%% =====================================================================
%% This library is free software; you can redistribute it and/or modify
%% it under the terms of the GNU Lesser General Public License as
%% published by the Free Software Foundation; either version 2 of the
%% License, or (at your option) any later version.
%%
%% This library is distributed in the hope that it will be useful, but
%% WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
%% Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with this library; if not, write to the Free Software
%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
%% USA
%%
%% @copyright 1997-2006 Richard Carlsson
%% @author Richard Carlsson <carlsson.richard@gmail.com>
%% @end
%% =====================================================================
%% @doc Support library for abstract Erlang syntax trees.
%%
%% This module contains utility functions for working with the
%% abstract data type defined in the module {@link erl_syntax}.
%%
%% @type syntaxTree() = erl_syntax:syntaxTree(). An abstract syntax
%% tree. See the {@link erl_syntax} module for details.
-module(erl_syntax_lib).
-export([analyze_application/1, analyze_attribute/1,
analyze_export_attribute/1, analyze_file_attribute/1,
analyze_form/1, analyze_forms/1, analyze_function/1,
analyze_function_name/1, analyze_implicit_fun/1,
analyze_import_attribute/1, analyze_module_attribute/1,
analyze_record_attribute/1, analyze_record_expr/1,
analyze_record_field/1, analyze_rule/1,
analyze_wild_attribute/1, annotate_bindings/1,
annotate_bindings/2, fold/3, fold_subtrees/3, foldl_listlist/3,
function_name_expansions/1, is_fail_expr/1, limit/2, limit/3,
map/2, map_subtrees/2, mapfold/3, mapfold_subtrees/3,
mapfoldl_listlist/3, new_variable_name/1, new_variable_name/2,
new_variable_names/2, new_variable_names/3, strip_comments/1,
to_comment/1, to_comment/2, to_comment/3, variables/1]).
-export_type([info_pair/0]).
%% =====================================================================
%% @spec map(Function, Tree::syntaxTree()) -> syntaxTree()
%%
%% Function = (syntaxTree()) -> syntaxTree()
%%
%% @doc Applies a function to each node of a syntax tree. The result of
%% each application replaces the corresponding original node. The order
%% of traversal is bottom-up.
%%
%% @see map_subtrees/2
-spec map(fun((erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree()),
erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
map(F, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
F(Tree);
Gs ->
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree),
[[map(F, T) || T <- G]
|| G <- Gs]),
F(erl_syntax:copy_attrs(Tree, Tree1))
end.
%% =====================================================================
%% @spec map_subtrees(Function, syntaxTree()) -> syntaxTree()
%%
%% Function = (Tree) -> Tree1
%%
%% @doc Applies a function to each immediate subtree of a syntax tree.
%% The result of each application replaces the corresponding original
%% node.
%%
%% @see map/2
-spec map_subtrees(fun((erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree()),
erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
map_subtrees(F, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
Tree;
Gs ->
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree),
[[F(T) || T <- G] || G <- Gs]),
erl_syntax:copy_attrs(Tree, Tree1)
end.
%% =====================================================================
%% @spec fold(Function, Start::term(), Tree::syntaxTree()) -> term()
%%
%% Function = (syntaxTree(), term()) -> term()
%%
%% @doc Folds a function over all nodes of a syntax tree. The result is
%% the value of `Function(X1, Function(X2, ... Function(Xn, Start)
%% ... ))', where `[X1, X2, ..., Xn]' are the nodes of
%% `Tree' in a post-order traversal.
%%
%% @see fold_subtrees/3
%% @see foldl_listlist/3
-spec fold(fun((erl_syntax:syntaxTree(), term()) -> term()),
term(), erl_syntax:syntaxTree()) -> term().
fold(F, S, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
F(Tree, S);
Gs ->
F(Tree, fold_1(F, S, Gs))
end.
fold_1(F, S, [L | Ls]) ->
fold_1(F, fold_2(F, S, L), Ls);
fold_1(_, S, []) ->
S.
fold_2(F, S, [T | Ts]) ->
fold_2(F, fold(F, S, T), Ts);
fold_2(_, S, []) ->
S.
%% =====================================================================
%% @spec fold_subtrees(Function, Start::term(), Tree::syntaxTree()) ->
%% term()
%%
%% Function = (syntaxTree(), term()) -> term()
%%
%% @doc Folds a function over the immediate subtrees of a syntax tree.
