%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% This module tests the ordsets, sets, and gb_sets modules.
%%
-module(sets_SUITE).
-export([all/1,init_per_testcase/2,fin_per_testcase/2,
create/1,add_element/1,del_element/1,
subtract/1,intersection/1,union/1,is_subset/1,
is_set/1,fold/1,filter/1,
take_smallest/1,take_largest/1]).
-include("test_server.hrl").
-import(lists, [foldl/3,reverse/1]).
init_per_testcase(_Case, Config) ->
?line Dog = ?t:timetrap(?t:minutes(5)),
[{watchdog,Dog}|Config].
fin_per_testcase(_Case, Config) ->
Dog = ?config(watchdog, Config),
test_server:timetrap_cancel(Dog),
ok.
all(suite) ->
[create,add_element,del_element,subtract,
intersection,union,is_subset,is_set,fold,filter,
take_smallest,take_largest].
create(Config) when is_list(Config) ->
test_all(fun create_1/1).
create_1(M) ->
?line S0 = M:empty(),
?line [] = M:to_list(S0),
?line 0 = M:size(S0),
?line true = M:is_empty(S0),
E = make_ref(),
?line One = M:singleton(E),
?line 1 = M:size(One),
?line false = M:is_empty(One),
[E] = M:to_list(One),
S0.
add_element(Config) when is_list(Config) ->
test_all([{0,132},{253,258},{510,514}], fun add_element_1/2).
add_element_1(List, M) ->
?line S = M:from_list(List),
?line SortedSet = lists:usort(List),
?line SortedSet = lists:sort(M:to_list(S)),
%% Make sure that we get the same result by inserting
%% elements one at the time.
?line S2 = foldl(fun(El, Set) -> M:add_element(El, Set) end,
M:empty(), List),
?line true = M:equal(S, S2),
%% Insert elements, randomly delete inserted elements,
%% and re-inserted all deleted elements at the end.
?line S3 = add_element_del(List, M, M:empty(), [], []),
?line true = M:equal(S2, S3),
?line true = M:equal(S, S3),
S.
add_element_del([H|T], M, S, Del, []) ->
add_element_del(T, M, M:add_element(H, S), Del, [H]);
add_element_del([H|T], M, S0, Del, Inserted) ->
S1 = M:add_element(H, S0),
case random:uniform(3) of
1 ->
OldEl = lists:nth(random:uniform(length(Inserted)), Inserted),
S = M:del_element(OldEl, S1),
add_element_del(T, M, S, [OldEl|Del], [H|Inserted]);
_ ->
add_element_del(T, M, S1, Del, [H|Inserted])
end;
add_element_del([], M, S, Del, _) ->
M:union(S, M:from_list(Del)).
del_element(Config) when is_list(Config) ->
test_all([{0,132},{253,258},{510,514},{1022,1026}], fun del_element_1/2).
del_element_1(List, M) ->
?line S0 = M:from_list(List),
?line Empty = foldl(fun(El, Set) -> M:del_element(El, Set) end, S0, List),
?line Empty = M:empty(),
?line M:is_empty(Empty),
?line S1 = foldl(fun(El, Set) ->
M:add_element(El, Set)
end, S0, reverse(List)),
?line true = M:equal(S0, S1),
S1.
subtract(Config) when is_list(Config) ->
test_all(fun subtract_empty/1),
%% Note: No empty set.
test_all([{2,69},{126,130},{253,258},511,512,{1023,1030}], fun subtract_1/2).
subtract_empty(M) ->
?line Empty = M:empty(),
?line true = M:is_empty(M:subtract(Empty, Empty)),
M:subtract(Empty, Empty).
subtract_1(List, M) ->
?line S0 = M:from_list(List),
?line Empty = M:empty(),
%% Trivial cases.
?line true = M:is_empty(M:subtract(Empty, S0)),
?line true = M:equal(S0, M:subtract(S0, Empty)),
%% Not so trivial.
