aboutsummaryrefslogblamecommitdiffstats
path: root/lib/stdlib/src/gb_sets.erl
blob: 113f29e252d70b070bf302a4188e1e32a22cae20 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659


















































































































































































































































































































































































































































































































































































































































































                                                                              
                                               























































































































































                                                                             
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2001-2009. All Rights Reserved.
%% 
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%% 
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%% 
%% %CopyrightEnd%
%%
%% =====================================================================
%% Ordered Sets implemented as General Balanced Trees
%%
%% Copyright (C) 1999-2001 Richard Carlsson
%%
%% An implementation of ordered sets using Prof. Arne Andersson's
%% General Balanced Trees. This can be much more efficient than using
%% ordered lists, for larger sets, but depends on the application. See
%% notes below for details.
%% ---------------------------------------------------------------------
%% Notes:
%%
%% The complexity on set operations is bounded by either O(|S|) or O(|T|
%% * log(|S|)), where S is the largest given set, depending on which is
%% fastest for any particular function call. For operating on sets of
%% almost equal size, this implementation is about 3 times slower than
%% using ordered-list sets directly. For sets of very different sizes,
%% however, this solution can be arbitrarily much faster; in practical
%% cases, often between 10 and 100 times. This implementation is
%% particularly suited for ackumulating elements a few at a time,
%% building up a large set (more than 100-200 elements), and repeatedly
%% testing for membership in the current set.
%%
%% As with normal tree structures, lookup (membership testing),
%% insertion and deletion have logarithmic complexity.
%%
%% Operations:
%%
%% - empty(): returns empty set.
%%
%%   Alias: new(), for compatibility with `sets'.
%%
%% - is_empty(S): returns 'true' if S is an empty set, and 'false'
%%   otherwise.
%%
%% - size(S): returns the number of nodes in the set as an integer.
%%   Returns 0 (zero) if the set is empty.
%%
%% - singleton(X): returns a set containing only the element X.
%%
%% - is_member(X, S): returns `true' if element X is a member of set S,
%%   and `false' otherwise.
%%
%%   Alias: is_element(), for compatibility with `sets'.
%%
%% - insert(X, S): inserts element X into set S; returns the new set.
%%   *Assumes that the element is not present in S.*
%%
%% - add(X, S): adds element X to set S; returns the new set. If X is
%%   already an element in S, nothing is changed.
%%
%%   Alias: add_element(), for compatibility with `sets'.
%%
%% - delete(X, S): removes element X from set S; returns new set.
%%   Assumes that the element exists in the set.
%%
%% - delete_any(X, S): removes key X from set S if the key is present
%%   in the set, otherwise does nothing; returns new set.
%%
%%   Alias: del_element(), for compatibility with `sets'.
%%
%% - balance(S): rebalances the tree representation of S. Note that this
%%   is rarely necessary, but may be motivated when a large number of
%%   elements have been deleted from the tree without further
%%   insertions. Rebalancing could then be forced in order to minimise
%%   lookup times, since deletion only does not rebalance the tree.
%%
%% - union(S1, S2): returns a new set that contains each element that is
%%   in either S1 or S2 or both, and no other elements.
%%
%% - union(Ss): returns a new set that contains each element that is in
%%   at least one of the sets in the list Ss, and no other elements.
%%
%% - intersection(S1, S2): returns a new set that contains each element
%%   that is in both S1 and S2, and no other elements.
%%
%% - intersection(Ss): returns a new set that contains each element that
%%   is in all of the sets in the list Ss, and no other elements.
%%
%% - is_disjoint(S1, S2): returns `true' if none of the elements in S1
%%   occurs in S2.
%%
%% - difference(S1, S2): returns a new set that contains each element in
%%   S1 that is not also in S2, and no other elements.
%%
%%   Alias: subtract(), for compatibility with `sets'.
%%
%% - is_subset(S1, S2): returns `true' if each element in S1 is also a
%%   member of S2, and `false' otherwise.
%%
%% - to_list(S): returns an ordered list of all elements in set S. The
%%   list never contains duplicates.
%%
%% - from_list(List): creates a set containing all elements in List,
%%   where List may be unordered and contain duplicates.
%%
%% - from_ordset(L): turns an ordered-set list L into a set. The list
%%   must not contain duplicates.
%%
%% - smallest(S): returns the smallest element in set S. Assumes that
%%   the set S is nonempty.
%%
%% - largest(S): returns the largest element in set S. Assumes that the
%%   set S is nonempty.
%%
%% - take_smallest(S): returns {X, S1}, where X is the smallest element
%%   in set S, and S1 is the set S with element X deleted. Assumes that
%%   the set S is nonempty.
%%
%% - take_largest(S): returns {X, S1}, where X is the largest element in
%%   set S, and S1 is the set S with element X deleted. Assumes that the
%%   set S is nonempty.
%%
%% - iterator(S): returns an iterator that can be used for traversing
%%   the entries of set S; see `next'. The implementation of this is
%%   very efficient; traversing the whole set using `next' is only
%%   slightly slower than getting the list of all elements using
%%   `to_list' and traversing that. The main advantage of the iterator
%%   approach is that it does not require the complete list of all
%%   elements to be built in memory at one time.
%%
%% - next(T): returns {X, T1} where X is the smallest element referred
%%   to by the iterator T, and T1 is the new iterator to be used for
%%   traversing the remaining elements, or the atom `none' if no
%%   elements remain.
%%
%% - filter(P, S): Filters set S using predicate function P. Included
%%   for compatibility with `sets'.
%%
%% - fold(F, A, S): Folds function F over set S with A as the initial
%%   ackumulator. Included for compatibility with `sets'.
%%
%% - is_set(S): returns 'true' if S appears to be a set, and 'false'
%%   otherwise. Not recommended; included for compatibility with `sets'.

