                  



















































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                  
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2001-2018. All Rights Reserved.
%% 
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%% 
%% %CopyrightEnd%
%%
-module(dets_utils).

%% Utility functions common to several dets file formats.
%% To be used from modules dets and dets_v9 only.

-export([cmp/2, msort/1, mkeysort/2, mkeysearch/3, family/1]).

-export([rename/2, pread/2, pread/4, ipread/3, pwrite/2, write/2,
         truncate/2, position/2, sync/1, open/2, truncate/3, fwrite/3,
         write_file/2, position/3, position_close/3,
         pwrite/3, pread_close/4, read_n/2, pread_n/3, read_4/2]).

-export([code_to_type/1, type_to_code/1]).

-export([corrupt_reason/2, corrupt/2, corrupt_file/2, 
         vformat/2, file_error/2]).

-export([debug_mode/0, bad_object/2]).

-export([cache_lookup/4, cache_size/1, new_cache/1,
	 reset_cache/1, is_empty_cache/1]).

-export([empty_free_lists/0, init_alloc/1, alloc_many/4, alloc/2,
         free/3, get_freelists/1, all_free/1, all_allocated/1,
         all_allocated_as_list/1, find_allocated/4, find_next_allocated/3,
         log2/1, make_zeros/1]).

-export([list_to_tree/1, tree_to_bin/5]).

-compile({inline, [{sz2pos,1}, {adjust_addr,3}]}).
-compile({inline, [{bplus_mk_leaf,1}, {bplus_get_size,1},
		   {bplus_get_tree,2}, {bplus_get_lkey,2},
		   {bplus_get_rkey,2}]}).

%% Debug
-export([init_disk_map/1, stop_disk_map/0, 
         disk_map_segment_p/2, disk_map_segment/2]).

-include("dets.hrl").

%%% A total ordering of all Erlang terms.

%% -> -1 | 0 | 1. T1 is (smaller than | equal | greater than) T2.
%% If is_integer(I), is_float(F), I == F then I is deemed smaller than F.
cmp(T, T) ->
    0;
cmp([E1 | T1], [E2 | T2]) ->
    case cmp(E1, E2) of
        0 -> cmp(T1, T2);
        R -> R
    end;
cmp(T1, T2) when tuple_size(T1) =:= tuple_size(T2) ->
    tcmp(T1, T2, 1, tuple_size(T1));
cmp(I, F) when is_integer(I), is_float(F) ->
    -1;
cmp(F, I) when is_float(F), is_integer(I) ->
    1;
cmp(T1, T2) when T1 < T2 ->
    -1;
cmp(_T1, _T2) -> % when _T1 > _T2
    1.

tcmp(T1, T2, I, I) ->
    cmp(element(I, T1), element(I,  T2));
tcmp(T1, T2, I, N) ->
    case cmp(element(I, T1), element(I, T2)) of
        0 -> tcmp(T1, T2, I + 1, N);
        R -> R
    end.

msort(L) ->
    %% sort is very much faster than msort, let it do most of the work.    
    F = fun(X, Y) -> cmp(X, Y) =< 0 end,
    lists:sort(F, lists:sort(L)).

mkeysort(I, L) ->
    F = fun(X, Y) -> cmp(element(I, X), element(I, Y)) =< 0 end,
    %% keysort is much faster than mkeysort, let it do most of the work.
    lists:sort(F, lists:keysort(I, L)).

mkeysearch(Key, I, L) ->
    case lists:keysearch(Key, I, L) of
        {value, Value}=Reply when element(I, Value) =:= Key ->
            Reply;
        false ->
            false;
        _ ->
            mkeysearch2(Key, I, L)
    end.

mkeysearch2(_Key, _I, []) ->
    false;
mkeysearch2(Key, I, [E | _L]) when element(I, E) =:= Key ->
    {value, E};
mkeysearch2(Key, I, [_ | L]) ->
    mkeysearch2(Key, I, L).

%% Be careful never to compare keys, but use matching instead.
%% Otherwise sofs could have been used:
%%    sofs:to_external(sofs:relation_to_family(sofs:relation(L, 2))).
family([]) ->
    [];
family(L) ->
    [{K,V}|KVL] = mkeysort(1, L),
    per_key(KVL, K, [V], []).

per_key([], K, Vs, KVs) ->
    lists:reverse(KVs, [{K,msort(Vs)}]);
per_key([{K,V}|L], K, Vs, KVs) -> % match
    per_key(L, K, [V|Vs], KVs);
per_key([{K1,V}|L], K, Vs, KVs) ->
    per_key(L, K1, [V], [{K,msort(Vs)}|KVs]).

rename(From, To) ->
    case file:rename(From, To) of
        ok ->
            ok;
        {error, Reason} ->
            {error, {file_error, {From, To}, Reason}}
    end.

%% -> {ok, Bins} | throw({NewHead, Error})
pread(Positions, Head) ->
    R = case file:pread(Head#head.fptr, Positions) of
	    {ok, Bins} ->
		%% file:pread/2 can return 'eof' as "data".
		case lists:member(eof, Bins) of
		    true ->
			{error, {premature_eof, Head#head.filename}};
		    false ->
			{ok, Bins}
		end;
	    {error, Reason} when enomem =:= Reason; einval =:= Reason ->
		{error, {bad_object_header, Head#head.filename}};
	    {error, Reason} ->
		{file_error, Head#head.filename, Reason}
	end,
    case R of
	{ok, _Bins} ->
	    R;
	Error ->
	    throw(corrupt(Head, Error))
    end.

%% -> {ok, binary()} | throw({NewHead, Error})
pread(Head, Pos, Min, Extra) ->
    R = case file:pread(Head#head.fptr, Pos, Min+Extra) of
	    {error, Reason} when enomem =:= Reason; einval =:= Reason ->
		{error, {bad_object_header, Head#head.filename}};
	    {error, Reason} ->
		{file_error, Head#head.filename, Reason};
	    {ok, Bin} when byte_size(Bin) < Min ->
		{error, {premature_eof, Head#head.filename}};
	    OK -> OK
	end,
    case R of
	{ok, _Bin} ->
	    R;
	Error ->
	    throw(corrupt(Head, Error))
    end.
	    
%% -> eof | [] | {ok, {Size, Pointer, binary()}}
ipread(Head, Pos1, MaxSize) ->
    try 
        disk_map_pread(Pos1)
    catch Bad ->
        throw(corrupt_reason(Head, {disk_map, Bad}))
    end,
    case file:ipread_s32bu_p32bu(Head#head.fptr, Pos1, MaxSize) of
	{ok, {0, 0, eof}} ->
	    [];
	{ok, Reply} ->
	    {ok, Reply};
	_Else ->
	    eof
    end.

%% -> {Head, ok} | throw({Head, Error})
pwrite(Head, []) ->
    {Head, ok};
pwrite(Head, Bins) ->
    try
        disk_map(Bins)
    catch Bad -> 
        throw(corrupt_reason(Head, {disk_map, Bad, Bins}))
    end,
    case file:pwrite(Head#head.fptr, Bins) of
	ok ->
	    {Head, ok};
	Error ->
	    corrupt_file(Head, Error)
    end.

%% -> ok | throw({Head, Error})
write(_Head, []) ->
    ok;
write(Head, Bins) ->
    case file:write(Head#head.fptr, Bins) of
	ok ->
	    ok;
	Error ->
	    corrupt_file(Head, Error)
    end.

%% -> ok | throw({Head, Error})
%% Same as file:write_file/2, but calls file:sync/1.
write_file(Head, Bin) ->
    R = case file:open(Head#head.filename, [binary, raw, write]) of
	    {ok, Fd} ->
		R1 = file:write(Fd, Bin),
		R2 = file:sync(Fd),
		R3 = file:close(Fd),
                case {R1, R2, R3} of
                    {ok, ok, R3} -> R3;
                    {ok, R2, _} -> R2;
                    {R1, _, _} -> R1
                end;
	    Else ->
		Else
	end,
    case R of
	ok ->
	    ok;
	Error ->
	    corrupt_file(Head, Error)
    end.

%% -> ok | throw({Head, Error})
truncate(Head, Pos) ->
    case catch truncate(Head#head.fptr, Head#head.filename, Pos) of
	ok ->
	    ok;
	Error ->
	    throw(corrupt(Head, Error))
    end.

%% -> {ok, Pos} | throw({Head, Error})
position(Head, Pos) ->
    case file:position(Head#head.fptr, Pos) of
	{error, _Reason} = Error -> 
	    corrupt_file(Head, Error);
	OK -> OK
    end.
	    
