%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(sets_test_lib).
-export([new/2]).
new(Mod, Eq) ->
fun (add_element, {El,S}) -> add_element(Mod, El, S);
(del_element, {El,S}) -> del_element(Mod, El, S);
(empty, []) -> Mod:new();
(equal, {S1,S2}) -> Eq(S1, S2);
(filter, {F,S}) -> filter(Mod, F, S);
(fold, {F,A,S}) -> fold(Mod, F, A, S);
(from_list, L) -> Mod:from_list(L);
(intersection, {S1,S2}) -> intersection(Mod, Eq, S1, S2);
(intersection, Ss) -> intersection(Mod, Eq, Ss);
(is_empty, S) -> is_empty(Mod, S);
(is_set, S) -> Mod:is_set(S);
(is_subset, {S,Set}) -> is_subset(Mod, Eq, S, Set);
(module, []) -> Mod;
(singleton, E) -> singleton(Mod, E);
(size, S) -> Mod:size(S);
(subtract, {S1,S2}) -> subtract(Mod, S1, S2);
(to_list, S) -> Mod:to_list(S);
(union, {S1,S2}) -> union(Mod, Eq, S1, S2);
(union, Ss) -> union(Mod, Eq, Ss)
end.
singleton(Mod, E) ->
case erlang:function_exported(Mod, singleton, 1) of
true -> Mod:singleton(E);
false -> Mod:from_list([E])
end.
add_element(Mod, El, S0) ->
S = Mod:add_element(El, S0),
true = Mod:is_element(El, S),
false = is_empty(Mod, S),
true = Mod:is_set(S),
S.
del_element(Mod, El, S0) ->
S = Mod:del_element(El, S0),
false = Mod:is_element(El, S),
true = Mod:is_set(S),
S.
is_empty(Mod, S) ->
true = Mod:is_set(S),
case erlang:function_exported(Mod, is_empty, 1) of
true -> Mod:is_empty(S);
false -> Mod:size(S) == 0
end.
intersection(Mod, Equal, S1, S2) ->
S = Mod:intersection(S1, S2),
true = Equal(S, Mod:intersection(S2, S1)),
Disjoint = is_empty(Mod, S),
Disjoint = Mod:is_disjoint(S1, S2),
Disjoint = Mod:is_disjoint(S2, S1),
S.
intersection(Mod, Equal, Ss) ->
S = Mod:intersection(Ss),
true = Equal(S, Mod:intersection(lists:reverse(Ss))),
S.
subtract(Mod, S1, S2) ->
S = Mod:subtract(S1, S2),
true = Mod:is_set(S),
true = Mod:size(S) =< Mod:size(S1),
S.
union(Mod, Equal, S1, S2) ->
S = Mod:union(S1, S2),
true = Equal(S, Mod:union(S2, S1)),
true = Mod:is_set(S),
S.
union(Mod, Equal, Ss) ->
S = Mod:union(Ss),
true = Equal(S, Mod:union(lists:reverse(Ss))),
S.
is_subset(Mod, Equal, S, Set) ->
case Mod:is_subset(S, Set) of
false -> false;
true ->
case Mod:is_subset(Set, S) of
false -> ok;
true ->
%% The sets are subsets of each other.
%% They must be equal.
true = Equal(S, Set)
end,
true
end.
fold(Mod, F, A, S) ->
true = Mod:is_set(S),
Mod:fold(F, A, S).
filter(Mod, F, S) ->
true = Mod:is_set(S),
Mod:filter(F, S).