?line subtract_check(List, mutate_some(remove_some(List, 0.4)), M),
?line subtract_check(List, rnd_list(length(List) div 2 + 5), M),
?line subtract_check(List, rnd_list(length(List) div 7 + 9), M),
?line subtract_check(List, mutate_some(List), M).
subtract_check(A, B, M) ->
one_subtract_check(B, A, M),
one_subtract_check(A, B, M).
one_subtract_check(A, B, M) ->
ASorted = lists:usort(A),
BSorted = lists:usort(B),
ASet = M:from_list(A),
BSet = M:from_list(B),
DiffSet = M:subtract(ASet, BSet),
Diff = ASorted -- BSorted,
true = M:equal(DiffSet, M:from_list(Diff)),
Diff = lists:sort(M:to_list(DiffSet)),
DiffSet.
intersection(Config) when is_list(Config) ->
%% Note: No empty set.
test_all([{1,65},{126,130},{253,259},{499,513},{1023,1025}], fun intersection_1/2).
intersection_1(List, M) ->
?line S0 = M:from_list(List),
%% Intersection with self.
?line true = M:equal(S0, M:intersection(S0, S0)),
?line true = M:equal(S0, M:intersection([S0,S0])),
?line true = M:equal(S0, M:intersection([S0,S0,S0])),
?line true = M:equal(S0, M:intersection([S0])),
%% Intersection with empty.
?line Empty = M:empty(),
?line true = M:equal(Empty, M:intersection(S0, Empty)),
?line true = M:equal(Empty, M:intersection([S0,Empty,S0,Empty])),
%% The intersection of no sets is undefined.
?line {'EXIT',_} = (catch M:intersection([])),
%% Disjoint sets.
?line Disjoint = [{El} || El <- List],
?line DisjointSet = M:from_list(Disjoint),
?line M:is_empty(M:intersection(S0, DisjointSet)),
%% Disjoint, different sizes.
?line M:is_empty(M:intersection(S0, M:from_list(remove_some(Disjoint, 0.3)))),
?line M:is_empty(M:intersection(S0, M:from_list(remove_some(Disjoint, 0.7)))),
?line M:is_empty(M:intersection(S0, M:from_list(remove_some(Disjoint, 0.9)))),
?line M:is_empty(M:intersection(M:from_list(remove_some(List, 0.3)), DisjointSet)),
?line M:is_empty(M:intersection(M:from_list(remove_some(List, 0.5)), DisjointSet)),
?line M:is_empty(M:intersection(M:from_list(remove_some(List, 0.9)), DisjointSet)),
%% Partial overlap (one or more elements in result set).
%% The sets have almost the same size. (Almost because a duplicated
%% element in the original list could be mutated and not mutated
%% at the same time.)
?line PartialOverlap = mutate_some(List, []),
?line IntersectionSet = check_intersection(List, PartialOverlap, M),
?line false = M:is_empty(IntersectionSet),
%% Partial overlap, different set sizes. (Intersection possibly empty.)
?line check_intersection(List, remove_some(PartialOverlap, 0.1), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.3), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.5), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.7), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.9), M),
IntersectionSet.
check_intersection(Orig, Mutated, M) ->
OrigSet = M:from_list(Orig),
MutatedSet = M:from_list(Mutated),
Intersection = [El || El <- Mutated, not is_tuple(El)],
SortedIntersection = lists:usort(Intersection),
IntersectionSet = M:intersection(OrigSet, MutatedSet),
true = M:equal(IntersectionSet, M:from_list(SortedIntersection)),
SortedIntersection = lists:sort(M:to_list(IntersectionSet)),
IntersectionSet.
union(Config) when is_list(Config) ->
%% Note: No empty set.
test_all([{1,71},{125,129},{254,259},{510,513},{1023,1025}], fun union_1/2).
union_1(List, M) ->
?line S = M:from_list(List),
%% Union with self and empty.
?line Empty = M:empty(),
?line true = M:equal(S, M:union(S, S)),
?line true = M:equal(S, M:union([S,S])),
?line true = M:equal(S, M:union([S,S,Empty])),
?line true = M:equal(S, M:union([S,Empty,S])),
?line true = M:equal(S, M:union(S, Empty)),
?line true = M:equal(S, M:union([S])),
?line true = M:is_empty(M:union([])),
%% Partial overlap.