%% -> ok | throw({Head, Error})
sync(Head) ->
    case file:sync(Head#head.fptr) of
	ok ->
	    ok;
	Error ->
	    corrupt_file(Head, Error)
    end.

open(FileSpec, Args) ->
    case file:open(FileSpec, Args) of
	{ok, Fd} ->
	    {ok, Fd};
	Error ->
	    file_error(FileSpec, Error)
    end.

truncate(Fd, FileName, Pos) ->
    _ = [position(Fd, FileName, Pos) || Pos =/= cur],
    case file:truncate(Fd) of
	ok    -> 
	    ok;
	Error ->
	    file_error(FileName, {error, Error})
    end.
	    
fwrite(Fd, FileName, B) ->
    case file:write(Fd, B) of
	ok    -> ok;
	Error -> file_error_close(Fd, FileName, Error)
    end.

position(Fd, FileName, Pos) ->
    case file:position(Fd, Pos) of
	{error, Error} -> file_error(FileName, {error, Error});
	OK -> OK
    end.
	    
position_close(Fd, FileName, Pos) ->
    case file:position(Fd, Pos) of
	{error, Error} -> file_error_close(Fd, FileName, {error, Error});
	OK -> OK
    end.
	    
pwrite(Fd, FileName, Bins) ->
    case file:pwrite(Fd, Bins) of
	ok ->
	    ok;
	{error, {_NoWrites, Reason}} ->
	    file_error(FileName, {error, Reason})
    end.

pread_close(Fd, FileName, Pos, Size) ->
    case file:pread(Fd, Pos, Size) of
	{error, Error} ->
	    file_error_close(Fd, FileName, {error, Error});
	{ok, Bin} when byte_size(Bin) < Size ->
	    _ = file:close(Fd),
	    throw({error, {tooshort, FileName}});
	eof ->
	    _ = file:close(Fd),
	    throw({error, {tooshort, FileName}});
	OK -> OK
    end.
	    
file_error(FileName, {error, Reason}) ->
    throw({error, {file_error, FileName, Reason}}).

file_error_close(Fd, FileName, {error, Reason}) ->
    _ = file:close(Fd),
    throw({error, {file_error, FileName, Reason}}).
	    
debug_mode() ->
    os:getenv("DETS_DEBUG") =:= "true".    

bad_object(Where, Extra) ->
    case debug_mode() of
        true ->
            {bad_object, Where, Extra};
        false ->
            %% Avoid showing possibly secret data on the error logger.
            {bad_object, Where}
    end.

read_n(Fd, Max) ->
    case file:read(Fd, Max) of
	{ok, Bin} ->
	    Bin;
	_Else ->
	    eof
    end.

pread_n(Fd, Position, Max) ->
    case file:pread(Fd, Position, Max) of
	{ok, Bin} ->
	    Bin;
	_ ->
	    eof
    end.

read_4(Fd, Position) ->
    {ok, _} = file:position(Fd, Position),
    <<Four:32>> = dets_utils:read_n(Fd, 4),
    Four.

corrupt_file(Head, {error, Reason}) ->
    Error = {error, {file_error, Head#head.filename, Reason}},
    throw(corrupt(Head, Error)).

%% -> {NewHead, Error}
corrupt_reason(Head, Reason0) ->
    Reason = case get_disk_map() of
                 no_disk_map -> 
                     Reason0;
                 DM ->
                    {current_stacktrace, ST} =
                         erlang:process_info(self(), current_stacktrace),
                    PD = get(),
                    {Reason0, ST, PD, DM}
             end,
    Error = {error, {Reason, Head#head.filename}},    
    corrupt(Head, Error).

corrupt(Head, Error) ->
    case get(verbose) of
	yes -> 
	    error_logger:format("** dets: Corrupt table ~tp: ~tp\n",
				[Head#head.name, Error]);
	_ -> ok
    end,
    case Head#head.update_mode of
	{error, _} ->
	    {Head, Error};
	_ ->
	    {Head#head{update_mode = Error}, Error}
    end.

vformat(F, As) ->
    case get(verbose) of
	yes -> error_logger:format(F, As);
	_ -> ok
    end.

code_to_type(?SET) -> set;
code_to_type(?BAG) -> bag;
code_to_type(?DUPLICATE_BAG) -> duplicate_bag;
code_to_type(_Type) -> badtype.

type_to_code(set) -> ?SET;
type_to_code(bag) -> ?BAG;
type_to_code(duplicate_bag) -> ?DUPLICATE_BAG.

%%%
%%% Write Cache
%%% 

cache_size(C) ->
    {C#cache.delay, C#cache.tsize}.

%% -> [object()] | false
cache_lookup(Type, [Key | Keys], CL, LU) ->
    %% mkeysearch returns the _first_ tuple with a matching key.
    case mkeysearch(Key, 1, CL) of
	{value, {Key,{_Seq,{insert,Object}}}} when Type =:= set ->
	    cache_lookup(Type, Keys, CL, [Object | LU]);
	{value, {Key,{_Seq,delete_key}}} ->
	    cache_lookup(Type, Keys, CL, LU);
	_ ->
	    false
    end;
cache_lookup(_Type, [], _CL, LU) ->
    LU.

reset_cache(C) ->
    WrTime = C#cache.wrtime,
    NewWrTime = if 
		    WrTime =:= undefined ->
			WrTime;
		    true ->
			erlang:monotonic_time(1000000)
		end,
    PK = family(C#cache.cache),
    NewC = C#cache{cache = [], csize = 0, inserts = 0, wrtime = NewWrTime},
    {NewC, C#cache.inserts, PK}.

is_empty_cache(Cache) ->
    Cache#cache.cache =:= [].

new_cache({Delay, Size}) ->
    #cache{cache = [], csize = 0, inserts = 0, 
	   tsize = Size, wrtime = undefined, delay = Delay}.

%%%
%%% Buddy System
%%% 

%% Definitions for the buddy allocator.
-define(MAXBUD, 32).             % 2 GB is maximum file size
-define(MAXFREELISTS, 50000000). % Bytes reserved for the free lists (at end).

%%-define(DEBUG(X, Y), io:format(X, Y)).
-define(DEBUG(X, Y), true).

%%% Algorithm : We use a buddy system on each file. This is nicely described
%%%             in i.e. the last chapter of the first-grade text book 
%%%             Data structures and algorithms by Aho, Hopcroft and
%%%             Ullman. I think buddy systems were invented by Knuth, a long
%%%             time ago.

%%% The free lists are kept in RAM, and written to the end of the file
%%% from time to time. It is possible that a considerable amount of
%%% memory is used for a fragmented file.
%%%
%%% To make things (slightly) worse (from a memory usage point of
%%% view), each traversal of the file starts with making a "map" of
%%% the allocated areas; only the allocated areas will be
%%% traversed. Creating a map involves inspecting and sorting the free
%%% lists. Since the map is passed on between client and server, it
%%% has to be a binary (to avoid copying a possibly huge term).
%%%
%%% An active map should always be protected by fixing the table. This
%%% prevents insertion of objects into the mapped area (where some
%%% objects may have been deleted). The means for implementing this
%%% protection is a copy of the free lists (using even more memory, if
%%% objects are inserted). The position to write an inserted object is
%%% found by looking at the free lists from the time when the table
%%% was fixed; areas within the mapped area that have been freed are
%%% hidden from the allocator.

%% -> free_table()
%% A free table is a tuple of ?MAXBUD elements, element i handling
%% buddies of size 2^(i-1).
init_alloc(Base) ->
    Ftab = empty_free_lists(),
    Empty = bplus_empty_tree(),
    setelement(?MAXBUD, Ftab, bplus_insert(Empty, Base)). 

empty_free_lists() ->
    Empty = bplus_empty_tree(),
    %% initiate a tuple with ?MAXBUD "Empty" elements
    erlang:make_tuple(?MAXBUD, Empty).

%% Only used when repairing or initiating.
alloc_many(Head, _Sz, 0, _A0) ->
    Head;
alloc_many(Head, Sz, N, A0) ->
    Ftab = Head#head.freelists,
    Head#head{freelists = alloc_many1(Ftab, 1, Sz * N, A0, Head)}.

%% -> NewFtab | throw(Error)
alloc_many1(Ftab, Pos, Size, A0, H) ->
    {FPos, Addr} = find_first_free(Ftab, Pos, Pos, H),
    true = Addr >= A0, % assertion
    if 
	?POW(FPos - 1) >= Size ->
	    alloc_many2(Ftab, sz2pos(Size), Size, A0, H);
	true ->
	    NewFtab = reserve_buddy(Ftab, FPos, FPos, Addr),
	    NSize = Size - ?POW(FPos-1),
	    alloc_many1(NewFtab, FPos, NSize, Addr, H)
    end.

alloc_many2(Ftab, _Pos, 0, _A0, _H) ->
    Ftab;
alloc_many2(Ftab, Pos, Size, A0, H) when Size band ?POW(Pos-1) > 0 ->
    {FPos, Addr} = find_first_free(Ftab, Pos, Pos, H),
    true = Addr >= A0, % assertion
    NewFtab = reserve_buddy(Ftab, FPos, Pos, Addr),
    NSize = Size - ?POW(Pos - 1),
    alloc_many2(NewFtab, Pos-1, NSize, Addr, H);
alloc_many2(Ftab, Pos, Size, A0, H) ->
    alloc_many2(Ftab, Pos-1, Size, A0, H).

