aboutsummaryrefslogblamecommitdiffstats
path: root/lib/stdlib/src/qlc_pt.erl
blob: d441f38e4470e6c2a8868a9eaf3cf1503b798961 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
                   
  
                                                        
  



                                                                      
  


                                                                         
  















                                                                        



























                                                                




                                                    































                                                                           



                                                   


                                                            



                                               







































































































































































































































































































































































































































































































































































































































































































































































                                                                                
                                                  






























































































































































































































































































































































































                                                                              
                                                                       
                                         
                                                   











































                                                                            
                                                   













                                                                
                                          



















































































































                                                                              
                                                   
















































































































































































































































































































































































































































































































































































































































































































































































                                                                               
                                           






























































































































































































































































































                                                                                








































































































                                                                             
                                         








































































































































































                                                                            
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(qlc_pt).

%%% Purpose: Implements the qlc Parse Transform.

-export([parse_transform/2, transform_from_evaluator/2, 
         transform_expression/2]).

-include_lib("stdlib/include/ms_transform.hrl").

-define(APIMOD, qlc).
-define(Q, q).

%% Also in qlc.erl.
-define(QLC_Q(L1, L2, L3, L4, LC, Os), 
        {call,L1,{remote,L2,{atom,L3,?APIMOD},{atom,L4,?Q}},[LC | Os]}).
-define(IMP_Q(L1, L2, LC, Os), {call,L,{atom,L2,?Q},[LC | Os]}).

%% Also in qlc.erl.
-record(qlc_lc,     % qlc:q/1,2, a query handle
        {lc,
         opt        % #qlc_opt
        }).

-record(state, {imp, maxargs, records, xwarnings = []}).

%-define(debug, true).

-ifdef(debug).
-define(DEBUG(S, A), io:format(S, A)).
-else.
-define(DEBUG(S, A), ok).
-endif.

%% erl_eval cannot interpret funs with more than 20 arguments:
-define(EVAL_MAX_NUM_OF_ARGS, 20).
%% Currently the compiler can handle at most 255 arguments.
-define(COMPILE_MAX_NUM_OF_ARGS, 250).

-define(QLC_FILE, qlc_current_file).

%%%
%%% Exported functions
%%%

-spec(parse_transform(Forms, Options) -> Forms2 when
      Forms :: [erl_parse:abstract_form()],
      Forms2 :: [erl_parse:abstract_form()],
      Options :: [Option],
      Option :: type_checker | compile:option()).

parse_transform(Forms, Options) ->
    ?DEBUG("qlc Parse Transform~n", []),
    State = #state{imp = is_qlc_q_imported(Forms),
                   maxargs = ?COMPILE_MAX_NUM_OF_ARGS,
                   records = record_attributes(Forms)},
    case called_from_type_checker(Options) of
        true ->
            %% The returned value should conform to the types, but
            %% need not evaluate to anything meaningful.
            L = 0,
            {tuple,_,Fs0} = abstr(#qlc_lc{}, L),
            F = fun(_Id, LC, A) ->
                        Init = simple(L, 'V', LC, L),
                        {{tuple,L,set_field(#qlc_lc.lc, Fs0, Init)}, A}
                end,
            {Forms1,ok} = qlc_mapfold(F, ok, Forms, State),
            Forms1;
        false ->
            FormsNoShadows = no_shadows(Forms, State),
            case compile_messages(Forms, FormsNoShadows, Options, State) of
                {[],[],Warnings} ->
                    {NewForms, State1} = transform(FormsNoShadows, State),
                    ExtraWs = State1#state.xwarnings,
                    {[],WForms} = no_duplicates(NewForms, [], Warnings, 
                                                ExtraWs, Options),
                    WForms ++ NewForms;
                {E0,Errors,Warnings} ->
                    {EForms,WForms} = no_duplicates(Forms, E0++Errors, 
                                                    Warnings, [], Options),
                    EForms ++ WForms ++ Forms
            end
    end.

-spec(transform_from_evaluator(LC, Bs) -> Expr when
      LC :: erl_parse:abstract_expr(),
      Expr :: erl_parse:abstract_expr(),
      Bs :: erl_eval:binding_struct()).

transform_from_evaluator(LC, Bindings) ->
    ?DEBUG("qlc Parse Transform (Evaluator Version)~n", []),
    transform_expression(LC, Bindings, false).

-spec(transform_expression(LC, Bs) -> Expr when
      LC :: erl_parse:abstract_expr(),
      Expr :: erl_parse:abstract_expr(),
      Bs :: erl_eval:binding_struct()).

transform_expression(LC, Bindings) ->
    transform_expression(LC, Bindings, true).

%%%
%%% Local functions
%%%

called_from_type_checker(Options) ->
    lists:member(type_checker, Options).

transform_expression(LC, Bs0, WithLintErrors) ->
    L = 1,
    As = [{var,L,V} || {V,_Val} <- Bs0],
    Ar = length(As),
    F = {function,L,bar,Ar,[{clause,L,As,[],[?QLC_Q(L, L, L, L, LC, [])]}]},
    Forms = [{attribute,L,file,{"foo",L}},
             {attribute,L,module,foo}, F],
    State = #state{imp = false,
                   maxargs = ?EVAL_MAX_NUM_OF_ARGS,
                   records = record_attributes(Forms)},
    Options = [],
    FormsNoShadows = no_shadows(Forms, State),
    case compile_messages(Forms, FormsNoShadows, Options, State) of
        {[],[],_Warnings} ->
            {NewForms,_State1} = transform(FormsNoShadows, State),
            {function,L,bar,Ar,[{clause,L,As,[],[NF]}]} = 
                lists:last(NewForms),
            {ok,NF};
        {E0,Errors,_Warnings} when WithLintErrors ->
            {not_ok,mforms(error, E0 ++ Errors)};
        {E0,Errors0,_Warnings} ->
            [{error,Reason} | _] = mforms(error, E0++Errors0),
            {not_ok, {error, ?APIMOD, Reason}}
    end.

-define(I(I), {integer, L, I}).
-define(A(A), {atom, L, A}).
-define(V(V), {var, L, V}).
-define(ABST_NO_MORE, {nil, L}).
-define(ABST_MORE(Obj, Cont), {cons, L, Obj, Cont}).

%% Qualifier identifier. 
%% The first one encountered in a QLC has no=1.
-record(qid, {lcid,no}).

mforms(Tag, L) ->
    lists:sort([{Tag,M} || {_File,Ms} <- L, M <- Ms]).

%% Avoid duplicated lint warnings and lint errors. Care has been taken
%% not to introduce unused variables in the transformed code.
%%
no_duplicates(Forms, Errors, Warnings0, ExtraWarnings, Options) ->
    %% Some mistakes such as "{X} =:= {}" are found by strong
    %% validation as well as by qlc. Prefer the warnings from qlc:
    Warnings1 = mforms(Warnings0) --
        ([{File,[{L,v3_core,nomatch}]} ||
             {File,[{L,qlc,M}]} <- mforms(ExtraWarnings),
             lists:member(M, [nomatch_pattern,nomatch_filter])]
         ++ 
         [{File,[{L,sys_core_fold,nomatch_guard}]} ||
             {File,[{L,qlc,M}]} <- mforms(ExtraWarnings),
             M =:= nomatch_filter]),
    Warnings = Warnings1 ++ ExtraWarnings,
    {Es1,Ws1} = compile_forms(Forms, Options),
    Es = mforms(Errors) -- mforms(Es1),
    Ws = mforms(Warnings) -- mforms(Ws1),
    {mforms2(error, Es),mforms2(warning, Ws)}.

mforms(L) ->
    lists:sort([{File,[M]} || {File,Ms} <- L, M <- Ms]).

mforms2(Tag, L) ->
    Line = 0,
    ML = lists:flatmap(fun({File,Ms}) ->
                               [[{attribute,Line,file,{File,Line}}, {Tag,M}] ||
                                   M <- Ms]
                       end, lists:sort(L)),
    lists:flatten(lists:sort(ML)).

is_qlc_q_imported(Forms) ->
    [[] || {attribute,_,import,{?APIMOD,FAs}} <- Forms, {?Q,1} <- FAs] =/= [].

record_attributes(Forms) ->
    [A || A = {attribute, _, record, _D} <- Forms].

%% Get the compile errors and warnings for the QLC as well as messages
%% for introduced variables used in list expressions and messages for
%% badargs. Since the QLCs will be replaced by some terms, the
%% compiler cannot find the errors and warnings after the parse
%% transformation.
%%
compile_messages(Forms, FormsNoShadows, Options, State) ->
    %% The qlc module cannot handle binary generators.
    BGenF = fun(_QId,{b_generate,Line,_P,_LE}=BGen, GA, A) ->
                    M = {loc(Line),?APIMOD,binary_generator},
                    {BGen,[{get(?QLC_FILE),[M]}|GA],A};
               (_QId, Q, GA, A) ->
                    {Q,GA,A}
            end,
    {_,BGens} = qual_fold(BGenF, [], [], FormsNoShadows, State),
    GenForm = used_genvar_check(FormsNoShadows, State),
    ?DEBUG("GenForm = ~s~n", [catch erl_pp:form(GenForm)]),
    WarnFun = fun(Id, LC, A) -> {tag_lines(LC, get_lcid_no(Id)), A} end,
    {WForms,ok} = qlc_mapfold(WarnFun, ok, Forms, State),
    {Es,Ws} = compile_forms(WForms ++ [GenForm], Options),
    {badarg(Forms, State),tagged_messages(Es)++BGens,tagged_messages(Ws)}.

badarg(Forms, State) ->
    F = fun(_Id, {lc,_L,_E,_Qs}=LC, Es) -> 
                {LC,Es};
           (Id, A, Es) -> 
                E = {get_lcid_line(Id),?APIMOD,not_a_query_list_comprehension},
                {A,[{get(?QLC_FILE), [E]} | Es]}
        end,
    {_,E0} = qlc_mapfold(F, [], Forms, State),
    E0.

tag_lines(E, No) ->
    map_lines(fun(Id) -> 
                      case is_lcid(Id) of
                          true -> Id;
                          false -> make_lcid(Id, No)
                      end
              end, E).

map_lines(F, E) ->
    erl_lint:modify_line(E, F).

tagged_messages(MsL) ->
    [{File,
      [{Loc,Mod,untag(T)} || {Loc0,Mod,T} <- Ms,
                             {true,Loc} <- [tloc(Loc0)]]}
     || {File,Ms} <- MsL]
    ++
    [{File,[{Loc,?APIMOD,{used_generator_variable,V}}]}
       || {_, Ms} <- MsL, 
           {XLoc,erl_lint,{unbound_var,_}} <- Ms,
           {Loc,File,V} <- [extra(XLoc)]].

tloc({Id,Column}) ->
    {IsLcid,T} = tloc(Id),
    {IsLcid,{T,Column}};
tloc(Id) ->
    IsLcid = is_lcid(Id),
    {IsLcid,case IsLcid of
                true -> get_lcid_line(Id);
                false -> any
            end}.

extra({extra,Line,File,V}) ->
    {Line,File,V};
extra({Line,Column}) ->
    case extra(Line) of
        {L,File,V} -> {{L,Column},File,V};
        Else -> Else
    end;
extra(Else) ->
    Else.

untag([E | Es]) -> [untag(E) | untag(Es)];
untag(T) when is_tuple(T) -> list_to_tuple(untag(tuple_to_list(T)));
untag(E) ->
    case is_lcid(E) of
        true -> get_lcid_line(E);
        false -> E
    end.

%% -> [{Qid,[variable()]}].
%%
%% For each qualifier the introduced variables are found. The
%% variables introduced in filters are very much like the variables
%% introduced in generator patterns. If no variables are introduced in
%% a qualifier, [variable()] is empty.
%%
%% Generator: all variables occurring in the pattern are introduced
%% variables.
%% Filter: all variables bound inside the filter are introduced
%% variables (unless they are unsafe).
%%
intro_variables(FormsNoShadows, State) ->
    Fun = fun(QId, {T,_L,P0,_E0}=Q, {GVs,QIds}, Foo) when T =:= b_generate;
                                                          T =:= generate ->
                  PVs = qlc:var_ufold(fun({var,_,V}) -> {QId,V} end, P0),
                  {Q,{ordsets:to_list(PVs) ++ GVs,[{QId,[]} | QIds]},Foo};
             (QId, Filter0, {GVs,QIds}, Foo) ->
                  %% The filter F is replaced by begin E, F, E end,
                  %% where E is an LC expression consisting of a
                  %% template mentioning all variables occurring in F.
                  Vs = ordsets:to_list(qlc:vars(Filter0)),
                  Id = QId#qid.lcid,
                  LC1 = embed_vars(intro_set_line({QId,f1}, Vs), Id),
                  LC2 = embed_vars(intro_set_line({QId,f2}, Vs), Id),
                  AnyLine = -1,
                  Filter = {block,AnyLine,[LC1,Filter0,LC2]},
                  {Filter,{GVs,[{QId,[]} | QIds]},Foo}
          end,
    Acc0 = {[],[]},
    {FForms,{GenVars,QIds}} = 
        qual_fold(Fun, Acc0, [], FormsNoShadows, State),
    %% Note: the linter messages are the ones we are looking for.
    %% If there are no linter messages, the compiler will crash (ignored).
    Es0 = compile_errors(FForms),
    %% A variable is bound inside the filter if it is not bound before
    %% the filter, but it is bound after the filter (obviously).
    Before = [{QId,V} || {{QId,f1},erl_lint,{unbound_var,V}} <- Es0],
    After = [{QId,V} || {{QId,f2},erl_lint,{unbound_var,V}} <- Es0],
    Unsafe = [{QId,V} || {{QId,f2},erl_lint,{unsafe_var,V,_Where}} <- Es0],
    ?DEBUG("Before = ~p~n", [Before]),
    ?DEBUG("After = ~p~n", [After]),
    ?DEBUG("Unsafe = ~p~n", [Unsafe]),
    ?DEBUG("Filter ~p~n", [(Before -- After) -- Unsafe]),
    IV = (Before -- After) -- Unsafe,
    I1 = family(IV ++ GenVars),
    sofs:to_external(sofs:family_union(sofs:family(QIds), I1)).

intro_set_line(Tag, Vars) ->
    L = erl_parse:set_line(1, fun(_) -> Tag end),
    [{var,L,V} || V <- Vars].

compile_errors(FormsNoShadows) ->
    case compile_forms(FormsNoShadows, []) of
        {[], _Warnings} ->
            [];
        {Errors, _Warnings} ->
            ?DEBUG("got errors ~p~n", [Errors]),
            lists:flatmap(fun({_File,Es}) -> Es end, Errors)
    end.

-define(MAX_NUM_OF_LINES, 23). % assume max 1^23 lines (> 8 millions)

compile_forms(Forms0, Options) ->
    Forms = [F || F <- Forms0, element(1, F) =/= eof] ++ 
            [{eof,1 bsl ?MAX_NUM_OF_LINES}],
    try 
        case compile:noenv_forms(Forms, compile_options(Options)) of
            {ok, _ModName, Ws0} ->
                {[], Ws0};
            {error, Es0, Ws0} -> 
                {Es0, Ws0}
        end
    catch _:_ ->
        %% The compiler is not available. Use the linter instead.
        case erl_lint:module(Forms, lint_options(Options)) of
            {ok, Warnings} ->
                {[], Warnings};
            {error, Errors, Warnings} ->
                {Errors, Warnings}
        end
    end.

compile_options(Options) ->
    No = [report,report_errors,report_warnings,'P','E' | bitstr_options()],
    [strong_validation,return | skip_options(No, Options)].

lint_options(Options) ->
    skip_options(bitstr_options(), Options).

skip_options(Skip, Options) ->
    [O || O <- Options, not lists:member(O, Skip)].

bitstr_options() ->
    [binary_comprehension,bitlevel_binaries].    