-module(gb_sets).

-export([empty/0, is_empty/1, size/1, singleton/1, is_member/2,
	 insert/2, add/2, delete/2, delete_any/2, balance/1, union/2,
	 union/1, intersection/2, intersection/1, is_disjoint/2, difference/2,
	 is_subset/2, to_list/1, from_list/1, from_ordset/1, smallest/1,
	 largest/1, take_smallest/1, take_largest/1, iterator/1, next/1,
	 filter/2, fold/3, is_set/1]).

%% `sets' compatibility aliases:

-export([new/0, is_element/2, add_element/2, del_element/2,
	 subtract/2]).

%% GB-trees adapted from Sven-Olof Nystr�m's implementation for
%% representation of sets.
%%
%% Data structures:
%% - {Size, Tree}, where `Tree' is composed of nodes of the form:
%% - {Key, Smaller, Bigger}, and the "empty tree" node:
%% - nil.
%%
%% No attempt is made to balance trees after deletions. Since deletions
%% don't increase the height of a tree, this should be OK.
%%
%% Original balance condition h(T) <= ceil(c * log(|T|)) has been
%% changed to the similar (but not quite equivalent) condition 2 ^ h(T)
%% <= |T| ^ c. This should also be OK.
%%
%% Behaviour is logarithmic (as it should be).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Some macros. 

-define(p, 2). % It seems that p = 2 is optimal for sorted keys

-define(pow(A, _), A * A). % correct with exponent as defined above.

-define(div2(X), X bsr 1). 

-define(mul2(X), X bsl 1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Some types.

-type gb_set_node() :: 'nil' | {term(), _, _}.

%% A declaration equivalent to the following is currently hard-coded
%% in erl_types.erl
%%
%% -opaque gb_set() :: {non_neg_integer(), gb_set_node()}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

-spec empty() -> gb_set().

empty() ->
    {0, nil}.

-spec new() -> gb_set().

new() -> empty().

-spec is_empty(gb_set()) -> boolean().

is_empty({0, nil}) ->
    true;
is_empty(_) ->
    false.

-spec size(gb_set()) -> non_neg_integer().

size({Size, _}) ->
    Size.

-spec singleton(term()) -> gb_set().

singleton(Key) ->
    {1, {Key, nil, nil}}.

