%% =====================================================================
%% This library is free software; you can redistribute it and/or modify
%% it under the terms of the GNU Lesser General Public License as
%% published by the Free Software Foundation; either version 2 of the
%% License, or (at your option) any later version.
%%
%% This library is distributed in the hope that it will be useful, but
%% WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
%% Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with this library; if not, write to the Free Software
%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
%% USA
%%
%% $Id$
%%
%% @copyright 1997-2006 Richard Carlsson
%% @author Richard Carlsson <richardc@it.uu.se>
%% @end
%% =====================================================================
%% @doc Inserting comments into abstract Erlang syntax trees
%%
%% <p>This module contains functions for inserting comments, described
%% by position, indentation and text, as attachments on an abstract
%% syntax tree, at the correct places.</p>
-module(erl_recomment).
-export([recomment_forms/2, quick_recomment_forms/2, recomment_tree/2]).
%% =====================================================================
%% @spec quick_recomment_forms(Forms, Comments::[Comment]) ->
%% syntaxTree()
%%
%% Forms = syntaxTree() | [syntaxTree()]
%% Comment = {Line, Column, Indentation, Text}
%% Line = integer()
%% Column = integer()
%% Indentation = integer()
%% Text = [string()]
%%
%% @doc Like {@link recomment_forms/2}, but only inserts top-level
%% comments. Comments within function definitions or declarations
%% ("forms") are simply ignored.
-spec quick_recomment_forms(erl_syntax:forms(), [erl_comment_scan:comment()]) ->
erl_syntax:syntaxTree().
quick_recomment_forms(Tree, Cs) ->
recomment_forms(Tree, Cs, false).
%% =====================================================================
%% @spec recomment_forms(Forms, Comments::[Comment]) -> syntaxTree()
%%
%% syntaxTree() = erl_syntax:syntaxTree()
%% Forms = syntaxTree() | [syntaxTree()]
%% Comment = {Line, Column, Indentation, Text}
%% Line = integer()
%% Column = integer()
%% Indentation = integer()
%% Text = [string()]
%%
%% @doc Attaches comments to the syntax tree/trees representing a
%% program. The given <code>Forms</code> should be a single syntax tree
%% of type <code>form_list</code>, or a list of syntax trees
%% representing "program forms". The syntax trees must contain valid
%% position information (for details, see
%% <code>recomment_tree/2</code>). The result is a corresponding syntax
%% tree of type <code>form_list</code> in which all comments in the list
%% <code>Comments</code> have been attached at the proper places.
%%
%% <p>Assuming <code>Forms</code> represents a program (or any sequence
%% of "program forms"), any comments whose first lines are not directly
%% associated with a specific program form will become standalone
%% comments inserted between the neighbouring program forms.
%% Furthermore, comments whose column position is less than or equal to
%% one will not be attached to a program form that begins at a
%% conflicting line number (this can happen with preprocessor-generated
%% <code>line</code>-attributes).</p>
%%
%% <p>If <code>Forms</code> is a syntax tree of some other type than
%% <code>form_list</code>, the comments will be inserted directly using
%% <code>recomment_tree/2</code>, and any comments left over from that
%% process are added as postcomments on the result.</p>
%%
%% <p>Entries in <code>Comments</code> represent multi-line comments.
%% For each entry, <code>Line</code> is the line number and
%% <code>Column</code> the left column of the comment (the column of the
%% first comment-introducing "<code>%</code>" character).
%% <code>Indentation</code> is the number of character positions between
%% the last non-whitespace character before the comment (or the left
%% margin) and the left column of the comment. <code>Text</code> is a
%% list of strings representing the consecutive comment lines in
%% top-down order, where each string contains all characters following
%% (but not including) the comment-introducing "<code>%</code>" and up
%% to (but not including) the terminating newline. (Cf. module
%% <code>erl_comment_scan</code>.)</p>
%%
%% <p>Evaluation exits with reason <code>{bad_position, Pos}</code> if
%% the associated position information <code>Pos</code> of some subtree
%% in the input does not have a recognizable format, or with reason
%% <code>{bad_tree, L, C}</code> if insertion of a comment at line
%% <code>L</code>, column <code>C</code>, fails because the tree
%% structure is ill-formed.</p>
%%
%% @see erl_comment_scan
%% @see recomment_tree/2
%% @see quick_recomment_forms/2
-spec recomment_forms(erl_syntax:forms(), [erl_comment_scan:comment()]) ->
erl_syntax:syntaxTree().
