aboutsummaryrefslogblamecommitdiffstats
path: root/lib/stdlib/src/sets.erl
blob: bcddca256750f585c641fe98c2e4ede5f50f0957 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417































































































































































































































































































































































































































                                                                                
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2000-2009. All Rights Reserved.
%% 
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%% 
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%% 
%% %CopyrightEnd%
%%

%% We use the dynamic hashing techniques by Per-�ke Larsson as
%% described in "The Design and Implementation of Dynamic Hashing for
%% Sets and Tables in Icon" by Griswold and Townsend.  Much of the
%% terminology comes from that paper as well.

%% The segments are all of the same fixed size and we just keep
%% increasing the size of the top tuple as the table grows.  At the
%% end of the segments tuple we keep an empty segment which we use
%% when we expand the segments.  The segments are expanded by doubling
%% every time n reaches maxn instead of increasing the tuple one
%% element at a time.  It is easier and does not seem detrimental to
%% speed.  The same applies when contracting the segments.
%%
%% Note that as the order of the keys is undefined we may freely
%% reorder keys within in a bucket.

-module(sets).

%% Standard interface.
-export([new/0,is_set/1,size/1,to_list/1,from_list/1]).
-export([is_element/2,add_element/2,del_element/2]).
-export([union/2,union/1,intersection/2,intersection/1]).
-export([is_disjoint/2]).
-export([subtract/2,is_subset/2]).
-export([fold/3,filter/2]).

%% Note: mk_seg/1 must be changed too if seg_size is changed.
-define(seg_size, 16).
-define(max_seg, 32).
-define(expand_load, 5).
-define(contract_load, 3).
-define(exp_size, ?seg_size * ?expand_load).
-define(con_size, ?seg_size * ?contract_load).

%%------------------------------------------------------------------------------

-type seg()  :: tuple().
-type segs() :: tuple().

%% Define a hash set.  The default values are the standard ones.
-record(set,
	{size=0              :: non_neg_integer(),	% Number of elements
	 n=?seg_size         :: non_neg_integer(),	% Number of active slots
	 maxn=?seg_size      :: pos_integer(),  	% Maximum slots
	 bso=?seg_size div 2 :: non_neg_integer(),      % Buddy slot offset
	 exp_size=?exp_size  :: non_neg_integer(),	% Size to expand at
	 con_size=?con_size  :: non_neg_integer(),	% Size to contract at
	 empty               :: seg(),			% Empty segment
	 segs                :: segs()			% Segments
	}).
%% A declaration equivalent to the following one is hard-coded in erl_types.
%% That declaration contains hard-coded information about the #set{}
%% record and the types of its fields.  So, please make sure that any
%% changes to its structure are also propagated to erl_types.erl.
%%
%% -opaque set() :: #set{}.

%%------------------------------------------------------------------------------

%% new() -> Set
-spec new() -> set().
new() ->
    Empty = mk_seg(?seg_size),
    #set{empty = Empty, segs = {Empty}}.

%% is_set(Set) -> boolean().
%%  Return 'true' if Set is a set of elements, else 'false'.
-spec is_set(term()) -> boolean().
is_set(#set{}) -> true;
is_set(_) -> false.

%% size(Set) -> int().
%%  Return the number of elements in Set.
-spec size(set()) -> non_neg_integer().
size(S) -> S#set.size. 

%% to_list(Set) -> [Elem].
%%  Return the elements in Set as a list.
-spec to_list(set()) -> [term()].
to_list(S) ->
    fold(fun (Elem, List) -> [Elem|List] end, [], S).

%% from_list([Elem]) -> Set.
%%  Build a set from the elements in List.
-spec from_list([term()]) -> set().
from_list(L) ->
    lists:foldl(fun (E, S) -> add_element(E, S) end, new(), L).

%% is_element(Element, Set) -> boolean().
%%  Return 'true' if Element is an element of Set, else 'false'.
-spec is_element(term(), set()) -> boolean().
is_element(E, S) ->
    Slot = get_slot(S, E),
    Bkt = get_bucket(S, Slot),
    lists:member(E, Bkt).

%% add_element(Element, Set) -> Set.
%%  Return Set with Element inserted in it.
-spec add_element(term(), set()) -> set().
add_element(E, S0) ->
    Slot = get_slot(S0, E),
    {S1,Ic} = on_bucket(fun (B0) -> add_bkt_el(E, B0, B0) end, S0, Slot),
    maybe_expand(S1, Ic).

-spec add_bkt_el(T, [T], [T]) -> {[T], 0 | 1}.
add_bkt_el(E, [E|_], Bkt) -> {Bkt,0};
add_bkt_el(E, [_|B], Bkt) ->
    add_bkt_el(E, B, Bkt);
add_bkt_el(E, [], Bkt) -> {[E|Bkt],1}.

