%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2016-2017. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
-module(gen_statem).
%% API
-export(
[start/3,start/4,start_link/3,start_link/4,
stop/1,stop/3,
cast/2,call/2,call/3,
enter_loop/4,enter_loop/5,enter_loop/6,
reply/1,reply/2]).
%% gen callbacks
-export(
[init_it/6]).
%% sys callbacks
-export(
[system_continue/3,
system_terminate/4,
system_code_change/4,
system_get_state/1,
system_replace_state/2,
format_status/2]).
%% Internal callbacks
-export(
[wakeup_from_hibernate/3]).
%% Type exports for templates and callback modules
-export_type(
[event_type/0,
callback_mode_result/0,
init_result/1,
state_enter_result/1,
event_handler_result/1,
reply_action/0,
enter_action/0,
action/0]).
%% Old types, not advertised
-export_type(
[state_function_result/0,
handle_event_result/0]).
%% Type that is exported just to be documented
-export_type([transition_option/0]).
%%%==========================================================================
%%% Interface functions.
%%%==========================================================================
-type from() ::
{To :: pid(), Tag :: term()}. % Reply-to specifier for call
-type state() ::
state_name() | % For StateName/3 callback functions
term(). % For handle_event/4 callback function
-type state_name() :: atom().
-type data() :: term().
-type event_type() ::
{'call',From :: from()} | 'cast' |
'info' | 'timeout' | 'state_timeout' | 'internal'.
-type callback_mode_result() ::
callback_mode() | [callback_mode() | state_enter()].
-type callback_mode() :: 'state_functions' | 'handle_event_function'.
-type state_enter() :: 'state_enter'.
-type transition_option() ::
postpone() | hibernate() |
event_timeout() | state_timeout().
-type postpone() ::
%% If 'true' postpone the current event
%% and retry it when the state changes (=/=)
boolean().
-type hibernate() ::
%% If 'true' hibernate the server instead of going into receive
boolean().
-type event_timeout() ::
%% Generate a ('timeout', EventContent, ...) event after Time
%% unless some other event is delivered
Time :: timeout().
-type state_timeout() ::
%% Generate a ('state_timeout', EventContent, ...) event after Time
%% unless the state is changed
Time :: timeout().
-type action() ::
%% During a state change:
%% * NextState and NewData are set.
%% * All action()s are executed in order of apperance.
%% * Postponing the current event is performed
%% iff 'postpone' is 'true'.
%% * A state timeout is started iff 'timeout' is set.
%% * Pending events are handled or if there are
%% no pending events the server goes into receive
%% or hibernate (iff 'hibernate' is 'true')
%%
%% These action()s are executed in order of appearence
%% in the containing list. The ones that set options
%% will override any previous so the last of each kind wins.
%%
'postpone' | % Set the postpone option
{'postpone', Postpone :: postpone()} |
%%
%% All 'next_event' events are kept in a list and then
%% inserted at state changes so the first in the
%% action() list is the first to be delivered.
{'next_event', % Insert event as the next to handle
EventType :: event_type(),
EventContent :: term()} |
enter_action().
-type enter_action() ::
'hibernate' | % Set the hibernate option
{'hibernate', Hibernate :: hibernate()} |
%%
(Timeout :: event_timeout()) | % {timeout,Timeout}
{'timeout', % Set the event_timeout option
Time :: event_timeout(), EventContent :: term()} |
{'state_timeout', % Set the state_timeout option
Time :: state_timeout(), EventContent :: term()} |
%%
reply_action().
-type reply_action() ::
{'reply', % Reply to a caller
From :: from(), Reply :: term()}.
-type init_result(StateType) ::
{ok, State :: StateType, Data :: data()} |
{ok, State :: StateType, Data :: data(),
Actions :: [action()] | action()} |
'ignore' |
{'stop', Reason :: term()}.
%% Old, not advertised
-type state_function_result() ::
event_handler_result(state_name()).
-type handle_event_result() ::
event_handler_result(state()).
%%
-type state_enter_result(State) ::
{'next_state', % {next_state,NextState,NewData,[]}
State,
NewData :: data()} |
{'next_state', % State transition, maybe to the same state
State,
NewData :: data(),
Actions :: [enter_action()] | enter_action()} |
state_callback_result(enter_action()).
-type event_handler_result(StateType) ::
{'next_state', % {next_state,NextState,NewData,[]}
NextState :: StateType,
NewData :: data()} |
{'next_state', % State transition, maybe to the same state
NextState :: StateType,
NewData :: data(),
Actions :: [action()] | action()} |
state_callback_result(action()).
-type state_callback_result(ActionType) ::
{'keep_state', % {keep_state,NewData,[]}
NewData :: data()} |
{'keep_state', % Keep state, change data
NewData :: data(),
Actions :: [ActionType] | ActionType} |
'keep_state_and_data' | % {keep_state_and_data,[]}
{'keep_state_and_data', % Keep state and data -> only actions
Actions :: [ActionType] | ActionType} |
%%
{'repeat_state', % {repeat_state,NewData,[]}
NewData :: data()} |
{'repeat_state', % Repeat state, change data
NewData :: data(),
Actions :: [ActionType] | ActionType} |
'repeat_state_and_data' | % {repeat_state_and_data,[]}
{'repeat_state_and_data', % Repeat state and data -> only actions
Actions :: [ActionType] | ActionType} |
%%
'stop' | % {stop,normal}
{'stop', % Stop the server
Reason :: term()} |
{'stop', % Stop the server
Reason :: term(),
NewData :: data()} |
%%
{'stop_and_reply', % Reply then stop the server
Reason :: term(),
Replies :: [reply_action()] | reply_action()} |
{'stop_and_reply', % Reply then stop the server
Reason :: term(),
Replies :: [reply_action()] | reply_action(),
NewData :: data()}.
%% The state machine init function. It is called only once and
%% the server is not running until this function has returned
%% an {ok, ...} tuple. Thereafter the state callbacks are called
%% for all events to this server.
-callback init(Args :: term()) -> init_result(state()).
%% This callback shall return the callback mode of the callback module.
%%
%% It is called once after init/0 and code_change/4 but before
%% the first state callback StateName/3 or handle_event/4.
-callback callback_mode() -> callback_mode_result().
%% Example state callback for StateName = 'state_name'
%% when callback_mode() =:= state_functions.
%%
%% In this mode all states has to be of type state_name() i.e atom().
%%
%% Note that the only callbacks that have arity 3 are these
%% StateName/3 callbacks and terminate/3, so the state name
%% 'terminate' is unusable in this mode.
-callback state_name(
'enter',
OldStateName :: state_name(),
Data :: data()) ->
state_enter_result('state_name');
(event_type(),
EventContent :: term(),
Data :: data()) ->
event_handler_result(state_name()).