recomment_forms(Tree, Cs) ->
recomment_forms(Tree, Cs, true).
recomment_forms(Tree, Cs, Insert) when is_list(Tree) ->
recomment_forms(erl_syntax:form_list(Tree), Cs, Insert);
recomment_forms(Tree, Cs, Insert) ->
case erl_syntax:type(Tree) of
form_list ->
Tree1 = erl_syntax:flatten_form_list(Tree),
Node = build_tree(Tree1),
%% Here we make a small assumption about the substructure of
%% a `form_list' tree: it has exactly one group of subtrees.
[Node1] = node_subtrees(Node),
List = filter_forms(node_subtrees(Node1)),
List1 = recomment_forms_1(Cs, List, Insert),
revert_tree(set_node_subtrees(Node,
[set_node_subtrees(Node1,
List1)]));
_ ->
%% Not a form list - just call `recomment_tree' and
%% append any leftover comments.
{Tree1, Cs1} = recomment_tree(Tree, Cs),
revert_tree(append_comments(Cs1, Tree1))
end.
append_comments([C | Cs], Tree) ->
append_comments(Cs, node_add_postcomment(C, Tree));
append_comments([], Tree) ->
Tree.
%% This part goes over each comment in turn and inserts it into the
%% proper place in the given list of program forms:
recomment_forms_1([C | Cs], Ns, Insert) ->
Ns1 = recomment_forms_2(C, Ns, Insert),
recomment_forms_1(Cs, Ns1, Insert);
recomment_forms_1([], Ns, _Insert) ->
Ns.
recomment_forms_2(C, [N | Ns] = Nodes, Insert) ->
{L, Col, Ind, Text} = C,
Min = node_min(N),
Max = node_max(N),
Delta = comment_delta(Text),
Trailing =
case Ns of
[] -> true;
[Next | _] -> L < node_min(Next) - 2
end,
if L > Max + 1 ; L =:= Max + 1, not Trailing ->
[N | recomment_forms_2(C, Ns, Insert)];
L + Delta < Min - 1 ->
%% At least one empty line between the current form
%% and the comment, so we make it a standalone.
[standalone_comment(C) | Nodes];
L < Min ->
%% The comment line should be above this node.
%% (This duplicates what insert/5 would have done.)
[node_add_precomment(C, N) | Ns];
Col =< 1, L =< Min, L + Delta >= Min ->
%% This is a conflict - the "first" token of the node
%% overlaps with some comment line, but the comment
%% started at column 1.
N1 = standalone_comment(C),
if L < Min ->
[N1 | Nodes];
true ->
[N, N1 | Ns]
end;
Insert =:= true ->
[insert(N, L, Col, Ind, C) | Ns];
true ->
Nodes % skipping non-toplevel comment
end;
recomment_forms_2(C, [], _Top) ->
[standalone_comment(C)].
%% Creating a leaf node for a standalone comment. Note that we try to
%% preserve the original starting column rather than the indentation.
standalone_comment({L, Col, _Ind, Text}) ->
leaf_node(L, L + comment_delta(Text),
erl_syntax:set_pos(erl_syntax:comment(Col - 1, Text), L)).
%% Compute delta between first and last line of a comment, given
%% the lines of text.
comment_delta(Text) ->
case length(Text) of
N when N > 0 ->
N - 1;
_ ->
0 % avoid negative delta
end.
%% This kills line information for program forms that do not come from
%% the source file itself, but have been included by preprocessing. This
%% way, comments will not be inserted into such parts by mistake.