%% In LCs it is possible to use variables introduced in filters and
%% generator patterns in the right hand side of generators (ListExpr),
%% but in QLCs this is not allowed. 
%%
%% A brand new function is returned such that there is one expression
%% for each ListExpr. The expression mentions all introduced variables
%% occurring in ListExpr. Running the function through the compiler
%% yields error messages for erroneous use of introduced variables.
%% The messages have the form
%% {{extra,LineNo,File,Var},Module,{unbound_var,V}}, where Var is the
%% original variable name and V is the name invented by no_shadows/2.
%%
used_genvar_check(FormsNoShadows, State) ->
    F = fun(QId, {T, Ln, _P, LE}=Q, {QsIVs0, Exprs0}, IVsSoFar0) 
                                   when T =:= b_generate; T =:= generate ->
                F = fun({var, _, V}=Var) -> 
                            {var, L, OrigVar} = undo_no_shadows(Var),
                            AF = fun(Line) -> 
                                         {extra, Line, get(?QLC_FILE), OrigVar}
                                 end,
                            L2 = erl_parse:set_line(L, AF),
                            {var, L2, V} 
                    end,
                Vs = [Var || {var, _, V}=Var <- qlc:var_fold(F, [], LE),
                             lists:member(V, IVsSoFar0)],
                Exprs = case Vs of
                            [] -> Exprs0;
                            _ -> [embed_vars(Vs, Ln) | Exprs0]
                        end,
                {QsIVs,IVsSoFar} = q_intro_vars(QId, QsIVs0, IVsSoFar0),
                {Q, {QsIVs, Exprs}, IVsSoFar};
           (QId, Filter, {QsIVs0, Exprs}, IVsSoFar0) ->
                {QsIVs, IVsSoFar} = q_intro_vars(QId, QsIVs0, IVsSoFar0),
                {Filter, {QsIVs, Exprs}, IVsSoFar}
        end,
    IntroVars = intro_variables(FormsNoShadows, State),
    Acc0 = {IntroVars, [{atom, 0, true}]},
    {_, {[], Exprs}} = qual_fold(F, Acc0, [], FormsNoShadows, State),
    FunctionNames = [Name || {function, _, Name, _, _} <- FormsNoShadows],
    UniqueFName = qlc:aux_name(used_genvar, 1, sets:from_list(FunctionNames)),
    {function,0,UniqueFName,0,[{clause,0,[],[],lists:reverse(Exprs)}]}.
    
q_intro_vars(QId, [{QId, IVs} | QsIVs], IVsSoFar) -> {QsIVs, IVs ++ IVsSoFar}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% The transformed code has two major parts: a fun where each
%% qualifier is represented by one or more clauses, and a table where
%% list expressions (the right hand side of generators, LE) are
%% represented by funs (the table is further processed at runtime).
%% The separation into a fun and a table makes it possible to
%% rearrange qualifiers while keeping the speed offered by compiled
%% code, and to run the LEs before evaluation of the QLC (and possibly
%% modify the LEs should that be necessary). Only when doing a fast
%% join are qualifiers rearranged.
%%
%% Extra generators (and clauses) are inserted for possible fast join
%% operations. The list expression for such a generator has the form
%% {join, Op, QualifierNumber1, QualifierNumber2, PatternFilter1,
%% PatternFilter2, PatternConstants1, PatternConstants2} (it is not a
%% fun). Join generators are ignored at runtime unless a fast join is
%% possible, in which case they replace other generators. See also
%% qlc.erl.
%% 
%% For each QLC, every filter is given a state number and every
%% generator two state numbers (one for initialization, one for
%% looping over values). State 1 is reserved for the template and
%% state 0 is entered when there are no more values to try, so
%% assuming no rearrangement of the qualifiers has taken place, the
%% first qualifier is given state number 2. For every state except 0,
%% the table tells which state to go to next. By modifying the table,
%% the order of the qualifiers can be altered at runtime.
%%
%% The syntax of the value Val returned from the fun is:
%% Val = [] | [term() | Val] | fun() -> Val
%% Note: the fun must not return a fun if it is to be called by
%% the function outlined below.
%%
%% An outline of the generated fun:
%%
%% fun(0, RL, ...) when is_list(RL) -> % the final state
%%       lists:reverse(RL);   % eval, all answers collected in a list
%%    (0, ...) -> [];    % cursor (or fold)
%%    (1, RL, ...) when is_list(RL) -> % the template state
%%       Fun(<last generator loop state>, [Template | RL], ...);
%%    (1, ....) ->            % return the object and a continuation
%%       [Template | fun() -> Fun(<last generator loop state>, ...)];
%%    (2, ...) -> % an sample generator, initialization state
%%       Fun(3, ..., <initial value>, ...);
%%    (3, ..., [Pattern | Val], ...) -> % looping over values (a list)
%%       Fun(<next qualifier state>, ..., Val, ...); % arguments are bound
%%    (3, ..., [_ | Val], ...) -> % pattern does not match
%%       Fun(3, ..., Val, ...);
%%    (3, ..., [], ...) -> 
%%       Fun(<last generator loop state>, ...);
%%    (3, ...., F, ...) -> % looping over values (using continuations)
%%       case F() of % get the next value by calling a continuation
%%           [Pattern | Val] -> 
%%               Fun(<next qualifier state>..., Val, ...);
%%           [_ | Val] -> 
%%               Fun(3, ..., Val, ...);
%%           [] ->
%%              Fun(<last generator loop state>, ...);
%%           T -> % returned immediately, typically an error tuple
%%              T
%%       end;
%%    (4, ...) -> % a sample filter
%%       case Filter of
%%           true -> Fun(<next qualifier state>, ...);
%%           false -> Fun(<last generator loop state>, ...)
%%       end;
%%    (5, ...) -> % a filter so simple that it could be used as a guard
%%       if 
%%          Guard -> Fun(<next qualifier state>, ...);
%%          true -> Fun(<last generator loop state>, ...)
%%       end
%% 
%% <last generator loop state> means state 0 if there is no last
%% generator. <initial value> is the evaluated list expression
%% (evaluated once only). Among the arguments indicated by ellipses
%% are all variables introduced in patterns and filters.
%%
%% transform/2 replaces each QLC (call to qlc:q/1) with a qlc_lc
%% record. The general case is that calling the fun stored in the 'lc'
%% field returns {qlc_v1, QFun, CodeF, Qdata, QOpt} such that: QFun is
%% the above mentioned fun; CodeF is a fun returning the original code
%% for the template, every pattern, and every filter; Qdata is the
%% above mentioned table; QOpt is a property list implemented as a fun
%% of one argument - an atom - which returns information about such
%% things as constant columns, match specifications, &c.
%% There is one special case when calling the fun stored in the 'lc'
%% field returns something else:
%% - If the QLC has the form [Var || Var <- LE] and there are no
%%   options to qlc:q/2, a tuple {simple_v1, P, LEf, Line} is returned.
%%   The objects returned are the objects returned by the generator
%%   (calling LEf returns the objects generated by LE).

transform(FormsNoShadows, State) ->
    IntroVars = intro_variables(FormsNoShadows, State),
    AllVars = sets:from_list(ordsets:to_list(qlc:vars(FormsNoShadows))),
    ?DEBUG("AllVars = ~p~n", [sets:to_list(AllVars)]),
    F1 = fun(QId, {generate,_,P,LE}, Foo, {GoI,SI}) ->
                 {{QId,GoI,SI,{gen,P,LE}},Foo,{GoI + 3, SI + 2}};
            (QId, F, Foo, {GoI,SI}) ->
                 {{QId,GoI,SI,{fil,F}},Foo,{GoI + 2,SI + 1}}
         end,
    TemplS = qlc:template_state(),
    GoState = {TemplS + 1, TemplS + 1},
    {ModifiedForms1,_} = 
        qual_fold(F1, [], GoState, FormsNoShadows, State),

    %% This is for info/2. QLCs in filters and the template are
    %% translated before the expression itself is translated. info/2
    %% must not display the result of the translation, but the source
    %% code.
    {_,Source0} = qual_fold(fun(_QId, {generate,_,_P,_E}=Q, Dict, Foo) -> 
                                    {Q,Dict,Foo};
                               (QId, F, Dict, Foo) ->
                                    {F,dict:store(QId, F, Dict),Foo}
                            end, dict:new(), [], FormsNoShadows, State),
    {_,Source} = qlc_mapfold(fun(Id, {lc,_L,E,_Qs}=LC, Dict) ->
                                     {LC,dict:store(Id, E, Dict)}
                             end, Source0, FormsNoShadows, State),


    %% Unused variables introduced in filters are not optimized away.
    F2 = fun(Id, {lc,_L,E,Qs}, {IntroVs0,XWarn0}) ->
                 LcNo = get_lcid_no(Id),
                 LcL = get_lcid_line(Id),
                 [RL,Fun,Go,NGV,S0,RL0,Go0,AT,Err] = 
                     aux_vars(['RL','Fun','Go','C','S0','RL0','Go0','AT','E'],
                              LcNo, AllVars),
                 ?DEBUG("RL = ~p, Fun = ~p, Go = ~p~n", [RL, Fun, Go]),
                 {IntroVs, RestIntroVs} = lists:split(length(Qs), IntroVs0),
                 IntroVs_Qs = lists:zip(IntroVs, Qs),
                 F = fun({{QId,IVs}, {QId,GoI,SI,{gen,P,LE}}}, AllIVs0) ->
                             GV = aux_var('C', LcNo, QId#qid.no, 1, AllVars),
                             GenIVs = [GV | IVs],
                             {{QId,{GenIVs,{{gen,P,LE,GV},GoI,SI}}},
                              GenIVs ++ AllIVs0};
                        ({{QId,IVs}, {QId,GoI,SI,{fil,F}}}, AllIVs0) ->
                             {{QId,{IVs,{{fil,F},GoI,SI}}},
                              IVs++AllIVs0}
                     end,
                 {QCs, AllIVs} = lists:mapfoldl(F, [], IntroVs_Qs),

                 Dependencies = qualifier_dependencies(Qs, IntroVs),
                 L = no_compiler_warning(LcL),
                 {EqColumnConstants, EqualColumnConstants,
                  ExtraConsts, SizeInfo} =
                     constants_and_sizes(Qs, E, Dependencies, AllIVs, State),
                 {JoinInfo, XWarn} = 
                     join_kind(Qs, LcL, AllIVs, Dependencies, State),
                 %% Not at all sure it is a good idea to try and find 
                 %% failing qualifiers; Dialyzer does it so much better.
                 %% But there are a few cases where qlc finds more... (r12b).
                 FWarn = warn_failing_qualifiers(Qs, AllIVs, Dependencies, 
                                                 State),
                 JQs = join_quals(JoinInfo, QCs, L, LcNo, ExtraConsts, AllVars),
                 XQCs = QCs ++ JQs,
                 Cs0 = clauses(XQCs, RL, Fun, Go, NGV, Err, AllIVs, State),
                 Template = template(E, RL, Fun, Go, AT, L, AllIVs, State),
                 Fin = final(RL, AllIVs, L, State),
                 FunC = {'fun',L,{clauses,Fin ++ Template ++ Cs0}},
                 As0 = pack_args(abst_vars([S0, RL0, Fun, Go0 
                                            | replace(AllIVs, AllIVs, nil)], 
                                           L), L, State),
                 AsW = abst_vars([S0, RL0, Go0], L),
                 FunW = {'fun',L,{clauses,[{clause,L,AsW,[],
                                            [{match,L,{var,L,Fun},FunC},
                                             {call,L,{var,L,Fun},As0}]}]}},
                 {ok, OrigE0} = dict:find(Id, Source),
                 OrigE = undo_no_shadows(OrigE0),
                 QCode = qcode(OrigE, XQCs, Source, L),
                 Qdata = qdata(XQCs, L),
                 TemplateInfo = 
                     template_columns(Qs, E, AllIVs, Dependencies, State),
                 %% ExtraConsts should be used by match_spec_quals.
                 MSQs = match_spec_quals(E, Dependencies, Qs, State),
                 Opt = opt_info(TemplateInfo, SizeInfo, JoinInfo, MSQs, L,
                                EqColumnConstants, EqualColumnConstants),
                 LCTuple = 
                     case qlc_kind(OrigE, Qs) of
                         qlc ->
                             {tuple,L,[?A(qlc_v1),FunW,QCode,Qdata,Opt]};
                         {simple, PL, LE, V} ->
                             Init = closure(LE, L),
                             simple(L, V, Init, PL)
                     end,
                 LCFun = {'fun',L,{clauses,[{clause,L,[],[],[LCTuple]}]}},
                 {tuple,_,Fs0} = abstr(#qlc_lc{}, L),
                 Fs = set_field(#qlc_lc.lc, Fs0, LCFun),
                 {{tuple,L,Fs},{RestIntroVs,FWarn++XWarn++XWarn0}}
         end,
    {NForms,{[],XW}} = qlc_mapfold(F2, {IntroVars,[]}, ModifiedForms1, State),
    display_forms(NForms),
    {restore_line_numbers(NForms), State#state{xwarnings = XW}}.

join_kind(Qs, LcL, AllIVs, Dependencies, State) ->
    {EqualCols2, EqualColsN} = equal_columns(Qs, AllIVs, Dependencies, State),
    {MatchCols2, MatchColsN} = eq_columns(Qs, AllIVs, Dependencies, State),
    Tables = lists:usort
               ([T || {C,_Skip} <- EqualCols2, {T,_} <- C]
             ++ [T || {C,_Skip} <- EqualCols2, T <- C, is_integer(T)]),
    if 
        EqualColsN =/= []; MatchColsN =/= [] -> 
            {[], 
             [{get(?QLC_FILE),[{abs(LcL),?APIMOD,too_complex_join}]}]};
        EqualCols2 =:= [], MatchCols2 =:= [] ->
            {[], []};
        length(Tables) > 2 -> 
            {[], 
             [{get(?QLC_FILE),[{abs(LcL),?APIMOD,too_many_joins}]}]};
        EqualCols2 =:= MatchCols2 ->
            {EqualCols2, []};
        true -> 
            {{EqualCols2, MatchCols2}, []}
    end.

qlc_kind(OrigE, Qs) ->
    {OrigFilterData, OrigGeneratorData} = qual_data(undo_no_shadows(Qs)),
    OrigAllFilters = filters_as_one(OrigFilterData),
    {_FilterData, GeneratorData} = qual_data(Qs),
    case {OrigE, OrigAllFilters, OrigGeneratorData} of
        {{var,_,V}, {atom,_,true}, [{_,{gen,{var,PatternL,V},_LE}}]} ->
            [{_,{gen,_,LE}}] = GeneratorData,
            {simple, PatternL, LE, V}; % V is for info()
        _ ->
            qlc
    end.

%% Finds filters and patterns that cannot match any values at all. 
%% Nothing but the patterns and the filters themselves is analyzed.
%% A much weaker analysis than the one of Dialyzer's.
warn_failing_qualifiers(Qualifiers, AllIVs, Dependencies, State) ->
    {FilterData, GeneratorData} = qual_data(Qualifiers),    
    Anon = 1,
    BindFun = fun(_Op, Value) -> is_bindable(Value) end,
    {PFrame, _PatternVars} = 
        pattern_frame(GeneratorData, BindFun, Anon, State),
    {_, _, Imported} = 
        filter_info(FilterData, AllIVs, Dependencies, State),
    PFrames = frame2frames(PFrame),
    {_, Warnings} = 
        lists:foldl(fun({_QId,{fil,_Filter}}, {[]=Frames,Warnings}) ->
                            {Frames,Warnings};
                       ({_QId,{fil,Filter}}, {Frames,Warnings}) ->
                        case filter(set_line(Filter, 0), Frames, BindFun, 
                                    State, Imported) of
                            [] ->
                                {[],
                                 [{get(?QLC_FILE),
                                   [{abs_loc(element(2, Filter)),?APIMOD,
                                     nomatch_filter}]} | Warnings]};
                            Frames1 -> 
                                {Frames1,Warnings}
                        end;
                   ({_QId,{gen,Pattern,_}}, {Frames,Warnings}) ->
                        case pattern(Pattern, Anon, [], BindFun, State) of
                            {failed, _, _} -> 
                                {Frames,
                                 [{get(?QLC_FILE),
                                   [{abs_loc(element(2, Pattern)),?APIMOD,
                                     nomatch_pattern}]} | Warnings]};
                            _ ->
                                {Frames,Warnings}
                        end
                end, {PFrames,[]}, FilterData++GeneratorData),
    Warnings.