%%
%% State callback for all states
%% when callback_mode() =:= handle_event_function.
-callback handle_event(
'enter',
OldState :: state(),
State, % Current state
Data :: data()) ->
state_enter_result(State);
(event_type(),
EventContent :: term(),
State :: state(), % Current state
Data :: data()) ->
event_handler_result(state()).
%% Clean up before the server terminates.
-callback terminate(
Reason :: 'normal' | 'shutdown' | {'shutdown', term()}
| term(),
State :: state(),
Data :: data()) ->
any().
%% Note that the new code can expect to get an OldState from
%% the old code version not only in code_change/4 but in the first
%% state callback function called thereafter
-callback code_change(
OldVsn :: term() | {'down', term()},
OldState :: state(),
OldData :: data(),
Extra :: term()) ->
{ok, NewState :: state(), NewData :: data()} |
(Reason :: term()).
%% Format the callback module state in some sensible that is
%% often condensed way. For StatusOption =:= 'normal' the perferred
%% return term is [{data,[{"State",FormattedState}]}], and for
%% StatusOption =:= 'terminate' it is just FormattedState.
-callback format_status(
StatusOption,
[ [{Key :: term(), Value :: term()}] |
state() |
data()]) ->
Status :: term() when
StatusOption :: 'normal' | 'terminate'.
-optional_callbacks(
[init/1, % One may use enter_loop/5,6,7 instead
format_status/2, % Has got a default implementation
%%
state_name/3, % Example for callback_mode() =:= state_functions:
%% there has to be a StateName/3 callback function
%% for every StateName in your state machine but the state name
%% 'state_name' does of course not have to be used.
%%
handle_event/4 % For callback_mode() =:= handle_event_function
]).
%% Type validation functions
callback_mode(CallbackMode) ->
case CallbackMode of
state_functions ->
true;
handle_event_function ->
true;
_ ->
false
end.
%%
from({Pid,_}) when is_pid(Pid) ->
true;
from(_) ->
false.
%%
event_type({call,From}) ->
from(From);
event_type(Type) ->
case Type of
{call,From} ->
from(From);
cast ->
true;
info ->
true;
timeout ->
true;
state_timeout ->
true;
internal ->
true;
_ ->
false
end.
-define(
STACKTRACE(),
try throw(ok) catch _ -> erlang:get_stacktrace() end).
%%%==========================================================================
%%% API
-type server_name() ::
{'global', GlobalName :: term()}
| {'via', RegMod :: module(), Name :: term()}
| {'local', atom()}.
-type server_ref() ::
pid()
| (LocalName :: atom())
| {Name :: atom(), Node :: atom()}
| {'global', GlobalName :: term()}
| {'via', RegMod :: module(), ViaName :: term()}.
-type debug_opt() ::
{'debug',
Dbgs ::
['trace' | 'log' | 'statistics' | 'debug'
| {'logfile', string()}]}.
-type start_opt() ::
debug_opt()
| {'timeout', Time :: timeout()}
| {'spawn_opt', [proc_lib:spawn_option()]}.
-type start_ret() :: {'ok', pid()} | 'ignore' | {'error', term()}.
%% Start a state machine
-spec start(
Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
start_ret().
start(Module, Args, Opts) ->
gen:start(?MODULE, nolink, Module, Args, Opts).
%%
-spec start(
ServerName :: server_name(),
Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
start_ret().
start(ServerName, Module, Args, Opts) ->
gen:start(?MODULE, nolink, ServerName, Module, Args, Opts).
%% Start and link to a state machine
-spec start_link(
Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
start_ret().
start_link(Module, Args, Opts) ->
gen:start(?MODULE, link, Module, Args, Opts).
%%
-spec start_link(
ServerName :: server_name(),
Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
start_ret().
start_link(ServerName, Module, Args, Opts) ->
gen:start(?MODULE, link, ServerName, Module, Args, Opts).
%% Stop a state machine
-spec stop(ServerRef :: server_ref()) -> ok.
stop(ServerRef) ->
gen:stop(ServerRef).
%%
-spec stop(
ServerRef :: server_ref(),
Reason :: term(),
Timeout :: timeout()) -> ok.
stop(ServerRef, Reason, Timeout) ->
gen:stop(ServerRef, Reason, Timeout).
%% Send an event to a state machine that arrives with type 'event'
-spec cast(ServerRef :: server_ref(), Msg :: term()) -> ok.
cast({global,Name}, Msg) ->
try global:send(Name, wrap_cast(Msg)) of
_ -> ok
catch
_:_ -> ok
end;
cast({via,RegMod,Name}, Msg) ->
try RegMod:send(Name, wrap_cast(Msg)) of
_ -> ok
catch
_:_ -> ok
end;
cast({Name,Node} = ServerRef, Msg) when is_atom(Name), is_atom(Node) ->
send(ServerRef, wrap_cast(Msg));
cast(ServerRef, Msg) when is_atom(ServerRef) ->
send(ServerRef, wrap_cast(Msg));
cast(ServerRef, Msg) when is_pid(ServerRef) ->
send(ServerRef, wrap_cast(Msg)).
%% Call a state machine (synchronous; a reply is expected) that
%% arrives with type {call,From}
-spec call(ServerRef :: server_ref(), Request :: term()) -> Reply :: term().
call(ServerRef, Request) ->
call(ServerRef, Request, infinity).
%%
-spec call(
ServerRef :: server_ref(),
Request :: term(),
Timeout ::
timeout() |
{'clean_timeout',T :: timeout()} |
{'dirty_timeout',T :: timeout()}) ->
Reply :: term().
call(ServerRef, Request, Timeout) ->
case parse_timeout(Timeout) of
{dirty_timeout,T} ->
try gen:call(ServerRef, '$gen_call', Request, T) of
{ok,Reply} ->
Reply
catch
Class:Reason ->
erlang:raise(
Class,
{Reason,{?MODULE,call,[ServerRef,Request,Timeout]}},
erlang:get_stacktrace())
end;
{clean_timeout,T} ->
%% Call server through proxy process to dodge any late reply
Ref = make_ref(),
Self = self(),
Pid = spawn(
fun () ->
Self !
try gen:call(
ServerRef, '$gen_call', Request, T) of
Result ->
{Ref,Result}
catch Class:Reason ->
{Ref,Class,Reason,
erlang:get_stacktrace()}
end
end),
Mref = monitor(process, Pid),
receive
{Ref,Result} ->
demonitor(Mref, [flush]),
case Result of
{ok,Reply} ->
Reply
end;
{Ref,Class,Reason,Stacktrace} ->
demonitor(Mref, [flush]),
erlang:raise(
Class,
{Reason,{?MODULE,call,[ServerRef,Request,Timeout]}},
Stacktrace);
{'DOWN',Mref,_,_,Reason} ->
%% There is a theoretical possibility that the
%% proxy process gets killed between try--of and !