-record(filter, {file = undefined, line = 0 :: integer()}).
filter_forms(Fs) ->
filter_forms(Fs, false, #filter{}).
filter_forms([F | Fs], Kill, S) ->
case check_file_attr(F) of
{true, A1, A2} ->
S1 = case S#filter.file of
undefined ->
S#filter{file = A1, line = A2};
_ ->
S
end,
if S1#filter.file =:= A1,
S1#filter.line =< A2 ->
[F | filter_forms(Fs, false,
S1#filter{line = A2})];
Kill =:= true ->
[node_kill_range(F)
| filter_forms(Fs, true, S1)];
true ->
[F | filter_forms(Fs, true, S1)]
end;
false ->
case Kill of
true ->
[node_kill_range(F)
| filter_forms(Fs, Kill, S)];
false ->
[F | filter_forms(Fs, Kill, S)]
end
end;
filter_forms([], _, _) ->
[].
%% This structure matching gets a bit painful...
check_file_attr(F) ->
case node_type(F) of
tree_node ->
case tree_node_type(F) of
attribute ->
case node_subtrees(F) of
[L1, L2 | _] ->
check_file_attr_1(L1, L2);
_ ->
false
end;
_ ->
false
end;
_ ->
false
end.
check_file_attr_1(L1, L2) ->
case node_subtrees(L1) of
[N1 | _] ->
N2 = leaf_node_value(N1),
case erl_syntax:type(N2) of
atom ->
case erl_syntax:atom_value(N2) of
file ->
check_file_attr_2(L2);
_ ->
false
end;
_ ->
false
end;
_ ->
false
end.
check_file_attr_2(L) ->
case node_subtrees(L) of
[N1, N2 | _] ->
T1 = erl_syntax:concrete(revert_tree(N1)),
T2 = erl_syntax:concrete(revert_tree(N2)),
{true, T1, T2};
_ ->
false
end.
%% =====================================================================
%% @spec recomment_tree(Tree::syntaxTree(), Comments::[Comment]) ->
%% {syntaxTree(), [Comment]}
%%
%% Comment = {Line, Column, Indentation, Text}
%% Line = integer()
%% Column = integer()
%% Indentation = integer()
%% Text = [string()]
%%
%% @doc Attaches comments to a syntax tree. The result is a pair
%% <code>{NewTree, Remainder}</code> where <code>NewTree</code> is the
%% given <code>Tree</code> where comments from the list
%% <code>Comments</code> have been attached at the proper places.
%% <code>Remainder</code> is the list of entries in
%% <code>Comments</code> which have not been inserted, because their
%% line numbers are greater than those of any node in the tree. The
%% entries in <code>Comments</code> are inserted in order; if two
%% comments become attached to the same node, they will appear in the
%% same order in the program text.
%%
%% <p>The nodes of the syntax tree must contain valid position
%% information. This can be single integers, assumed to represent a line
%% number, or 2- or 3-tuples where the first or second element is an
%% integer, in which case the leftmost integer element is assumed to
%% represent the line number. Line numbers less than one are ignored
%% (usually, the default line number for newly created nodes is
%% zero).</p>
%%
%% <p>For details on the <code>Line</code>, <code>Column</code> and
%% <code>Indentation</code> fields, and the behaviour in case of errors,
%% see <code>recomment_forms/2</code>.</p>
%%
%% @see recomment_forms/2
-spec recomment_tree(erl_syntax:syntaxTree(), [erl_comment_scan:comment()]) ->
{erl_syntax:syntaxTree(), [erl_comment_scan:comment()]}.
recomment_tree(Tree, Cs) ->
{Tree1, Cs1} = insert_comments(Cs, build_tree(Tree)),
{revert_tree(Tree1), Cs1}.
%% Comments are inserted in the tree one at a time. Note that this
%% part makes no assumptions about how tree nodes and list nodes
%% are nested; only `build_tree' and `revert_tree' knows about
%% such things.
insert_comments(Cs, Node) ->
insert_comments(Cs, Node, []).
insert_comments([C | Cs], Node, Cs1) ->
{L, Col, Ind, _Text} = C,
Max = node_max(Node),
if L =< Max ->
insert_comments(Cs, insert(Node, L, Col, Ind, C),
Cs1);
true ->
insert_comments(Cs, Node, [C | Cs1])
end;
insert_comments([], Node, Cs) ->
{Node, lists:reverse(Cs)}.