-define(TNO, 0).
-define(TID, #qid{lcid = template, no = ?TNO}).

opt_info(TemplateInfo, Sizes, JoinInfo, MSQs, L, 
         EqColumnConstants0, EqualColumnConstants0) ->
    SzCls = [{clause,L,[?I(C)],[],[?I(Sz)]} || {C,Sz} <- lists:sort(Sizes)]
            ++ [{clause,L,[?V('_')],[],[?A(undefined)]}],
    S = [{size, {'fun', L, {clauses, SzCls}}}],
    J = case JoinInfo of [] -> []; _ -> [{join, abstr(JoinInfo, L)}] end,
    %% Superfluous clauses may be emitted:
    TCls0 = lists:append(
              [[{clause,L,[abstr(Col, L),EqType],[],
                 [abstr(TemplCols, L)]} ||
                   {Col,TemplCols} <- TemplateColumns]
               || {EqType, TemplateColumns} <- TemplateInfo]),
    TCls = lists:sort(TCls0) ++ [{clause,L,[?V('_'),?V('_')],[],[{nil,L}]}],
    T = [{template, {'fun', L, {clauses, TCls}}}],

    %% The template may also have a constant function (IdNo = 0).
    %% Only constant template columns are interesting.
    EqColumnConstants = opt_column_constants(EqColumnConstants0),
    CCs = opt_constants(L, EqColumnConstants),
    EqC = {constants,{'fun',L,{clauses,CCs}}},

    EqualColumnConstants = opt_column_constants(EqualColumnConstants0),
    ECCs = opt_constants(L, EqualColumnConstants),
    EqualC = {equal_constants,{'fun',L,{clauses,ECCs}}},
    C = [EqC | [EqualC || true <- [CCs =/= ECCs]]],

    %% Comparisons yield more constant columns than matchings.
    ConstCols = [{IdNo,Col} || 
                    {{IdNo,Col},[_],_FilNs} <- EqualColumnConstants],
    ConstColsFamily = family_list(ConstCols),
    NSortedCols0 = [{IdNo,hd(lists:seq(1, length(Cols)+1)--Cols)} ||
                       {IdNo,Cols} <- ConstColsFamily],
    NCls = [{clause,L,[?I(IdNo)],[],[?I(N-1)]} ||
               {IdNo,N} <- NSortedCols0, N > 0]
           ++ [{clause,L,[?V('_')],[],[?I(0)]}],
    N = [{n_leading_constant_columns,{'fun',L,{clauses,NCls}}}],

    ConstCls = [{clause,L,[?I(IdNo)],[],[abstr(Cols,L)]} ||
                   {IdNo,Cols} <- ConstColsFamily] 
               ++ [{clause,L,[?V('_')],[],[{nil,L}]}],
    CC = [{constant_columns,{'fun',L,{clauses,ConstCls}}}],

    MSCls = [{clause,L,[?I(G)],[],[{tuple,L,[MS,abstr(Fs,L)]}]} ||
                {G,MS,Fs} <- MSQs]
          ++ [{clause,L,[?V('_')],[],[?A(undefined)]}],
    MS = [{match_specs, {'fun',L,{clauses,MSCls}}}],

    Cls = [{clause,L,[?A(Tag)],[],[V]} || 
              {Tag,V} <- lists:append([J, S, T, C, N, CC, MS])]
          ++ [{clause,L,[?V('_')],[],[?A(undefined)]}],
    {'fun', L, {clauses, Cls}}.

opt_column_constants(ColumnConstants0) ->
    [CC || {{IdNo,_Col},Const,_FilNs}=CC <- ColumnConstants0,
           (IdNo =/= ?TNO) or (length(Const) =:= 1)].

opt_constants(L, ColumnConstants) ->
    Ns = lists:usort([IdNo || {{IdNo,_Col},_Const,_FilNs} <- ColumnConstants]),
    [{clause,L,[?I(IdNo)],[],[column_fun(ColumnConstants, IdNo, L)]}
     || IdNo <- Ns]
     ++ [{clause,L,[?V('_')],[],[?A(no_column_fun)]}].

abstr(Term, Line) ->
    erl_parse:abstract(Term, Line).

%% Extra generators are introduced for join.
join_quals(JoinInfo, QCs, L, LcNo, ExtraConstants, AllVars) ->
    {LastGoI, LastSI} =
        lists:foldl(fun({_QId,{_QIVs,{{fil,_},GoI,SI}}}, 
                        {GoI0, _SI0}) when GoI >= GoI0 ->
                            {GoI + 2, SI + 1};
                       ({_QId,{_QIVs,{{gen,_,_,_},GoI,SI}}}, 
                        {GoI0, _SI0}) when GoI >= GoI0 ->
                            {GoI + 3, SI + 2};
                       (_, A) ->
                            A
                    end, {0, 0}, QCs),
    LastQId = lists:max([QId || {QId,{_QIVs,{_Q,_GoI,_SI}}} <- QCs]),
    %% Only two tables for the time being.
    %% The join generator re-uses the generator variable assigned to
    %% the first of the two joined generators. Its introduced variables
    %% are the variables introduced by any of the two joined generators.
    %% Its abstract code is a pair of the joined generators' patterns.
    QNums = case JoinInfo of
                {EqualCols, MatchCols} ->
                    EQs = join_qnums(EqualCols),
                    MQs = join_qnums(MatchCols),
                    [{Q1,Q2,'=:='} || {Q1,Q2} <- MQs] ++
                        [{Q1,Q2,'=='} || {Q1,Q2} <- EQs -- MQs];
                EqualCols ->
                    [{Q1,Q2,'=='} || {Q1,Q2} <- join_qnums(EqualCols)]
            end,
    LD = [begin 
              [{QId1,P1,GV1,QIVs1}] = 
                  [{QId,P,GV,QIVs} || 
                      {QId,{QIVs,{{gen,P,_,GV},_GoI,_SI}}} <- QCs, 
                      QId#qid.no =:= Q1],
              [{QId2,P2,QIVs2}] = 
                  [{QId,P,QIVs--[GV]} || 
                      {QId,{QIVs,{{gen,P,_,GV},_,_}}} <- QCs,
                      QId#qid.no =:= Q2],
              {QId1,Op,P1,GV1,QIVs1++QIVs2,QId2,P2}
          end || {Q1, Q2, Op} <- lists:usort(QNums)],
    Aux = abst_vars(aux_vars(['F','H','O','C'], LcNo, AllVars), L),
    F = fun({QId1,Op,P1,GV1,QIVs,QId2,P2}, {QId,GoI,SI}) ->
                AP1 = anon_pattern(P1),
                AP2 = anon_pattern(P2),
                Cs1 = join_handle_constants(QId1, ExtraConstants),
                Cs2 = join_handle_constants(QId2, ExtraConstants),
                H1 = join_handle(AP1, L, Aux, Cs1),
                H2 = join_handle(AP2, L, Aux, Cs2),
                %% Op is not used.
                Join = {join,Op,QId1#qid.no,QId2#qid.no,H1,H2,Cs1,Cs2},
                G = {NQId=QId#qid{no = QId#qid.no + 1},
                     {QIVs,{{gen,{cons,L,P1,P2},Join,GV1},GoI,SI}}},
                A = {NQId, GoI + 3, SI + 2},
                {G, A}
        end,
    {Qs, _} = lists:mapfoldl(F, {LastQId, LastGoI, LastSI}, LD),
    Qs.

join_qnums(Cols) ->
    lists:usort([{Q1, Q2} || {[{Q1,_C1}, {Q2,_C2}], _Skip} <- Cols]).

%% Variables occurring only once are replaced by '_'.
anon_pattern(P) ->
    MoreThanOnce = lists:usort(occ_vars(P) -- qlc:vars(P)),
    {AP, foo} = var_mapfold(fun({var, L, V}, A) ->
                                    case lists:member(V, MoreThanOnce) of
                                        true -> 
                                            {{var, L, V}, A};
                                        false ->
                                            {{var, L, '_'}, A}
                                    end
                            end, foo, P),
    AP.

%% Creates a handle that filters the operands of merge join using the
%% pattern. It is important that objects that do not pass the pattern
%% are filtered out because the columns of the pattern are inspected
%% in order to determine if key-sorting the operands can be avoided.
%% 
%% No objects will be filtered out if the pattern is just a variable.
join_handle(AP, L, [F, H, O, C], Constants) ->
    case {AP, Constants} of
        {{var, _, _}, []} ->
            {'fun',L,{clauses,[{clause,L,[H],[],[H]}]}};
        _ ->
            G0 = [begin
                      Call = {call,0,{atom,0,element},[{integer,0,Col},O]},
                      list2op([{op,0,Op,Con,Call} || {Con,Op} <- Cs], 'or')
                  end || {Col,Cs} <- Constants],
            G = if G0 =:= [] -> G0; true -> [G0] end,
            CC1 = {clause,L,[AP],G,[{cons,L,O,closure({call,L,F,[F,C]},L)}]},
            CC2 = {clause,L,[?V('_')],[],[{call,L,F,[F,C]}]},
            Case = {'case',L,O,[CC1,CC2]},
            Cls = [{clause,L,[?V('_'),{nil,L}],[],[{nil,L}]},
                   {clause,L,[F,{cons,L,O,C}],[],[Case]},
                   {clause,L,[F,C],[[{call,L,?A(is_function),[C]}]],
                    [{call,L,F,[F,{call,L,C,[]}]}]},
                   {clause,L,[?V('_'),C],[],[C]}],
            Fun = {'fun', L, {clauses, Cls}},
            {'fun',L,{clauses,[{clause,L,[H],[],[{match,L,F,Fun}, 
                                                 closure({call,L,F,[F,H]}, 
                                                         L)]}]}}
    end.

join_handle_constants(QId, ExtraConstants) ->
    IdNo = QId#qid.no,
    case lists:keyfind(IdNo, 1, ExtraConstants) of
        {IdNo, ConstOps} ->
            ConstOps;
        false ->
            []
    end.

%%% By the term "imported variable" is meant a variable that is bound
%%% outside (before) the QLC. Perhaps "parameter" would be a more
%%% suitable name.

%% The column fun is to be used when there is a known key column or
%% indices. The argument is a column number and the return value is a
%% list of the values to look up to get all objects needed to evaluate
%% the filter. The order of the objects need not be the same as the
%% order the traverse fun would return them.

column_fun(Columns, QualifierNumber, LcL) ->
    ColCls0 = 
        [begin
             true = Vs0 =/= [], % at least one value to look up
             Vs1 = list2cons(Vs0),
             Fils1 = {tuple,0,[{atom,0,FTag},
                               lists:foldr
                                   (fun(F, A) -> {cons,0,{integer,0,F},A} 
                                    end, {nil,0}, Fils)]},
             Tag = case ordsets:to_list(qlc:vars(Vs1)) of
                       Imp when length(Imp) > 0, % imported vars
                                length(Vs0) > 1 ->
                           usort_needed;
                       _ ->
                           values
                   end,
             Vs = {tuple,0,[{atom,0,Tag},Vs1,Fils1]},
             {clause,0,[erl_parse:abstract(Col)],[],[Vs]}
         end ||
            {{CIdNo,Col}, Vs0, {FTag,Fils}} <- Columns,
            CIdNo =:= QualifierNumber]
        ++ [{clause,0,[{var,0,'_'}],[],[{atom,0,false}]}],
    ColCls = set_line(ColCls0, LcL),
    {'fun', LcL, {clauses, ColCls}}.

%% Tries to find columns of the template that (1) are equal to (or
%% match) or (2) match columns of the patterns of the generators. The
%% results are to be used only for determining which columns are
%% sorted. The template can be handled very much like a generator
%% pattern (the variables are not fresh, though). As in filters calls
%% like element(I, T) are recognized.
%% -> [{EqType,Equal | Match}]
%% Equal = Match = TemplateColumns
%% EqType = abstract code for {_ | '==' | '=:='}
%% TemplateColumns = [{Column,Integers}]    % integer is position in template
%% Column = {QualifierNumber,ColumnNumber}} % column is position in pattern

template_columns(Qs0, E0, AllIVs, Dependencies, State) ->
    E = expand_expr_records(pre_expand(E0), State),
    TemplateAsPattern = template_as_pattern(E),
    Qs = [TemplateAsPattern | Qs0],
    EqualColumns = equal_columns2(Qs, AllIVs, Dependencies, State),
    MatchColumns = eq_columns2(Qs, AllIVs, Dependencies, State),
    Equal = template_cols(EqualColumns), 
    Match = template_cols(MatchColumns),
    L = 0,
    if 
        Match =:= Equal -> 
            [{?V('_'), Match}];
        true -> 
            [{?A('=='), Equal}, {?A('=:='), Match}]
    end.

equal_columns2(Qualifiers, AllIVs, Dependencies, State) ->
    {JI, _Skip} = 
        join_info(Qualifiers, AllIVs, Dependencies, State,_JoinOp = '=='),
    JI.

eq_columns2(Qualifiers, AllIVs, Dependencies, State) ->
    {JI, _SKip} = 
        join_info(Qualifiers, AllIVs, Dependencies, State, _JoinOp = '=:='),
    JI.

template_cols(ColumnClasses) ->
    lists:sort([{{IdNo,Col}, lists:usort(Cs)} ||
                   Class <- ColumnClasses,
                   {IdNo,Col} <- Class,
                   IdNo =/= ?TNO,
                   [] =/= (Cs = [C || {?TNO,C} <- Class])]).

template_as_pattern(E) ->
    P = simple_template(E),
    {?TID,foo,foo,{gen,P,{nil,0}}}.

simple_template({call,L,{remote,_,{atom,_,erlang},{atom,_,element}}=Call,
                 [{integer,_,I}=A1,A2]}) when I > 0 ->
    %% This kludge is known by pattern/5 below.
    {call, L, Call, [A1, simple_template(A2)]};
simple_template({var, _, _}=E) ->
    E;
simple_template({tuple, L, Es}) ->
    {tuple, L, [simple_template(E) || E <- Es]};
simple_template({cons, L, H, T}) ->
    {cons, L, simple_template(H), simple_template(T)};
simple_template(E) ->
    case catch erl_parse:normalise(E) of
        {'EXIT', _} -> unique_var();
        _ -> E
    end.

%% -> [{QId,[QId']}].
%% Qualifier QId (a filter) uses variables introduced in QId'.
qualifier_dependencies(Qualifiers, IntroVs) ->
    Intro = sofs:relation([{IV,QId} || {QId,IVs} <- IntroVs, IV <- IVs]),
    {FilterData, _} = qual_data(Qualifiers),
    Used = sofs:relation([{QId,UV} ||
                             {QId,{fil,F}} <- FilterData,
                             UV <- qlc:vars(F)]),
    Depend = sofs:strict_relation(sofs:relative_product(Used, Intro)),
    G = sofs:family_to_digraph(sofs:relation_to_family(Depend)),
    Dep0 = [{V,digraph_utils:reachable_neighbours([V], G)} || 
               V <- digraph:vertices(G)],
    true = digraph:delete(G),
    FilterIds = sofs:set(filter_ids(Qualifiers)),
    Dep1 = sofs:restriction(sofs:family(Dep0), FilterIds),
    NoDep = sofs:constant_function(FilterIds, sofs:empty_set()),
    sofs:to_external(sofs:family_union(Dep1, NoDep)).

filter_ids(Qualifiers) ->
    {FilterData, _} = qual_data(Qualifiers),
    [QId || {QId,_} <- FilterData].