%% so this clause is in case of that
exit(Reason)
end;
Error when is_atom(Error) ->
erlang:error(Error, [ServerRef,Request,Timeout])
end.
parse_timeout(Timeout) ->
case Timeout of
{clean_timeout,infinity} ->
{dirty_timeout,infinity};
{clean_timeout,_} ->
Timeout;
{dirty_timeout,_} ->
Timeout;
{_,_} ->
%% Be nice and throw a badarg for speling errors
badarg;
infinity ->
{dirty_timeout,infinity};
T ->
{clean_timeout,T}
end.
%% Reply from a state machine callback to whom awaits in call/2
-spec reply([reply_action()] | reply_action()) -> ok.
reply({reply,From,Reply}) ->
reply(From, Reply);
reply(Replies) when is_list(Replies) ->
replies(Replies).
%%
-spec reply(From :: from(), Reply :: term()) -> ok.
reply({To,Tag}, Reply) when is_pid(To) ->
Msg = {Tag,Reply},
try To ! Msg of
_ ->
ok
catch
_:_ -> ok
end.
%% Instead of starting the state machine through start/3,4
%% or start_link/3,4 turn the current process presumably
%% started by proc_lib into a state machine using
%% the same arguments as you would have returned from init/1
-spec enter_loop(
Module :: module(), Opts :: [debug_opt()],
State :: state(), Data :: data()) ->
no_return().
enter_loop(Module, Opts, State, Data) ->
enter_loop(Module, Opts, State, Data, self()).
%%
-spec enter_loop(
Module :: module(), Opts :: [debug_opt()],
State :: state(), Data :: data(),
Server_or_Actions ::
server_name() | pid() | [action()]) ->
no_return().
enter_loop(Module, Opts, State, Data, Server_or_Actions) ->
if
is_list(Server_or_Actions) ->
enter_loop(Module, Opts, State, Data, self(), Server_or_Actions);
true ->
enter_loop(Module, Opts, State, Data, Server_or_Actions, [])
end.
%%
-spec enter_loop(
Module :: module(), Opts :: [debug_opt()],
State :: state(), Data :: data(),
Server :: server_name() | pid(),
Actions :: [action()] | action()) ->
no_return().
enter_loop(Module, Opts, State, Data, Server, Actions) ->
is_atom(Module) orelse error({atom,Module}),
Parent = gen:get_parent(),
enter(Module, Opts, State, Data, Server, Actions, Parent).
%%---------------------------------------------------------------------------
%% API helpers
wrap_cast(Event) ->
{'$gen_cast',Event}.
replies([{reply,From,Reply}|Replies]) ->
reply(From, Reply),
replies(Replies);
replies([]) ->
ok.
%% Might actually not send the message in case of caught exception
send(Proc, Msg) ->
try erlang:send(Proc, Msg, [noconnect]) of
noconnect ->
_ = spawn(erlang, send, [Proc,Msg]),
ok;
ok ->
ok
catch
_:_ ->
ok
end.
%% Here the init_it/6 and enter_loop/5,6,7 functions converge
enter(Module, Opts, State, Data, Server, Actions, Parent) ->
%% The values should already have been type checked
Name = gen:get_proc_name(Server),
Debug = gen:debug_options(Name, Opts),
Events = [],
P = [],
Event = {internal,init_state},
%% We enforce {postpone,false} to ensure that
%% our fake Event gets discarded, thought it might get logged
NewActions =
if
is_list(Actions) ->
Actions ++ [{postpone,false}];
true ->
[Actions,{postpone,false}]
end,
TimerRefs = #{},
%% Key: timer ref
%% Value: the timer type i.e the timer's event type
%%
TimerTypes = #{},
%% Key: timer type i.e the timer's event type
%% Value: timer ref
%%
%% We add a timer to both timer_refs and timer_types
%% when we start it. When we request an asynchronous
%% timer cancel we remove it from timer_types. When
%% the timer cancel message arrives we remove it from
%% timer_refs.
%%
Hibernate = false,
CancelTimers = 0,
S = #{
callback_mode => undefined,
state_enter => false,
module => Module,
name => Name,
state => State,
data => Data,
postponed => P,
%%
%% The following fields are finally set from to the arguments to
%% loop_event_actions/9 when it finally loops back to loop/3
%% in loop_event_result/11
timer_refs => TimerRefs,
timer_types => TimerTypes,
hibernate => Hibernate,
cancel_timers => CancelTimers
},
NewDebug = sys_debug(Debug, S, State, {enter,Event,State}),
case call_callback_mode(S) of
{ok,NewS} ->
loop_event_actions(
Parent, NewDebug, NewS,
Events, Event, State, Data, NewActions, true);
{Class,Reason,Stacktrace} ->
terminate(
Class, Reason, Stacktrace, NewDebug,
S, [Event|Events])
end.
%%%==========================================================================
%%% gen callbacks
init_it(Starter, self, ServerRef, Module, Args, Opts) ->
init_it(Starter, self(), ServerRef, Module, Args, Opts);
init_it(Starter, Parent, ServerRef, Module, Args, Opts) ->
try Module:init(Args) of
Result ->
init_result(Starter, Parent, ServerRef, Module, Result, Opts)
catch
Result ->
init_result(Starter, Parent, ServerRef, Module, Result, Opts);
Class:Reason ->
Stacktrace = erlang:get_stacktrace(),
Name = gen:get_proc_name(ServerRef),
gen:unregister_name(ServerRef),
proc_lib:init_ack(Starter, {error,Reason}),
error_info(
Class, Reason, Stacktrace,
#{name => Name,
callback_mode => undefined,
state_enter => false},
[], [], undefined),
erlang:raise(Class, Reason, Stacktrace)
end.
%%---------------------------------------------------------------------------
%% gen callbacks helpers
init_result(Starter, Parent, ServerRef, Module, Result, Opts) ->
case Result of
{ok,State,Data} ->
proc_lib:init_ack(Starter, {ok,self()}),
enter(Module, Opts, State, Data, ServerRef, [], Parent);
{ok,State,Data,Actions} ->
proc_lib:init_ack(Starter, {ok,self()}),
enter(Module, Opts, State, Data, ServerRef, Actions, Parent);
{stop,Reason} ->
gen:unregister_name(ServerRef),
proc_lib:init_ack(Starter, {error,Reason}),
exit(Reason);
ignore ->
gen:unregister_name(ServerRef),
proc_lib:init_ack(Starter, ignore),
exit(normal);
_ ->
Name = gen:get_proc_name(ServerRef),
gen:unregister_name(ServerRef),
Error = {bad_return_from_init,Result},
proc_lib:init_ack(Starter, {error,Error}),
error_info(
error, Error, ?STACKTRACE(),
#{name => Name,
callback_mode => undefined,
state_enter => false},
[], [], undefined),
exit(Error)
end.
