%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2000-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(digraph_utils_SUITE).
%-define(debug, true).
-ifdef(debug).
-define(line, put(line, ?LINE), ).
-else.
-include_lib("test_server/include/test_server.hrl").
-endif.
-export([all/0,groups/0,init_per_group/2,end_per_group/2]).
-export([simple/1, loop/1, isolated/1, topsort/1, subgraph/1,
condensation/1, tree/1]).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
all() ->
[simple, loop, isolated, topsort, subgraph,
condensation, tree].
groups() ->
[].
init_per_group(_GroupName, Config) ->
Config.
end_per_group(_GroupName, Config) ->
Config.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
simple(doc) -> [];
simple(suite) -> [];
simple(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_vertices(G, [a]),
?line add_edges(G, [{b,c},{b,d},{e,f},{f,g},{g,e},{h,h},{i,i},{i,j}]),
?line 10 = length(digraph_utils:postorder(G)),
?line 10 = length(digraph_utils:preorder(G)),
?line ok = evall(digraph_utils:components(G),
[[a],[b,c,d],[e,f,g],[h],[i,j]]),
?line ok = evall(digraph_utils:strong_components(G),
[[a],[b],[c],[d],[e,f,g],[h],[i],[j]]),
?line ok = evall(digraph_utils:cyclic_strong_components(G),
[[e,f,g],[h],[i]]),
?line true = path(G, e, e),
?line false = path(G, e, j),
?line false = path(G, a, a),
?line false = digraph_utils:topsort(G),
?line false = digraph_utils:is_acyclic(G),
?line ok = eval(digraph_utils:loop_vertices(G), [h,i]),
?line ok = eval(digraph_utils:reaching([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reaching_neighbours([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable_neighbours([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reaching([b], G), [b]),
?line ok = eval(digraph_utils:reaching_neighbours([b], G), []),
?line ok = eval(digraph_utils:reachable([b], G), [b,c,d]),
?line ok = eval(digraph_utils:reachable_neighbours([b], G), [c,d]),
?line ok = eval(digraph_utils:reaching([h], G), [h]),
?line ok = eval(digraph_utils:reaching_neighbours([h], G), [h]),
?line ok = eval(digraph_utils:reachable([h], G), [h]),
?line ok = eval(digraph_utils:reachable_neighbours([h], G), [h]),
?line ok = eval(digraph_utils:reachable([e,f], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable_neighbours([e,f], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable([h,h,h], G), [h]),
?line true = digraph:delete(G),
ok.
loop(doc) -> [];
loop(suite) -> [];
loop(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_vertices(G, [a,b]),
?line add_edges(G, [{a,a},{b,b}]),
?line ok = evall(digraph_utils:components(G), [[a],[b]]),
?line ok = evall(digraph_utils:strong_components(G), [[a],[b]]),
?line ok = evall(digraph_utils:cyclic_strong_components(G), [[a],[b]]),
?line [_,_] = digraph_utils:topsort(G),
?line false = digraph_utils:is_acyclic(G),
?line ok = eval(digraph_utils:loop_vertices(G), [a,b]),
?line [_,_] = digraph_utils:preorder(G),
?line [_,_] = digraph_utils:postorder(G),
?line ok = eval(digraph_utils:reaching([b], G), [b]),
?line ok = eval(digraph_utils:reaching_neighbours([b], G), [b]),
?line ok = eval(digraph_utils:reachable([b], G), [b]),
?line ok = eval(digraph_utils:reachable_neighbours([b], G), [b]),
?line true = path(G, a, a),
?line true = digraph:delete(G),
ok.