%% -> {NewHead, Addr, Log2} | throw(Error)
alloc(Head, Sz) when Head#head.fixed =/= false -> % when Sz > 0
    ?DEBUG("alloc of size ~p (fixed)", [Sz]),
    Pos = sz2pos(Sz),
    {Frozen, Ftab} = Head#head.freelists,
    {FPos, Addr} = find_first_free(Frozen, Pos, Pos, Head),
    NewFrozen = reserve_buddy(Frozen, FPos, Pos, Addr),
    Ftab1 = undo_free(Ftab, FPos, Addr, Head#head.base),
    NewFtab = move_down(Ftab1, FPos, Pos, Addr),
    NewFreelists = {NewFrozen, NewFtab},
    {Head#head{freelists = NewFreelists}, Addr, Pos};
alloc(Head, Sz) when Head#head.fixed =:= false -> % when Sz > 0
    ?DEBUG("alloc of size ~p", [Sz]),
    Pos = sz2pos(Sz),
    Ftab = Head#head.freelists,
    {FPos, Addr} = find_first_free(Ftab, Pos, Pos, Head),
    NewFtab = reserve_buddy(Ftab, FPos, Pos, Addr),
    {Head#head{freelists = NewFtab}, Addr, Pos}.

find_first_free(_Ftab, Pos, _Pos0, Head) when Pos > ?MAXBUD ->
    throw({error, {no_more_space_on_file, Head#head.filename}});
find_first_free(Ftab, Pos, Pos0, Head) ->
    PosTab = element(Pos, Ftab),
    case bplus_lookup_first(PosTab) of
	undefined -> 
	    find_first_free(Ftab, Pos+1, Pos0, Head);
	{ok, Addr} when Addr + ?POW(Pos0-1) > ?POW(?MAXBUD-1)-?MAXFREELISTS ->
	    %% We would occupy (some of) the area reserved for the free lists.
	    throw({error, {no_more_space_on_file, Head#head.filename}});
	{ok, Addr} ->
	    {Pos, Addr}
    end.

%% When the table is fixed, free/4 may have joined buddies so that the
%% requested block is now part of some larger block. We have to find
%% that block, and insert free buddies along the way.
undo_free(Ftab, Pos, Addr, Base) ->
    PosTab = element(Pos, Ftab),
    case bplus_lookup(PosTab, Addr) of
	undefined ->
	    {BuddyAddr, MoveUpAddr} = my_buddy(Addr, ?POW(Pos-1), Base),
	    NewFtab = setelement(Pos, Ftab, bplus_insert(PosTab, BuddyAddr)),
	    undo_free(NewFtab, Pos+1, MoveUpAddr, Base);
	{ok, Addr} ->
	    NewPosTab = bplus_delete(PosTab, Addr),
	    setelement(Pos, Ftab, NewPosTab)
    end.

reserve_buddy(Ftab, Pos, Pos0, Addr) ->
    PosTab = element(Pos, Ftab),
    NewPosTab = bplus_delete(PosTab, Addr),
    NewFtab = setelement(Pos, Ftab, NewPosTab),
    move_down(NewFtab, Pos, Pos0, Addr).

move_down(Ftab, Pos, Pos, _Addr) ->
    ?DEBUG(" to address ~p, table ~p (~p bytes)~n", 
	    [_Addr, Pos, ?POW(Pos-1)]),
    Ftab;
move_down(Ftab, Pos, Pos0, Addr) ->
    Pos_1 = Pos - 1,
    Size = ?POW(Pos_1),
    HighBuddy = (Addr + (Size bsr 1)),
    NewPosTab_1 = bplus_insert(element(Pos_1, Ftab), HighBuddy),
    NewFtab = setelement(Pos_1, Ftab, NewPosTab_1), 
    move_down(NewFtab, Pos_1, Pos0, Addr).

%% -> {Head, Log2}
free(Head, Addr, Sz) ->
    ?DEBUG("free of size ~p at address ~p~n", [Sz, Addr]),
    Ftab = get_freelists(Head),
    Pos = sz2pos(Sz),
    {set_freelists(Head, free_in_pos(Ftab, Addr, Pos, Head#head.base)), Pos}.

free_in_pos(Ftab, _Addr, Pos, _Base) when Pos > ?MAXBUD ->
    Ftab;
free_in_pos(Ftab, Addr, Pos, Base) ->
    PosTab = element(Pos, Ftab),
    {BuddyAddr, MoveUpAddr} = my_buddy(Addr, ?POW(Pos-1), Base),
    case bplus_lookup(PosTab, BuddyAddr) of
	undefined -> % no buddy found
	    ?DEBUG("  table ~p, no buddy~n", [Pos]),
	    setelement(Pos, Ftab, bplus_insert(PosTab, Addr));
	{ok, BuddyAddr} -> % buddy found
	    PosTab1 = bplus_delete(PosTab, Addr),
	    PosTab2 = bplus_delete(PosTab1, BuddyAddr),
	    ?DEBUG("  table ~p, with buddy ~p~n", [Pos, BuddyAddr]),
	    NewFtab = setelement(Pos, Ftab, PosTab2),
	    free_in_pos(NewFtab, MoveUpAddr, Pos+1, Base)
    end.

get_freelists(Head) when Head#head.fixed =:= false ->
    Head#head.freelists;
get_freelists(Head) when Head#head.fixed =/= false ->
    {_Frozen, Current} = Head#head.freelists,
    Current.

set_freelists(Head, Ftab) when Head#head.fixed =:= false ->
    Head#head{freelists = Ftab};
set_freelists(Head, Ftab) when Head#head.fixed =/= false ->
    {Frozen, _} = Head#head.freelists,
    Head#head{freelists = {Frozen,Ftab}}.

%% Bug: If Sz0 is equal to 2^k for some k, then 2^(k+1) bytes are
%% allocated (wasting 2^k bytes). Inlined.
sz2pos(N) when N > 0 ->
    1 + log2(N+1).

%% Returns the i such that 2^(i-1) < N =< 2^i.
log2(N) when is_integer(N), N >= 0 ->
    if N > ?POW(8) ->
	    if N > ?POW(10) ->
		    if N > ?POW(11) ->
			    if N > ?POW(12) ->
				    12 + if N band (?POW(12)-1) =:= 0 -> 
						 log2(N bsr 12);
					    true -> log2(1 + (N bsr 12))
					 end;
			       true -> 12
			    end;
		       true -> 11
		    end;
	       N > ?POW(9) -> 10;
	       true -> 9
	    end;
       N > ?POW(4) ->
	    if N > ?POW(6) ->
		    if N > ?POW(7) -> 8;
		       true -> 7
		    end;
	       N > ?POW(5) -> 6;
	       true -> 5
	    end;
       N > ?POW(2) ->
	    if
		N > ?POW(3) -> 4;
		true -> 3
	    end;
       N > ?POW(1) -> 2;
       N >= ?POW(0) -> 1;
       true -> 0
    end.

make_zeros(0) -> [];
make_zeros(N) when N rem 2 =:= 0 ->
    P = make_zeros(N div 2),
    [P|P];
make_zeros(N) ->
    P = make_zeros(N div 2),
    [0,P|P].

%% Calculate the buddy of Addr
my_buddy(Addr, Sz, Base) ->
    case (Addr - Base) band Sz of
	0 -> % even, buddy is higher addr
	    {Addr+Sz, Addr};
	_ -> % odd, buddy is lower addr
            T = Addr-Sz,
	    {T, T}
    end.

all_free(Head) ->
    Tab = get_freelists(Head),
    Base = Head#head.base,
    case all_free(all(Tab), Base, Base, []) of
	[{Base,Base} | L] -> L;
	L -> L
    end.
    
all_free([], X0, Y0, F) ->
    lists:reverse([{X0,Y0} | F]);
all_free([{X,Y} | L], X0, Y0, F) when Y0 =:= X ->
    all_free(L, X0, Y, F);
all_free([{X,Y} | L], X0, Y0, F) when Y0 < X ->
    all_free(L, X, Y, [{X0,Y0} | F]).

all_allocated(Head) ->
    all_allocated(all(get_freelists(Head)), 0, Head#head.base, []).

all_allocated([], _X0, _Y0, []) ->
    <<>>;
all_allocated([], _X0, _Y0, A0) ->
    [<<From:32, To:32>> | A] = lists:reverse(A0),
    {From, To, list_to_binary(A)};
all_allocated([{X,Y} | L], X0, Y0, A) when Y0 =:= X ->
    all_allocated(L, X0, Y, A);
all_allocated([{X,Y} | L], _X0, Y0, A) when Y0 < X ->
    all_allocated(L, X, Y, [<<Y0:32,X:32>> | A]).

all_allocated_as_list(Head) ->
    all_allocated_as_list(all(get_freelists(Head)), 0, Head#head.base, []).