%% -> [{QualifierNumber,MatchSpec,[QualifierNumber']}
%% The qualifiers [QualifierNumber'] are filters (F1, ..., Fn) that
%% depend on QualifierNumber (a generator Pattern <- LE) only.
%% MatchSpec is the match specification for [Pattern' || Pattern <- LE,
%% F1, ..., Fn], where Pattern' is Template if all qualifiers can be 
%% replaced by one match specification, otherwise a modified Pattern.
match_spec_quals(Template, Dependencies, Qualifiers, State) ->
    {FilterData, GeneratorData} = qual_data(Qualifiers),
    NoFilterGIds = [GId || {GId,_} <- GeneratorData] 
                   -- lists:flatmap(fun({_,GIds}) -> GIds end, Dependencies),
    Filters = filter_list(FilterData, Dependencies, State),
    Candidates = [{QId2#qid.no,Pattern,[Filter],F} || 
                     {QId,[QId2]} <- Dependencies,
                     {GQId,{gen,Pattern,_}} <- GeneratorData,
                     GQId =:= QId2,
                     {FQId,{fil,F}}=Filter <- Filters, % guard filters only
                     FQId =:= QId] 
               ++ [{GId#qid.no,Pattern,[],{atom,0,true}} || 
                      {GId,{gen,Pattern,_}} <- GeneratorData,
                      lists:member(GId, NoFilterGIds)],
    E = {nil, 0},
    GF = [{{GNum,Pattern},Filter} || 
             {GNum,Pattern,Filter,F} <- Candidates,
             no =/= try_ms(E, Pattern, F, State)],
    GFF = sofs:relation_to_family(sofs:relation(GF, 
                                                [{gnum_pattern,[filter]}])),
    GFFL = sofs:to_external(sofs:family_union(GFF)),
    try
        [{{GNum,Pattern}, GFilterData}] = GFFL,
        true = length(GFilterData) =:= length(FilterData),
        [_] = GeneratorData,
        AbstrMS = gen_ms(Template, Pattern, GFilterData, State),
        %% There is one generator and every filter uses some of the
        %% variables introduced by the generator. The whole qlc
        %% expressione can be replaced by a match specification.
        [{GNum, AbstrMS, all}]
    catch _:_ ->
        {TemplVar, _} = anon_var({var,0,'_'}, 0),
        [one_gen_match_spec(GNum, Pattern, GFilterData, State, TemplVar) ||
            {{GNum,Pattern},GFilterData} <- GFFL]
    end.

one_gen_match_spec(GNum, Pattern0, GFilterData, State, TemplVar) ->
    {E, Pattern} = pattern_as_template(Pattern0, TemplVar),
    AbstrMS = gen_ms(E, Pattern, GFilterData, State),
    {GNum, AbstrMS, [FId#qid.no || {FId,_} <- GFilterData]}.

gen_ms(E, Pattern, GFilterData, State) ->
    {ok, MS, AMS} = try_ms(E, Pattern, filters_as_one(GFilterData), State),
    case MS of
        [{'$1',[true],['$1']}] ->
            {atom, 0, no_match_spec};
        _ ->
            AMS
    end.

%% -> {Template, Pattern'}
%% The pattern is accepted by ets:fun2ms/1, that is, =/2 can only
%% occur at top level. Introduce or reuse a top-level variable as
%% template
pattern_as_template({var,_,'_'}, TemplVar) ->
    {TemplVar, TemplVar};
pattern_as_template({var,_,_}=V, _TemplVar) ->
    {V, V};
pattern_as_template({match,L,E,{var,_,'_'}}, TemplVar) ->
    {TemplVar, {match,L,E,TemplVar}};
pattern_as_template({match,L,{var,_,'_'},E}, TemplVar) ->
    {TemplVar, {match,L,E,TemplVar}};
pattern_as_template({match,_,_E,{var,_,_}=V}=P, _TemplVar) ->
    {V, P};
pattern_as_template({match,_,{var,_,_}=V,_E}=P, _TemplVar) ->
    {V, P};
pattern_as_template(E, TemplVar) ->
    L = 0,
    {TemplVar, {match, L, E, TemplVar}}.

%% Tries to find columns which are compared or matched against
%% constant values or other columns. To that end unification is used.
%% A frame is a list of bindings created by unification.
%% Also tries to find the number of columns of patterns.
%% Note that the template is handled more or less as a pattern.
%% -> {ColumnConstants, SizeInfo, ExtraConstants}
%% ColumnConstants = [{Column,[Constant],[FilterNo]}]
%% SizeInfo = [{QualifierNumber,NumberOfColumns}]
%% Column = {QualifierNumber,ColumnNumber}}
%% FilterNo is a filter that can be skipped at runtime provided constants
%% are looked up.
%% ExtraConstants = 
%%     [{GeneratorNumber,[{ColumnNumber,
%%                         [{AbstractConstant,AbstractOperator}]}]}]
%% For every generator such that the unification binds value(s) to
%% some column(s), extra constants are returned. These constants are
%% the results of the unification, and do not occur in the pattern of
%% the generator.
constants_and_sizes(Qualifiers0, E, Dependencies, AllIVs, State) ->
    TemplateAsPattern = template_as_pattern(E),
    Qualifiers = [TemplateAsPattern | Qualifiers0],
    {FilterData, GeneratorData} = qual_data(Qualifiers),
    {Filter, Anon1, Imported} = 
        filter_info(FilterData, AllIVs, Dependencies, State),
    PatBindFun = fun(_Op, Value) -> is_bindable(Value) end,
    {PatternFrame, PatternVars} = 
        pattern_frame(GeneratorData, PatBindFun, Anon1, State),
    PatternFrames = frame2frames(PatternFrame),
    FilterFun = 
        fun(BindFun) -> 
              filter(Filter, PatternFrames, BindFun, State, Imported)
        end,
    SzFs = FilterFun(PatBindFun),

    SizeInfo = pattern_sizes(PatternVars, SzFs),
    SelectorFun = const_selector(Imported),
    PatternConstants = 
        lists:flatten(frames_to_columns(PatternFrames, PatternVars,
                                        deref_pattern(Imported),
                                        SelectorFun, Imported,
                                        '=:=')),

    {EqColumnConstants, _EqExtraConsts} = 
        constants(FilterFun, PatternVars, PatternConstants, PatternFrame,
                  FilterData, Dependencies, _LookupOp1 = '=:=', 
                  Imported, State),
    {EqualColumnConstants, EqualExtraConsts} = 
        constants(FilterFun, PatternVars, PatternConstants, PatternFrame,
                  FilterData, Dependencies, _LookupOp2 = '==', 
                  Imported, State),

    %% Use compared extra constants only because:
    %% - merge join compares terms;
    %% - the constants from the matching unification is a subset of the
    %%   constants from the comparing unification.
    %% Using constants from the matching unification would make it
    %% possible to skip some (more) objects when joining.
    ExtraCon1 = 
        [{{GId,Col},{Val,Op}} ||
            {Consts,Op} <- [{EqualExtraConsts,'=='}],
            {{GId,Col},Val} <- Consts],
    ExtraConstants = 
      family_list([{GId, {Col,ValOps}} ||
                      {{GId,Col},ValOps} <- family_list(ExtraCon1)]),
    {EqColumnConstants, EqualColumnConstants, ExtraConstants, SizeInfo}.

constants(FilterFun, PatternVars, PatternConstants, PatternFrame, 
          FilterData, Dependencies, LookupOp, Imported, State) ->
    BindFun = fun(_Op, Value) -> is_bindable(Value) end,
    Fs = FilterFun(BindFun),
    SelectorFun = const_selector(Imported),
    ColumnConstants0 = frames_to_columns(Fs, PatternVars, 
                                         deref_lookup(Imported, LookupOp),
                                         SelectorFun, Imported, LookupOp),
    ColumnConstants1 = lists:flatten(ColumnConstants0),
    ExtraConstants = 
       [{{GId,Col},Val} ||
           {{GId,Col},Vals} <- ColumnConstants1 -- PatternConstants,
           GId =/= ?TNO,
           Val <- Vals],
    ColumnConstants = lu_skip(ColumnConstants1, FilterData, PatternFrame,
                              PatternVars, Dependencies, State,
                              Imported, LookupOp),
    {ColumnConstants, ExtraConstants}.

%%% ** Comparing Terms **
%%%  When comparing the key against a term where some integer (or float
%%% comparing equal to an integer) occurs, one has to be careful if the
%%% table matches keys. One way would be to look up the term both with
%%% the integer and with the float comparing equal to the integer--then
%%% all objects that could possibly be answers are filtered (with
%%% reasonable assumptions). But if integers occur several times in the
%%% term all combinations have to be looked up, and that could be just
%%% too many.
%%%  If imported variables occur in the term one could assume at compile
%%% time that they are not integers and check that assumption at
%%% runtime. However, this would probably be bad design since some keys
%%% can be looked up, but others cannot.
%%%  However, the current implementation is simple: do not bind a
%%% variable to a term if imported variables or integers occur in the
%%% term.

deref_lookup(Imported, '==') ->
    %% Comparing table. Every value can be looked up.
    fun(PV, F) -> deref_values(PV, F, Imported) end;
deref_lookup(Imported, '=:=') ->
    %% Matching table. Ignore comparisons unless the value is free of
    %% integers. See also Comparing Terms.
    BFun = fun(DV, Op) ->
                   Op =:= '=:=' orelse free_of_integers(DV, Imported)
           end,
    fun(PV, F) -> deref_values(PV, F, BFun, Imported) end.

%% Augment ColConstants with filters that do not need to be run
%% provided that constants are looked up.
%% Does not find all filters that can be removed.
lu_skip(ColConstants, FilterData, PatternFrame, PatternVars, 
        Dependencies, State, Imported, LookupOp) ->
    %% If there is a test that does not compare or match, then the
    %% filter cannot be skipped.
    FailSelector = fun(_Frame) -> fun(Value) -> {yes, Value} end end,
    %% In runtime, constants are looked up and matched against a pattern 
    %% (the pattern acts like a filter), then the filters are run.
    PatternFrames = frame2frames(PatternFrame),
    PatternColumns = 
        lists:flatten(frames_to_columns(PatternFrames, PatternVars,
                                        deref_pattern(Imported), FailSelector,
                                        Imported, LookupOp)),

    %% Note: ColFil can contain filters for columns that cannot be
    %% looked up. Such (possibly bogus) elements are however not used.
    %% Note: one filter at a time is tested; only the pattern is
    %% assumed to have been run when the filter is run. Sometimes it
    %% would be advantageously to assume some filter(s) occurring
    %% before the filter had been run as well 
    %% (an example: {{X,Y}} <- LE, X =:= 1, Y =:= a).
    BindFun = fun(_Op, Value) -> is_bindable(Value) end,
    ColFil = [{Column, FId#qid.no} ||
                 {FId,{fil,Fil}} <- 
                     filter_list(FilterData, Dependencies, State),
                 [] =/= (SFs = safe_filter(set_line(Fil, 0), PatternFrames,
                                           BindFun, State, Imported)),
                 {GId,PV} <- PatternVars,
                 [] =/= 
                    (Cols = hd(frames_to_columns(SFs, [{GId, PV}],
                                                 deref_lu_skip(LookupOp,
                                                               Imported),
                                                 const_selector(Imported),
                                                 Imported, LookupOp))),
                 %% The filter must not test more than one column (unless the
                 %% pattern has already done the test):
                 %% Note: if the pattern and the filter test the same
                 %% column, the filter will not be skipped.
                 %% (an example: {X=1} <- ..., X =:= 1).
                 length(D = Cols -- PatternColumns) =:= 1,
                 Frame <- SFs,
                 begin
                     %% The column is compared/matched against a constant.
                     %% If there are no more comparisons/matches then
                     %% the filter can be replaced by the lookup of
                     %% the constant.
                     [{{_,Col} = Column, Constants}] = D,
                     {VarI, FrameI} = unify_column(Frame, PV, Col, BindFun,
                                                   Imported),
                     VarValues = deref_skip(VarI, FrameI, LookupOp, Imported),

                     {NV, F1} = unify_column(PatternFrame, PV, Col, BindFun,
                                             Imported),
                     F2 = unify_var_bindings(VarValues, '=:=', NV, F1, 
                                             BindFun, Imported, false),
                     %% F2: the pattern has been matched and the
                     %% constant has been looked up. If Frame has no
                     %% more bindings than F2 (modulo unique
                     %% variables), then the filter can be skipped. 
                     %% 
                     %% Under rare circumstances (for instance: 
                     %% "X =:= 1, X =:= U", U imported; only 1 is looked up),
                     %% not all constants mentioned in a filter are looked up.
                     %% The filter can only be skipped if all constants
                     %% are looked up.
                     LookedUpConstants = 
                         case lists:keyfind(Column, 1, ColConstants) of
                             false -> [];
                             {Column, LUCs} -> LUCs
                         end,
                     %% Don't try to handle filters that compare several
                     %% values equal. See also frames_to_columns().
                     length(VarValues) =< 1 andalso
                     (Constants -- LookedUpConstants =:= []) andalso
                     bindings_is_subset(Frame, F2, Imported)
                 end],
    ColFils = family_list(ColFil),
    %% The skip tag 'all' means that all filters are covered by the lookup.
    %% It does not imply that there is only one generator as is the case
    %% for match specifications (see match_spec_quals above).
    [{Col, Constants, skip_tag(Col, ColFils, FilterData)} ||
        {Col,Constants} <- ColConstants].

deref_skip(E, F, _LookupOp, Imported) ->
    deref(E, F, Imported).

deref_lu_skip('==', Imported) ->
    %% Comparing table. Cannot skip filters that match integers.
    BFun = fun(DV, Op) ->
                   Op =:= '==' orelse free_of_integers(DV, Imported)
           end,
    fun(PV, F) -> deref_values(PV, F, BFun, Imported) end;
deref_lu_skip('=:=', Imported) ->
    %% Matching table. Skip filters regardless of operator.
    fun(PV, F) -> deref_values(PV, F, Imported) end.

equal_columns(Qualifiers, AllIVs, Dependencies, State) ->
    {Cs, Skip} = 
        join_info(Qualifiers, AllIVs, Dependencies, State, _JoinOp = '=='),
    join_gens(Cs, Qualifiers, Skip).

eq_columns(Qualifiers, AllIVs, Dependencies, State) ->
    {Cs, Skip} = 
        join_info(Qualifiers, AllIVs, Dependencies, State, _JoinOp = '=:='),
    join_gens(Cs, Qualifiers, Skip).

%% -> {TwoGens, ManyGens}
join_gens(Cs0, Qs, Skip) ->
    Cs = [family_list(C) || C <- Cs0],
    {FD, _GeneratorData} = qual_data(Qs),
    {join_gens2(lists:filter(fun(C) -> length(C) =:= 2 end, Cs), FD, Skip),
     join_gens2(lists:filter(fun(C) -> length(C) > 2 end, Cs), FD, Skip)}.

join_gens2(Cs0, FilterData, Skip) ->
    [{J, skip_tag(case lists:keyfind(J, 1, Skip) of
                      {J, FilL} ->
                          FilL;
                      false ->
                          []
                  end, FilterData)} ||
        J <- lists:append([qlc:all_selections(C) || C <- Cs0])].

skip_tag(FilList, FilterData) ->
    {if
         length(FilterData) =:= length(FilList) ->
             all;
         true ->
             some
     end, FilList}.

skip_tag(Col, ColFils, FilterData) ->
    case lists:keyfind(Col, 1, ColFils) of
        {Col, FilL} ->
            Tag = if
                      length(FilterData) =:= length(FilL) ->
                          all;
                      true ->
                          some
                  end,
            {Tag, FilL};
        false -> 
            {some,[]}
    end.