%% This is similar to `fold/3', but only on the immediate
%% subtrees of `Tree', in left-to-right order; it does not
%% include the root node of `Tree'.
%%
%% @see fold/3
-spec fold_subtrees(fun((erl_syntax:syntaxTree(), term()) -> term()),
term(), erl_syntax:syntaxTree()) -> term().
fold_subtrees(F, S, Tree) ->
foldl_listlist(F, S, erl_syntax:subtrees(Tree)).
%% =====================================================================
%% @spec foldl_listlist(Function, Start::term(), [[term()]]) -> term()
%%
%% Function = (term(), term()) -> term()
%%
%% @doc Like `lists:foldl/3', but over a list of lists.
%%
%% @see fold/3
%% @see //stdlib/lists:foldl/3
-spec foldl_listlist(fun((term(), term()) -> term()),
term(), [[term()]]) -> term().
foldl_listlist(F, S, [L | Ls]) ->
foldl_listlist(F, foldl(F, S, L), Ls);
foldl_listlist(_, S, []) ->
S.
foldl(F, S, [T | Ts]) ->
foldl(F, F(T, S), Ts);
foldl(_, S, []) ->
S.
%% =====================================================================
%% @spec mapfold(Function, Start::term(), Tree::syntaxTree()) ->
%% {syntaxTree(), term()}
%%
%% Function = (syntaxTree(), term()) -> {syntaxTree(), term()}
%%
%% @doc Combines map and fold in a single operation. This is similar to
%% `map/2', but also propagates an extra value from each
%% application of the `Function' to the next, while doing a
%% post-order traversal of the tree like `fold/3'. The value
%% `Start' is passed to the first function application, and
%% the final result is the result of the last application.
%%
%% @see map/2
%% @see fold/3
-spec mapfold(fun((erl_syntax:syntaxTree(), term()) -> {erl_syntax:syntaxTree(), term()}),
term(), erl_syntax:syntaxTree()) -> {erl_syntax:syntaxTree(), term()}.
mapfold(F, S, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
F(Tree, S);
Gs ->
{Gs1, S1} = mapfold_1(F, S, Gs),
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree), Gs1),
F(erl_syntax:copy_attrs(Tree, Tree1), S1)
end.
mapfold_1(F, S, [L | Ls]) ->
{L1, S1} = mapfold_2(F, S, L),
{Ls1, S2} = mapfold_1(F, S1, Ls),
{[L1 | Ls1], S2};
mapfold_1(_, S, []) ->
{[], S}.
mapfold_2(F, S, [T | Ts]) ->
{T1, S1} = mapfold(F, S, T),
{Ts1, S2} = mapfold_2(F, S1, Ts),
{[T1 | Ts1], S2};
mapfold_2(_, S, []) ->
{[], S}.
%% =====================================================================
%% @spec mapfold_subtrees(Function, Start::term(),
%% Tree::syntaxTree()) -> {syntaxTree(), term()}
%%
%% Function = (syntaxTree(), term()) -> {syntaxTree(), term()}
%%
%% @doc Does a mapfold operation over the immediate subtrees of a syntax
%% tree. This is similar to `mapfold/3', but only on the
%% immediate subtrees of `Tree', in left-to-right order; it
%% does not include the root node of `Tree'.
%%
%% @see mapfold/3
-spec mapfold_subtrees(fun((erl_syntax:syntaxTree(), term()) ->
{erl_syntax:syntaxTree(), term()}),
term(), erl_syntax:syntaxTree()) ->
{erl_syntax:syntaxTree(), term()}.
mapfold_subtrees(F, S, Tree) ->
case erl_syntax:subtrees(Tree) of
[] ->
{Tree, S};
Gs ->
{Gs1, S1} = mapfoldl_listlist(F, S, Gs),
Tree1 = erl_syntax:make_tree(erl_syntax:type(Tree), Gs1),
{erl_syntax:copy_attrs(Tree, Tree1), S1}
end.
%% =====================================================================
%% @spec mapfoldl_listlist(Function, State, [[term()]]) ->
%% {[[term()]], term()}
%%
%% Function = (term(), term()) -> {term(), term()}
%%
%% @doc Like `lists:mapfoldl/3', but over a list of lists.
%% The list of lists in the result has the same structure as the given
%% list of lists.