-spec is_element(term(), gb_set()) -> boolean().

is_element(Key, S) ->
    is_member(Key, S).

-spec is_member(term(), gb_set()) -> boolean().

is_member(Key, {_, T}) ->
    is_member_1(Key, T).

is_member_1(Key, {Key1, Smaller, _}) when Key < Key1 ->
    is_member_1(Key, Smaller);
is_member_1(Key, {Key1, _, Bigger}) when Key > Key1 ->
    is_member_1(Key, Bigger);
is_member_1(_, {_, _, _}) ->
    true;
is_member_1(_, nil) ->
    false.

-spec insert(term(), gb_set()) -> gb_set().

insert(Key, {S, T}) ->
    S1 = S + 1,
    {S1, insert_1(Key, T, ?pow(S1, ?p))}.

insert_1(Key, {Key1, Smaller, Bigger}, S) when Key < Key1 -> 
    case insert_1(Key, Smaller, ?div2(S)) of
	{T1, H1, S1} when is_integer(H1) ->
	    T = {Key1, T1, Bigger},
	    {H2, S2} = count(Bigger),
	    H = ?mul2(erlang:max(H1, H2)),
	    SS = S1 + S2 + 1,
	    P = ?pow(SS, ?p),
	    if
		H > P -> 
		    balance(T, SS);
		true ->
		    {T, H, SS}
	    end;
	T1 ->
	    {Key1, T1, Bigger}
    end;
insert_1(Key, {Key1, Smaller, Bigger}, S) when Key > Key1 -> 
    case insert_1(Key, Bigger, ?div2(S)) of
	{T1, H1, S1} when is_integer(H1) ->
	    T = {Key1, Smaller, T1},
	    {H2, S2} = count(Smaller),
	    H = ?mul2(erlang:max(H1, H2)),
	    SS = S1 + S2 + 1,
	    P = ?pow(SS, ?p),
	    if
		H > P -> 
		    balance(T, SS);
		true ->
		    {T, H, SS}
	    end;
	T1 ->
	    {Key1, Smaller, T1}
    end;
insert_1(Key, nil, 0) ->
    {{Key, nil, nil}, 1, 1};
insert_1(Key, nil, _) ->
    {Key, nil, nil};
insert_1(Key, _, _) ->
    erlang:error({key_exists, Key}).

count({_, nil, nil}) ->
    {1, 1};
count({_, Sm, Bi}) ->
    {H1, S1} = count(Sm),
    {H2, S2} = count(Bi),
    {?mul2(erlang:max(H1, H2)), S1 + S2 + 1};
count(nil) ->
    {1, 0}.

-spec balance(gb_set()) -> gb_set().

balance({S, T}) ->
    {S, balance(T, S)}.

balance(T, S) ->
    balance_list(to_list_1(T), S).

balance_list(L, S) ->
    {T, _} = balance_list_1(L, S),
    T.

balance_list_1(L, S) when S > 1 ->
    Sm = S - 1,
    S2 = Sm div 2,
    S1 = Sm - S2,
    {T1, [K | L1]} = balance_list_1(L, S1),
    {T2, L2} = balance_list_1(L1, S2),
    T = {K, T1, T2},
    {T, L2};
balance_list_1([Key | L], 1) ->
    {{Key, nil, nil}, L};
balance_list_1(L, 0) ->
    {nil, L}.

-spec add_element(term(), gb_set()) -> gb_set().

add_element(X, S) ->
    add(X, S).

-spec add(term(), gb_set()) -> gb_set().

add(X, S) ->
    case is_member(X, S) of
	true ->
	    S;    % we don't have to do anything here
	false ->
	    insert(X, S)
    end.

-spec from_list([term()]) -> gb_set().

from_list(L) ->
    from_ordset(ordsets:from_list(L)).

-spec from_ordset([term()]) -> gb_set().

from_ordset(L) ->
    S = length(L),
    {S, balance_list(L, S)}.

-spec del_element(term(), gb_set()) -> gb_set().

del_element(Key, S) ->
    delete_any(Key, S).