%%%==========================================================================
%%% sys callbacks
system_continue(Parent, Debug, S) ->
loop(Parent, Debug, S).
system_terminate(Reason, _Parent, Debug, S) ->
terminate(exit, Reason, ?STACKTRACE(), Debug, S, []).
system_code_change(
#{module := Module,
state := State,
data := Data} = S,
_Mod, OldVsn, Extra) ->
case
try Module:code_change(OldVsn, State, Data, Extra)
catch
Result -> Result
end
of
{ok,NewState,NewData} ->
{ok,
S#{callback_mode := undefined,
state := NewState,
data := NewData}};
{ok,_} = Error ->
error({case_clause,Error});
Error ->
Error
end.
system_get_state(#{state := State, data := Data}) ->
{ok,{State,Data}}.
system_replace_state(
StateFun,
#{state := State,
data := Data} = S) ->
{NewState,NewData} = Result = StateFun({State,Data}),
{ok,Result,S#{state := NewState, data := NewData}}.
format_status(
Opt,
[PDict,SysState,Parent,Debug,
#{name := Name, postponed := P} = S]) ->
Header = gen:format_status_header("Status for state machine", Name),
Log = sys:get_debug(log, Debug, []),
[{header,Header},
{data,
[{"Status",SysState},
{"Parent",Parent},
{"Logged Events",Log},
{"Postponed",P}]} |
case format_status(Opt, PDict, S) of
L when is_list(L) -> L;
T -> [T]
end].
%%---------------------------------------------------------------------------
%% Format debug messages. Print them as the call-back module sees
%% them, not as the real erlang messages. Use trace for that.
%%---------------------------------------------------------------------------
print_event(Dev, {in,Event}, {Name,State}) ->
io:format(
Dev, "*DBG* ~p receive ~s in state ~p~n",
[Name,event_string(Event),State]);
print_event(Dev, {out,Reply,{To,_Tag}}, {Name,State}) ->
io:format(
Dev, "*DBG* ~p send ~p to ~p from state ~p~n",
[Name,Reply,To,State]);
print_event(Dev, {terminate,Reason}, {Name,State}) ->
io:format(
Dev, "*DBG* ~p terminate ~p in state ~p~n",
[Name,Reason,State]);
print_event(Dev, {Tag,Event,NextState}, {Name,State}) ->
StateString =
case NextState of
State ->
io_lib:format("~p", [State]);
_ ->
io_lib:format("~p => ~p", [State,NextState])
end,
io:format(
Dev, "*DBG* ~p ~w ~s in state ~s~n",
[Name,Tag,event_string(Event),StateString]).
event_string(Event) ->
case Event of
{{call,{Pid,_Tag}},Request} ->
io_lib:format("call ~p from ~w", [Request,Pid]);
{EventType,EventContent} ->
io_lib:format("~w ~p", [EventType,EventContent])
end.
sys_debug(Debug, #{name := Name}, State, Entry) ->
case Debug of
[] ->
Debug;
_ ->
sys:handle_debug(
Debug, fun print_event/3, {Name,State}, Entry)
end.
%%%==========================================================================
%%% Internal callbacks
wakeup_from_hibernate(Parent, Debug, S) ->
%% It is a new message that woke us up so we have to receive it now
loop_receive(Parent, Debug, S).
%%%==========================================================================
%%% State Machine engine implementation of proc_lib/gen server
%% Server loop, consists of all loop* functions
%% and detours through sys:handle_system_message/7 and proc_lib:hibernate/3
%% Entry point for system_continue/3
loop(Parent, Debug, #{hibernate := true, cancel_timers := 0} = S) ->
loop_hibernate(Parent, Debug, S);
loop(Parent, Debug, S) ->
loop_receive(Parent, Debug, S).
loop_hibernate(Parent, Debug, S) ->
%% Does not return but restarts process at
%% wakeup_from_hibernate/3 that jumps to loop_receive/3
proc_lib:hibernate(
?MODULE, wakeup_from_hibernate, [Parent,Debug,S]),
error(
{should_not_have_arrived_here_but_instead_in,
{wakeup_from_hibernate,3}}).
%% Entry point for wakeup_from_hibernate/3
loop_receive(Parent, Debug, S) ->
receive
Msg ->
case Msg of
{system,Pid,Req} ->
#{hibernate := Hibernate} = S,
%% Does not return but tail recursively calls
%% system_continue/3 that jumps to loop/3
sys:handle_system_msg(
Req, Pid, Parent, ?MODULE, Debug, S,
Hibernate);
{'EXIT',Parent,Reason} = EXIT ->
%% EXIT is not a 2-tuple therefore
%% not an event but this will stand out
%% in the crash report...
Q = [EXIT],
terminate(exit, Reason, ?STACKTRACE(), Debug, S, Q);
{timeout,TimerRef,TimerMsg} ->
#{timer_refs := TimerRefs,
timer_types := TimerTypes,
hibernate := Hibernate} = S,
case TimerRefs of
#{TimerRef := TimerType} ->
%% We know of this timer; is it a running
%% timer or a timer being cancelled that
%% managed to send a late timeout message?
case TimerTypes of
#{TimerType := TimerRef} ->
%% The timer type maps back to this
%% timer ref, so it was a running timer
Event = {TimerType,TimerMsg},
%% Unregister the triggered timeout
NewTimerRefs =
maps:remove(TimerRef, TimerRefs),
NewTimerTypes =
maps:remove(TimerType, TimerTypes),
loop_receive_result(
Parent, Debug,
S#{
timer_refs := NewTimerRefs,
timer_types := NewTimerTypes},
Hibernate,
Event);
_ ->
%% This was a late timeout message
%% from timer being cancelled, so
%% ignore it and expect a cancel_timer
%% msg shortly
loop_receive(Parent, Debug, S)
end;
_ ->
%% Not our timer; present it as an event
Event = {info,Msg},
loop_receive_result(
Parent, Debug, S, Hibernate, Event)
end;
{cancel_timer,TimerRef,_} ->
#{timer_refs := TimerRefs,
cancel_timers := CancelTimers,
hibernate := Hibernate} = S,
case TimerRefs of
#{TimerRef := _} ->
%% We must have requested a cancel
%% of this timer so it is already
%% removed from TimerTypes
NewTimerRefs =
maps:remove(TimerRef, TimerRefs),
NewCancelTimers = CancelTimers - 1,
NewS =
S#{
timer_refs := NewTimerRefs,
cancel_timers := NewCancelTimers},
if
Hibernate =:= true, NewCancelTimers =:= 0 ->
%% No more cancel_timer msgs to expect;
%% we can hibernate
loop_hibernate(Parent, Debug, NewS);
NewCancelTimers >= 0 -> % Assert
loop_receive(Parent, Debug, NewS)
end;
_ ->
%% Not our cancel_timer msg;
%% present it as an event
Event = {info,Msg},
loop_receive_result(
Parent, Debug, S, Hibernate, Event)
end;
_ ->
%% External msg
#{hibernate := Hibernate} = S,
Event =
case Msg of
{'$gen_call',From,Request} ->
{{call,From},Request};
{'$gen_cast',E} ->
{cast,E};
_ ->
{info,Msg}
end,
loop_receive_result(
Parent, Debug, S, Hibernate, Event)
end
end.