-dialyzer({no_improper_lists, all_allocated_as_list/4}).

all_allocated_as_list([], _X0, _Y0, []) ->
    [];
all_allocated_as_list([], _X0, _Y0, A) ->
    lists:reverse(A);
all_allocated_as_list([{X,Y} | L], X0, Y0, A) when Y0 =:= X ->
    all_allocated_as_list(L, X0, Y, A);
all_allocated_as_list([{X,Y} | L], _X0, Y0, A) when Y0 < X ->
    all_allocated_as_list(L, X, Y, [[Y0 | X] | A]).

all(Tab) ->
    all(Tab, tuple_size(Tab), []).

all(_Tab, 0, L) ->
    %% This is not as bad as it looks. L contains less than 32 runs,
    %% so there will be only a small number of merges.
    lists:sort(L);
all(Tab, I, L) ->
    LL = collect_tree(element(I, Tab), I, L),
    all(Tab, I-1, LL).

%% Finds allocated areas between Addr (approx.) and Addr+Length.
find_allocated(Ftab, Addr, Length, Base) ->
    MaxAddr = Addr + Length,
    Ints = collect_all_interval(Ftab, Addr, MaxAddr, Base),
    allocated(Ints, Addr, MaxAddr, Ftab, Base).

allocated(Some, Addr, Max, Ftab, Base) ->
    case allocated1(Some, Addr, Max, []) of
        [] ->
            case find_next_allocated(Ftab, Addr, Base) of
                {From,_} -> 
                    find_allocated(Ftab, From, ?CHUNK_SIZE, Base);
                none ->
                    <<>>
            end;
        L -> 
            list_to_binary(lists:reverse(L))
    end.

allocated1([], Y0, Max, A) when Y0 < Max ->
    [<<Y0:32,Max:32>> | A];
allocated1([], _Y0, _Max, A) ->
    A;
allocated1([{X,Y} | L], Y0, Max, A) when Y0 >= X ->
    allocated1(L, Y, Max, A);
allocated1([{X,Y} | L], Y0, Max, A) -> % when Y0 < X
    allocated1(L, Y, Max, [<<Y0:32,X:32>> | A]).

%% Finds the first allocated area starting at Addr or later.
find_next_allocated(Ftab, Addr, Base) ->
    case find_next_free(Ftab, Addr, Base) of
        none ->
            none;
        {Addr1, Pos} when Addr1 =< Addr ->
            find_next_allocated(Ftab, Addr1 + ?POW(Pos-1), Base);
        {Next, _Pos} ->
            {Addr, Next}
    end.

%% Finds the first free address starting att Addr or later. 
%% -> none | {FirstFreeAddress, FtabPosition}
find_next_free(Ftab, Addr, Base) ->
    MaxBud = tuple_size(Ftab),
    find_next_free(Ftab, Addr, 1, MaxBud, -1, -1, Base).

find_next_free(Ftab, Addr0, Pos, MaxBud, Next, PosN, Base)  
                         when Pos =< MaxBud ->
    Addr = adjust_addr(Addr0, Pos, Base),
    PosTab = element(Pos, Ftab),
    case bplus_lookup_next(PosTab, Addr-1) of
        undefined ->
            find_next_free(Ftab, Addr0, Pos+1, MaxBud, Next, PosN, Base);
        {ok, Next1} when PosN =:= -1; Next1 < Next ->
            find_next_free(Ftab, Addr0, Pos+1, MaxBud, Next1, Pos, Base);
        {ok, _} ->
            find_next_free(Ftab, Addr0, Pos+1, MaxBud, Next, PosN, Base)
    end;
find_next_free(_Ftab, _Addr, _Pos, _MaxBud, -1, _PosN, _Base) ->
    none;
find_next_free(_Ftab, _Addr, _Pos, _MaxBud, Next, PosN, _Base) ->
    {Next, PosN}.

collect_all_interval(Ftab, Addr, MaxAddr, Base) ->
    MaxBud = tuple_size(Ftab),
    collect_all_interval(Ftab, Addr, MaxAddr, 1, MaxBud, Base, []).

collect_all_interval(Ftab, L0, U, Pos, MaxBud, Base, Acc0) when Pos =< MaxBud ->
    PosTab = element(Pos, Ftab),
    L = adjust_addr(L0, Pos, Base),
    Acc = collect_interval(PosTab, Pos, L, U, Acc0),
    collect_all_interval(Ftab, L0, U, Pos+1, MaxBud, Base, Acc);
collect_all_interval(_Ftab, _L, _U, _Pos, _MaxBud, _Base, Acc) ->
    lists:sort(Acc).

%% It could be that Addr is inside a free area. This function adjusts
%% the address so that is placed on a boundary in the Pos tree. Inlined.
adjust_addr(Addr, Pos, Base) ->
    Pow = ?POW(Pos - 1),
    Rem = (Addr - Base) rem Pow,
    if
        Rem =:= 0 ->
            Addr;
        Addr < Pow ->
            Addr;
        true ->
            Addr - Rem
    end.

%%%-----------------------------------------------------------------
%%% The Disk Map is used for debugging only.
%%% Very tightly coupled to the way dets_v9 works.
%%%-----------------------------------------------------------------

-define(DM, disk_map).

get_disk_map() ->
    case get(?DM) of
        undefined -> no_disk_map;
        T -> {disk_map, ets:tab2list(T)}
    end.

init_disk_map(Name) ->
    error_logger:info_msg("** dets: (debug) using disk map for ~p~n", [Name]),
    put(?DM, ets:new(any,[ordered_set])).

stop_disk_map() ->
    catch ets:delete(erase(?DM)).

disk_map_segment_p(Fd, P) ->
    case get(?DM) of
        undefined ->
            ok;
        _T ->
            disk_map_segment(P, pread_n(Fd, P, 8*256))
    end.

disk_map_segment(P, Segment) ->
    case get(?DM) of
        undefined ->
            ok;
        T ->
            Ps = segment_fragment_to_pointers(P, iolist_to_binary(Segment)),
            Ss = [{X,<<Sz:32,?ACTIVE:32>>} || 
                     {_P1,<<Sz:32,X:32>>} <- Ps,
                     X > 0], % optimization
            dm(Ps ++ Ss, T)
    end.

disk_map_pread(P) ->
    case get(?DM) of
        undefined ->
            ok;
        T ->
            case ets:lookup(T, P) of
                [] -> 
                    throw({pread, P, 8});
                [{P,{pointer,0,0}}] ->
                    ok;
                [{P,{pointer,Pointer,Sz}}] ->
                    case ets:lookup(T, Pointer) of
                        %% _P =/= P after re-hash...
                        [{Pointer,{slot,_P,Sz}}] ->
                            ok;
                        Got ->
                            throw({pread, P, Pointer, Got})
                    end;
                Got ->
                    throw({pread, P, Got})
            end
    end.

-define(STATUS_POS, 4).
-define(BASE, 1336).
disk_map(Bins) ->
    case get(?DM) of
        undefined -> 
            ok;
        T -> 
            Bs = [{P,iolist_to_binary(Io)} || {P,Io} <- Bins],
            dm(Bs, T)
    end.