-spec delete_any(term(), gb_set()) -> gb_set().

delete_any(Key, S) ->
    case is_member(Key, S) of
 	true ->
 	    delete(Key, S);
 	false ->
 	    S
    end.

-spec delete(term(), gb_set()) -> gb_set().

delete(Key, {S, T}) ->
    {S - 1, delete_1(Key, T)}.

delete_1(Key, {Key1, Smaller, Larger}) when Key < Key1 ->
    Smaller1 = delete_1(Key, Smaller),
    {Key1, Smaller1, Larger};
delete_1(Key, {Key1, Smaller, Bigger}) when Key > Key1 ->
    Bigger1 = delete_1(Key, Bigger),
    {Key1, Smaller, Bigger1};
delete_1(_, {_, Smaller, Larger}) ->
    merge(Smaller, Larger).

merge(Smaller, nil) ->
    Smaller;
merge(nil, Larger) ->
    Larger;
merge(Smaller, Larger) ->
    {Key, Larger1} = take_smallest1(Larger),
    {Key, Smaller, Larger1}.

-spec take_smallest(gb_set()) -> {term(), gb_set()}.

take_smallest({S, T}) ->
    {Key, Larger} = take_smallest1(T),
    {Key, {S - 1, Larger}}.

take_smallest1({Key, nil, Larger}) ->
    {Key, Larger};
take_smallest1({Key, Smaller, Larger}) ->
    {Key1, Smaller1} = take_smallest1(Smaller),
    {Key1, {Key, Smaller1, Larger}}.

-spec smallest(gb_set()) -> term().

smallest({_, T}) ->
    smallest_1(T).

smallest_1({Key, nil, _Larger}) ->
    Key;
smallest_1({_Key, Smaller, _Larger}) ->
    smallest_1(Smaller).

-spec take_largest(gb_set()) -> {term(), gb_set()}.

take_largest({S, T}) ->
    {Key, Smaller} = take_largest1(T),
    {Key, {S - 1, Smaller}}.

take_largest1({Key, Smaller, nil}) ->
    {Key, Smaller};
take_largest1({Key, Smaller, Larger}) ->
    {Key1, Larger1} = take_largest1(Larger),
    {Key1, {Key, Smaller, Larger1}}.

-spec largest(gb_set()) -> term().

largest({_, T}) ->
    largest_1(T).

largest_1({Key, _Smaller, nil}) ->
    Key;
largest_1({_Key, _Smaller, Larger}) ->
    largest_1(Larger).

-spec to_list(gb_set()) -> [term()].

to_list({_, T}) ->
    to_list(T, []).

to_list_1(T) -> to_list(T, []).

to_list({Key, Small, Big}, L) ->
    to_list(Small, [Key | to_list(Big, L)]);
to_list(nil, L) -> L.

-spec iterator(gb_set()) -> [term()].

iterator({_, T}) ->
    iterator(T, []).

%% The iterator structure is really just a list corresponding to the
%% call stack of an in-order traversal. This is quite fast.

iterator({_, nil, _} = T, As) ->
    [T | As];
iterator({_, L, _} = T, As) ->
    iterator(L, [T | As]);
iterator(nil, As) ->
    As.

-spec next([term()]) -> {term(), [term()]} | 'none'.

next([{X, _, T} | As]) ->
    {X, iterator(T, As)};
next([]) ->
    none.


%% Set operations:


%% If |X| < |Y|, then we traverse the elements of X. The cost for
%% testing a single random element for membership in a tree S is
%% proportional to log(|S|); thus, if |Y| / |X| < c * log(|Y|), for some
%% c, it is more efficient to scan the ordered sequence of elements of Y
%% while traversing X (under the same ordering) in order to test whether
%% elements of X are already in Y. Since the `math' module does not have
%% a `log2'-function, we rewrite the condition to |X| < |Y| * c1 *
%% ln(|X|), where c1 = c / ln 2.