loop_receive_result(
Parent, Debug,
#{state := State,
timer_types := TimerTypes, cancel_timers := CancelTimers} = S,
Hibernate, Event) ->
%% From now the 'hibernate' field in S is invalid
%% and will be restored when looping back
%% in loop_event_result/11
NewDebug = sys_debug(Debug, S, State, {in,Event}),
%% Here is the queue of not yet handled events created
Events = [],
%% Cancel any running event timer
case
cancel_timer_by_type(timeout, TimerTypes, CancelTimers)
of
{_,CancelTimers} ->
%% No timer cancelled
loop_event(Parent, NewDebug, S, Events, Event, Hibernate);
{NewTimerTypes,NewCancelTimers} ->
%% The timer is removed from NewTimerTypes but
%% remains in TimerRefs until we get
%% the cancel_timer msg
NewS =
S#{
timer_types := NewTimerTypes,
cancel_timers := NewCancelTimers},
loop_event(Parent, NewDebug, NewS, Events, Event, Hibernate)
end.
%% Entry point for handling an event, received or enqueued
loop_event(
Parent, Debug,
#{state := State, data := Data} = S,
Events, {Type,Content} = Event, Hibernate) ->
%%
%% If (this old) Hibernate is true here it can only be
%% because it was set from an event action
%% and we did not go into hibernation since there were
%% events in queue, so we do what the user
%% might rely on i.e collect garbage which
%% would have happened if we actually hibernated
%% and immediately was awakened
Hibernate andalso garbage_collect(),
case call_state_function(S, Type, Content, State, Data) of
{ok,Result,NewS} ->
{NextState,NewData,Actions,EnterCall} =
parse_event_result(
true, Debug, NewS,
Events, Event, State, Data, Result),
loop_event_actions(
Parent, Debug, NewS,
Events, Event, NextState, NewData, Actions, EnterCall);
{Class,Reason,Stacktrace} ->
terminate(
Class, Reason, Stacktrace, Debug, S,
[Event|Events])
end.
loop_event_actions(
Parent, Debug,
#{state := State, state_enter := StateEnter} = S,
Events, Event, NextState, NewData,
Actions, EnterCall) ->
%% Hibernate is reborn here as false being
%% the default value from parse_actions/4
case parse_actions(Debug, S, State, Actions) of
{ok,NewDebug,Hibernate,TimeoutsR,Postpone,NextEventsR} ->
if
StateEnter, EnterCall ->
loop_event_enter(
Parent, NewDebug, S,
Events, Event, NextState, NewData,
Hibernate, TimeoutsR, Postpone, NextEventsR);
true ->
loop_event_result(
Parent, NewDebug, S,
Events, Event, NextState, NewData,
Hibernate, TimeoutsR, Postpone, NextEventsR)
end;
{Class,Reason,Stacktrace} ->
terminate(
Class, Reason, Stacktrace, Debug, S,
[Event|Events])
end.
loop_event_enter(
Parent, Debug, #{state := State} = S,
Events, Event, NextState, NewData,
Hibernate, TimeoutsR, Postpone, NextEventsR) ->
case call_state_function(S, enter, State, NextState, NewData) of
{ok,Result,NewS} ->
case parse_event_result(
false, Debug, NewS,
Events, Event, NextState, NewData, Result) of
{_,NewerData,Actions,EnterCall} ->
loop_event_enter_actions(
Parent, Debug, NewS,
Events, Event, NextState, NewerData,
Hibernate, TimeoutsR, Postpone, NextEventsR,
Actions, EnterCall)
end;
{Class,Reason,Stacktrace} ->
terminate(
Class, Reason, Stacktrace, Debug,
S#{
state := NextState,
data := NewData,
hibernate := Hibernate},
[Event|Events])
end.
loop_event_enter_actions(
Parent, Debug, #{state_enter := StateEnter} = S,
Events, Event, NextState, NewData,
Hibernate, TimeoutsR, Postpone, NextEventsR,
Actions, EnterCall) ->
case
parse_enter_actions(
Debug, S, NextState, Actions, Hibernate, TimeoutsR)
of
{ok,NewDebug,NewHibernate,NewTimeoutsR,_,_} ->
if
StateEnter, EnterCall ->
loop_event_enter(
Parent, NewDebug, S,
Events, Event, NextState, NewData,
NewHibernate, NewTimeoutsR, Postpone, NextEventsR);
true ->
loop_event_result(
Parent, NewDebug, S,
Events, Event, NextState, NewData,
NewHibernate, NewTimeoutsR, Postpone, NextEventsR)
end;
{Class,Reason,Stacktrace} ->
terminate(
Class, Reason, Stacktrace, Debug,
S#{
state := NextState,
data := NewData,
hibernate := Hibernate},
[Event|Events])
end.
loop_event_result(
Parent, Debug_0,
#{state := State, postponed := P_0,
timer_refs := TimerRefs_0, timer_types := TimerTypes_0,
cancel_timers := CancelTimers_0} = S_0,
Events_0, Event_0, NextState, NewData,
Hibernate, TimeoutsR, Postpone, NextEventsR) ->
%%
%% All options have been collected and next_events are buffered.
%% Do the actual state transition.