isolated(doc) -> [];
isolated(suite) -> [];
isolated(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_vertices(G, [a,b]),
?line ok = evall(digraph_utils:components(G), [[a],[b]]),
?line ok = evall(digraph_utils:strong_components(G), [[a],[b]]),
?line ok = evall(digraph_utils:cyclic_strong_components(G), []),
?line [_,_] = digraph_utils:topsort(G),
?line true = digraph_utils:is_acyclic(G),
?line ok = eval(digraph_utils:loop_vertices(G), []),
?line [_,_] = digraph_utils:preorder(G),
?line [_,_] = digraph_utils:postorder(G),
?line ok = eval(digraph_utils:reaching([b], G), [b]),
?line ok = eval(digraph_utils:reaching_neighbours([b], G), []),
?line ok = eval(digraph_utils:reachable([b], G), [b]),
?line ok = eval(digraph_utils:reachable_neighbours([b], G), []),
?line false = path(G, a, a),
?line true = digraph:delete(G),
ok.
topsort(doc) -> [];
topsort(suite) -> [];
topsort(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_edges(G, [{a,b},{b,c},{c,d},{d,e},{e,f}]),
?line ok = eval(digraph_utils:topsort(G), [a,b,c,d,e,f]),
?line true = digraph:delete(G),
ok.
subgraph(doc) -> [];
subgraph(suite) -> [];
subgraph(Config) when is_list(Config) ->
?line G = digraph:new([acyclic]),
?line add_edges(G, [{b,c},{b,d},{e,f},{f,fg,fgl,g},{f,fg2,fgl2,g},{g,e},
{h,h},{i,i},{i,j}]),
?line add_vertices(G, [{b,bl},{f,fl}]),
?line SG = digraph_utils:subgraph(G, [u1,b,c,u2,f,g,i,u3]),
?line [b,c,f,g,i] = lists:sort(digraph:vertices(SG)),
?line {b,bl} = digraph:vertex(SG, b),
?line {c,[]} = digraph:vertex(SG, c),
?line {fg,f,g,fgl} = digraph:edge(SG, fg),
?line {fg2,f,g,fgl2} = digraph:edge(SG, fg2),
?line {_, {_, acyclic}} = lists:keysearch(cyclicity, 1, digraph:info(SG)),
?line true = digraph:delete(SG),
?line SG1 = digraph_utils:subgraph(G, [f, g, h],
[{type, []}, {keep_labels, false}]),
?line [f,g,h] = lists:sort(digraph:vertices(SG1)),
?line {f,[]} = digraph:vertex(SG1, f),
?line {fg,f,g,[]} = digraph:edge(SG1, fg),
?line {_, {_, cyclic}} = lists:keysearch(cyclicity, 1, digraph:info(SG1)),
?line true = digraph:delete(SG1),
?line SG2 = digraph_utils:subgraph(G, [f, g, h],
[{type, [acyclic]},
{keep_labels, true}]),
?line [f,g,h] = lists:sort(digraph:vertices(SG2)),
?line {f,fl} = digraph:vertex(SG2, f),
?line {fg,f,g,fgl} = digraph:edge(SG2, fg),
?line {_, {_, acyclic}} = lists:keysearch(cyclicity, 1, digraph:info(SG2)),
?line true = digraph:delete(SG2),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{invalid, opt}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{keep_labels, not_Bool}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{type, not_type}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{type, [not_type]}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], not_a_list)),
?line true = digraph:delete(G),
ok.
condensation(doc) -> [];
condensation(suite) -> [];
condensation(Config) when is_list(Config) ->
?line G = digraph:new([]),
?line add_edges(G, [{b,c},{b,d},{e,f},{f,fg,fgl,g},{f,fg2,fgl2,g},{g,e},
{h,h},{j,i},{i,j}]),
?line add_vertices(G, [q]),
?line CG = digraph_utils:condensation(G),
?line Vs = sort_2(digraph:vertices(CG)),
?line [[b],[c],[d],[e,f,g],[h],[i,j],[q]] = Vs,
?line Fun = fun(E) ->
{_E, V1, V2, _L} = digraph:edge(CG, E),
{lists:sort(V1), lists:sort(V2)}
end,
?line Es = lists:map(Fun, digraph:edges(CG)),
?line [{[b],[c]},{[b],[d]},{[e,f,g],[e,f,g]},{[h],[h]},{[i,j],[i,j]}] =
lists:sort(Es),
?line true = digraph:delete(CG),
?line true = digraph:delete(G),
ok.