%% Tries to find columns (possibly in the same table) that are equal.
%% If LookupOp is '=:=' then "equal" means that the columns are matched;
%% if LookupOp is '==' then "equal" means that the columns are matched or
%% compared.
%% -> [[{QualifierNumber,ColumnNumber}]] % Eq.classes.
join_info(Qualifiers, AllIVs, Dependencies, State, JoinOp) ->
    {FilterData, GeneratorData} = qual_data(Qualifiers),
    {Filter, Anon1, Imported} = 
        filter_info(FilterData, AllIVs, Dependencies, State),
    BindFun = fun(_Op, V) -> bind_no_const(V, Imported) end,
    {PatternFrame, PatternVars} = 
        pattern_frame(GeneratorData, BindFun, Anon1, State),
    PatternFrames = frame2frames(PatternFrame),
    Fs = filter(Filter, PatternFrames, BindFun, State, Imported),
    SelectorFun = no_const_selector(Imported),
    Cols = frames_to_columns(Fs, PatternVars,
                             fun(PV1, F) -> deref_join(PV1, F, JoinOp) end,
                             SelectorFun, Imported, '=:='),
    JC = join_classes(Cols),
    Skip = join_skip(JC, FilterData, PatternFrame,
                     PatternVars, Dependencies, State, Imported, JoinOp),
    {JC, Skip}.

deref_join(E, Frame, '==') ->
    deref_values(E, Frame, _Imp = []);
deref_join(E, Frame, '=:=') ->
    %% Matching table. It is possible that some objects read from the
    %% other table (the one with the objects to look up) contain
    %% integers. By making all variables imported it is ensured that
    %% comparisons are kept. See also Comparing Terms.
    deref_values(E, Frame, fun(_DV, Op) -> Op =:= '=:=' end, all).

join_classes(Cols0) ->
    ColVar = sofs:relation(lists:append(Cols0)),
    Cols = sofs:partition(2, ColVar),
    [[C || {C,_} <- Cs] || Cs <- sofs:to_external(Cols), length(Cs) > 1].

join_skip(JoinClasses, FilterData, PatternFrame, PatternVars, Dependencies,
          State, Imported, JoinOp) ->
    PatternFrames = frame2frames(PatternFrame),
    ColFil = [{JoinClass,FId#qid.no} ||
                 [{Q1,C1}, {Q2,C2}]=JoinClass <- JoinClasses,
                 {GId1, PV1} <- PatternVars,
                 GId1#qid.no =:= Q1,
                 {GId2, PV2} <- PatternVars,
                 GId2#qid.no =:= Q2,

                 %% Select a filter that depends on the two generators:
                 {FId,{fil,Fil}} <- 
                     filter_list(FilterData, Dependencies, State),
                 {value,{_,GIds}} <- 
                     [lists:keysearch(FId, 1, Dependencies)],
                 GIds =:= lists:sort([GId1,GId2]),

                 begin
                     %% Do what the join does: 
                     %% element(C1, G1) JoinOp element(C2, G2).
                     %% As for lu_skip: sometimes it would be
                     %% advantageously to assume some filter(s)
                     %% occurring before the join filter had been run
                     %% as well.
                     BindFun = fun(_Op, V) -> is_bindable(V) end,
                     {V1, JF1} = 
                       unify_column(PatternFrame, PV1, C1, BindFun, Imported),
                     {V2, JF2} = 
                         unify_column(JF1, PV2, C2, BindFun, Imported),
                     JF = unify(JoinOp, V1, V2, JF2, BindFun, Imported),

                     %% "Run" the filter:
                     SFs = safe_filter(set_line(Fil, 0), PatternFrames,
                                       BindFun, State, Imported),
                     JImp = qlc:vars([SFs, JF]), % kludge
                     lists:all(fun(Frame) -> 
                                       bindings_is_subset(Frame, JF, JImp)
                               end, SFs) andalso SFs =/= []
                 end],
    family_list(ColFil).

filter_info(FilterData, AllIVs, Dependencies, State) ->
    FilterList = filter_list(FilterData, Dependencies, State),
    Filter0 = set_line(filters_as_one(FilterList), 0),
    Anon0 = 0,
    {Filter, Anon1} = anon_var(Filter0, Anon0),
    Imported = ordsets:subtract(qlc:vars(Filter), % anonymous too
                                ordsets:from_list(AllIVs)), 
    {Filter, Anon1, Imported}.

%% Selects the guard filters. Other filters than guard filters are
%% ignored when trying to find constants and join columns. Note: there
%% must not occur any non-guard filter between a guard filter and the
%% generator(s) the guard filter depends on. The reason is that such a
%% filter could fail for some object(s) excluded by lookup or join. If
%% the failing filter is placed _after_ the guard filter, the failing
%% objects have already been filtered out by the guard filter.
%% Note: guard filters using variables from one generator are allowed
%% to be placed after further generators (the docs states otherwise, but 
%% this seems to be common practice).
filter_list(FilterData, Dependencies, State) ->
    RDs = State#state.records,
    sel_gf(FilterData, 1, Dependencies, RDs, [], []).

sel_gf([], _N, _Deps, _RDs, _Gens, _Gens1) ->
    [];
sel_gf([{#qid{no = N}=Id,{fil,F}}=Fil | FData], N, Deps, RDs, Gens, Gens1) ->
    case erl_lint:is_guard_test(F, RDs) of
        true ->
            {Id,GIds} = lists:keyfind(Id, 1, Deps),
            case length(GIds) =< 1 of
                true ->
                    case generators_in_scope(GIds, Gens1) of
                        true ->
                            [Fil|sel_gf(FData, N+1, Deps, RDs, Gens, Gens1)];
                        false ->
                            sel_gf(FData, N + 1, Deps, RDs, [], [])
                    end;
                false ->
                    case generators_in_scope(GIds, Gens) of
                        true ->
                            [Fil | sel_gf(FData, N + 1, Deps, RDs, Gens, [])];
                        false ->
                            sel_gf(FData, N + 1, Deps, RDs, [], [])
                    end
            end;
        false ->
            sel_gf(FData, N + 1, Deps, RDs, [], [])
    end;
sel_gf(FData, N, Deps, RDs, Gens, Gens1) ->
    sel_gf(FData, N + 1, Deps, RDs, [N | Gens], [N | Gens1]).

generators_in_scope(GenIds, GenNumbers) ->
    lists:all(fun(#qid{no=N}) -> lists:member(N, GenNumbers) end, GenIds).

pattern_frame(GeneratorData, BindFun, Anon1, State) ->
    Frame0 = [],
    {PatternFrame, _Anon2, PatternVars} =
        lists:foldl(fun({QId,{gen,Pattern,_}}, {F0,An0,PVs}) ->
                            {F1, An1, PV} = 
                                pattern(Pattern, An0, F0, BindFun, State),
                            {F1, An1, [{QId,PV} | PVs]}
                    end, {Frame0, Anon1, []}, GeneratorData),
    {PatternFrame, PatternVars}.
              
const_selector(Imported) ->
    selector(Imported, fun is_const/2).

no_const_selector(Imported) ->
    selector(Imported, fun(V, I) -> not is_const(V, I) end).

selector(Imported, TestFun) ->
    fun(_Frame) ->
            fun(Value) -> 
                    case TestFun(Value, Imported) of
                        true ->
                            {yes, Value};
                        false ->
                            no
                    end
            end
    end.

bind_no_const(Value, Imported) ->
    case is_const(Value, Imported) of
        true ->
            false;
        false ->
            is_bindable(Value)
    end.

%% Tuple tails are variables, never constants.
is_const(Value, Imported) ->
    %% is_bindable() has checked that E is normalisable. 
    [] =:= ordsets:to_list(ordsets:subtract(qlc:vars(Value), Imported)).

is_bindable(Value) ->
    case normalise(Value) of
        {ok, _C} ->
            true;
        not_ok ->
            false
    end.

pattern(P0, AnonI, Frame0, BindFun, State) ->
    P1 = try 
             expand_pattern_records(P0, State)
         catch _:_ -> P0 % template, records already expanded
         end,
    %% Makes test for equality simple:
    P2 = set_line(P1, 0),
    {P3, AnonN} = anon_var(P2, AnonI),
    {P4, F1} = match_in_pattern(tuple2cons(P3), Frame0, BindFun),
    {P, F2} = element_calls(P4, F1, BindFun, _Imp=[]), % kludge for templates
    {var, _, PatternVar} = UniqueVar = unique_var(),
    F = unify('=:=', UniqueVar, P, F2, BindFun, _Imported = []),
    {F, AnonN, PatternVar}.

frame2frames(failed) ->
    [];
frame2frames(F) ->
    [F].

match_in_pattern({match, _, E10, E20}, F0, BF) ->
    {E1, F1} = match_in_pattern(E10, F0, BF),
    {E2, F} = match_in_pattern(E20, F1, BF),
    %% This is for join: chosing a constant could "hide" a variable.
    E = case BF('=:=', E1) of
            true -> E1;
            false -> E2
        end,
    {E, unify('=:=', E1, E2, F, BF, _Imported = [])};
match_in_pattern(T, F0, BF) when is_tuple(T) ->
    {L, F} = match_in_pattern(tuple_to_list(T), F0, BF),
    {list_to_tuple(L), F};
match_in_pattern([E0 | Es0], F0, BF) ->
    {E, F1} = match_in_pattern(E0, F0, BF),
    {Es, F} = match_in_pattern(Es0, F1, BF),
    {[E | Es], F};
match_in_pattern(E, F, _BF) ->
    {E, F}.

-define(ANON_VAR(N), N).

anon_var(E, AnonI) ->
    var_mapfold(fun({var, L, '_'}, N) ->
                        {{var, L, ?ANON_VAR(N)}, N+1};
                   (Var, N) -> {Var, N}
                end, AnonI, E).

set_line(T, L) ->
    map_lines(fun(_L) -> L end, T).

-record(fstate, {state, bind_fun, imported}).

filter(_E, []=Frames0, _BF, _State, _Imported) ->
    Frames0;
filter(E0, Frames0, BF, State, Imported) ->
    E = pre_expand(E0),
    FState = #fstate{state = State, bind_fun = BF, imported = Imported},
    filter1(E, Frames0, FState).

%% One frame for each path through the and/or expression.
%%
%% "A xor B" is equal to "(A and not B) or (not A and B)". 
%% Ignoring "not B" and "not A" this is the same as "A or B"; 
%% "xor" can be handled just as "or".
%% 
%% One must handle filters with care, both when joining and when
%% looking up values. The reference is a nested loop: if the filter
%% fails for some combination of values, it must fail also when
%% looking up values or joining. In other words, the excluded
%% combinations of values must not evaluate to anything but 'false'.
%% Filters looking like guards are allowed to fail since for such
%% filter the so called guard semantics ensures that the value is
%% 'false' if it is not 'true'. This behavior was inherited from the
%% ordinary list comprehension, where it has been considered a bug
%% kept for backward compatibility. Now it has become part of the QLC
%% semantics, and hard to change (at least in the qlc module).
%%
%% A special case is =/2. If there is a chance that the =/2 fails
%% (badmatch) for some combination of values, that combination cannot
%% be excluded. If the variable is bound only once, it is OK, but not
%% twice (or more). The current implementation does not handle =/2 at
%% all (except in generator patterns).

filter1({op, _, Op, L0, R0}, Fs, FS) when Op =:= '=:='; Op =:= '==' ->
    #fstate{state = S, bind_fun = BF, imported = Imported} = FS,
    %% In the transformed code there are no records in lookup values
    %% because records are expanded away in prep_expr.
    lists:flatmap(fun(F0) ->
                          {L, F1} = prep_expr(L0, F0, S, BF, Imported),
                          {R, F2} = prep_expr(R0, F1, S, BF, Imported),
                          case unify(Op, L, R, F2, BF, Imported) of
                              failed -> [];
                              F -> [F]
                          end
                  end, Fs);
filter1({op, _, Op, L, R}, Fs, FS) when Op =:= 'and'; Op =:= 'andalso' ->
    filter1(R, filter1(L, Fs, FS), FS);
filter1({op, _, Op, L, R}, Fs, FS) when Op =:= 'or'; 
                                        Op =:= 'orelse';
                                        Op =:= 'xor' ->
    filter1(L, Fs, FS) ++ filter1(R, Fs, FS);
filter1({atom,_,Atom}, _Fs, _FS) when Atom =/= true ->
    [];
filter1({call,L,{remote,_,{atom,_,erlang},{atom,_,is_record}},[T,R]},
        Fs, FS) ->
    filter1({op,L,'=:=',{call,L,{remote,L,{atom,L,erlang},{atom,L,element}},
                         [{integer,L,1},T]},R},
            Fs, FS);
%% erlang:is_record/3 (the size information is ignored):
filter1({call,L,{remote,L1,{atom,_,erlang}=M,{atom,L2,is_record}},[T,R,_Sz]},
        Fs, FS) ->
    filter1({call,L,{remote,L1,M,{atom,L2,is_record}},[T,R]}, Fs, FS);
filter1(_E, Fs, _FS) ->
    Fs.

%% filter() tries to extract as much information about constant
%% columns as possible. It ignores those parts of the filter that are
%% uninteresting. safe_filter() on the other hand ensures that the
%% bindings returned capture _all_ aspects of the filter (wrt BF).
safe_filter(_E, []=Frames0, _BF, _State, _Imported) ->
    Frames0;
safe_filter(E0, Frames0, BF, State, Imported) ->
    E = pre_expand(E0),
    FState = #fstate{state = State, bind_fun = BF, imported = Imported},
    safe_filter1(E, Frames0, FState).

safe_filter1({op, _, Op, L0, R0}, Fs, FS) when Op =:= '=:='; Op =:= '==' ->
    #fstate{state = S, bind_fun = BF, imported = Imported} = FS,
    lists:flatmap(fun(F0) ->
                          {L, F1} = prep_expr(L0, F0, S, BF, Imported),
                          {R, F2} = prep_expr(R0, F1, S, BF, Imported),
                          case safe_unify(Op, L, R, F2, BF, Imported) of
                              failed -> [];
                              F -> [F]
                          end
                  end, Fs);
safe_filter1({op, _, Op, L, R}, Fs, FS) when Op =:= 'and'; Op =:= 'andalso' ->
    safe_filter1(R, safe_filter1(L, Fs, FS), FS);
safe_filter1({op, _, Op, L, R}, Fs, FS) when Op =:= 'or'; Op =:= 'orelse' ->
    safe_filter1(L, Fs, FS) ++ safe_filter1(R, Fs, FS);
safe_filter1({atom,_,true}, Fs, _FS) ->
    Fs;
safe_filter1(_E, _Fs, _FS) ->
    [].

%% Substitutions: 
%% M:F() for {M,F}(); erlang:F() for F(); is_record() for record().
pre_expand({call,L1,{atom,L2,record},As}) ->
    pre_expand({call,L1,{atom,L2,is_record},As});
pre_expand({call,L,{atom,_,_}=F,As}) ->
    pre_expand({call,L,{remote,L,{atom,L,erlang},F},As});
pre_expand({call,L,{tuple,_,[M,F]},As}) ->
    pre_expand({call,L,{remote,L,M,F},As});
pre_expand(T) when is_tuple(T) ->
    list_to_tuple(pre_expand(tuple_to_list(T)));
pre_expand([E | Es]) ->
    [pre_expand(E) | pre_expand(Es)];
pre_expand(T) ->
    T.