%%
{Debug_1,P_1} = % Move current event to postponed if Postpone
case Postpone of
true ->
{sys_debug(Debug_0, S_0, State, {postpone,Event_0,State}),
[Event_0|P_0]};
false ->
{sys_debug(Debug_0, S_0, State, {consume,Event_0,State}),
P_0}
end,
{Events_1,P_2,{TimerTypes_1,CancelTimers_1}} =
%% Move all postponed events to queue and cancel the
%% state timeout if the state changes
if
NextState =:= State ->
{Events_0,P_1,{TimerTypes_0,CancelTimers_0}};
true ->
{lists:reverse(P_1, Events_0),
[],
cancel_timer_by_type(
state_timeout, TimerTypes_0, CancelTimers_0)}
%% The state timer is removed from TimerTypes_1
%% but remains in TimerRefs_0 until we get
%% the cancel_timer msg
end,
{TimerRefs_2,TimerTypes_2,CancelTimers_2,TimeoutEvents} =
%% Stop and start non-event timers
parse_timers(TimerRefs_0, TimerTypes_1, CancelTimers_1, TimeoutsR),
%% Place next events last in reversed queue
Events_2R = lists:reverse(Events_1, NextEventsR),
%% Enqueue immediate timeout events and start event timer
Events_3R = prepend_timeout_events(TimeoutEvents, Events_2R),
S_1 =
S_0#{
state := NextState,
data := NewData,
postponed := P_2,
timer_refs := TimerRefs_2,
timer_types := TimerTypes_2,
cancel_timers := CancelTimers_2,
hibernate := Hibernate},
case lists:reverse(Events_3R) of
[] ->
%% Get a new event
loop(Parent, Debug_1, S_1);
[Event|Events] ->
%% Loop until out of enqueued events
loop_event(Parent, Debug_1, S_1, Events, Event, Hibernate)
end.
%%---------------------------------------------------------------------------
%% Server loop helpers
call_callback_mode(#{module := Module} = S) ->
try Module:callback_mode() of
CallbackMode ->
callback_mode_result(S, CallbackMode)
catch
CallbackMode ->
callback_mode_result(S, CallbackMode);
error:undef ->
%% Process undef to check for the simple mistake
%% of calling a nonexistent state function
%% to make the undef more precise
case erlang:get_stacktrace() of
[{Module,callback_mode,[]=Args,_}
|Stacktrace] ->
{error,
{undef_callback,{Module,callback_mode,Args}},
Stacktrace};
Stacktrace ->
{error,undef,Stacktrace}
end;
Class:Reason ->
{Class,Reason,erlang:get_stacktrace()}
end.
callback_mode_result(S, CallbackMode) ->
case
parse_callback_mode(
if
is_atom(CallbackMode) ->
[CallbackMode];
true ->
CallbackMode
end, undefined, false)
of
{undefined,_} ->
{error,
{bad_return_from_callback_mode,CallbackMode},
?STACKTRACE()};
{CBMode,StateEnter} ->
{ok,
S#{
callback_mode := CBMode,
state_enter := StateEnter}}
end.
parse_callback_mode([], CBMode, StateEnter) ->
{CBMode,StateEnter};
parse_callback_mode([H|T], CBMode, StateEnter) ->
case callback_mode(H) of
true ->
parse_callback_mode(T, H, StateEnter);
false ->
case H of
state_enter ->
parse_callback_mode(T, CBMode, true);
_ ->
{undefined,StateEnter}
end
end;
parse_callback_mode(_, _CBMode, StateEnter) ->
{undefined,StateEnter}.
call_state_function(
#{callback_mode := undefined} = S, Type, Content, State, Data) ->
case call_callback_mode(S) of
{ok,NewS} ->
call_state_function(NewS, Type, Content, State, Data);
Error ->
Error
end;
call_state_function(
#{callback_mode := CallbackMode, module := Module} = S,
Type, Content, State, Data) ->
try
case CallbackMode of
state_functions ->
erlang:apply(Module, State, [Type,Content,Data]);
handle_event_function ->
Module:handle_event(Type, Content, State, Data)
end
of
Result ->
{ok,Result,S}
catch
Result ->
{ok,Result,S};
error:badarg ->
case erlang:get_stacktrace() of
[{erlang,apply,
[Module,State,[Type,Content,Data]=Args],
_}
|Stacktrace]
when CallbackMode =:= state_functions ->
%% We get here e.g if apply fails
%% due to State not being an atom
{error,
{undef_state_function,{Module,State,Args}},
Stacktrace};
Stacktrace ->
{error,badarg,Stacktrace}
end;
error:undef ->
%% Process undef to check for the simple mistake
%% of calling a nonexistent state function
%% to make the undef more precise
case erlang:get_stacktrace() of
[{Module,State,[Type,Content,Data]=Args,_}
|Stacktrace]
when CallbackMode =:= state_functions ->
{error,
{undef_state_function,{Module,State,Args}},
Stacktrace};
[{Module,handle_event,[Type,Content,State,Data]=Args,_}
|Stacktrace]
when CallbackMode =:= handle_event_function ->
{error,
{undef_state_function,{Module,handle_event,Args}},
Stacktrace};
Stacktrace ->
{error,undef,Stacktrace}
end;
Class:Reason ->
{Class,Reason,erlang:get_stacktrace()}
end.
%% Interpret all callback return variants
parse_event_result(
AllowStateChange, Debug, S,
Events, Event, State, Data, Result) ->
case Result of
stop ->
terminate(
exit, normal, ?STACKTRACE(), Debug,
S#{state := State, data := Data},
[Event|Events]);
{stop,Reason} ->
terminate(
exit, Reason, ?STACKTRACE(), Debug,
S#{state := State, data := Data},
[Event|Events]);
{stop,Reason,NewData} ->
terminate(
exit, Reason, ?STACKTRACE(), Debug,
S#{state := State, data := NewData},
[Event|Events]);
%%
{stop_and_reply,Reason,Replies} ->
reply_then_terminate(
exit, Reason, ?STACKTRACE(), Debug,
S#{state := State, data := Data},
[Event|Events], Replies);
{stop_and_reply,Reason,Replies,NewData} ->
reply_then_terminate(
exit, Reason, ?STACKTRACE(), Debug,
S#{state := State, data := NewData},
[Event|Events], Replies);
%%
{next_state,State,NewData} ->
{State,NewData,[],false};
{next_state,NextState,NewData} when AllowStateChange ->
{NextState,NewData,[],true};
{next_state,State,NewData,Actions} ->
{State,NewData,Actions,false};
{next_state,NextState,NewData,Actions} when AllowStateChange ->
{NextState,NewData,Actions,true};
%%
{keep_state,NewData} ->
{State,NewData,[],false};
{keep_state,NewData,Actions} ->
{State,NewData,Actions,false};
keep_state_and_data ->
{State,Data,[],false};
{keep_state_and_data,Actions} ->
{State,Data,Actions,false};
%%
{repeat_state,NewData} ->
{State,NewData,[],true};
{repeat_state,NewData,Actions} ->
{State,NewData,Actions,true};
repeat_state_and_data ->
{State,Data,[],true};
{repeat_state_and_data,Actions} ->
{State,Data,Actions,true};
%%
_ ->
terminate(
error,
{bad_return_from_state_function,Result},
?STACKTRACE(), Debug,
S#{state := State, data := Data},
[Event|Events])
end.
parse_enter_actions(Debug, S, State, Actions, Hibernate, TimeoutsR) ->
Postpone = forbidden,
NextEventsR = forbidden,
parse_actions(
Debug, S, State, listify(Actions),
Hibernate, TimeoutsR, Postpone, NextEventsR).
parse_actions(Debug, S, State, Actions) ->
Hibernate = false,
TimeoutsR = [{timeout,infinity,infinity}], %% Will cancel event timer
Postpone = false,
NextEventsR = [],
parse_actions(
Debug, S, State, listify(Actions),
Hibernate, TimeoutsR, Postpone, NextEventsR).