%% del_element(Element, Set) -> Set.
%%  Return Set but with Element removed.
-spec del_element(term(), set()) -> set().
del_element(E, S0) ->
    Slot = get_slot(S0, E),
    {S1,Dc} = on_bucket(fun (B0) -> del_bkt_el(E, B0) end, S0, Slot),
    maybe_contract(S1, Dc).

-spec del_bkt_el(T, [T]) -> {[T], 0 | 1}.
del_bkt_el(E, [E|Bkt]) -> {Bkt,1};
del_bkt_el(E, [Other|Bkt0]) ->
    {Bkt1,Dc} = del_bkt_el(E, Bkt0),
    {[Other|Bkt1],Dc};
del_bkt_el(_, []) -> {[],0}.

%% union(Set1, Set2) -> Set
%%  Return the union of Set1 and Set2.
-spec union(set(), set()) -> set().
union(S1, S2) when S1#set.size < S2#set.size ->
    fold(fun (E, S) -> add_element(E, S) end, S2, S1);
union(S1, S2) ->
    fold(fun (E, S) -> add_element(E, S) end, S1, S2).

%% union([Set]) -> Set
%%  Return the union of the list of sets.
-spec union([set()]) -> set().
union([S1,S2|Ss]) ->
    union1(union(S1, S2), Ss);
union([S]) -> S;
union([]) -> new().

-spec union1(set(), [set()]) -> set().
union1(S1, [S2|Ss]) ->
    union1(union(S1, S2), Ss);
union1(S1, []) -> S1.

%% intersection(Set1, Set2) -> Set.
%%  Return the intersection of Set1 and Set2.
-spec intersection(set(), set()) -> set().
intersection(S1, S2) when S1#set.size < S2#set.size ->
    filter(fun (E) -> is_element(E, S2) end, S1);
intersection(S1, S2) ->
    filter(fun (E) -> is_element(E, S1) end, S2).

%% intersection([Set]) -> Set.
%%  Return the intersection of the list of sets.
-spec intersection([set(),...]) -> set().
intersection([S1,S2|Ss]) ->
    intersection1(intersection(S1, S2), Ss);
intersection([S]) -> S.

-spec intersection1(set(), [set()]) -> set().
intersection1(S1, [S2|Ss]) ->
    intersection1(intersection(S1, S2), Ss);
intersection1(S1, []) -> S1.

%% is_disjoint(Set1, Set2) -> boolean().
%%  Check whether Set1 and Set2 are disjoint.
-spec is_disjoint(set(), set()) -> boolean().
is_disjoint(S1, S2) when S1#set.size < S2#set.size ->
    fold(fun (_, false) -> false;
	     (E, true) -> not is_element(E, S2)
	 end, true, S1);
is_disjoint(S1, S2) ->
    fold(fun (_, false) -> false;
	     (E, true) -> not is_element(E, S1)
	 end, true, S2).

%% subtract(Set1, Set2) -> Set.
%%  Return all and only the elements of Set1 which are not also in
%%  Set2.
-spec subtract(set(), set()) -> set().
subtract(S1, S2) ->
    filter(fun (E) -> not is_element(E, S2) end, S1).

%% is_subset(Set1, Set2) -> boolean().
%%  Return 'true' when every element of Set1 is also a member of
%%  Set2, else 'false'.
-spec is_subset(set(), set()) -> boolean().
is_subset(S1, S2) ->
    fold(fun (E, Sub) -> Sub andalso is_element(E, S2) end, true, S1).

%% fold(Fun, Accumulator, Set) -> Accumulator.
%%  Fold function Fun over all elements in Set and return Accumulator.
-spec fold(fun((_,_) -> _), T, set()) -> T.
fold(F, Acc, D) -> fold_set(F, Acc, D).

%% filter(Fun, Set) -> Set.
%%  Filter Set with Fun.
-spec filter(fun((_) -> boolean()), set()) -> set().
filter(F, D) -> filter_set(F, D).

%% get_slot(Hashdb, Key) -> Slot.
%%  Get the slot.  First hash on the new range, if we hit a bucket
%%  which has not been split use the unsplit buddy bucket.
-spec get_slot(set(), term()) -> non_neg_integer().
get_slot(T, Key) ->
    H = erlang:phash(Key, T#set.maxn),
    if
	H > T#set.n -> H - T#set.bso;
	true -> H
    end.

%% get_bucket(Hashdb, Slot) -> Bucket.
-spec get_bucket(set(), non_neg_integer()) -> term().
get_bucket(T, Slot) -> get_bucket_s(T#set.segs, Slot).