%% Here, we assume that the comment is located on some line not
%% below the last element of the given node.
insert(Node, L, Col, Ind, C) ->
case node_type(Node) of
list_node ->
%% We cannot attach comments directly to a list node.
set_node_subtrees(Node,
insert_in_list(node_subtrees(Node),
L, Col, Ind, C));
_ ->
%% We check if the comment belongs before, or inside
%% the range of the current node.
Min = node_min(Node),
Max = node_max(Node),
if L < Min ->
%% The comment line should be above this node.
node_add_precomment(C, Node);
Min =:= Max ->
%% The whole node is on a single line (this
%% should usually catch all leaf nodes), so we
%% postfix the comment.
node_add_postcomment(C, Node);
true ->
%% The comment should be inserted in the
%% subrange of the node, i.e., attached either
%% to the node itself, or to one of its
%% subtrees.
insert_1(Node, L, Col, Ind, C)
end
end.
insert_1(Node, L, Col, Ind, C) ->
case node_type(Node) of
tree_node ->
%% Insert in one of the subtrees.
set_node_subtrees(Node,
insert_in_list(node_subtrees(Node),
L, Col, Ind, C));
leaf_node ->
%% Odd case: no components, but not on a single line.
%% (Never mind anyway - just postfix the comment.)
node_add_postcomment(C, Node)
end.
%% We assume that there exists at least one tree node in some tree
%% in the list; since we have decided to insert here, we're
%% screwed if there isn't one.
insert_in_list([Node | Ns], L, Col, Ind, C) ->
Max = node_max(Node),
%% Get the `Min' of the next node that follows in the
%% flattened left-to-right order, or -1 (minus one) if no such
%% tree node exists.
NextMin = next_min_in_list(Ns),
%% `NextMin' could be less than `Max', in inconsistent trees.
if NextMin < 0 ->
%% There is no following leaf/tree node, so we try
%% to insert at this node.
insert_here(Node, L, Col, Ind, C, Ns);
L >= NextMin, NextMin >= Max ->
%% Tend to select the later node, in case the next
%% node should also match.
insert_later(Node, L, Col, Ind, C, Ns);
L =< Max ->
insert_here(Node, L, Col, Ind, C, Ns);
true ->
insert_later(Node, L, Col, Ind, C, Ns)
end;
insert_in_list([], L, Col, _, _) ->
exit({bad_tree, L, Col}).
%% The comment belongs to the current subrange
insert_here(Node, L, Col, Ind, C, Ns) ->
[insert(Node, L, Col, Ind, C) | Ns].
%% The comment should be inserted later
insert_later(Node, L, Col, Ind, C, Ns) ->
[Node | insert_in_list(Ns, L, Col, Ind, C)].
%% `next_min_in_list' returns the `Min' field of the leftmost tree
%% or leaf node in the given node list, or the integer -1 (minus
%% one) if no such element exists.
next_min_in_list(Ts) ->
next_min_in_list(Ts, []).
next_min_in_list([T | Ts], Ack) ->
next_min_in_node(T, [Ts | Ack]);
next_min_in_list([], [T | Ts]) ->
next_min_in_list(T, Ts);
next_min_in_list([], []) ->
-1.
next_min_in_node(Node, Ack) ->
case node_type(Node) of
leaf_node ->
node_min(Node);
tree_node ->
node_min(Node);
list_node ->
next_min_in_list(node_subtrees(Node), Ack)
end.
%% Building an extended syntax tree from an `erl_syntax' abstract
%% syntax tree.
build_tree(Node) ->
L = get_line(Node),
case erl_syntax:subtrees(Node) of
[] ->
%% This guarantees that Min =< Max for the base case.
leaf_node(L, L, Node);
Ts ->
%% `Ts' is a list of lists of abstract terms.
{Subtrees, Min, Max} = build_list_list(Ts),
%% Include L, while preserving Min =< Max.
tree_node(minpos(L, Min),
max(L, Max),
erl_syntax:type(Node),
erl_syntax:get_attrs(Node),
Subtrees)
end.