-define(c, 1.46).    % 1 / ln 2; this appears to be best

%% If the sets are not very different in size, i.e., if |Y| / |X| >= c *
%% log(|Y|), then the fastest way to do union (and the other similar set
%% operations) is to build the lists of elements, traverse these lists
%% in parallel while building a reversed ackumulator list, and finally
%% rebuild the tree directly from the ackumulator. Other methods of
%% traversing the elements can be devised, but they all have higher
%% overhead.

-spec union(gb_set(), gb_set()) -> gb_set().

union({N1, T1}, {N2, T2}) when N2 < N1 ->
    union(to_list_1(T2), N2, T1, N1);
union({N1, T1}, {N2, T2}) ->
    union(to_list_1(T1), N1, T2, N2).

%% We avoid the expensive mathematical computations if there is little
%% chance at saving at least the same amount of time by making the right
%% choice of strategy. Recall that N1 < N2 here.

union(L, N1, T2, N2) when N2 < 10 ->
    %% Break even is about 7 for N1 = 1 and 10 for N1 = 2
    union_2(L, to_list_1(T2), N1 + N2);
union(L, N1, T2, N2) ->
    X = N1 * round(?c * math:log(N2)),
    if N2 < X ->
	    union_2(L, to_list_1(T2), N1 + N2);
       true ->
	    union_1(L, mk_set(N2, T2))
    end.

-spec mk_set(non_neg_integer(), gb_set_node()) -> gb_set().

mk_set(N, T) ->
    {N, T}.

%% If the length of the list is in proportion with the size of the
%% target set, this version spends too much time doing lookups, compared
%% to the below version.

union_1([X | Xs], S) ->
    union_1(Xs, add(X, S));
union_1([], S) ->
    S.


%% If the length of the first list is too small in comparison with the
%% size of the target set, this version spends too much time scanning
%% the element list of the target set for possible membership, compared
%% with the above version.

%% Some notes on sequential scanning of ordered lists
%%
%% 1) We want to put the equality case last, if we can assume that the
%% probability for overlapping elements is relatively low on average.
%% Doing this also allows us to completely skip the (arithmetic)
%% equality test, since the term order is arithmetically total.
%%
%% 2) We always test for `smaller than' first, i.e., whether the head of
%% the left list is smaller than the head of the right list, and if the
%% `greater than' test should instead turn out to be true, we switch
%% left and right arguments in the recursive call under the assumption
%% that the same is likely to apply to the next element also,
%% statistically reducing the number of failed tests and automatically
%% adapting to cases of lists having very different lengths. This saves
%% 10-40% of the traversation time compared to a "fixed" strategy,
%% depending on the sizes and contents of the lists.
%%
%% 3) A tail recursive version using `lists:reverse/2' is about 5-10%
%% faster than a plain recursive version using the stack, for lists of
%% more than about 20 elements and small stack frames. For very short
%% lists, however (length < 10), the stack version can be several times
%% faster. As stack frames grow larger, the advantages of using
%% `reverse' could get greater.

union_2(Xs, Ys, S) ->
    union_2(Xs, Ys, [], S).    % S is the sum of the sizes here

union_2([X | Xs1], [Y | _] = Ys, As, S) when X < Y ->
    union_2(Xs1, Ys, [X | As], S);
union_2([X | _] = Xs, [Y | Ys1], As, S) when X > Y ->
    union_2(Ys1, Xs, [Y | As], S);
union_2([X | Xs1], [_ | Ys1], As, S) ->
    union_2(Xs1, Ys1, [X | As], S - 1);
union_2([], Ys, As, S) ->
    {S, balance_revlist(push(Ys, As), S)};
union_2(Xs, [], As, S) ->
    {S, balance_revlist(push(Xs, As), S)}.

push([X | Xs], As) ->
    push(Xs, [X | As]);
push([], As) ->
    As.

balance_revlist(L, S) ->
    {T, _} = balance_revlist_1(L, S),
    T.

balance_revlist_1(L, S) when S > 1 ->
    Sm = S - 1,
    S2 = Sm div 2,
    S1 = Sm - S2,
    {T2, [K | L1]} = balance_revlist_1(L, S1),
    {T1, L2} = balance_revlist_1(L1, S2),
    T = {K, T1, T2},
    {T, L2};
balance_revlist_1([Key | L], 1) ->
    {{Key, nil, nil}, L};
balance_revlist_1(L, 0) ->
    {nil, L}.