%% on_bucket(Fun, Hashdb, Slot) -> {NewHashDb,Result}.
%%  Apply Fun to the bucket in Slot and replace the returned bucket.
-spec on_bucket(fun((_) -> {[_], 0 | 1}), set(), non_neg_integer()) ->
	  {set(), 0 | 1}.
on_bucket(F, T, Slot) ->
    SegI = ((Slot-1) div ?seg_size) + 1,
    BktI = ((Slot-1) rem ?seg_size) + 1,
    Segs = T#set.segs,
    Seg = element(SegI, Segs),
    B0 = element(BktI, Seg),
    {B1, Res} = F(B0),				%Op on the bucket.
    {T#set{segs = setelement(SegI, Segs, setelement(BktI, Seg, B1))},Res}.

%% fold_set(Fun, Acc, Dictionary) -> Dictionary.
%% filter_set(Fun, Dictionary) -> Dictionary.

%%  Work functions for fold and filter operations.  These traverse the
%%  hash structure rebuilding as necessary.  Note we could have
%%  implemented map and hash using fold but these should be faster.
%%  We hope!

fold_set(F, Acc, D) when is_function(F, 2) ->
    Segs = D#set.segs,
    fold_segs(F, Acc, Segs, tuple_size(Segs)).

fold_segs(F, Acc, Segs, I) when I >= 1 ->
    Seg = element(I, Segs),
    fold_segs(F, fold_seg(F, Acc, Seg, tuple_size(Seg)), Segs, I-1);
fold_segs(_, Acc, _, _) -> Acc.

fold_seg(F, Acc, Seg, I) when I >= 1 ->
    fold_seg(F, fold_bucket(F, Acc, element(I, Seg)), Seg, I-1);
fold_seg(_, Acc, _, _) -> Acc.

fold_bucket(F, Acc, [E|Bkt]) ->
    fold_bucket(F, F(E, Acc), Bkt);
fold_bucket(_, Acc, []) -> Acc.

filter_set(F, D) when is_function(F, 1) ->
    Segs0 = tuple_to_list(D#set.segs),
    {Segs1,Fc} = filter_seg_list(F, Segs0, [], 0),
    maybe_contract(D#set{segs = list_to_tuple(Segs1)}, Fc).

filter_seg_list(F, [Seg|Segs], Fss, Fc0) ->
    Bkts0 = tuple_to_list(Seg),
    {Bkts1,Fc1} = filter_bkt_list(F, Bkts0, [], Fc0),
    filter_seg_list(F, Segs, [list_to_tuple(Bkts1)|Fss], Fc1);
filter_seg_list(_, [], Fss, Fc) ->
    {lists:reverse(Fss, []),Fc}.

filter_bkt_list(F, [Bkt0|Bkts], Fbs, Fc0) ->
    {Bkt1,Fc1} = filter_bucket(F, Bkt0, [], Fc0),
    filter_bkt_list(F, Bkts, [Bkt1|Fbs], Fc1);
filter_bkt_list(_, [], Fbs, Fc) ->
    {lists:reverse(Fbs),Fc}.

filter_bucket(F, [E|Bkt], Fb, Fc) ->
    case F(E) of
	true -> filter_bucket(F, Bkt, [E|Fb], Fc);
	false -> filter_bucket(F, Bkt, Fb, Fc+1)
    end;
filter_bucket(_, [], Fb, Fc) -> {Fb,Fc}.

%% get_bucket_s(Segments, Slot) -> Bucket.
%% put_bucket_s(Segments, Slot, Bucket) -> NewSegments.

get_bucket_s(Segs, Slot) ->
    SegI = ((Slot-1) div ?seg_size) + 1,
    BktI = ((Slot-1) rem ?seg_size) + 1,
    element(BktI, element(SegI, Segs)).

put_bucket_s(Segs, Slot, Bkt) ->
    SegI = ((Slot-1) div ?seg_size) + 1,
    BktI = ((Slot-1) rem ?seg_size) + 1,
    Seg = setelement(BktI, element(SegI, Segs), Bkt),
    setelement(SegI, Segs, Seg).

-spec maybe_expand(set(), 0 | 1) -> set().
maybe_expand(T0, Ic) when T0#set.size + Ic > T0#set.exp_size ->
    T = maybe_expand_segs(T0),			%Do we need more segments.
    N = T#set.n + 1,				%Next slot to expand into
    Segs0 = T#set.segs,
    Slot1 = N - T#set.bso,
    B = get_bucket_s(Segs0, Slot1),
    Slot2 = N,
    {B1,B2} = rehash(B, Slot1, Slot2, T#set.maxn),
    Segs1 = put_bucket_s(Segs0, Slot1, B1),
    Segs2 = put_bucket_s(Segs1, Slot2, B2),
    T#set{size = T#set.size + Ic,
	  n = N,
	  exp_size = N * ?expand_load,
	  con_size = N * ?contract_load,
	  segs = Segs2};
maybe_expand(T, Ic) -> T#set{size = T#set.size + Ic}.