%% Since `erl_syntax:subtrees' yields the components in
%% left-to-right textual order, the line numbers should grow
%% monotonically as the list is traversed, and the maximum line
%% number of the list should therefore be the dito of the last
%% component. However, we do not want to make such a strong
%% assumption about the consistency of the line numbering, so we
%% take the trouble to find the maximum line number in the subtree
%% taken over all its elements.
build_list(Ts) ->
build_list(Ts, 0, 0, []).
build_list([T | Ts], Min, Max, Ack) ->
Node = build_tree(T),
Min1 = minpos(node_min(Node), Min),
Max1 = max(node_max(Node), Max),
build_list(Ts, Min1, Max1, [Node | Ack]);
build_list([], Min, Max, Ack) ->
list_node(Min, Max, lists:reverse(Ack)).
build_list_list(Ls) ->
build_list_list(Ls, 0, 0, []).
build_list_list([L | Ls], Min, Max, Ack) ->
Node = build_list(L),
Min1 = minpos(node_min(Node), Min),
Max1 = max(node_max(Node), Max),
build_list_list(Ls, Min1, Max1, [Node | Ack]);
build_list_list([], Min, Max, Ack) ->
{lists:reverse(Ack), Min, Max}.
%% Reverting to an abstract syntax tree from the extended form.
%% Note that the new comments are inserted after the original
%% attributes are restored.
revert_tree(Node) ->
case node_type(Node) of
leaf_node ->
add_comments(Node, leaf_node_value(Node));
tree_node ->
add_comments(Node,
erl_syntax:set_attrs(
erl_syntax:make_tree(
tree_node_type(Node),
revert_list(node_subtrees(Node))),
tree_node_attrs(Node)));
list_node ->
revert_list(node_subtrees(Node))
end.
revert_list([T | Ts]) ->
[revert_tree(T) | revert_list(Ts)];
revert_list([]) ->
[].
add_comments(Node, Tree) ->
case node_precomments(Node) of
[] ->
add_comments_1(Node, Tree);
Cs ->
Cs1 = lists:reverse(expand_comments(Cs)),
add_comments_1(Node,
erl_syntax:add_precomments(Cs1, Tree))
end.
add_comments_1(Node, Tree) ->
case node_postcomments(Node) of
[] ->
Tree;
Cs ->
Cs1 = lists:reverse(expand_comments(Cs)),
erl_syntax:add_postcomments(Cs1, Tree)
end.
expand_comments([C | Cs]) ->
[expand_comment(C) | expand_comments(Cs)];
expand_comments([]) ->
[].
expand_comment(C) ->
{L, _Col, Ind, Text} = C,
erl_syntax:set_pos(erl_syntax:comment(Ind, Text), L).
%% =====================================================================
%% Abstract data type for extended syntax trees.
%%
%% These explicitly distinguish between leaf and tree nodes, both
%% corresponding to a single abstract syntax tree, and list nodes,
%% corresponding to a left-to-right ordered sequence of such trees.
%%
%% All nodes have `min' and `max' fields, containing the first and last
%% source lines, respectively, over which the tree extends.
%%
%% Tree nodes and list nodes have a `subtrees' field, containing the
%% (extended) subtrees of the node. Tree nodes also have a `type' field,
%% containing the atom returned by `erl_syntax:type' for the
%% corresponding abstract syntax tree, and an `attrs' field, containing
%% the value of `erl_syntax:get_attrs' for the abstract syntax tree.
%%
%% Leaf nodes and tree nodes also have `precomments' and `postcomments'
%% fields. The comment fields are lists of comment structures (in
%% top-down order); the representation of comments has no consequence to
%% the tree representation.
%%
%% Leaf nodes, lastly, have a `value' field containing the abstract
%% syntax tree for any such tree that can have no subtrees, i.e., such
%% that `erl_syntax:is_leaf' yields `true'.
-record(leaf, {min = 0 :: integer(),
max = 0 :: integer(),
precomments = [] :: [erl_syntax:syntaxTree()],
postcomments = [] :: [erl_syntax:syntaxTree()],
value :: erl_syntax:syntaxTree()}).