?line check_union(List, remove_some(mutate_some(List), 0.9), M),
?line check_union(List, remove_some(mutate_some(List), 0.7), M),
?line check_union(List, remove_some(mutate_some(List), 0.5), M),
?line check_union(List, remove_some(mutate_some(List), 0.3), M),
?line check_union(List, remove_some(mutate_some(List), 0.1), M),
?line check_union(List, mutate_some(remove_some(List, 0.9)), M),
?line check_union(List, mutate_some(remove_some(List, 0.7)), M),
?line check_union(List, mutate_some(remove_some(List, 0.5)), M),
?line check_union(List, mutate_some(remove_some(List, 0.3)), M),
?line check_union(List, mutate_some(remove_some(List, 0.1)), M).
check_union(Orig, Other, M) ->
OrigSet = M:from_list(Orig),
OtherSet = M:from_list(Other),
Union = Orig++Other,
SortedUnion = lists:usort(Union),
UnionSet = M:union(OrigSet, OtherSet),
SortedUnion = lists:sort(M:to_list(UnionSet)),
M:equal(UnionSet, M:from_list(Union)),
UnionSet.
is_subset(Config) when is_list(Config) ->
test_all([{1,132},{253,270},{299,311}], fun is_subset_1/2).
is_subset_1(List, M) ->
?line S = M:from_list(List),
?line Empty = M:empty(),
%% Subset of empty and self.
?line true = M:is_subset(Empty, Empty),
?line true = M:is_subset(Empty, S),
?line false = M:is_subset(S, Empty),
?line true = M:is_subset(S, S),
%% Other cases.
Res = [?line false = M:is_subset(M:singleton(make_ref()), S),
?line true = M:is_subset(M:singleton(hd(List)), S),
?line true = check_subset(remove_some(List, 0.1), List, M),
?line true = check_subset(remove_some(List, 0.5), List, M),
?line true = check_subset(remove_some(List, 0.9), List, M),
?line check_subset(mutate_some(List), List, M),
?line check_subset(rnd_list(length(List) div 2 + 5), List, M),
?line subtract_check(List, rnd_list(length(List) div 7 + 9), M)
],
res_to_set(Res, M, 0, []).
check_subset(X, Y, M) ->
check_one_subset(Y, X, M),
check_one_subset(X, Y, M).
check_one_subset(X, Y, M) ->
XSet = M:from_list(X),
YSet = M:from_list(Y),
SortedX = lists:usort(X),
SortedY = lists:usort(Y),
IsSubSet = length(SortedY--SortedX) =:= length(SortedY) - length(SortedX),
IsSubSet = M:is_subset(XSet, YSet),
IsSubSet.
%% Encode all test results as a set to return.
res_to_set([true|T], M, I, Acc) ->
res_to_set(T, M, I+1, [I|Acc]);
res_to_set([_|T], M, I, Acc) ->
res_to_set(T, M, I+1, Acc);
res_to_set([], M, _, Acc) -> M:from_list(Acc).
is_set(Config) when is_list(Config) ->
%% is_set/1 is tested in the other test cases when its argument
%% is a set. Here test some arguments that makes it return false.
?line false = gb_sets:is_set([a,b]),
?line false = gb_sets:is_set({a,very,bad,tuple}),
?line false = sets:is_set([a,b]),
?line false = sets:is_set({a,very,bad,tuple}),
?line false = ordsets:is_set([b,a]),
?line false = ordsets:is_set({bad,tuple}),
%% Now test values that are known to be bad for all set representations.
test_all(fun is_set_1/1).
is_set_1(M) ->
?line false = M:is_set(self()),
?line false = M:is_set(blurf),
?line false = M:is_set(make_ref()),
?line false = M:is_set(<<1,2,3>>),
?line false = M:is_set(42),
?line false = M:is_set(math:pi()),
?line false = M:is_set({}),
M:empty().
fold(Config) when is_list(Config) ->
test_all([{0,71},{125,129},{254,259},{510,513},{1023,1025},{9999,10001}],
fun fold_1/2).
fold_1(List, M) ->
?line S = M:from_list(List),
?line L = M:fold(fun(E, A) -> [E|A] end, [], S),
?line true = lists:sort(L) =:= lists:usort(List),
M:empty().
filter(Config) when is_list(Config) ->
test_all([{0,69},{126,130},{254,259},{510,513},{1023,1025},{7999,8000}],
fun filter_1/2).
filter_1(List, M) ->
?line S = M:from_list(List),
IsNumber = fun(X) -> is_number(X) end,
?line M:equal(M:from_list(lists:filter(IsNumber, List)),
M:filter(IsNumber, S)),
?line M:filter(fun(X) -> is_atom(X) end, S).
%%%
%%% Test specifics for gb_sets.