dm([{P,_Header} | Bs], T) when P < ?BASE ->
    dm(Bs, T);
dm([{P0,<<?FREE:32>>} | Bs], T) ->
    P = P0 - ?STATUS_POS,
    case ets:lookup(T, P) of
        [] -> 
            throw({free, P0});
        [{P,_OldSz}] ->
            true = ets:delete(T, P)
    end,
    dm(Bs, T);
dm([{SlotP,<<Sz:32,?ACTIVE:32,_/binary>>} | Bs], T) ->
    Ptr = case ets:lookup(T, {pointer,SlotP}) of
              [{{pointer,SlotP}, Pointer}] ->
                  case ets:lookup(T, Pointer) of
                      [{Pointer,{pointer,SlotP,Sz2}}] ->
                          case log2(Sz) =:= log2(Sz2) of
                              true -> 
                                  Pointer;
                              false ->
                                  throw({active, SlotP, Sz, Pointer, Sz2})
                          end;
                      Got ->
                          throw({active, SlotP, Sz, Got})
                  end;
              [] ->
                  throw({active, SlotP, Sz})
          end,
    true = ets:insert(T, {SlotP,{slot,Ptr,Sz}}),
    dm(Bs, T);
dm([{P,<<Sz:32,X:32>>} | Bs], T) ->
    %% Look for slot object in Bs?
    case prev(P, T) of
        {Prev, PrevSz} ->
            throw({prev, P, Sz, X, Prev, PrevSz});
        ok ->
            ok
    end,
    case next(P, 8, T) of
        {next, Next} ->
            %% Can (should?) do more...
            throw({next, P, Sz, X, Next});
        ok ->
            ok
    end,
    true = ets:insert(T, {P,{pointer,X,Sz}}),
    if 
        Sz =:= 0 -> 
            X = 0,
            true;
        true -> 
            true = ets:insert(T, {{pointer,X}, P})
    end,
    dm(Bs, T);
dm([{P,<<X:32>>} | Bs], T) ->
    case ets:lookup(T, X) of
        [] -> throw({segment, P, X});
        [{X,{pointer,0,0}}] -> ok;
        [{X,{pointer,P,X}}] -> ok
    end,
    dm(Bs, T);
dm([{P,<<_Sz:32,B0/binary>>=B} | Bs], T) ->
    Overwrite = 
        case catch binary_to_term(B0) of % accepts garbage at end of binary
            {'EXIT', _} ->
                <<_Sz1:32,B1/binary>> = B0,
                case catch binary_to_term(B1) of
                    {'EXIT', _}  ->
                        false;
                    _ ->
                        true
                end;
            _ -> 
                true
        end,
    if 
        Overwrite ->
            %% overwrite same
            dm([{P-8,<<(byte_size(B) + 8):32,?ACTIVE:32,B/binary>>} | Bs], T);
        true -> 
            dm(segment_fragment_to_pointers(P, B)++Bs, T)
    end;
dm([], _T) ->
    ok.

segment_fragment_to_pointers(_P, <<>>) ->
    [];
segment_fragment_to_pointers(P, <<SzP:8/binary,B/binary>>) ->
    [{P,SzP} | segment_fragment_to_pointers(P+8, B)].

prev(P, T) ->
    case ets:prev(T, P) of
        '$end_of_table' -> ok;
        Prev -> 
            case ets:lookup(T, Prev) of
                [{Prev,{pointer,_Ptr,_}}] when Prev + 8 > P -> 
                    {Prev, 8};
                [{Prev,{slot,_,Sz}}] when Prev + Sz > P ->
                    {Prev, Sz};
                _ ->
                    ok
            end
    end.

next(P, PSz, T) ->
    case ets:next(T, P) of
        '$end_of_table' -> ok;
        Next when P + PSz > Next ->
            {next, Next};
        _ ->
            ok
    end.

%%%-----------------------------------------------------------------
%%% These functions implement a B+ tree.
%%%-----------------------------------------------------------------

-define(max_size, 16).
-define(min_size, 8).
%%-----------------------------------------------------------------
%% Finds out the type of the node: 'l' or 'n'.
%%-----------------------------------------------------------------
-define(NODE_TYPE(Tree), element(1, Tree)).
%% Finds out if a node/leaf is full or not.
-define(FULL(Tree), (bplus_get_size(Tree) >= ?max_size)).
%% Finds out if a node/leaf is filled up over its limit.
-define(OVER_FULL(Tree), (bplus_get_size(Tree) > ?max_size)).
%% Finds out if a node/leaf has less items than allowed.
-define(UNDER_FILLED(Tree), (bplus_get_size(Tree) < ?min_size)).
%% Finds out if a node/leaf has as few items as minimum allowed.
-define(LOW_FILLED(Tree), (bplus_get_size(Tree) =< ?min_size)).
%%Returns a key in a leaf at position Pos.
-define(GET_LEAF_KEY(Leaf, Pos), element(Pos+1, Leaf)).

%% Special for dets.
collect_tree(v, _TI, Acc) -> Acc;
collect_tree(T, TI, Acc) ->
    Pow = ?POW(TI-1),
    collect_tree2(T, Pow, Acc).

collect_tree2(Tree, Pow, Acc) ->
    S = bplus_get_size(Tree),
    case ?NODE_TYPE(Tree) of
	l ->
	    collect_leaf(Tree, S, Pow, Acc);
	n ->
	    collect_node(Tree, S, Pow, Acc)
    end.
    
collect_leaf(_Leaf, 0, _Pow, Acc) ->
    Acc;
collect_leaf(Leaf, I, Pow, Acc) ->
    Key = ?GET_LEAF_KEY(Leaf, I),
    V = {Key, Key+Pow},
    collect_leaf(Leaf, I-1, Pow, [V | Acc]).

collect_node(_Node, 0, _Pow, Acc) ->
    Acc;
collect_node(Node, I, Pow, Acc) ->
    Acc1 = collect_tree2(bplus_get_tree(Node, I), Pow, Acc),
    collect_node(Node, I-1, Pow, Acc1).

%% Special for dets.
tree_to_bin(v, _F, _Max, Ws, WsSz) -> {Ws, WsSz};
tree_to_bin(T, F, Max, Ws, WsSz) ->
    {N, L1, Ws1, WsSz1} = tree_to_bin2(T, F, Max, 0, [], Ws, WsSz),
    {N1, L2, Ws2, WsSz2} = F(N, lists:reverse(L1), Ws1, WsSz1),
    {0, [], NWs, NWsSz} = F(N1, L2, Ws2, WsSz2),
    {NWs, NWsSz}.

tree_to_bin2(Tree, F, Max, N, Acc, Ws, WsSz) when N >= Max ->
    {NN, NAcc, NWs, NWsSz} = F(N, lists:reverse(Acc), Ws, WsSz),
    tree_to_bin2(Tree, F, Max, NN, lists:reverse(NAcc), NWs, NWsSz);
tree_to_bin2(Tree, F, Max, N, Acc, Ws, WsSz) ->
    S = bplus_get_size(Tree),
    case ?NODE_TYPE(Tree) of
	l ->
	    {N+S, leaf_to_bin(bplus_leaf_to_list(Tree), Acc), Ws, WsSz};
	n ->
	    node_to_bin(Tree, F, Max, N, Acc, 1, S, Ws, WsSz)
    end.
    
node_to_bin(_Node, _F, _Max, N, Acc, I, S, Ws, WsSz) when I > S ->
    {N, Acc, Ws, WsSz};
node_to_bin(Node, F, Max, N, Acc, I, S, Ws, WsSz) ->
    {N1,Acc1,Ws1,WsSz1} = 
	tree_to_bin2(bplus_get_tree(Node, I), F, Max, N, Acc, Ws, WsSz),
    node_to_bin(Node, F, Max, N1, Acc1, I+1, S, Ws1, WsSz1).

leaf_to_bin([N | L], Acc) ->
    leaf_to_bin(L, [<<N:32>> | Acc]);
leaf_to_bin([], Acc) ->
    Acc.

%% Special for dets. 
list_to_tree(L) ->
    leafs_to_nodes(L, length(L), fun bplus_mk_leaf/1, []).

leafs_to_nodes([], 0, _F, [T]) ->
    T;
leafs_to_nodes([], 0, _F, L) ->
    leafs_to_nodes(lists:reverse(L), length(L), fun mk_node/1, []);
leafs_to_nodes(Ls, Sz, F, L) ->
    I = if 
	    Sz =< 16 -> Sz;
	    Sz =< 32 -> Sz div 2;
	    true -> 12
	end,
    {L1, R} = split_list(Ls, I, []),
    N = F(L1),
    Sz1 = Sz - I, 
    leafs_to_nodes(R, Sz1, F, [N | L]).

mk_node([E | Es]) ->
    NL = [E | lists:foldr(fun(X, A) -> [get_first_key(X), X | A] end, [], Es)],
    bplus_mk_node(NL).    

split_list(L, 0, SL) ->
    {SL, L};
split_list([E | Es], I, SL) ->
    split_list(Es, I-1, [E | SL]).

get_first_key(T) ->
    case ?NODE_TYPE(T) of
	l ->
	    ?GET_LEAF_KEY(T, 1);
	n ->
	    get_first_key(bplus_get_tree(T, 1))
    end.