-record(tree, {min = 0 :: integer(),
max = 0 :: integer(),
type :: atom(),
attrs :: erl_syntax:syntaxTreeAttributes(),
precomments = [] :: [erl_syntax:syntaxTree()],
postcomments = [] :: [erl_syntax:syntaxTree()],
subtrees = [] :: [erl_syntax:syntaxTree()]}).
-record(list, {min = 0 :: integer(),
max = 0 :: integer(),
subtrees = [] :: [erl_syntax:syntaxTree()]}).
leaf_node(Min, Max, Value) ->
#leaf{min = Min,
max = Max,
value = Value}.
tree_node(Min, Max, Type, Attrs, Subtrees) ->
#tree{min = Min,
max = Max,
type = Type,
attrs = Attrs,
subtrees = Subtrees}.
list_node(Min, Max, Subtrees) ->
#list{min = Min,
max = Max,
subtrees = Subtrees}.
node_type(#leaf{}) ->
leaf_node;
node_type(#tree{}) ->
tree_node;
node_type(#list{}) ->
list_node.
node_min(#leaf{min = Min}) ->
Min;
node_min(#tree{min = Min}) ->
Min;
node_min(#list{min = Min}) ->
Min.
node_max(#leaf{max = Max}) ->
Max;
node_max(#tree{max = Max}) ->
Max;
node_max(#list{max = Max}) ->
Max.
node_kill_range(Node) ->
case Node of
#leaf{} ->
Node#leaf{min = -1, max = -1};
#tree{} ->
Node#tree{min = -1, max = -1};
#list{} ->
Node#list{min = -1, max = -1}
end.
node_precomments(#leaf{precomments = Cs}) ->
Cs;
node_precomments(#tree{precomments = Cs}) ->
Cs.
node_add_precomment(C, Node) ->
case Node of
#leaf{} ->
Node#leaf{precomments = [C | Node#leaf.precomments]};
#tree{} ->
Node#tree{precomments = [C | Node#tree.precomments]}
end.
node_postcomments(#leaf{postcomments = Cs}) ->
Cs;
node_postcomments(#tree{postcomments = Cs}) ->
Cs.
node_add_postcomment(C, Node) ->
case Node of
#leaf{} ->
Node#leaf{postcomments =
[C | Node#leaf.postcomments]};
#tree{} ->
Node#tree{postcomments =
[C | Node#tree.postcomments]}
end.
node_subtrees(#tree{subtrees = Subtrees}) ->
Subtrees;
node_subtrees(#list{subtrees = Subtrees}) ->
Subtrees.
leaf_node_value(#leaf{value = Value}) ->
Value.
tree_node_type(#tree{type = Type}) ->
Type.
set_node_subtrees(Node, Subtrees) ->
case Node of
#tree{} ->
Node#tree{subtrees = Subtrees};
#list{} ->
Node#list{subtrees = Subtrees}
end.
tree_node_attrs(#tree{attrs = Attrs}) ->
Attrs.
%% =====================================================================
%% General utility functions
%% Just the generic "maximum" function
max(X, Y) when X > Y -> X;
max(_, Y) -> Y.
%% Return the least positive integer of X and Y, or zero if none of them
%% are positive. (This is necessary for computing minimum source line
%% numbers, since zero (or negative) numbers may occur, but they
%% represent the "undefined" line number.)
minpos(X, Y) when X < Y ->
minpos1(X, Y);
minpos(X, Y) ->
minpos1(Y, X).
minpos1(X, Y) when X < 1 ->
minpos2(Y);
minpos1(X, _) ->
X.
minpos2(X) when X < 1 ->
0;
minpos2(X) ->
X.
get_line(Node) ->
case erl_syntax:get_pos(Node) of
L when is_integer(L) ->
L;
{L, _} when is_integer(L) ->
L;
{_, L} when is_integer(L) ->
L;
{L, _, _} when is_integer(L) ->
L;
{_, L, _} when is_integer(L) ->
L;
Pos ->
exit({bad_position, Pos})
end.
%% =====================================================================