%% -> [ [{{QualifierNumber,ColumnNumber}, [Value]}] ]
frames_to_columns([], _PatternVars, _DerefFun, _SelectorFun, _Imp, _CompOp) ->
    [];
frames_to_columns(Fs, PatternVars, DerefFun, SelectorFun, Imp, CompOp) ->
    %% It is important that *the same* variables are introduced for
    %% columns in every frame. (When trying to find constant columns
    %% it doesn't matter, but when trying to find joined columns, the
    %% same variables have to be the representatives in every frame.)
    SizesVarsL =
        [begin 
             PatVar = {var,0,PV},
             PatternSizes = [pattern_size([F], PatVar, false) || 
                                F <- Fs],
             MaxPZ = lists:max([0 | PatternSizes -- [undefined]]),
             Vars = pat_vars(MaxPZ),
             {PatternId#qid.no, PatVar, PatternSizes, Vars}
         end || {PatternId, PV} <- PatternVars],
    BF = fun(_Op, Value) -> is_bindable(Value) end,
    Fun = fun({_PatN, PatVar, PatSizes, Vars}, Frames) -> 
                  [unify('=:=', pat_tuple(Sz, Vars), PatVar, Frame, BF, Imp) ||
                      {Sz, Frame} <- lists:zip(PatSizes, Frames)]
          end,
    NFs = lists:foldl(Fun, Fs, SizesVarsL),
    [frames2cols(NFs, PatN, PatSizes, Vars, DerefFun, SelectorFun, CompOp) ||
        {PatN, _PatVar, PatSizes, Vars} <- SizesVarsL].

frames2cols(Fs, PatN, PatSizes, Vars, DerefFun, SelectorFun, CompOp) ->
    Rs = [ begin
               RL = [{{PatN,Col},cons2tuple(element(2, Const))} ||
                        {V, Col} <- lists:zip(sublist(Vars, PatSz),
                                              seq(1, PatSz)),
                        %% Do not handle the case where several
                        %% values compare equal, e.g. "X =:= 1
                        %% andalso X == 1.0". Looking up both
                        %% values or one of them won't always do
                        %% because it is more or less undefined
                        %% whether the table returns the given key
                        %% or the one stored in the table. Or
                        %% rather, it would be strange if the table
                        %% did not return the stored key upon
                        %% request, but the 'lookup_fun' function
                        %% may have to add the given key (see also
                        %% gb_table in qlc(3)). (Not a very strong
                        %% argument. "X =:= 1" could (should?) be
                        %% seen as a bug.) Note: matching tables
                        %% cannot skip the filter, but looking up
                        %% one of the values should be OK.
                        tl(Consts = DerefFun(V, F)) =:= [],
                        (Const = (SelectorFun(F))(hd(Consts))) =/= no],
               sofs:relation(RL) % possibly empty
            end || {F,PatSz} <- lists:zip(Fs, PatSizes)],
    Ss = sofs:from_sets(Rs),
    %% D: columns occurring in every frame (path).
    D = sofs:intersection(sofs:projection(fun(S) -> sofs:projection(1, S) end,
                                          Ss)),
    Cs = sofs:restriction(sofs:relation_to_family(sofs:union(Ss)), D),
    [C || {_,Vs}=C <- sofs:to_external(Cs), not col_ignore(Vs, CompOp)].

pat_vars(N) ->
    [unique_var() || _ <- seq(1, N)].

pat_tuple(Sz, Vars) when is_integer(Sz), Sz > 0 ->
    TupleTail = unique_var(),
    {cons_tuple, list2cons(sublist(Vars, Sz) ++ TupleTail)};
pat_tuple(_, _Vars) ->
    unique_var().

%% Do not handle tests as "X =:= 1.0 orelse X == 1" either.
%% Similar problems as described above.
col_ignore(_Vs, '=:=') ->
    false;
col_ignore(Vs, '==') ->
    length(Vs) =/= length(lists:usort([element(2, normalise(V)) || V <- Vs])).

pattern_sizes(PatternVars, Fs) ->
    [{QId#qid.no, Size} || 
        {QId,PV} <- PatternVars,
        undefined =/= (Size = pattern_size(Fs, {var,0,PV}, true))].

pattern_size(Fs, PatternVar, Exact) ->
    Fun = fun(F) -> (deref_pattern(_Imported = []))(PatternVar, F) end,
    Derefs = lists:flatmap(Fun, Fs),
    Szs = [pattern_sz(Cs, 0, Exact) || {cons_tuple, Cs} <- Derefs],
    case lists:usort(Szs) of
        [Sz] when is_integer(Sz), Sz >= 0 -> Sz;
        [] when not Exact -> 0;
        _  -> undefined
    end.

pattern_sz({cons,_,_C,E}, Col, Exact) ->
    pattern_sz(E, Col+1, Exact);
pattern_sz({nil,_}, Sz, _Exact) ->
    Sz;
pattern_sz(_, _Sz, true) ->
    undefined;
pattern_sz(_, Sz, false) ->
    Sz.

deref_pattern(Imported) ->
    fun(PV, F) -> deref_values(PV, F, Imported) end.

prep_expr(E, F, S, BF, Imported) ->
    element_calls(tuple2cons(expand_expr_records(E, S)), F, BF, Imported).

unify_column(Frame, Var, Col, BindFun, Imported) ->
    Call = {call,0,{atom,0,element},[{integer,0,Col}, {var,0,Var}]},
    element_calls(Call, Frame, BindFun, Imported).

%% cons_tuple is used for representing {V1, ..., Vi | TupleTail}.
%%
%% Tests like "element(2, X) =:= a" are represented by "tuple tails":
%% {_, a | _}. The tail may be unified later, when more information
%% about the size of the tuple is known.
element_calls({call,_,{remote,_,{atom,_,erlang},{atom,_,element}},
               [{integer,_,I},Term0]}, F0, BF, Imported) when I > 0 ->
    TupleTail = unique_var(),
    VarsL = [unique_var() || _ <- lists:seq(1, I)],
    Vars = VarsL ++ TupleTail,
    Tuple = {cons_tuple, list2cons(Vars)},
    VarI = lists:nth(I, VarsL),
    {Term, F} = element_calls(Term0, F0, BF, Imported),
    {VarI, unify('=:=', Tuple, Term, F, BF, Imported)};
element_calls({call,L1,{atom,_,element}=E,As}, F0, BF, Imported) ->
    %% erl_expand_records should add "erlang:"...
    element_calls({call,L1,{remote,L1,{atom,L1,erlang},E}, As}, F0, BF,
                  Imported);
element_calls(T, F0, BF, Imported) when is_tuple(T) ->
    {L, F} = element_calls(tuple_to_list(T), F0, BF, Imported),
    {list_to_tuple(L), F};
element_calls([E0 | Es0], F0, BF, Imported) ->
    {E, F1} = element_calls(E0, F0, BF, Imported),
    {Es, F} = element_calls(Es0, F1, BF, Imported),
    {[E | Es], F};
element_calls(E, F, _BF, _Imported) ->
    {E, F}.

unique_var() ->
    {var, 0, make_ref()}.

is_unique_var({var, _L, V}) ->
    is_reference(V).

expand_pattern_records(P, State) ->
    E = {'case',0,{atom,0,true},[{clause,0,[P],[],[{atom,0,true}]}]},
    {'case',_,_,[{clause,0,[NP],_,_}]} = expand_expr_records(E, State),
    NP.

expand_expr_records(E, State) ->
    RecordDefs = State#state.records,
    Forms = RecordDefs ++ [{function,1,foo,0,[{clause,1,[],[],[pe(E)]}]}],
    [{function,_,foo,0,[{clause,_,[],[],[NE]}]}] = 
        erl_expand_records:module(Forms, [no_strict_record_tests]),
    NE.

%% Partial evaluation.
pe({op,Line,Op,A}) ->
    erl_eval:partial_eval({op,Line,Op,pe(A)});
pe({op,Line,Op,L,R}) ->
    erl_eval:partial_eval({op,Line,Op,pe(L),pe(R)});
pe(T) when is_tuple(T) ->
    list_to_tuple(pe(tuple_to_list(T)));
pe([E | Es]) ->
    [pe(E) | pe(Es)];
pe(E) ->
    E.

unify(Op, E1, E2, F, BF, Imported) ->
    unify(Op, E1, E2, F, BF, Imported, false).

safe_unify(Op, E1, E2, F, BF, Imported) ->
    unify(Op, E1, E2, F, BF, Imported, true).

unify(_Op, _E1, _E2, failed, _BF, _Imported, _Safe) -> % contradiction
    failed;
unify(_Op, E, E, F, _BF, _Imported, _Safe) ->
    F;
unify(Op, {var, _, _}=Var, E2, F, BF, Imported, Safe) ->
    extend_frame(Op, Var, E2, F, BF, Imported, Safe);
unify(Op, E1, {var, _, _}=Var, F, BF, Imported, Safe) ->
    extend_frame(Op, Var, E1, F, BF, Imported, Safe);
unify(Op, {cons_tuple, Es1}, {cons_tuple, Es2}, F, BF, Imported, Safe) ->
    unify(Op, Es1, Es2, F, BF, Imported, Safe);
unify(Op, {cons, _, L1, R1}, {cons, _, L2, R2}, F, BF, Imported, Safe) ->
    E = unify(Op, L1, L2, F, BF, Imported, Safe),
    unify(Op, R1, R2, E, BF, Imported, Safe);
unify(Op, E1, E2, F, _BF, _Imported, Safe) ->
    try
      {ok, C1} = normalise(E1),
      {ok, C2} = normalise(E2),
      if 
          Op =:= '=:=', C1 =:= C2 ->
              F;
          Op =:= '==', C1 == C2 ->
              F;
          true ->
              failed
      end 
    catch error:_ when Safe -> failed;
          error:_ when not Safe -> F   % ignored
    end.
%% Binaries are not handled at all (by unify).

%% Note that a variable can be bound to several values, for instance:
%% X =:= 3, X == 3.0. As a consequence, deref() returns a list of
%% values.

%% Binding a variable to several values makes the unification and
%% dereferencing more complicated. An alternative would be not to try
%% to find lookup values for such QLCs at all. That might have been a
%% better design decision.

-record(bind, {var, value, op}). 

extend_frame(Op, Var, Value, F, BF, Imported, Safe) ->
    case var_values(Var, F) of
        [] ->
            case Value of
                {var, _, _} ->
                    case var_values(Value, F) of
                        [] ->
                            add_binding(Op, Value, Var, F, BF, Imported, Safe);
                        ValsOps ->
                            maybe_add_binding(ValsOps, Op, Value, Var, F, 
                                              BF, Imported, Safe)
                    end;
                _ ->
                    add_binding(Op, Var, Value, F, BF, Imported, Safe)
            end;
        ValsOps ->
            maybe_add_binding(ValsOps, Op, Var, Value, F, BF, Imported, Safe)
    end.

maybe_add_binding(ValsOps, Op, Var, Value, F0, BF, Imported, Safe) ->
    case unify_var_bindings(ValsOps, Op, Value, F0, BF, Imported, Safe) of
        failed ->
            failed;
        F ->
            case already_bound(Op, Var, Value, F) of
                true -> 
                    F;
                false ->
                    add_binding(Op, Var, Value, F, BF, Imported, Safe)
            end
    end.

already_bound(Op, Var, Value, F) ->
    %% Note: all variables are treated as imported. The dereferenced
    %% values must not depend on Imported.
    BFun = fun(_DV, BOp) ->  Op =:= BOp end,
    DerefValue = deref_value(Value, Op, F, BFun, all),
    DerefVar = deref_var(Var, F, BFun, all),
    DerefValue -- DerefVar =:= [].

unify_var_bindings([], _Op, _Value, F, _BF, _Imported, _Safe) ->
    F;
unify_var_bindings([{VarValue, Op2} | Bindings],
                   Op1, Value, F0, BF, Imported, Safe) ->
    Op = deref_op(Op1, Op2),
    case unify(Op, VarValue, Value, F0, BF, Imported, Safe) of
        failed ->
            failed;
        F ->
            unify_var_bindings(Bindings, Op1, Value, F, BF, Imported, Safe)
    end.

deref_op('=:=', '=:=') ->
    '=:=';
deref_op(_, _) ->
    '=='.

%%% Note: usort works; {integer,L,3} does not match {float,L,3.0}.

var_values(Var, Frame) ->
    [{Value, Op} || 
        #bind{value = Value, op = Op} <- var_bindings(Var, Frame)].

deref_var(Var, Frame, Imported) ->
    deref_var(Var, Frame, fun(_DV, _Op) -> true end, Imported).

deref_var(Var, Frame, BFun, Imported) ->
    lists:usort([ValOp || 
                    #bind{value = Value, op = Op} <- var_bindings(Var, Frame),
                    ValOp <- deref_value(Value, Op, Frame, BFun, Imported)]).

deref_value(Value, Op, Frame, BFun, Imported) ->
    lists:usort([{Val,value_op(ValOp, Op, Imported)} || 
                    {Val,_Op}=ValOp <- deref(Value, Frame, BFun, Imported)]).

add_binding(Op, Var0, Value0, F, BF, Imported, Safe) ->
    {Var, Value} = maybe_swap_var_value(Var0, Value0, F, Imported),
    case BF(Op, Value) of
        true ->
            add_binding2(Var, Value, Op, F);
        false when Safe ->
            failed;
        false when not Safe ->
            F
    end.

add_binding2(Var, Value, Op, F) ->
    case occurs(Var, Value, F) of
        true ->
            failed;
        false ->
            [#bind{var = Var, value = Value, op = Op} | F]
    end.

%% Ensure that imported variables are visible in the dereferenced
%% value by pushing them to the end of the binding chain. Be careful
%% not to introduce loops.
maybe_swap_var_value(Var, Value, Frame, Imported) ->
    case do_swap_var_value(Var, Value, Frame, Imported) of
        true ->
            {Value, Var};
        false ->
            {Var, Value}
    end.

do_swap_var_value({var, _, V1}=Var1, {var, _, V2}=Var2, F, Imported) ->
    case swap_vv(Var1, Var2, F) of
        [] ->
            case swap_vv(Var2, Var1, F) of
                [] ->
                    ordsets:is_element(V1, Imported) andalso 
                        not ordsets:is_element(V2, Imported);
                _Bs ->
                    true
            end;                
        _Bs ->
           false
    end;
do_swap_var_value(_, _, _F, _Imp) ->
    false.

swap_vv(V1, V2, F) ->
    [V || #bind{value = V} <- var_bindings(V1, F), V =:= V2].

normalise(E) ->
    %% Tuple tails are OK.
    case catch erl_parse:normalise(var2const(cons2tuple(E))) of
        {'EXIT', _} ->
            not_ok;
        C ->
            {ok, C}
    end.

occurs(V, V, _F) ->
    true;
occurs(V, {var, _, _} = Var, F) ->
    lists:any(fun(B) -> occurs(V, B#bind.value, F) end, var_bindings(Var, F));
occurs(V, T, F) when is_tuple(T) ->
    lists:any(fun(E) -> occurs(V, E, F) end, tuple_to_list(T));
occurs(V, [E | Es], F) ->
    occurs(V, E, F) orelse occurs(V, Es, F);
occurs(_V, _E, _F) ->
    false.

deref_values(E, Frame, Imported) ->
    deref_values(E, Frame, fun(_DV, _Op) -> true end, Imported).

deref_values(E, Frame, BFun, Imported) ->
    lists:usort([V || 
                    {V, Op} <- deref(E, Frame, BFun, Imported),
                    BFun(V, Op)]).

deref(E, F, Imp) ->
    BFun = fun(_DV, _Op) -> true end,
    deref(E, F, BFun, Imp).

deref({var, _, _}=V, F, BFun, Imp) ->
    DBs = lists:flatmap(fun(B) -> deref_binding(B, F, BFun, Imp) 
                        end, var_bindings(V, F)),
    case DBs of
        [] ->
            [{V, '=:='}];
        _ ->
            lists:usort(DBs)
    end;
deref(T, F, BFun, Imp) when is_tuple(T) ->
    [{list_to_tuple(DL), Op} || 
        {DL, Op} <- deref(tuple_to_list(T), F, BFun, Imp)];
deref(Es, F, BFun, Imp) when is_list(Es) ->
    L = [deref(C, F, BFun, Imp) || C <- Es],
    lists:usort([deref_list(S) || S <- all_comb(L)]);
deref(E, _F, _BFun, _Imp) ->
    [{E, '=:='}].

var_bindings(Var, F) ->
    [B || #bind{var = V}=B <- F, V =:= Var].

deref_binding(Bind, Frame, BFun, Imp) ->
    #bind{value = Value, op = Op0} = Bind,
    [{Val, Op} ||
        {Val, _Op}=ValOp <- deref(Value, Frame, BFun, Imp),
        BFun(Val, Op = value_op(ValOp, Op0, Imp))].
    
deref_list(L) ->
    Op = case lists:usort([Op || {_Val, Op} <- L]) of
             ['=:='] ->
                 '=:=';
             _ ->
                 '=='
         end,
    {[V || {V, _Op} <- L], Op}.

value_op({_V, '=='}, _BindOp, _Imp) ->
    '==';
value_op({_V, '=:='}, _BindOp='=:=', _Imp) ->
    '=:=';
value_op({V, '=:='}, _BindOp='==', Imp) ->
    case free_of_integers(V, Imp) of
        true ->
            '=:=';
        false ->
            '=='
    end.

all_comb([]) ->
    [[]];
all_comb([Cs | ICs]) ->
    [[C | L] || C <- Cs, L <- all_comb(ICs)].