-spec mapfoldl_listlist(fun((term(), term()) -> {term(), term()}),
term(), [[term()]]) -> {[[term()]], term()}.
mapfoldl_listlist(F, S, [L | Ls]) ->
{L1, S1} = mapfoldl(F, S, L),
{Ls1, S2} = mapfoldl_listlist(F, S1, Ls),
{[L1 | Ls1], S2};
mapfoldl_listlist(_, S, []) ->
{[], S}.
mapfoldl(F, S, [L | Ls]) ->
{L1, S1} = F(L, S),
{Ls1, S2} = mapfoldl(F, S1, Ls),
{[L1 | Ls1], S2};
mapfoldl(_, S, []) ->
{[], S}.
%% =====================================================================
%% @spec variables(syntaxTree()) -> set(atom())
%%
%% set(T) = //stdlib/sets:set(T)
%%
%% @doc Returns the names of variables occurring in a syntax tree, The
%% result is a set of variable names represented by atoms. Macro names
%% are not included.
%%
%% @see //stdlib/sets
-spec variables(erl_syntax:syntaxTree()) -> set().
variables(Tree) ->
variables(Tree, sets:new()).
variables(T, S) ->
case erl_syntax:type(T) of
variable ->
sets:add_element(erl_syntax:variable_name(T), S);
macro ->
%% macro names are ignored, even if represented by variables
case erl_syntax:macro_arguments(T) of
none -> S;
As ->
variables_2(As, S)
end;
_ ->
case erl_syntax:subtrees(T) of
[] ->
S;
Gs ->
variables_1(Gs, S)
end
end.
variables_1([L | Ls], S) ->
variables_1(Ls, variables_2(L, S));
variables_1([], S) ->
S.
variables_2([T | Ts], S) ->
variables_2(Ts, variables(T, S));
variables_2([], S) ->
S.
-define(MINIMUM_RANGE, 100).
-define(START_RANGE_FACTOR, 100).
-define(MAX_RETRIES, 3). % retries before enlarging range
-define(ENLARGE_ENUM, 8). % range enlargment enumerator
-define(ENLARGE_DENOM, 1). % range enlargment denominator
default_variable_name(N) ->
list_to_atom("V" ++ integer_to_list(N)).
%% =====================================================================
%% @spec new_variable_name(Used::set(atom())) -> atom()
%%
%% @doc Returns an atom which is not already in the set `Used'. This is
%% equivalent to `new_variable_name(Function, Used)', where `Function'
%% maps a given integer `N' to the atom whose name consists of "`V'"
%% followed by the numeral for `N'.
%%
%% @see new_variable_name/2
-spec new_variable_name(set()) -> atom().
new_variable_name(S) ->
new_variable_name(fun default_variable_name/1, S).
%% =====================================================================
%% @spec new_variable_name(Function, Used::set(atom())) -> atom()
%%
%% Function = (integer()) -> atom()
%%
%% @doc Returns a user-named atom which is not already in the set
%% `Used'. The atom is generated by applying the given
%% `Function' to a generated integer. Integers are generated
%% using an algorithm which tries to keep the names randomly distributed
%% within a reasonably small range relative to the number of elements in
%% the set.
%%
%% This function uses the module `random' to generate new
%% keys. The seed it uses may be initialized by calling
%% `random:seed/0' or `random:seed/3' before this
%% function is first called.
%%
%% @see new_variable_name/1
%% @see //stdlib/sets
%% @see //stdlib/random
-spec new_variable_name(fun((integer()) -> atom()), set()) -> atom().
new_variable_name(F, S) ->
R = start_range(S),
new_variable_name(R, F, S).
new_variable_name(R, F, S) ->
new_variable_name(generate(R, R), R, 0, F, S).
new_variable_name(N, R, T, F, S) when T < ?MAX_RETRIES ->
A = F(N),
case sets:is_element(A, S) of
true ->
new_variable_name(generate(N, R), R, T + 1, F, S);
false ->
A
end;
new_variable_name(N, R, _T, F, S) ->
%% Too many retries - enlarge the range and start over.
R1 = (R * ?ENLARGE_ENUM) div ?ENLARGE_DENOM,
new_variable_name(generate(N, R1), R1, 0, F, S).
%% Note that we assume that it is very cheap to take the size of
%% the given set. This should be valid for the stdlib
%% implementation of `sets'.
start_range(S) ->
erlang:max(sets:size(S) * ?START_RANGE_FACTOR, ?MINIMUM_RANGE).
%% The previous number might or might not be used to compute the
%% next number to be tried. It is currently not used.