%%
parse_actions(
Debug, _S, _State, [],
Hibernate, TimeoutsR, Postpone, NextEventsR) ->
{ok,Debug,Hibernate,TimeoutsR,Postpone,NextEventsR};
parse_actions(
Debug, S, State, [Action|Actions],
Hibernate, TimeoutsR, Postpone, NextEventsR) ->
case Action of
%% Actual actions
{reply,From,Reply} ->
case from(From) of
true ->
NewDebug = do_reply(Debug, S, State, From, Reply),
parse_actions(
NewDebug, S, State, Actions,
Hibernate, TimeoutsR, Postpone, NextEventsR);
false ->
{error,
{bad_action_from_state_function,Action},
?STACKTRACE()}
end;
%%
%% Actions that set options
{hibernate,NewHibernate} when is_boolean(NewHibernate) ->
parse_actions(
Debug, S, State, Actions,
NewHibernate, TimeoutsR, Postpone, NextEventsR);
hibernate ->
NewHibernate = true,
parse_actions(
Debug, S, State, Actions,
NewHibernate, TimeoutsR, Postpone, NextEventsR);
%%
{postpone,NewPostpone}
when is_boolean(NewPostpone), Postpone =/= forbidden ->
parse_actions(
Debug, S, State, Actions,
Hibernate, TimeoutsR, NewPostpone, NextEventsR);
postpone when Postpone =/= forbidden ->
NewPostpone = true,
parse_actions(
Debug, S, State, Actions,
Hibernate, TimeoutsR, NewPostpone, NextEventsR);
%%
{next_event,Type,Content} ->
case event_type(Type) of
true when NextEventsR =/= forbidden ->
NewDebug =
sys_debug(Debug, S, State, {in,{Type,Content}}),
parse_actions(
NewDebug, S, State, Actions,
Hibernate, TimeoutsR, Postpone,
[{Type,Content}|NextEventsR]);
_ ->
{error,
{bad_action_from_state_function,Action},
?STACKTRACE()}
end;
%%
{state_timeout,_,_} = Timeout ->
parse_actions_timeout(
Debug, S, State, Actions,
Hibernate, TimeoutsR, Postpone, NextEventsR, Timeout);
{timeout,_,_} = Timeout ->
parse_actions_timeout(
Debug, S, State, Actions,
Hibernate, TimeoutsR, Postpone, NextEventsR, Timeout);
Time ->
parse_actions_timeout(
Debug, S, State, Actions,
Hibernate, TimeoutsR, Postpone, NextEventsR, Time)
end.
parse_actions_timeout(
Debug, S, State, Actions,
Hibernate, TimeoutsR, Postpone, NextEventsR, Timeout) ->
Time =
case Timeout of
{_,T,_} -> T;
T -> T
end,
case validate_time(Time) of
true ->
parse_actions(
Debug, S, State, Actions,
Hibernate, [Timeout|TimeoutsR],
Postpone, NextEventsR);
false ->
{error,
{bad_action_from_state_function,Timeout},
?STACKTRACE()}
end.
validate_time(Time) when is_integer(Time), Time >= 0 -> true;
validate_time(infinity) -> true;
validate_time(_) -> false.
%% Stop and start timers as well as create timeout zero events
%% and pending event timer
%%
%% Stop and start timers non-event timers
parse_timers(TimerRefs, TimerTypes, CancelTimers, TimeoutsR) ->
parse_timers(TimerRefs, TimerTypes, CancelTimers, TimeoutsR, #{}, []).
%%
parse_timers(
TimerRefs, TimerTypes, CancelTimers, [], _Seen, TimeoutEvents) ->
{TimerRefs,TimerTypes,CancelTimers,TimeoutEvents};
parse_timers(
TimerRefs, TimerTypes, CancelTimers, [Timeout|TimeoutsR],
Seen, TimeoutEvents) ->
case Timeout of
{TimerType,Time,TimerMsg} ->
parse_timers(
TimerRefs, TimerTypes, CancelTimers, TimeoutsR,
Seen, TimeoutEvents,
TimerType, Time, TimerMsg);
Time ->
parse_timers(
TimerRefs, TimerTypes, CancelTimers, TimeoutsR,
Seen, TimeoutEvents,
timeout, Time, Time)
end.
parse_timers(
TimerRefs, TimerTypes, CancelTimers, TimeoutsR,
Seen, TimeoutEvents,
TimerType, Time, TimerMsg) ->
case Seen of
#{TimerType := _} ->
%% Type seen before - ignore
parse_timers(
TimerRefs, TimerTypes, CancelTimers, TimeoutsR,
Seen, TimeoutEvents);
#{} ->
%% Unseen type - handle
NewSeen = Seen#{TimerType => true},
case Time of
infinity ->
%% Cancel any running timer
{NewTimerTypes,NewCancelTimers} =
cancel_timer_by_type(
TimerType, TimerTypes, CancelTimers),
parse_timers(
TimerRefs, NewTimerTypes, NewCancelTimers, TimeoutsR,
NewSeen, TimeoutEvents);
0 ->
%% Cancel any running timer
{NewTimerTypes,NewCancelTimers} =
cancel_timer_by_type(
TimerType, TimerTypes, CancelTimers),
%% Handle zero time timeouts later
TimeoutEvent = {TimerType,TimerMsg},
parse_timers(
TimerRefs, NewTimerTypes, NewCancelTimers, TimeoutsR,
NewSeen, [TimeoutEvent|TimeoutEvents]);
_ ->
%% (Re)start the timer
TimerRef =
erlang:start_timer(Time, self(), TimerMsg),
case TimerTypes of
#{TimerType := OldTimerRef} ->
%% Cancel the running timer
cancel_timer(OldTimerRef),
NewCancelTimers = CancelTimers + 1,
%% Insert the new timer into
%% both TimerRefs and TimerTypes
parse_timers(
TimerRefs#{TimerRef => TimerType},
TimerTypes#{TimerType => TimerRef},
NewCancelTimers, TimeoutsR,
NewSeen, TimeoutEvents);
#{} ->
parse_timers(
TimerRefs#{TimerRef => TimerType},
TimerTypes#{TimerType => TimerRef},
CancelTimers, TimeoutsR,
NewSeen, TimeoutEvents)
end
end
end.