%% "Free of integers" here means that there are not imported variables
%% in V (which could take on integer values), but there may be other
%% variables in V.
free_of_integers(V, Imported) ->
    not has_integer(V) andalso not has_imported_vars(V, Imported).

%% Assumes that imported variables are representatives, if Value is a
%% dereferenced value.
has_imported_vars(Value, all) ->
    qlc:vars(Value) =/= [];
has_imported_vars(Value, Imported) ->
    [Var || Var <- qlc:vars(Value), lists:member(Var, Imported)] =/= [].

has_integer(Abstr) ->
    try
        has_int(Abstr)
    catch throw:true -> true
    end.

has_int({integer,_,I}) when float(I) == I ->
    throw(true);
has_int({float,_,F}) when round(F) == F ->
    throw(true);
has_int(T) when is_tuple(T) ->
    has_int(tuple_to_list(T));
has_int([E | Es]) ->
    has_int(E), 
    has_int(Es);
has_int(_) ->
    false.

tuple2cons({tuple, _, Es}) ->
    {cons_tuple, list2cons(tuple2cons(Es))};
tuple2cons(T) when is_tuple(T) ->
    list_to_tuple(tuple2cons(tuple_to_list(T)));
tuple2cons([E | Es]) ->
    [tuple2cons(E) | tuple2cons(Es)];
tuple2cons(E) ->
    E.

list2cons([E | Es]) ->
    {cons, 0, E, list2cons(Es)};
list2cons([]) ->
    {nil, 0};
list2cons(E) ->
    E.

%% Returns {..., Variable} if Variable is a tuple tail.
cons2tuple({cons_tuple, Es}) ->
    {tuple, 0, cons2list(Es)};
cons2tuple(T) when is_tuple(T) ->
    list_to_tuple(cons2tuple(tuple_to_list(T)));
cons2tuple([E | Es]) ->
    [cons2tuple(E) | cons2tuple(Es)];
cons2tuple(E) ->
    E.

cons2list({cons, _, L, R}) ->
    [cons2tuple(L) | cons2list(R)];
cons2list({nil, _}) ->
    [];
cons2list(E) -> % tuple tail (always a variable)
    [cons2tuple(E)].

%% Returns true if all bindings in F1 also occur in F2.
%% Viewing F1 and F2 as sets, the fact that F1 is a subset of F2 iff
%% F1 union F2 is equal to F2 is used. (This should take care of 
%% issues with anonymous variables.)
bindings_is_subset(F1, F2, Imported) ->
    BF = fun(_Op, _Value) -> true end, % don't need any test here
    %% Extend F2 with the bindings in F1:
    F = lists:foldl(fun(#bind{var = V, value = Value, op = Op}, Frame) ->
                            unify(Op, V, Value, Frame, BF, Imported)
                    end, F2, F1),
    bindings_subset(F, F2, Imported) andalso bindings_subset(F2, F, Imported).

bindings_subset(F1, F2, Imp) ->
    Vars = lists:usort([V || #bind{var = V} <- F1, not is_unique_var(V)]),
    lists:all(fun(V) ->
                      deref_var(V, F1, Imp) =:= deref_var(V, F2, Imp)
              end, Vars).

%% Recognizes all QLCs on the form [T || P <- LE, F] such that
%% ets:fun2ms(fun(P) when F -> T end) is a match spec. This is OK with
%% the guard semantics implemented in filter/_ below. If one chooses
%% not to have guard semantics, affected filters will have to be
%% recognized and excluded here as well.
try_ms(E, P, Fltr, State) ->
    L = 1,
    Fun =  {'fun',L,{clauses,[{clause,L,[P],[[Fltr]],[E]}]}},
    Expr = {call,L,{remote,L,{atom,L,ets},{atom,L,fun2ms}},[Fun]},
    Form0 = {function,L,foo,0,[{clause,L,[],[],[Expr]}]},
    Form = restore_line_numbers(Form0),
    X = ms_transform:parse_transform(State#state.records ++ [Form], []),
    case catch 
        begin
            {function,L,foo,0,[{clause,L,[],[],[MS0]}]} = lists:last(X),
            MS = erl_parse:normalise(var2const(MS0)),
            XMS = ets:match_spec_compile(MS),
            true = ets:is_compiled_ms(XMS),
            {ok, MS, MS0} 
        end of
        {'EXIT', _Reason} ->
            no;
        Reply ->
            Reply
    end.

filters_as_one([]) ->
    {atom, 0, true};
filters_as_one(FilterData) ->
    [{_,{fil,Filter1}} | Filters] = lists:reverse(FilterData),
    lists:foldr(fun({_QId,{fil,Filter}}, AbstF) ->
                        {op,0,'andalso',Filter,AbstF}
                end, Filter1, Filters).

qual_data(Qualifiers) ->
    F = fun(T) -> 
                [{QId,Q} || {QId,_,_,Q} <- Qualifiers, element(1,Q) =:= T]
        end,
    {F(fil), F(gen)}.

set_field(Pos, Fs, Data) ->
    lists:sublist(Fs, Pos-1) ++ [Data] ++ lists:nthtail(Pos, Fs).

qdata([{#qid{no = QIdNo},{_QIVs,{{gen,_P,LE,_GV},GoI,SI}}} | QCs], L) ->
    Init = case LE of 
               {join, Op, Q1, Q2, H1, H2, Cs1_0, Cs2_0} ->
                   Cs1 = qcon(Cs1_0),
                   Cs2 = qcon(Cs2_0),
                   %% -- R12B-3: {nil,L}
                   %% R12B-4 --: {atom,L,v1}
                   Compat = {atom,L,v1}, % meant for redundant match spec
                   CF = closure({tuple,L,[Cs1,Cs2,Compat]}, L),
                   {tuple,L,[?A(join),?A(Op),?I(Q1),?I(Q2),H1,H2,CF]};
               _ ->
                   closure(LE, L)
           end,
    %% Create qual_data (see qlc.erl):
    {cons,L,{tuple,L,[?I(QIdNo),?I(GoI),?I(SI),{tuple,L,[?A(gen),Init]}]},
     qdata(QCs, L)};
qdata([{#qid{no = QIdNo},{_QIVs,{{fil,_F},GoI,SI}}} | QCs], L) ->
    %% Create qual_data (see qlc.erl):
    {cons,L,{tuple,L,[?I(QIdNo),?I(GoI),?I(SI),?A(fil)]},qdata(QCs, L)};
qdata([], L) ->
    {nil,L}.

qcon(Cs) ->
    list2cons([{tuple,0,[{integer,0,Col},list2cons(qcon1(ConstOps))]} || 
                  {Col,ConstOps} <- Cs]).

qcon1(ConstOps) ->
    [{tuple,0,[Const,abstr(Op, 0)]} || {Const,Op} <- ConstOps].

%% The original code (in Source) is used for filters and the template
%% since the translated code can have QLCs and we don't want them to
%% be visible.
qcode(E, QCs, Source, L) ->
    CL = [begin
              Bin = term_to_binary(C, [compressed]),
              {bin, L, [{bin_element, L, 
                         {string, L, binary_to_list(Bin)},
                         default, default}]}
          end || {_,C} <- lists:keysort(1, [{qlc:template_state(),E} | 
                                            qcode(QCs, Source)])],
    {'fun', L, {clauses, [{clause, L, [], [], [{tuple, L, CL}]}]}}.

qcode([{_QId, {_QIvs, {{gen,P,_LE,_GV}, GoI, _SI}}} | QCs], Source) ->
    [{GoI,undo_no_shadows(P)} | qcode(QCs, Source)];
qcode([{QId, {_QIVs, {{fil,_F}, GoI, _SI}}} | QCs], Source) ->
    {ok,OrigF} = dict:find(QId, Source),
    [{GoI,undo_no_shadows(OrigF)} | qcode(QCs, Source)];
qcode([], _Source) ->
    [].

closure(Code, L) ->
    {'fun',L,{clauses,[{clause,L,[],[],[Code]}]}}.

simple(L, Var, Init, Line) ->
    {tuple,L,[?A(simple_v1),?A(Var),Init,?I(Line)]}.

clauses([{QId,{QIVs,{QualData,GoI,S}}} | QCs], RL, Fun, Go, NGV, E, IVs,St) ->
    ?DEBUG("QIVs = ~p~n", [QIVs]),
    ?DEBUG("IVs = ~p~n", [IVs]),
    ?DEBUG("GoI = ~p, S = ~p~n", [GoI, S]),
    L = no_compiler_warning(get_lcid_line(QId#qid.lcid)),
    Cs = case QualData of
             {gen,P,_LE,GV} ->
                 generator(S, QIVs, P, GV, NGV, E, IVs, RL, Fun, Go,GoI,L,St);
             {fil,F} ->
                 filter(F, L, QIVs, S, RL, Fun, Go, GoI, IVs, St)
         end,
    Cs ++ clauses(QCs, RL, Fun, Go, NGV, E, IVs, St);
clauses([], _RL, _Fun, _Go, _NGV, _IVs, _E, _St) ->
    [].

final(RL, IVs, L, State) ->
    IAs = replace(IVs, IVs, '_'),
    AsL = pack_args([?I(0) | abst_vars([RL, '_', '_'] ++ IAs, L)], L, State),
    Grd = [is_list_c(RL, L)],
    Rev = {call,L,{remote,L,?A(lists),?A(reverse)},[?V(RL)]},
    CL = {clause,L,AsL,[Grd],[Rev]},
    AsF = pack_args([?I(0) | abst_vars(['_', '_', '_'] ++ IAs, L)], L, State),
    CF = {clause,L,AsF,[],[?ABST_NO_MORE]},
    [CL, CF].

template(E, RL, Fun, Go, AT, L, IVs, State) ->
    I = qlc:template_state(), GoI = qlc:template_state(),
    ARL = {cons,L,E,abst_vars(RL, L)},
    Next = next(Go, GoI, L),
    As0 = abst_vars([RL, Fun, Go] ++ IVs, L),
    As = pack_args([?I(I) | As0], L, State),
    NAs = pack_args([Next, ARL] ++ abst_vars([Fun, Go] ++ IVs, L), L, State),
    Grd = [is_list_c(RL, L)],
    CL = {clause,L,As,[Grd],[{call,L,?V(Fun),NAs}]},

    %% Extra careful here or arguments will be lifted into a wide fun.
    F = case split_args([Next | As0], L, State) of
            {ArgsL, ArgsT} -> 
                Call = {call,L,?V(Fun),ArgsL++[{var,L,AT}]},
                {block,L,
                 [{match,L,{var,L,AT},ArgsT},
                  {'fun',L,{clauses,[{clause,L,[],[],[Call]}]}}]};
            FNAs ->
                {'fun',L,{clauses,[{clause,L,[],[],[{call,L,?V(Fun),FNAs}]}]}}
        end,
    CF = {clause,L,As,[],[?ABST_MORE(E, F)]},
    [CL,CF].

generator(S, QIVs, P, GV, NGV, E, IVs, RL, Fun, Go, GoI, L, State) ->
    ComAs = abst_vars([RL, Fun, Go], L),
    InitC = generator_init(S, L, GV, RL, Fun, Go, GoI, IVs, State),
    As = [?I(S + 1)| ComAs ++ abst_vars(replace(QIVs -- [GV], IVs, '_'), L)],

    MatchS = next(Go, GoI + 1, L),
    AsM0 = [MatchS | ComAs ++ abst_vars(replace([GV], IVs, NGV), L)],
    AsM = pack_args(AsM0, L, State),

    ContS = ?I(S + 1),
    QIVs__GV = QIVs -- [GV],
    Tmp = replace([GV], replace(QIVs__GV, IVs, nil), NGV),
    AsC = pack_args([ContS | ComAs ++ abst_vars(Tmp, L)], L, State),

    DoneS = next(Go, GoI, L),
    AsD0 = [DoneS | ComAs ++ abst_vars(replace(QIVs, IVs, nil), L)],
    AsD = pack_args(AsD0, L, State),

    CsL = generator_list(P, GV, NGV, As, AsM, AsC, AsD, Fun, L, State),
    CsF = generator_cont(P, GV, NGV, E, As, AsM, AsC, AsD, Fun, L, State),
    [InitC | CsL ++ CsF].
    
generator_init(S, L, GV, RL, Fun, Go, GoI, IVs, State) ->
    As0 = abst_vars([RL, Fun, Go] ++ replace([GV], IVs, '_'), L),
    As = pack_args([?I(S) | As0], L, State),
    Next = next(Go, GoI + 2, L),
    NAs = pack_args([?I(S + 1) | replace([?V('_')], As0, Next)], L, State),
    {clause,L,As,[],[{call,L,?V(Fun),NAs}]}.

generator_list(P, GV, NGV, As, AsM, AsC, AsD, Fun, L, State) ->
    As1 = pack_args(replace([?V(GV)], As, {cons,L,P,?V(NGV)}), L, State),
    As2 = pack_args(replace([?V(GV)], As, {cons,L,?V('_'),?V(NGV)}), L,State),
    As3 = pack_args(replace([?V(GV)], As, {nil,L}), L, State),
    CM = {clause,L,As1,[],[{call,L,?V(Fun),AsM}]},
    CC = {clause,L,As2,[],[{call,L,?V(Fun),AsC}]},
    CD = {clause,L,As3,[],[{call,L,?V(Fun),AsD}]},
    [CM, CC, CD].