%% Special for dets.
collect_interval(v, _TI, _L, _U, Acc) -> Acc;
collect_interval(T, TI, L, U, Acc) ->
    Pow = ?POW(TI-1),
    collect_interval2(T, Pow, L, U, Acc).

collect_interval2(Tree, Pow, L, U, Acc) ->
    S = bplus_get_size(Tree),
    case ?NODE_TYPE(Tree) of
	l ->
	    collect_leaf_interval(Tree, S, Pow, L, U, Acc);
	n ->
            {Max, _} = bplus_select_sub_tree(Tree, U),
            {Min, _} = bplus_select_sub_tree_2(Tree, L, Max),
	    collect_node_interval(Tree, Min, Max, Pow, L, U, Acc)
    end.
    
collect_leaf_interval(_Leaf, 0, _Pow, _L, _U, Acc) ->
    Acc;
collect_leaf_interval(Leaf, I, Pow, L, U, Acc) ->
    Key = ?GET_LEAF_KEY(Leaf, I),
    if
        Key < L -> 
            Acc;
        Key > U -> 
            collect_leaf_interval(Leaf, I-1, Pow, L, U, Acc);
        true -> 
            collect_leaf_interval(Leaf, I-1, Pow, L, U, [{Key,Key+Pow} | Acc])
    end.

collect_node_interval(_Node, I, UP, _Pow, _L, _U, Acc) when I > UP ->
    Acc;
collect_node_interval(Node, I, UP, Pow, L, U, Acc) ->
    Acc1 = collect_interval2(bplus_get_tree(Node, I), Pow, L, U, Acc),
    collect_node_interval(Node, I+1, UP, Pow, L, U, Acc1).

%%-----------------------------------------------------------------
%% Func: empty_tree/0
%% Purpose: Creates a new empty tree.
%% Returns: tree()
%%-----------------------------------------------------------------
bplus_empty_tree() -> v.

%%-----------------------------------------------------------------
%% Func: lookup/2
%% Purpose: Looks for Key in the Tree.
%% Returns: {ok, {Key, Val}} | 'undefined'.
%%-----------------------------------------------------------------
bplus_lookup(v, _Key) -> undefined;
bplus_lookup(Tree, Key) ->
    case ?NODE_TYPE(Tree) of
	l ->
	    bplus_lookup_leaf(Key, Tree);
	n ->
	    {_, SubTree} = bplus_select_sub_tree(Tree, Key),
	    bplus_lookup(SubTree, Key)
    end.

%%-----------------------------------------------------------------
%% Searches through a leaf until the Key is ok or
%% when it is determined that it does not exist.
%%-----------------------------------------------------------------
bplus_lookup_leaf(Key, Leaf) -> 
    bplus_lookup_leaf_2(Key, Leaf, bplus_get_size(Leaf)).

bplus_lookup_leaf_2(_, _, 0) -> undefined;
bplus_lookup_leaf_2(Key, Leaf, N) ->
    case ?GET_LEAF_KEY(Leaf, N) of
	Key -> {ok, Key};
	_ ->
	    bplus_lookup_leaf_2(Key, Leaf, N-1)
    end.

%%-----------------------------------------------------------------
%% Func: lookup_first/1
%% Purpose: Finds the smallest key in the entire Tree.
%% Returns: {ok, {Key, Val}} | 'undefined'.
%%-----------------------------------------------------------------
bplus_lookup_first(v) -> undefined;
bplus_lookup_first(Tree) ->
    case ?NODE_TYPE(Tree) of
	l ->
	    % Then it is the leftmost key here.
	    {ok, ?GET_LEAF_KEY(Tree, 1)};         
	n ->
	    % Look in the leftmost subtree.
	    bplus_lookup_first(bplus_get_tree(Tree, 1))
    end.


%%-----------------------------------------------------------------
%% Func: lookup_next/2
%% Purpose: Finds the next key nearest after Key.
%% Returns: {ok, {Key, Val}} | 'undefined'. NIX!!!
%%-----------------------------------------------------------------
bplus_lookup_next(v, _) -> undefined;
bplus_lookup_next(Tree, Key) ->
    case ?NODE_TYPE(Tree) of
	l ->
	    lookup_next_leaf(Key, Tree);
	n ->
	    {Pos, SubTree} = bplus_select_sub_tree(Tree, Key),
	    case bplus_lookup_next(SubTree, Key) of
		undefined ->
		    S = bplus_get_size(Tree),
		    if
			% There is a right brother.
			S > Pos ->                  
			    bplus_lookup_first(bplus_get_tree(Tree, Pos+1));
			% No there is no right brother.
			true ->
			    undefined
		    end;
		% We ok a next item.
		Result ->                         
		    Result
	    end
    end.

%%-----------------------------------------------------------------
%% Returns {ok, NextKey} if there is a key in the leaf which is greater.
%% If there is no such key we return 'undefined' instead.
%% Key does not have to be a key in the structure, just a search value.
%%-----------------------------------------------------------------
lookup_next_leaf(Key, Leaf) -> 
    lookup_next_leaf_2(Key, Leaf, bplus_get_size(Leaf), 1).

lookup_next_leaf_2(Key, Leaf, Size, Size) -> 
    % This is the rightmost key.
    K = ?GET_LEAF_KEY(Leaf, Size),
    if
	K > Key ->
	    {ok, ?GET_LEAF_KEY(Leaf, Size)};
	true ->
	    undefined
    end;
lookup_next_leaf_2(Key, Leaf, Size, N) ->
    K = ?GET_LEAF_KEY(Leaf, N),
    if
	K < Key ->                         
	    % K is still smaller, try next in the leaf.
	    lookup_next_leaf_2(Key, Leaf, Size, N+1);
	Key == K ->
	    % Since this is exact Key it must be the next.
	    {ok, ?GET_LEAF_KEY(Leaf, N+1)};
        true ->
            % Key was not an exact specification.
	    % It must be K that is next greater.
	    {ok, ?GET_LEAF_KEY(Leaf, N)}
    end.

%%-----------------------------------------------------------------
%% Func: insert/3
%% Purpose: Inserts a new {Key, Value} into the tree.
%% Returns: tree()
%%-----------------------------------------------------------------
bplus_insert(v, Key) -> bplus_mk_leaf([Key]);
bplus_insert(Tree, Key) ->
    NewTree = bplus_insert_in(Tree, Key),
    case ?OVER_FULL(NewTree) of
	false ->
	    NewTree;
	% If the node is over-full the tree will grow.
	true ->
	    {LTree, DKey, RTree} = 
		case ?NODE_TYPE(NewTree) of
		    l ->
			bplus_split_leaf(NewTree);
		    n ->
			bplus_split_node(NewTree)
		end,
	    bplus_mk_node([LTree, DKey, RTree])
    end.

%%-----------------------------------------------------------------
%% Func: delete/2
%% Purpose: Deletes a key from the tree (if present).
%% Returns: tree()
%%-----------------------------------------------------------------
bplus_delete(v, _Key) -> v;
bplus_delete(Tree, Key) ->
    NewTree = bplus_delete_in(Tree, Key),
    S = bplus_get_size(NewTree),
    case ?NODE_TYPE(NewTree) of
	l ->
	    if
		S =:= 0 ->
		    v;
		true ->
		    NewTree
	    end;
	n ->
	    if
		S =:= 1 ->
		    bplus_get_tree(NewTree, 1);
		true ->
		    NewTree
	    end
    end.


%%% -----------------------
%%% Help function to insert.
%%% -----------------------

bplus_insert_in(Tree, Key) ->
    case ?NODE_TYPE(Tree) of
	l ->
	    bplus_insert_in_leaf(Tree, Key);
	n ->
	    {Pos, SubTree} = bplus_select_sub_tree(Tree, Key),  
            % Pos = "the position of the subtree".
	    NewSubTree = bplus_insert_in(SubTree, Key),
	    case ?OVER_FULL(NewSubTree) of
		false ->
		    bplus_put_subtree(Tree, [NewSubTree, Pos]);
		true ->
		    case bplus_reorganize_tree_ins(Tree, NewSubTree, Pos) of
			{left, {LeftT, DKey, MiddleT}} ->
			    bplus_put_subtree(bplus_put_lkey(Tree, DKey, Pos),
					[LeftT, Pos-1, MiddleT, Pos]);
			{right, {MiddleT, DKey, RightT}} ->
			    bplus_put_subtree(bplus_put_rkey(Tree, DKey, Pos),
					[MiddleT, Pos, RightT, Pos+1]);
			{split, {LeftT, DKey, RightT}} ->
			    bplus_extend_tree(Tree, {LeftT, DKey, RightT}, Pos)
		    end
	    end
    end.