-spec union([gb_set()]) -> gb_set().

union([S | Ss]) ->
    union_list(S, Ss);
union([]) -> empty().

union_list(S, [S1 | Ss]) ->
    union_list(union(S, S1), Ss);
union_list(S, []) -> S.


%% The rest is modelled on the above.

-spec intersection(gb_set(), gb_set()) -> gb_set().

intersection({N1, T1}, {N2, T2}) when N2 < N1 ->
    intersection(to_list_1(T2), N2, T1, N1);
intersection({N1, T1}, {N2, T2}) ->
    intersection(to_list_1(T1), N1, T2, N2).

intersection(L, _N1, T2, N2) when N2 < 10 ->
    intersection_2(L, to_list_1(T2));
intersection(L, N1, T2, N2) ->
    X = N1 * round(?c * math:log(N2)),
    if N2 < X ->
	    intersection_2(L, to_list_1(T2));
       true ->
	    intersection_1(L, T2)
    end.

%% We collect the intersecting elements in an accumulator list and count
%% them at the same time so we can balance the list afterwards.

intersection_1(Xs, T) ->
    intersection_1(Xs, T, [], 0).

intersection_1([X | Xs], T, As, N) ->
    case is_member_1(X, T) of
	true ->
	    intersection_1(Xs, T, [X | As], N + 1);
	false ->
	    intersection_1(Xs, T, As, N)
    end;
intersection_1([], _, As, N) ->
    {N, balance_revlist(As, N)}.


intersection_2(Xs, Ys) ->
    intersection_2(Xs, Ys, [], 0).

intersection_2([X | Xs1], [Y | _] = Ys, As, S) when X < Y ->
    intersection_2(Xs1, Ys, As, S);
intersection_2([X | _] = Xs, [Y | Ys1], As, S) when X > Y ->
    intersection_2(Ys1, Xs, As, S);
intersection_2([X | Xs1], [_ | Ys1], As, S) ->
    intersection_2(Xs1, Ys1, [X | As], S + 1);
intersection_2([], _, As, S) ->
    {S, balance_revlist(As, S)};
intersection_2(_, [], As, S) ->
    {S, balance_revlist(As, S)}.

-spec intersection([gb_set(),...]) -> gb_set().

intersection([S | Ss]) ->
    intersection_list(S, Ss).

intersection_list(S, [S1 | Ss]) ->
    intersection_list(intersection(S, S1), Ss);
intersection_list(S, []) -> S.

-spec is_disjoint(gb_set(), gb_set()) -> boolean().

is_disjoint({N1, T1}, {N2, T2}) when N1 < N2 ->
    is_disjoint_1(T1, T2);
is_disjoint({_, T1}, {_, T2}) ->
    is_disjoint_1(T2, T1).

is_disjoint_1({K1, Smaller1, Bigger}, {K2, Smaller2, _}=Tree) when K1 < K2 ->
    not is_member_1(K1, Smaller2) andalso
	is_disjoint_1(Smaller1, Smaller2) andalso
	is_disjoint_1(Bigger, Tree);
is_disjoint_1({K1, Smaller, Bigger1}, {K2, _, Bigger2}=Tree) when K1 > K2 ->
    not is_member_1(K1, Bigger2) andalso
	is_disjoint_1(Bigger1, Bigger2) andalso
	is_disjoint_1(Smaller, Tree);
is_disjoint_1({_K1, _, _}, {_K2, _, _}) ->	%K1 == K2
    false;
is_disjoint_1(nil, _) ->
    true;
is_disjoint_1(_, nil) ->
    true.