-spec maybe_expand_segs(set()) -> set().
maybe_expand_segs(T) when T#set.n =:= T#set.maxn ->
    T#set{maxn = 2 * T#set.maxn,
	  bso  = 2 * T#set.bso,
	  segs = expand_segs(T#set.segs, T#set.empty)};
maybe_expand_segs(T) -> T.

-spec maybe_contract(set(), non_neg_integer()) -> set().
maybe_contract(T, Dc) when T#set.size - Dc < T#set.con_size,
			   T#set.n > ?seg_size ->
    N = T#set.n,
    Slot1 = N - T#set.bso,
    Segs0 = T#set.segs,
    B1 = get_bucket_s(Segs0, Slot1),
    Slot2 = N,
    B2 = get_bucket_s(Segs0, Slot2),
    Segs1 = put_bucket_s(Segs0, Slot1, B1 ++ B2),
    Segs2 = put_bucket_s(Segs1, Slot2, []),	%Clear the upper bucket
    N1 = N - 1,
    maybe_contract_segs(T#set{size = T#set.size - Dc,
			      n = N1,
			      exp_size = N1 * ?expand_load,
			      con_size = N1 * ?contract_load,
			      segs = Segs2});
maybe_contract(T, Dc) -> T#set{size = T#set.size - Dc}.

-spec maybe_contract_segs(set()) -> set().
maybe_contract_segs(T) when T#set.n =:= T#set.bso ->
    T#set{maxn = T#set.maxn div 2,
	  bso  = T#set.bso div 2,
	  segs = contract_segs(T#set.segs)};
maybe_contract_segs(T) -> T.

%% rehash(Bucket, Slot1, Slot2, MaxN) -> {Bucket1,Bucket2}.
-spec rehash([T], integer(), pos_integer(), pos_integer()) -> {[T],[T]}.
rehash([E|T], Slot1, Slot2, MaxN) ->
    {L1,L2} = rehash(T, Slot1, Slot2, MaxN),
    case erlang:phash(E, MaxN) of
	Slot1 -> {[E|L1],L2};
	Slot2 -> {L1,[E|L2]}
    end;
rehash([], _, _, _) -> {[],[]}.

%% mk_seg(Size) -> Segment.
-spec mk_seg(16) -> seg().
mk_seg(16) -> {[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]}.

%% expand_segs(Segs, EmptySeg) -> NewSegs.
%% contract_segs(Segs) -> NewSegs.
%%  Expand/contract the segment tuple by doubling/halving the number
%%  of segments.  We special case the powers of 2 upto 32, this should
%%  catch most case.  N.B. the last element in the segments tuple is
%%  an extra element containing a default empty segment.
-spec expand_segs(segs(), seg()) -> segs().
expand_segs({B1}, Empty) ->
    {B1,Empty};
expand_segs({B1,B2}, Empty) ->
    {B1,B2,Empty,Empty};
expand_segs({B1,B2,B3,B4}, Empty) ->
    {B1,B2,B3,B4,Empty,Empty,Empty,Empty};
expand_segs({B1,B2,B3,B4,B5,B6,B7,B8}, Empty) ->
    {B1,B2,B3,B4,B5,B6,B7,B8,
     Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty};
expand_segs({B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16}, Empty) ->
    {B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,
     Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,
     Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty};
expand_segs(Segs, Empty) ->
    list_to_tuple(tuple_to_list(Segs) 
    ++ lists:duplicate(tuple_size(Segs), Empty)).

-spec contract_segs(segs()) -> segs().
contract_segs({B1,_}) ->
    {B1};
contract_segs({B1,B2,_,_}) ->
    {B1,B2};
contract_segs({B1,B2,B3,B4,_,_,_,_}) ->
    {B1,B2,B3,B4};
contract_segs({B1,B2,B3,B4,B5,B6,B7,B8,_,_,_,_,_,_,_,_}) ->
    {B1,B2,B3,B4,B5,B6,B7,B8};
contract_segs({B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,
	       _,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_}) ->
    {B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16};
contract_segs(Segs) ->
    Ss = tuple_size(Segs) div 2,
    list_to_tuple(lists:sublist(tuple_to_list(Segs), 1, Ss)).