%%
%% It is important that this function does not generate values in
%% order, but (pseudo-)randomly distributed over the range.
generate(_Key, Range) ->
random:uniform(Range). % works well
%% =====================================================================
%% @spec new_variable_names(N::integer(), Used::set(atom())) -> [atom()]
%%
%% @doc Like `new_variable_name/1', but generates a list of
%% `N' new names.
%%
%% @see new_variable_name/1
-spec new_variable_names(integer(), set()) -> [atom()].
new_variable_names(N, S) ->
new_variable_names(N, fun default_variable_name/1, S).
%% =====================================================================
%% @spec new_variable_names(N::integer(), Function,
%% Used::set(atom())) -> [atom()]
%%
%% Function = (integer()) -> atom()
%%
%% @doc Like `new_variable_name/2', but generates a list of
%% `N' new names.
%%
%% @see new_variable_name/2
-spec new_variable_names(integer(), fun((integer()) -> atom()), set()) ->
[atom()].
new_variable_names(N, F, S) when is_integer(N) ->
R = start_range(S),
new_variable_names(N, [], R, F, S).
new_variable_names(N, Names, R, F, S) when N > 0 ->
Name = new_variable_name(R, F, S),
S1 = sets:add_element(Name, S),
new_variable_names(N - 1, [Name | Names], R, F, S1);
new_variable_names(0, Names, _, _, _) ->
Names.
%% =====================================================================
%% @spec annotate_bindings(Tree::syntaxTree(),
%% Bindings::ordset(atom())) -> syntaxTree()
%%
%% @type ordset(T) = //stdlib/ordsets:ordset(T)
%%
%% @doc Adds or updates annotations on nodes in a syntax tree.
%% `Bindings' specifies the set of bound variables in the
%% environment of the top level node. The following annotations are
%% affected:
%% <ul>
%% <li>`{env, Vars}', representing the input environment
%% of the subtree.</li>
%%
%% <li>`{bound, Vars}', representing the variables that
%% are bound in the subtree.</li>
%%
%% <li>`{free, Vars}', representing the free variables in
%% the subtree.</li>
%% </ul>
%% `Bindings' and `Vars' are ordered-set lists
%% (cf. module `ordsets') of atoms representing variable
%% names.
%%
%% @see annotate_bindings/1
%% @see //stdlib/ordsets
-spec annotate_bindings(erl_syntax:syntaxTree(), ordsets:ordset(atom())) ->
erl_syntax:syntaxTree().
annotate_bindings(Tree, Env) ->
{Tree1, _, _} = vann(Tree, Env),
Tree1.
%% =====================================================================
%% @spec annotate_bindings(Tree::syntaxTree()) -> syntaxTree()
%%
%% @doc Adds or updates annotations on nodes in a syntax tree.
%% Equivalent to `annotate_bindings(Tree, Bindings)' where
%% the top-level environment `Bindings' is taken from the
%% annotation `{env, Bindings}' on the root node of
%% `Tree'. An exception is thrown if no such annotation
%% should exist.
%%
%% @see annotate_bindings/2
-spec annotate_bindings(erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
annotate_bindings(Tree) ->
As = erl_syntax:get_ann(Tree),
case lists:keyfind(env, 1, As) of
{env, InVars} ->
annotate_bindings(Tree, InVars);
_ ->
erlang:error(badarg)
end.
vann(Tree, Env) ->
case erl_syntax:type(Tree) of
variable ->
%% Variable use
Bound = [],
Free = [erl_syntax:variable_name(Tree)],
{ann_bindings(Tree, Env, Bound, Free), Bound, Free};
match_expr ->
vann_match_expr(Tree, Env);
case_expr ->
vann_case_expr(Tree, Env);
if_expr ->
vann_if_expr(Tree, Env);
cond_expr ->
vann_cond_expr(Tree, Env);
receive_expr ->
vann_receive_expr(Tree, Env);
catch_expr ->
vann_catch_expr(Tree, Env);
try_expr ->
vann_try_expr(Tree, Env);
function ->
vann_function(Tree, Env);
rule ->
vann_rule(Tree, Env);
fun_expr ->
vann_fun_expr(Tree, Env);
list_comp ->
vann_list_comp(Tree, Env);
binary_comp ->
vann_binary_comp(Tree, Env);
generator ->
vann_generator(Tree, Env);
binary_generator ->
vann_binary_generator(Tree, Env);
block_expr ->
vann_block_expr(Tree, Env);
macro ->
vann_macro(Tree, Env);
_Type ->
F = vann_list_join(Env),
{Tree1, {Bound, Free}} = mapfold_subtrees(F, {[], []},
Tree),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}
end.