%% Note that difference is not symmetric. We don't use `delete' here,
%% since the GB-trees implementation does not rebalance after deletion
%% and so we could end up with very unbalanced trees indeed depending on
%% the sets. Therefore, we always build a new tree, and thus we need to
%% traverse the whole element list of the left operand.

-spec subtract(gb_set(), gb_set()) -> gb_set().

subtract(S1, S2) ->
    difference(S1, S2).

-spec difference(gb_set(), gb_set()) -> gb_set().

difference({N1, T1}, {N2, T2}) ->
    difference(to_list_1(T1), N1, T2, N2).

difference(L, N1, T2, N2) when N2 < 10 ->
    difference_2(L, to_list_1(T2), N1);
difference(L, N1, T2, N2) ->
    X = N1 * round(?c * math:log(N2)),
    if N2 < X ->
	    difference_2(L, to_list_1(T2), N1);
       true ->
	    difference_1(L, T2)
    end.


difference_1(Xs, T) ->
    difference_1(Xs, T, [], 0).

difference_1([X | Xs], T, As, N) ->
    case is_member_1(X, T) of
	true ->
	    difference_1(Xs, T, As, N);
	false ->
	    difference_1(Xs, T, [X | As], N + 1)
    end;
difference_1([], _, As, N) ->
    {N, balance_revlist(As, N)}.


difference_2(Xs, Ys, S) ->
    difference_2(Xs, Ys, [], S).    % S is the size of the left set

difference_2([X | Xs1], [Y | _] = Ys, As, S) when X < Y ->
    difference_2(Xs1, Ys, [X | As], S);
difference_2([X | _] = Xs, [Y | Ys1], As, S) when X > Y ->
    difference_2(Xs, Ys1, As, S);
difference_2([_X | Xs1], [_Y | Ys1], As, S) ->
    difference_2(Xs1, Ys1, As, S - 1);
difference_2([], _Ys, As, S) ->
    {S, balance_revlist(As, S)};
difference_2(Xs, [], As, S) ->
    {S, balance_revlist(push(Xs, As), S)}.


%% Subset testing is much the same thing as set difference, but
%% without the construction of a new set.

-spec is_subset(gb_set(), gb_set()) -> boolean().

is_subset({N1, T1}, {N2, T2}) ->
    is_subset(to_list_1(T1), N1, T2, N2).

is_subset(L, _N1, T2, N2) when N2 < 10 ->
    is_subset_2(L, to_list_1(T2));
is_subset(L, N1, T2, N2) ->
    X = N1 * round(?c * math:log(N2)),
    if N2 < X ->
	    is_subset_2(L, to_list_1(T2));
       true ->
	    is_subset_1(L, T2)
    end.


is_subset_1([X | Xs], T) ->
    case is_member_1(X, T) of
	true ->
	    is_subset_1(Xs, T);
	false ->
	    false
    end;
is_subset_1([], _) ->
    true.


is_subset_2([X | _], [Y | _]) when X < Y ->
    false;
is_subset_2([X | _] = Xs, [Y | Ys1]) when X > Y ->
    is_subset_2(Xs, Ys1);
is_subset_2([_ | Xs1], [_ | Ys1]) ->
    is_subset_2(Xs1, Ys1);
is_subset_2([], _) ->
    true;
is_subset_2(_, []) ->
    false.


%% For compatibility with `sets':

-spec is_set(term()) -> boolean().

is_set({0, nil}) -> true;
is_set({N, {_, _, _}}) when is_integer(N), N >= 0 -> true;
is_set(_) -> false.

-spec filter(fun((term()) -> boolean()), gb_set()) -> gb_set().

filter(F, S) ->
    from_ordset([X || X <- to_list(S), F(X)]).

-spec fold(fun((term(), term()) -> term()), term(), gb_set()) -> term().

fold(F, A, {_, T}) when is_function(F, 2) ->
    fold_1(F, A, T).

fold_1(F, Acc0, {Key, Small, Big}) ->
    Acc1 = fold_1(F, Acc0, Small),
    Acc = F(Key, Acc1),
    fold_1(F, Acc, Big);
fold_1(_, Acc, _) ->
    Acc.