%% The clause 'CE' was added in R11B. The version of the generated was
%% however not incremented.
generator_cont(P, GV, NGV, E, As0, AsM, AsC, AsD, Fun, L, State) ->
    As = pack_args(As0, L, State),
    CF1 = ?ABST_MORE(P, ?V(NGV)),
    CF2 = ?ABST_MORE(?V('_'), ?V(NGV)),
    CF3 = ?ABST_NO_MORE,
    CF4 = ?V(E),
    CM = {clause,L,[CF1],[],[{call,L,?V(Fun),AsM}]},
    CC = {clause,L,[CF2],[],[{call,L,?V(Fun),AsC}]},
    CD = {clause,L,[CF3],[],[{call,L,?V(Fun),AsD}]},
    CE = {clause,L,[CF4],[],[CF4]},
    Cls = [CM, CC, CD, CE],
    B = {'case',L,{call,L,?V(GV),[]},Cls},
    [{clause,L,As,[],[B]}].
    
filter(E, L, QIVs, S, RL, Fun, Go, GoI, IVs, State) ->
    IAs = replace(QIVs, IVs, '_'),
    As = pack_args([?I(S) | abst_vars([RL, Fun, Go] ++ IAs, L)], L, State),
    NAs = abst_vars([RL, Fun, Go] ++ IVs, L),
    TNext = next(Go, GoI + 1, L),
    FNext = next(Go, GoI, L),
    NAsT = pack_args([TNext | NAs], L, State),
    NAsF = pack_args([FNext | NAs], L, State),
    %% This is the "guard semantics" used in ordinary list
    %% comprehension: if a filter looks like a guard test, it returns
    %% 'false' rather than fails.
    Body = case erl_lint:is_guard_test(E, State#state.records) of
               true -> 
                   CT = {clause,L,[],[[E]],[{call,L,?V(Fun),NAsT}]},
                   CF = {clause,L,[],[[?A(true)]],[{call,L,?V(Fun),NAsF}]},
                   [{'if',L,[CT,CF]}];
               false -> 
                   CT = {clause,L,[?A(true)],[],[{call,L,?V(Fun),NAsT}]},
                   CF = {clause,L,[?A(false)],[],[{call,L,?V(Fun),NAsF}]},
                   [{'case',L,E,[CT,CF]}]
           end,
    [{clause,L,As,[],Body}].
    
pack_args(Args, L, State) ->
    case split_args(Args, L, State) of
        {ArgsL, ArgsT} ->
            ArgsL ++ [ArgsT];
        _ ->
            Args
    end.

split_args(Args, L, State) when length(Args) > State#state.maxargs ->
    {lists:sublist(Args, State#state.maxargs-1), 
     {tuple,L,lists:nthtail(State#state.maxargs-1, Args)}};
split_args(Args, _L, _State) ->
    Args.
    
%% Replace every element in IEs that is a member of Es by R, keep all
%% other elements as they are.
replace(Es, IEs, R) ->
    [case lists:member(E, Es) of
         true -> R; 
         false -> E 
     end || E <- IEs].

is_list_c(V, L) ->
    {call,L,?A(is_list),[?V(V)]}.

next(Go, GoI, L) ->
    {call,L,?A(element),[?I(GoI),?V(Go)]}.

aux_vars(Vars, LcN, AllVars) ->
    [aux_var(Name, LcN, 0, 1, AllVars) || Name <- Vars].

aux_var(Name, LcN, QN, N, AllVars) ->
    qlc:aux_name(lists:concat([Name, LcN, '_', QN, '_']), N, AllVars).

no_compiler_warning(L) ->
    erl_parse:set_line(L, fun(Line) -> -abs(Line) end).

abs_loc(L) ->
    loc(erl_parse:set_line(L, fun(Line) -> abs(Line) end)).

loc(L) ->
    {location,Location} = erl_parse:get_attribute(L, location),
    Location.

list2op([E], _Op) ->
    E;
list2op([E | Es], Op) ->
    {op,0,Op,E,list2op(Es, Op)}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

qual_fold(Fun, GlobAcc0, Acc0, Forms, State) ->
    F = fun(Id, {lc,L,E,Qs0}, GA0) ->
                {Qs,GA,_NA} = qual_fold(Qs0, Fun, GA0, Acc0, Id, 1, []),
                {{lc,L,E,Qs},GA};
           (_Id, Expr, GA) ->
                {Expr,GA}
        end,
    qlc_mapfold(F, GlobAcc0, Forms, State).

qual_fold([Q0 | Qs], F, GA0, A0, Id, No, NQs) ->
    QId = qid(Id, No),
    {Q,GA,A} = F(QId, Q0, GA0, A0),
    qual_fold(Qs, F, GA, A, Id, No + 1, [Q | NQs]);
qual_fold([], _F, GA, A, _Id, _No, NQs) ->
    {lists:reverse(NQs),GA,A}.

qlc_mapfold(Fun, Acc0, Forms0, State) ->
    {Forms, A, _NNo} = qlcmf(Forms0, Fun, State#state.imp, Acc0, 1),
    erase(?QLC_FILE),
    {Forms, A}.

qlcmf([E0 | Es0], F, Imp, A0, No0) ->
    {E, A1, No1} = qlcmf(E0, F, Imp, A0, No0),
    {Es, A, No} = qlcmf(Es0, F, Imp, A1, No1),
    {[E | Es], A, No};
qlcmf(?QLC_Q(L1, L2, L3, L4, LC0, Os0), F, Imp, A0, No0) when length(Os0) < 2 ->
    {Os, A1, No1} = qlcmf(Os0, F, Imp, A0, No0),
    {LC, A2, No} = qlcmf(LC0, F, Imp, A1, No1), % nested...
    NL = make_lcid(L1, No),
    {T, A} = F(NL, LC, A2),
    {?QLC_Q(L1, L2, L3, L4, T, Os), A, No + 1};
qlcmf(?IMP_Q(L1, L2, LC0, Os0), F, Imp=true, A0, No0) when length(Os0) < 2 ->
    {Os, A1, No1} = qlcmf(Os0, F, Imp, A0, No0),
    {LC, A2, No} = qlcmf(LC0, F, Imp, A1, No1), % nested...
    NL = make_lcid(L, No),
    {T, A} = F(NL, LC, A2),
    {?IMP_Q(L1, L2, T, Os), A, No + 1};
qlcmf({attribute,_L,file,{File,_Line}}=Attr, _F, _Imp, A, No) ->
    put(?QLC_FILE, File),
    {Attr, A, No};
qlcmf(T, F, Imp, A0, No0) when is_tuple(T) ->
    {TL, A, No} = qlcmf(tuple_to_list(T), F, Imp, A0, No0),
    {list_to_tuple(TL), A, No};
qlcmf(T, _F, _Imp, A, No) ->
    {T, A, No}.

occ_vars(E) ->
    qlc:var_fold(fun({var,_L,V}) -> V end, [], E).

no_shadows(Forms0, State) ->
    %% Variables that may shadow other variables are introduced in
    %% LCs and Funs. Such variables (call them SV, Shadowing
    %% Variables) are now renamed. Each (new) occurrence in a pattern
    %% is assigned an index (integer), unique in the file. 
    %%
    %% The state {LastIndex,ActiveVars,UsedVars,AllVars,Singletons}
    %% holds the last index used for each SV (LastIndex), the SVs in
    %% the current scope (ActiveVars), used SVs (UsedVars, the indexed
    %% name is the key), all variables occurring in the file
    %% (AllVars), and all singletons. If an SV is not used (that is,
    %% is a member of Singletons), it is replaced by '_' (otherwise a
    %% warning for unused variable would erroneously be emitted). If
    %% the indexed name of an SV occurs in the file, next index is
    %% tried (to avoid mixing up introduced names with existing ones).
    %%
    %% The original names of variables are kept in the line number
    %% position of the abstract code: {var, {nos, OriginalName, L},
    %% NewName}. undo_no_shadows/1 re-creates the original code.
    AllVars = sets:from_list(ordsets:to_list(qlc:vars(Forms0))),
    ?DEBUG("nos AllVars = ~p~n", [sets:to_list(AllVars)]),
    VFun = fun(_Id, LC, Vs) -> nos(LC, Vs) end,
    LI = ets:new(?APIMOD,[]),
    UV = ets:new(?APIMOD,[]),
    D0 = dict:new(),
    S1 = {LI, D0, UV, AllVars, []},
    _ = qlc_mapfold(VFun, S1, Forms0, State),
    ?DEBUG("UsedIntroVars = ~p~n", [ets:match_object(UV, '_')]),
    Singletons = ets:select(UV, ets:fun2ms(fun({K,0}) -> K  end)),
    ?DEBUG("Singletons: ~p~n", [Singletons]),
    true = ets:delete_all_objects(LI),
    true = ets:delete_all_objects(UV),
    %% Do it again, this time we know which variables are singletons.
    S2 = {LI, D0, UV, AllVars, Singletons},
    {Forms,_} = qlc_mapfold(VFun, S2, Forms0, State),
    true = ets:delete(LI),
    true = ets:delete(UV),
    Forms.

nos([E0 | Es0], S0) ->
    {E, S1} = nos(E0, S0),
    {Es, S} = nos(Es0, S1),
    {[E | Es], S};
nos({'fun',L,{clauses,Cs}}, S) ->
    NCs = [begin
               {H, S1} = nos_pattern(H0, S),
               {[G, B], _} = nos([G0, B0], S1),
               {clause,Ln,H,G,B}
           end || {clause,Ln,H0,G0,B0} <- Cs],
    {{'fun',L,{clauses,NCs}}, S};
nos({lc,L,E0,Qs0}, S) ->
    %% QLCs as well as LCs. It is OK to modify LCs as long as they
    %% occur within QLCs--the warning messages have already been found
    %% by compile_errors.
    F = fun({T,Ln,P0,LE0}, QS0) when T =:= b_generate; T =:= generate -> 
                {LE, _} = nos(LE0, QS0),
                {P, QS} = nos_pattern(P0, QS0),
                {{T,Ln,P,LE}, QS};
           (Filter, QS) -> 
                nos(Filter, QS)
        end,
    {Qs, S1} = lists:mapfoldl(F, S, Qs0),
    {E, _} = nos(E0, S1),
    {{lc,L,E,Qs}, S};
nos({var,L,V}=Var, {_LI,Vs,UV,_A,_Sg}=S) when V =/= '_' ->
    case used_var(V, Vs, UV) of
        {true, VN} ->
            NL = nos_var(L, V),
            {{var,NL,VN}, S};
        false ->
            {Var, S}
    end;
nos(T, S0) when is_tuple(T) ->
    {TL, S} = nos(tuple_to_list(T), S0),
    {list_to_tuple(TL), S};
nos(T, S) ->
    {T, S}.

nos_pattern(P, S) ->
    {T, NS, _} = nos_pattern(P, S, []),
    {T, NS}.

nos_pattern([P0 | Ps0], S0, PVs0) ->
    {P, S1, PVs1} = nos_pattern(P0, S0, PVs0),
    {Ps, S, PVs} = nos_pattern(Ps0, S1, PVs1),
    {[P | Ps], S, PVs};
nos_pattern({var,L,V}, {LI,Vs0,UV,A,Sg}, PVs0) when V =/= '_' ->
    {Name, Vs, PVs} = 
        case lists:keyfind(V, 1, PVs0) of
            {V, VN} ->
                _ = used_var(V, Vs0, UV), 
                {VN, Vs0, PVs0};
            false -> 
                {VN, Vs1} = next_var(V, Vs0, A, LI, UV),
                N = case lists:member(VN, Sg) of
                        true -> '_';
                        false -> VN
                    end,
                {N, Vs1, [{V,VN} | PVs0]}
        end,
    NL = nos_var(L, V),
    {{var,NL,Name}, {LI,Vs,UV,A,Sg}, PVs};
nos_pattern(T, S0, PVs0) when is_tuple(T) ->
    {TL, S, PVs} = nos_pattern(tuple_to_list(T), S0, PVs0),
    {list_to_tuple(TL), S, PVs};
nos_pattern(T, S, PVs) ->
    {T, S, PVs}.

nos_var(L, Name) ->
    erl_parse:set_line(L, fun(Line) -> {nos,Name,Line} end).

used_var(V, Vs, UV) ->
    case dict:find(V, Vs) of
        {ok,Value} ->
            VN = qlc:name_suffix(V, Value),
            _ = ets:update_counter(UV, VN, 1),
            {true, VN};
        error -> false
    end.

next_var(V, Vs, AllVars, LI, UV) ->
    NValue = case ets:lookup(LI, V) of
                 [{V, Value}] -> Value + 1;
                 [] -> 1
             end,
    true = ets:insert(LI, {V, NValue}),
    VN = qlc:name_suffix(V, NValue),
    case sets:is_element(VN, AllVars) of
        true -> next_var(V, Vs, AllVars, LI, UV);
        false -> true = ets:insert(UV, {VN, 0}),
                 NVs = dict:store(V, NValue, Vs),
                 {VN, NVs}
    end.

undo_no_shadows(E) ->
    var_map(fun undo_no_shadows1/1, E).

undo_no_shadows1({var, L, _}=Var) ->
    case erl_parse:get_attribute(L, line) of
        {line,{nos,V,_VL}} ->
            NL = erl_parse:set_line(L, fun({nos,_V,VL}) -> VL end),
            undo_no_shadows1({var, NL, V});
        _Else ->
            Var
    end.

restore_line_numbers(E) ->
    var_map(fun restore_line_numbers1/1, E).

restore_line_numbers1({var, L, V}=Var) ->
    case erl_parse:get_attribute(L, line) of
        {line,{nos,_,_}} ->
            NL = erl_parse:set_line(L, fun({nos,_V,VL}) -> VL end),
            restore_line_numbers1({var, NL, V});
        _Else ->
            Var
    end.

%% QLC identifier. 
%% The first one encountered in the file has No=1.

make_lcid(Attrs, No) when is_integer(No), No > 0 ->
    F = fun(Line) when is_integer(Line), Line < (1 bsl ?MAX_NUM_OF_LINES) ->
                sgn(Line) * ((No bsl ?MAX_NUM_OF_LINES) + sgn(Line) * Line)
        end,
    erl_parse:set_line(Attrs, F).

is_lcid(Attrs) ->
    try 
        {line,Id} = erl_parse:get_attribute(Attrs, line),
        is_integer(Id) andalso (abs(Id) > (1 bsl ?MAX_NUM_OF_LINES))
    catch _:_ ->
        false
    end.

get_lcid_no(IdAttrs) ->
    {line,Id} = erl_parse:get_attribute(IdAttrs, line),
    abs(Id) bsr ?MAX_NUM_OF_LINES.    

get_lcid_line(IdAttrs) ->
    {line,Id} = erl_parse:get_attribute(IdAttrs, line),
    sgn(Id) * (abs(Id) band ((1 bsl ?MAX_NUM_OF_LINES) - 1)).

sgn(X) when X >= 0 ->
    1;
sgn(X) when X < 0 ->
    -1.

seq(S, E) when S - E =:= 1 ->
    [];
seq(S, E) -> 
    lists:seq(S, E).

sublist(_, 0) ->
    [];
sublist(L, N) ->
    lists:sublist(L, N).

qid(LCId, No) ->
    #qid{no = No, lcid = LCId}.

abst_vars([V | Vs], L) ->
    [abst_vars(V, L) | abst_vars(Vs, L)];
abst_vars([], _L) ->
    [];
abst_vars(nil, L) ->
    {nil,L};
abst_vars(V, L) ->
    {var,L,V}.

embed_vars(Vars, L) ->
    embed_expr({tuple,L,Vars}, L).

%% -> [Expr || _ <- []] on abstract format.
embed_expr(Expr, L) ->
    {lc,L,Expr,[{generate,L,{var,L,'_'},{nil,L}}]}.

%% Doesn't handle binaries very well, but don't bother for now.
var2const(E) ->
    var_map(fun({var, L, V}) -> {atom, L, V} end, E).

var_map(F, {var, _, _}=V) ->
    F(V);
var_map(F, T) when is_tuple(T) ->
    list_to_tuple(var_map(F, tuple_to_list(T)));
var_map(F, [E | Es]) ->
    [var_map(F, E) | var_map(F, Es)];
var_map(_F, E) ->
    E.

var_mapfold(F, A, {var, _, _}=V) ->
    F(V, A);
var_mapfold(F, A0, T) when is_tuple(T) ->
    {L, A} = var_mapfold(F, A0, tuple_to_list(T)),
    {list_to_tuple(L), A};
var_mapfold(F, A0, [E0 | Es0]) ->
    {E, A1} = var_mapfold(F, A0, E0),
    {Es, A} = var_mapfold(F, A1, Es0),
    {[E | Es], A};
var_mapfold(_F, A, E) ->
    {E, A}.

family_list(L) ->
    sofs:to_external(family(L)).

family(L) ->
    sofs:relation_to_family(sofs:relation(L)).

-ifdef(debug).
display_forms(Forms) ->
    io:format("Forms ***~n"),
    lists:foreach(fun(Form) ->
                          io:format("~s~n", [catch erl_pp:form(Form)])
                  end, Forms),
    io:format("End Forms ***~n").
-else.
display_forms(_) ->
    ok.
-endif.