%%-----------------------------------------------------------------
%% Inserts a key in correct position in a leaf.
%%-----------------------------------------------------------------
bplus_insert_in_leaf(Leaf, Key) ->
    bplus_insert_in_leaf_2(Leaf, Key, bplus_get_size(Leaf), []).

bplus_insert_in_leaf_2(Leaf, Key, 0, Accum) ->
    bplus_insert_in_leaf_3(Leaf, 0, [Key|Accum]);
bplus_insert_in_leaf_2(Leaf, Key, N, Accum) ->
    K = ?GET_LEAF_KEY(Leaf, N),
    if
	Key < K ->
	    % Not here!
	    bplus_insert_in_leaf_2(Leaf, Key, N-1, [K|Accum]);
	K < Key ->
	    % Insert here.
	    bplus_insert_in_leaf_3(Leaf, N-1, [K, Key|Accum]);
	K == Key ->
	    % Replace (?).
	    bplus_insert_in_leaf_3(Leaf, N-1, [ Key|Accum])
    end.

bplus_insert_in_leaf_3(_Leaf, 0, LeafList) ->
    bplus_mk_leaf(LeafList);
bplus_insert_in_leaf_3(Leaf, N, LeafList) ->
    bplus_insert_in_leaf_3(Leaf, N-1, [?GET_LEAF_KEY(Leaf, N)|LeafList]).


%%% -------------------------
%%% Help functions for delete.
%%% -------------------------

bplus_delete_in(Tree, Key) ->
    case ?NODE_TYPE(Tree) of
	l ->
	    bplus_delete_in_leaf(Tree, Key);
	n ->
	    {Pos, SubTree} = bplus_select_sub_tree(Tree, Key),  
	    % Pos = "the position of the subtree".
	    NewSubTree = bplus_delete_in(SubTree, Key),
	    % Check if it has become to small now
	    case ?UNDER_FILLED(NewSubTree) of
		false ->
		    bplus_put_subtree(Tree, [NewSubTree, Pos]);
		true ->
		    case bplus_reorganize_tree_del(Tree, NewSubTree, Pos) of
			{left, {LeftT, DKey, MiddleT}} ->
			    bplus_put_subtree(bplus_put_lkey(Tree, DKey, Pos),
					[LeftT, Pos-1, MiddleT, Pos]);
			{right, {MiddleT, DKey, RightT}} ->
			    bplus_put_subtree(bplus_put_rkey(Tree, DKey, Pos),
					[MiddleT, Pos, RightT, Pos+1]);
			{join_left, JoinedTree} ->
			    bplus_joinleft_tree(Tree, JoinedTree, Pos);
			{join_right, JoinedTree} ->
			    bplus_joinright_tree(Tree, JoinedTree, Pos)
		    end
	    end
    end.

%%-----------------------------------------------------------------
%% Deletes a key from the leaf returning a new (smaller) leaf.
%%-----------------------------------------------------------------
bplus_delete_in_leaf(Leaf, Key) ->
    bplus_delete_in_leaf_2(Leaf, Key, bplus_get_size(Leaf), []).

bplus_delete_in_leaf_2(Leaf, _, 0, _) -> Leaf;
bplus_delete_in_leaf_2(Leaf, Key, N, Accum) ->
    K = ?GET_LEAF_KEY(Leaf, N),
    if
	Key == K ->
            % Remove this one!
	    bplus_delete_in_leaf_3(Leaf, N-1, Accum);
	true ->
	    bplus_delete_in_leaf_2(Leaf, Key, N-1, [K|Accum])
    end.

bplus_delete_in_leaf_3(_Leaf, 0, LeafList) ->
    bplus_mk_leaf(LeafList);
bplus_delete_in_leaf_3(Leaf, N, LeafList) ->
    bplus_delete_in_leaf_3(Leaf, N-1, [?GET_LEAF_KEY(Leaf, N)|LeafList]).



%%-----------------------------------------------------------------
%% Selects and returns which subtree the search should continue in.
%%-----------------------------------------------------------------
bplus_select_sub_tree(Tree, Key) ->
    bplus_select_sub_tree_2(Tree, Key, bplus_get_size(Tree)).

bplus_select_sub_tree_2(Tree, _Key, 1) -> {1, bplus_get_tree(Tree, 1)};
bplus_select_sub_tree_2(Tree, Key, N) ->
    K = bplus_get_lkey(Tree, N),
    if
	K > Key ->
	    bplus_select_sub_tree_2(Tree, Key, N-1);
	K =< Key ->
            % Here it is!
	    {N, bplus_get_tree(Tree, N)}
    end.

%%-----------------------------------------------------------------
%% Selects which brother that should take over some of our items.
%% Or if they are both full makes a split.
%%-----------------------------------------------------------------
bplus_reorganize_tree_ins(Tree, NewSubTree, 1) ->
    RTree = bplus_get_tree(Tree, 2),  % 2 = Pos+1 = 1+1.
    case ?FULL(RTree) of
	false ->
	    bplus_reorganize_tree_r(Tree, NewSubTree, 1, RTree);
	true ->
            % It is full, we must split this one!
	    bplus_reorganize_tree_s(NewSubTree)
    end;
bplus_reorganize_tree_ins(Tree, NewSubTree, Pos) ->
    Size = bplus_get_size(Tree),
    if
	Pos == Size ->
            % Pos is the rightmost postion!.
            % Our only chance is the left one.
	    LTree = bplus_get_tree(Tree, Pos-1),
 	    case ?FULL(LTree) of
		false ->
		    bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree);
		true ->
		    % It is full, we must split this one!
		    bplus_reorganize_tree_s(NewSubTree)
	    end;
	true ->
            % Pos is somewhere inside the node.
	    LTree = bplus_get_tree(Tree, Pos-1),
	    RTree = bplus_get_tree(Tree, Pos+1),
	    SL = bplus_get_size(LTree),
	    SR = bplus_get_size(RTree),
	    if
		SL > SR ->
		    bplus_reorganize_tree_r(Tree, NewSubTree, Pos, RTree);
		SL < SR ->
		    bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree);
		true ->
		    case ?FULL(LTree) of
			false ->
			    bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree);
			true ->
			    bplus_reorganize_tree_s(NewSubTree)
		    end
	    end
    end.

%%-----------------------------------------------------------------
%% This function fills over items from brothers to maintain the minimum
%% number of items per node/leaf.
%%-----------------------------------------------------------------
bplus_reorganize_tree_del(Tree, NewSubTree, 1) ->
    % The case when Pos is at leftmost position.
    RTree = bplus_get_tree(Tree, 2),  % 2 = Pos+1 = 1+1.
    case ?LOW_FILLED(RTree) of
	false ->
	    bplus_reorganize_tree_r(Tree, NewSubTree, 1, RTree);
	true ->
            % It is to small, we must join them!
	    bplus_reorganize_tree_jr(Tree, NewSubTree, 1, RTree)
    end;
bplus_reorganize_tree_del(Tree, NewSubTree, Pos) ->
    Size = bplus_get_size(Tree),
    if
	Pos == Size ->
            % Pos is the rightmost postion!.
            % Our only chance is the left one.
	    LTree = bplus_get_tree(Tree, Pos-1),
	    case ?LOW_FILLED(LTree) of
		false ->
		    bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree);
		true ->
                    % It is to small, we must join this one!
		    bplus_reorganize_tree_jl(Tree, NewSubTree, Pos, LTree)
	    end;
	true ->
            % Pos is somewhere inside the node.
	    LTree = bplus_get_tree(Tree, Pos-1),
	    RTree = bplus_get_tree(Tree, Pos+1),
	    SL = bplus_get_size(LTree),
	    SR = bplus_get_size(RTree),
	    if
		SL>SR ->
		    bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree);
		SL < SR ->
		    bplus_reorganize_tree_r(Tree, NewSubTree, Pos, RTree);
		true ->
		    case ?LOW_FILLED(LTree) of
			false ->
			    bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree);
			true ->
			    bplus_reorganize_tree_jl(Tree, NewSubTree, Pos, LTree)
		    end
	    end
    end.


bplus_reorganize_tree_l(Tree, NewSubTree, Pos, LTree) ->
    case ?NODE_TYPE(NewSubTree) of
	l ->
	    {left, bplus_split_leaf(
		     bplus_mk_leaf(
		       lists:append(bplus_leaf_to_list(LTree),
				    bplus_leaf_to_list(NewSubTree))))};
	n ->
	    {left, bplus_split_node(
		     bplus_mk_node(
		       lists:append([bplus_node_to_list(LTree),
				     [bplus_get_lkey(Tree, Pos)],
				     bplus_node_to_list(NewSubTree)])))}
    end.

bplus_reorganize_tree_r(Tree, NewSubTree, Pos, RTree) ->
    case ?NODE_TYPE(NewSubTree) of
	l ->
	    {right, 
	     bplus_split_leaf(
	       bplus_mk_leaf(
		 lists:append([bplus_leaf_to_list(NewSubTree),
			       bplus_leaf_to_list(RTree)])))};
	n ->
	    {right, 
	     bplus_split_node(
	       bplus_mk_node(
		 lists:append([bplus_node_to_list(NewSubTree),
			       [bplus_get_rkey(Tree, Pos)],
			       bplus_node_to_list(RTree)])))}
    end.