%%%
take_smallest(Config) when is_list(Config) ->
test_all([{1,71},{125,129},{254,259},{510,513},{1023,1025}],
fun take_smallest_1/2).
take_smallest_1(List, M) ->
case M:module() of
gb_sets -> take_smallest_2(List, M);
_ -> ok
end,
M:empty().
take_smallest_2(List0, M) ->
?line List = lists:usort(List0),
?line S = M:from_list(List0),
take_smallest_3(S, List, M).
take_smallest_3(S0, List0, M) ->
case M:is_empty(S0) of
true -> ok;
false ->
?line Smallest = hd(List0),
?line Smallest = gb_sets:smallest(S0),
?line {Smallest,S} = gb_sets:take_smallest(S0),
?line List = tl(List0),
?line true = gb_sets:to_list(S) =:= List,
take_smallest_3(S, List, M)
end.
take_largest(Config) when is_list(Config) ->
test_all([{1,71},{125,129},{254,259},{510,513},{1023,1025}],
fun take_largest_1/2).
take_largest_1(List, M) ->
case M:module() of
gb_sets -> take_largest_2(List, M);
_ -> ok
end,
M:empty().
take_largest_2(List0, M) ->
?line List = reverse(lists:usort(List0)),
?line S = M:from_list(List0),
take_largest_3(S, List, M).
take_largest_3(S0, List0, M) ->
case M:is_empty(S0) of
true -> ok;
false ->
?line Largest = hd(List0),
?line Largest = gb_sets:largest(S0),
?line {Largest,S} = gb_sets:take_largest(S0),
?line List = tl(List0),
?line true = gb_sets:to_list(S) =:= reverse(List),
take_largest_3(S, List, M)
end.
%%%
%%% Helper functions.
%%%
sets_mods() ->
Ordsets = sets_test_lib:new(ordsets, fun(X, Y) -> X == Y end),
Sets = sets_test_lib:new(sets, fun(X, Y) ->
lists:sort(sets:to_list(X)) ==
lists:sort(sets:to_list(Y)) end),
Gb = sets_test_lib:new(gb_sets, fun(X, Y) ->
gb_sets:to_list(X) ==
gb_sets:to_list(Y) end),
[Ordsets,Sets,Gb].
test_all(Tester) ->
?line Res = [begin
random:seed(1, 2, 42),
S = Tester(M),
{M:size(S),lists:sort(M:to_list(S))}
end || M <- sets_mods()],
?line all_same(Res).
test_all([{Low,High}|T], Tester) ->
test_all(lists:seq(Low, High)++T, Tester);
test_all([Sz|T], Tester) when is_integer(Sz) ->
List = rnd_list(Sz),
?line Res = [begin
random:seed(19, 2, Sz),
S = Tester(List, M),
{M:size(S),lists:sort(M:to_list(S))}
end || M <- sets_mods()],
?line all_same(Res),
test_all(T, Tester);
test_all([], _) -> ok.
all_same([H|T]) ->
all_same_1(T, H).
all_same_1([H|T], H) ->
all_same_1(T, H);
all_same_1([], _) -> ok.
rnd_list(Sz) ->
rnd_list_1(Sz, []).
atomic_rnd_term() ->
case random:uniform(3) of
1 -> list_to_atom(integer_to_list($\s+random:uniform(94))++"rnd");
2 -> random:uniform();
3 -> random:uniform(50)-37
end.
rnd_list_1(0, Acc) -> Acc;
rnd_list_1(N, Acc) -> rnd_list_1(N-1, [atomic_rnd_term()|Acc]).
mutate_some(List) ->
mutate_some(List, []).
mutate_some([X,Y,Z|T], Acc) ->
%% Intentionally change order. (Order should not matter.)
mutate_some(T, [{X},Z,Y|Acc]);
mutate_some([H|T], Acc) ->
mutate_some(T, [H|Acc]);
mutate_some([], Acc) ->
%% Intentionally not reversing.
Acc.
%% Removes at least one element.
remove_some(List0, P) ->
case remove_some(List0, P, []) of
List when length(List0) =:= length(List) ->
tl(List);
List ->
List
end.
remove_some([H|T], P, Acc) ->
case random:uniform() of
F when F < P -> %Remove.
remove_some(T, P, Acc);
_ ->
remove_some(T, P, [H|Acc])
end;
remove_some([], _, Acc) ->
%% Intentionally no reverse. Order should not matter.
Acc.