tree(doc) -> ["OTP-7081"];
tree(suite) -> [];
tree(Config) when is_list(Config) ->
?line false = is_tree([], []),
?line true = is_tree([a], []),
?line false = is_tree([a,b], []),
?line true = is_tree([{a,b}]),
?line false = is_tree([{a,b},{b,a}]),
?line true = is_tree([{a,b},{a,c},{b,d},{b,e}]),
?line false = is_tree([{a,b},{a,c},{b,d},{b,e}, {d,e}]),
?line false = is_tree([{a,b},{a,c},{b,d},{b,e}, {b,e}]),
?line true = is_tree([{a,c},{c,b}]),
?line true = is_tree([{b,a},{c,a}]),
%% Parallel edges. Acyclic and with one componets
%% (according to the digraph module).
?line false = is_tree([{a,b},{a,b}]),
?line no = arborescence_root([], []),
?line {yes, a} = arborescence_root([a], []),
?line no = arborescence_root([a,b], []),
?line {yes, a} = arborescence_root([{a,b}]),
?line no = arborescence_root([{a,b},{b,a}]),
?line {yes, a} = arborescence_root([{a,b},{a,c},{b,d},{b,e}]),
?line no = arborescence_root([{a,b},{a,c},{b,d},{b,e}, {d,e}]),
?line no = arborescence_root([{a,b},{a,c},{b,d},{b,e}, {b,e}]),
?line {yes, a} = arborescence_root([{a,c},{c,b}]),
?line no = arborescence_root([{b,a},{c,a}]),
?line false = is_arborescence([], []),
?line true = is_arborescence([a], []),
?line false = is_arborescence([a,b], []),
?line true = is_arborescence([{a,b}]),
?line false = is_arborescence([{a,b},{b,a}]),
?line true = is_arborescence([{a,b},{a,c},{b,d},{b,e}]),
?line false = is_arborescence([{a,b},{a,c},{b,d},{b,e}, {d,e}]),
?line false = is_arborescence([{a,b},{a,c},{b,d},{b,e}, {b,e}]),
?line true = is_arborescence([{a,c},{c,b}]),
?line false = is_arborescence([{b,a},{c,a}]),
%% Parallel edges.
?line false = is_arborescence([{a,b},{a,b}]),
ok.
is_tree(Es) ->
is_tree([], Es).
is_tree(Vs, Es) ->
gu(Vs, Es, is_tree).
is_arborescence(Es) ->
is_arborescence([], Es).
is_arborescence(Vs, Es) ->
gu(Vs, Es, is_arborescence).
arborescence_root(Es) ->
arborescence_root([], Es).
arborescence_root(Vs, Es) ->
gu(Vs, Es, arborescence_root).
gu(Vs, Es, F) ->
G = digraph:new(),
add_vertices(G, Vs),
add_edges(G, Es),
Reply = digraph_utils:F(G),
true = digraph:delete(G),
Reply.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort_2(L) ->
lists:sort(lists:map(fun(V) -> lists:sort(V) end, L)).
path(G, V1, V2) ->
digraph:get_path(G, V1, V2) /= false.
add_vertices(G, Vs) ->
lists:foreach(fun({V, Label}) -> digraph:add_vertex(G, V, Label);
(V) -> digraph:add_vertex(G, V)
end, Vs).
add_edges(G, L) ->
Fun = fun({From, To}) ->
digraph:add_vertex(G, From),
digraph:add_vertex(G, To),
digraph:add_edge(G, From, To);
({From, Edge, Label, To}) ->
digraph:add_vertex(G, From),
digraph:add_vertex(G, To),
digraph:add_edge(G, Edge, From, To, Label)
end,
lists:foreach(Fun, L).
eval(L, E) ->
Expected = lists:sort(E),
Got = lists:sort(L),
if
Expected == Got ->
ok;
true ->
not_ok
end.
evall(L, E) ->
F = fun(L1) -> lists:sort(L1) end,
Fun = fun(LL) -> F(lists:map(F, LL)) end,
Expected = Fun(E),
Got = Fun(L),
if
Expected == Got ->
ok;
true ->
not_ok
end.