%% Enqueue immediate timeout events (timeout 0 events)
%%
%% Event timer timeout 0 events gets special treatment since
%% an event timer is cancelled by any received event,
%% so if there are enqueued events before the event timer
%% timeout 0 event - the event timer is cancelled hence no event.
%%
%% Other (state_timeout) timeout 0 events that are after
%% the event timer timeout 0 events are considered to
%% belong to timers that were started after the event timer
%% timeout 0 event fired, so they do not cancel the event timer.
%%
prepend_timeout_events([], EventsR) ->
EventsR;
prepend_timeout_events([{timeout,_} = TimeoutEvent|TimeoutEvents], []) ->
prepend_timeout_events(TimeoutEvents, [TimeoutEvent]);
prepend_timeout_events([{timeout,_}|TimeoutEvents], EventsR) ->
prepend_timeout_events(TimeoutEvents, EventsR);
prepend_timeout_events([TimeoutEvent|TimeoutEvents], EventsR) ->
%% Just prepend all others
prepend_timeout_events(TimeoutEvents, [TimeoutEvent|EventsR]).
%%---------------------------------------------------------------------------
%% Server helpers
reply_then_terminate(
Class, Reason, Stacktrace, Debug,
#{state := State} = S, Q, Replies) ->
do_reply_then_terminate(
Class, Reason, Stacktrace, Debug,
S, Q, listify(Replies), State).
%%
do_reply_then_terminate(
Class, Reason, Stacktrace, Debug, S, Q, [], _State) ->
terminate(Class, Reason, Stacktrace, Debug, S, Q);
do_reply_then_terminate(
Class, Reason, Stacktrace, Debug, S, Q, [R|Rs], State) ->
case R of
{reply,{_To,_Tag}=From,Reply} ->
NewDebug = do_reply(Debug, S, State, From, Reply),
do_reply_then_terminate(
Class, Reason, Stacktrace, NewDebug, S, Q, Rs, State);
_ ->
terminate(
error,
{bad_reply_action_from_state_function,R},
?STACKTRACE(),
Debug, S, Q)
end.
do_reply(Debug, S, State, From, Reply) ->
reply(From, Reply),
sys_debug(Debug, S, State, {out,Reply,From}).
terminate(
Class, Reason, Stacktrace, Debug,
#{module := Module, state := State, data := Data, postponed := P} = S,
Q) ->
try Module:terminate(Reason, State, Data) of
_ -> ok
catch
_ -> ok;
C:R ->
ST = erlang:get_stacktrace(),
error_info(
C, R, ST, S, Q, P,
format_status(terminate, get(), S)),
sys:print_log(Debug),
erlang:raise(C, R, ST)
end,
_ =
case Reason of
normal ->
sys_debug(Debug, S, State, {terminate,Reason});
shutdown ->
sys_debug(Debug, S, State, {terminate,Reason});
{shutdown,_} ->
sys_debug(Debug, S, State, {terminate,Reason});
_ ->
error_info(
Class, Reason, Stacktrace, S, Q, P,
format_status(terminate, get(), S)),
sys:print_log(Debug)
end,
case Stacktrace of
[] ->
erlang:Class(Reason);
_ ->
erlang:raise(Class, Reason, Stacktrace)
end.
error_info(
Class, Reason, Stacktrace,
#{name := Name,
callback_mode := CallbackMode,
state_enter := StateEnter},
Q, P, FmtData) ->
{FixedReason,FixedStacktrace} =
case Stacktrace of
[{M,F,Args,_}|ST]
when Class =:= error, Reason =:= undef ->
case code:is_loaded(M) of
false ->
{{'module could not be loaded',M},ST};
_ ->
Arity =
if
is_list(Args) ->
length(Args);
is_integer(Args) ->
Args
end,
case erlang:function_exported(M, F, Arity) of
true ->
{Reason,Stacktrace};
false ->
{{'function not exported',{M,F,Arity}},
ST}
end
end;
_ -> {Reason,Stacktrace}
end,
CBMode =
case StateEnter of
true ->
[CallbackMode,state_enter];
false ->
CallbackMode
end,
error_logger:format(
"** State machine ~p terminating~n" ++
case Q of
[] -> "";
_ -> "** Last event = ~p~n"
end ++
"** When server state = ~p~n" ++
"** Reason for termination = ~w:~p~n" ++
"** Callback mode = ~p~n" ++
case Q of
[_,_|_] -> "** Queued = ~p~n";
_ -> ""
end ++
case P of
[] -> "";
_ -> "** Postponed = ~p~n"
end ++
case FixedStacktrace of
[] -> "";
_ -> "** Stacktrace =~n** ~p~n"
end,
[Name |
case Q of
[] -> [];
[Event|_] -> [Event]
end] ++
[FmtData,
Class,FixedReason,
CBMode] ++
case Q of
[_|[_|_] = Events] -> [Events];
_ -> []
end ++
case P of
[] -> [];
_ -> [P]
end ++
case FixedStacktrace of
[] -> [];
_ -> [FixedStacktrace]
end).
%% Call Module:format_status/2 or return a default value
format_status(
Opt, PDict,
#{module := Module, state := State, data := Data}) ->
case erlang:function_exported(Module, format_status, 2) of
true ->
try Module:format_status(Opt, [PDict,State,Data])
catch
Result -> Result;
_:_ ->
format_status_default(
Opt, State,
atom_to_list(Module) ++ ":format_status/2 crashed")
end;
false ->
format_status_default(Opt, State, Data)
end.
%% The default Module:format_status/2
format_status_default(Opt, State, Data) ->
StateData = {State,Data},
case Opt of
terminate ->
StateData;
_ ->
[{data,[{"State",StateData}]}]
end.
listify(Item) when is_list(Item) ->
Item;
listify(Item) ->
[Item].
%% Cancel timer if running, otherwise no op
%%
%% This is an asynchronous cancel so the timer is not really cancelled
%% until we get a cancel_timer msg i.e {cancel_timer,TimerRef,_}.
%% In the mean time we might get a timeout message.
%%
%% Remove the timer from TimerTypes.
%% When we get the cancel_timer msg we remove it from TimerRefs.
cancel_timer_by_type(TimerType, TimerTypes, CancelTimers) ->
case TimerTypes of
#{TimerType := TimerRef} ->
cancel_timer(TimerRef),
{maps:remove(TimerType, TimerTypes),CancelTimers + 1};
#{} ->
{TimerTypes,CancelTimers}
end.
cancel_timer(TimerRef) ->
ok = erlang:cancel_timer(TimerRef, [{async,true}]).