bplus_reorganize_tree_s(NewSubTree) ->
    case ?NODE_TYPE(NewSubTree) of
	l ->
	    {split, bplus_split_leaf(NewSubTree)};
	n ->
	    {split, bplus_split_node(NewSubTree)}
    end.

bplus_reorganize_tree_jl(Tree, NewSubTree, Pos, LTree) ->
    case ?NODE_TYPE(NewSubTree) of
	l ->
	    {join_left, 
	     bplus_mk_leaf(lists:append([bplus_leaf_to_list(LTree),
					 bplus_leaf_to_list(NewSubTree)]))};
	n ->
	    {join_left, 
	     bplus_mk_node(lists:append([bplus_node_to_list(LTree),
					 [bplus_get_lkey(Tree, Pos)],
					 bplus_node_to_list(NewSubTree)]))}
    end.

bplus_reorganize_tree_jr(Tree, NewSubTree, Pos, RTree) ->
    case ?NODE_TYPE(NewSubTree) of
	l ->
	    {join_right, 
	     bplus_mk_leaf(lists:append([bplus_leaf_to_list(NewSubTree),
					 bplus_leaf_to_list(RTree)]))};
	n ->
	    {join_right, 
	     bplus_mk_node(lists:append([bplus_node_to_list(NewSubTree),
					 [bplus_get_rkey(Tree, Pos)],
					 bplus_node_to_list(RTree)]))}
    end.


%%-----------------------------------------------------------------
%% Takes a leaf and divides it into two equal big leaves.
%% The result is returned in a tuple. The dividing key is also returned.
%%-----------------------------------------------------------------
bplus_split_leaf(Leaf) ->
    S = bplus_get_size(Leaf),
    bplus_split_leaf_2(Leaf, S, S div 2, []).

bplus_split_leaf_2(Leaf, Pos, 1, Accum) -> 
    K = ?GET_LEAF_KEY(Leaf, Pos),
    bplus_split_leaf_3(Leaf, Pos-1, [], K, [K|Accum]);
bplus_split_leaf_2(Leaf, Pos, N, Accum) ->
    bplus_split_leaf_2(Leaf, Pos-1, N-1, [?GET_LEAF_KEY(Leaf, Pos)|Accum]).

bplus_split_leaf_3(_, 0, LeftAcc, DKey, RightAcc) ->
    {bplus_mk_leaf(LeftAcc), DKey, bplus_mk_leaf(RightAcc)};
bplus_split_leaf_3(Leaf, Pos, LeftAcc, DKey, RightAcc) ->
    bplus_split_leaf_3(Leaf, Pos-1, [?GET_LEAF_KEY(Leaf, Pos)|LeftAcc],
		       DKey, RightAcc).

%%-----------------------------------------------------------------
%% Takes a node and divides it into two equal big nodes.
%% The result is returned in a tuple. The dividing key is also returned.
%%-----------------------------------------------------------------
bplus_split_node(Node) ->
    S = bplus_get_size(Node),
    bplus_split_node_2(Node, S, S div 2, []).

bplus_split_node_2(Node, Pos, 1, Accum) ->
    bplus_split_node_3(Node, Pos-1, [], bplus_get_lkey(Node, Pos),
		 [bplus_get_tree(Node, Pos)|Accum]);
bplus_split_node_2(Node, Pos, N, Accum) ->
    bplus_split_node_2(Node, Pos-1, N-1, [bplus_get_lkey(Node, Pos),
				    bplus_get_tree(Node, Pos)|Accum]).

bplus_split_node_3(Node, 1, LeftAcc, DKey, RightAcc) ->
    {bplus_mk_node([bplus_get_tree(Node, 1)|LeftAcc]), DKey, 
     bplus_mk_node(RightAcc)};
bplus_split_node_3(Node, Pos, LeftAcc, DKey, RightAcc) ->
    bplus_split_node_3(Node, Pos-1,
		       [bplus_get_lkey(Node, Pos), 
			bplus_get_tree(Node, Pos)|LeftAcc],
		       DKey, RightAcc).

%%-----------------------------------------------------------------
%% Inserts a joined tree insted of the old one at position Pos and
%% the one nearest left/right brother.
%%-----------------------------------------------------------------
bplus_joinleft_tree(Tree, JoinedTree, Pos) ->
    bplus_join_tree_2(Tree, JoinedTree, Pos, bplus_get_size(Tree), []).
bplus_joinright_tree(Tree, JoinedTree, Pos) ->
    bplus_join_tree_2(Tree, JoinedTree, Pos+1, bplus_get_size(Tree), []).

bplus_join_tree_2(Tree, JoinedTree, Pos, Pos, Accum) ->
    bplus_join_tree_3(Tree, Pos-2, [JoinedTree|Accum]);
bplus_join_tree_2(Tree, JoinedTree, Pos, N, Accum) ->
    bplus_join_tree_2(Tree, JoinedTree, Pos, N-1,
		[bplus_get_lkey(Tree, N), bplus_get_tree(Tree, N)|Accum]).

bplus_join_tree_3(_Tree, 0, Accum) -> bplus_mk_node(Accum);
bplus_join_tree_3(Tree, Pos, Accum) ->
    bplus_join_tree_3(Tree, Pos-1, [bplus_get_tree(Tree, Pos), 
				    bplus_get_rkey(Tree, Pos)|Accum]).

%%% ---------------------------------
%%% Primitive datastructure functions.
%%% ---------------------------------

%%-----------------------------------------------------------------
%% Constructs a node out of list format.
%%-----------------------------------------------------------------
bplus_mk_node(NodeList) -> list_to_tuple([ n |NodeList]).

%%-----------------------------------------------------------------
%% Converts the node into list format.
%%-----------------------------------------------------------------
bplus_node_to_list(Node) ->
    [_|NodeList] = tuple_to_list(Node),
    NodeList.

%%-----------------------------------------------------------------
%% Constructs a leaf out of list format.
%%-----------------------------------------------------------------
bplus_mk_leaf(KeyList) -> list_to_tuple([l|KeyList]).

%%-----------------------------------------------------------------
%% Converts a leaf into list format.
%%-----------------------------------------------------------------
bplus_leaf_to_list(Leaf) ->
    [_|LeafList] = tuple_to_list(Leaf),
    LeafList.

%%-----------------------------------------------------------------
%% Changes subtree "pointers" in a node.
%%-----------------------------------------------------------------
bplus_put_subtree(Tree, []) -> Tree;
bplus_put_subtree(Tree, [NewSubTree, Pos|Rest]) ->
    bplus_put_subtree(setelement(Pos*2, Tree, NewSubTree), Rest).

%%-----------------------------------------------------------------
%% Replaces the tree at position Pos with two new trees.
%%-----------------------------------------------------------------
bplus_extend_tree(Tree, Inserts, Pos) ->
    bplus_extend_tree_2(Tree, Inserts, Pos, bplus_get_size(Tree), []).

bplus_extend_tree_2(Tree, {T1, DKey, T2}, Pos, Pos, Accum) ->
    bplus_extend_tree_3(Tree, Pos-1, [T1, DKey, T2|Accum]);
bplus_extend_tree_2(Tree, Inserts, Pos, N, Accum) ->
    bplus_extend_tree_2(Tree, Inserts, Pos, N-1,
		  [bplus_get_lkey(Tree, N), bplus_get_tree(Tree, N)|Accum]).

bplus_extend_tree_3(_, 0, Accum) -> bplus_mk_node(Accum);
bplus_extend_tree_3(Tree, N, Accum) ->
    bplus_extend_tree_3(Tree, N-1, [bplus_get_tree(Tree, N), 
				    bplus_get_rkey(Tree, N)|Accum]).

%%-----------------------------------------------------------------
%% Changes the dividing key between two trees.
%%-----------------------------------------------------------------
bplus_put_lkey(Tree, DKey, Pos) -> setelement(Pos*2-1, Tree, DKey).
bplus_put_rkey(Tree, DKey, Pos) -> setelement(Pos*2+1, Tree, DKey).


%%-----------------------------------------------------------------
%% Calculates the number of items in a node/leaf.
%%-----------------------------------------------------------------
bplus_get_size(Tree) ->
    case ?NODE_TYPE(Tree) of
	l ->
	    tuple_size(Tree)-1;
	n ->
	    tuple_size(Tree) div 2
    end.

%%-----------------------------------------------------------------
%% Returns a tree at position Pos from an internal node.
%%-----------------------------------------------------------------
bplus_get_tree(Tree, Pos) -> element(Pos*2, Tree).

%%-----------------------------------------------------------------
%% Returns dividing keys, left of or right of a tree.
%%-----------------------------------------------------------------
bplus_get_lkey(Tree, Pos) -> element(Pos*2-1, Tree).
bplus_get_rkey(Tree, Pos) -> element(Pos*2+1, Tree).