vann_list_join(Env) ->
fun (T, {Bound, Free}) ->
{T1, Bound1, Free1} = vann(T, Env),
{T1, {ordsets:union(Bound, Bound1),
ordsets:union(Free, Free1)}}
end.
vann_list(Ts, Env) ->
lists:mapfoldl(vann_list_join(Env), {[], []}, Ts).
vann_function(Tree, Env) ->
Cs = erl_syntax:function_clauses(Tree),
{Cs1, {_, Free}} = vann_clauses(Cs, Env),
N = erl_syntax:function_name(Tree),
{N1, _, _} = vann(N, Env),
Tree1 = rewrite(Tree, erl_syntax:function(N1, Cs1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_rule(Tree, Env) ->
Cs = erl_syntax:rule_clauses(Tree),
{Cs1, {_, Free}} = vann_clauses(Cs, Env),
N = erl_syntax:rule_name(Tree),
{N1, _, _} = vann(N, Env),
Tree1 = rewrite(Tree, erl_syntax:rule(N1, Cs1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_fun_expr(Tree, Env) ->
Cs = erl_syntax:fun_expr_clauses(Tree),
{Cs1, {_, Free}} = vann_clauses(Cs, Env),
Tree1 = rewrite(Tree, erl_syntax:fun_expr(Cs1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_match_expr(Tree, Env) ->
E = erl_syntax:match_expr_body(Tree),
{E1, Bound1, Free1} = vann(E, Env),
Env1 = ordsets:union(Env, Bound1),
P = erl_syntax:match_expr_pattern(Tree),
{P1, Bound2, Free2} = vann_pattern(P, Env1),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:match_expr(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_case_expr(Tree, Env) ->
E = erl_syntax:case_expr_argument(Tree),
{E1, Bound1, Free1} = vann(E, Env),
Env1 = ordsets:union(Env, Bound1),
Cs = erl_syntax:case_expr_clauses(Tree),
{Cs1, {Bound2, Free2}} = vann_clauses(Cs, Env1),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:case_expr(E1, Cs1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_if_expr(Tree, Env) ->
Cs = erl_syntax:if_expr_clauses(Tree),
{Cs1, {Bound, Free}} = vann_clauses(Cs, Env),
Tree1 = rewrite(Tree, erl_syntax:if_expr(Cs1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_cond_expr(_Tree, _Env) ->
erlang:error({not_implemented,cond_expr}).
vann_catch_expr(Tree, Env) ->
E = erl_syntax:catch_expr_body(Tree),
{E1, _, Free} = vann(E, Env),
Tree1 = rewrite(Tree, erl_syntax:catch_expr(E1)),
Bound = [],
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_try_expr(Tree, Env) ->
Es = erl_syntax:try_expr_body(Tree),
{Es1, {Bound1, Free1}} = vann_body(Es, Env),
Cs = erl_syntax:try_expr_clauses(Tree),
%% bindings in the body should be available in the success case,
{Cs1, {_, Free2}} = vann_clauses(Cs, ordsets:union(Env, Bound1)),
Hs = erl_syntax:try_expr_handlers(Tree),
{Hs1, {_, Free3}} = vann_clauses(Hs, Env),
%% the after part does not export anything, yet; this might change
As = erl_syntax:try_expr_after(Tree),
{As1, {_, Free4}} = vann_body(As, Env),
Tree1 = rewrite(Tree, erl_syntax:try_expr(Es1, Cs1, Hs1, As1)),
Bound = [],
Free = ordsets:union(Free1, ordsets:union(Free2, ordsets:union(Free3, Free4))),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_receive_expr(Tree, Env) ->
%% The timeout action is treated as an extra clause.
%% Bindings in the expiry expression are local only.
Cs = erl_syntax:receive_expr_clauses(Tree),
Es = erl_syntax:receive_expr_action(Tree),
C = erl_syntax:clause([], Es),
{[C1 | Cs1], {Bound, Free1}} = vann_clauses([C | Cs], Env),
Es1 = erl_syntax:clause_body(C1),
{T1, _, Free2} = case erl_syntax:receive_expr_timeout(Tree) of
none ->
{none, [], []};
T ->
vann(T, Env)
end,
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:receive_expr(Cs1, T1, Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_list_comp(Tree, Env) ->
Es = erl_syntax:list_comp_body(Tree),
{Es1, {Bound1, Free1}} = vann_list_comp_body(Es, Env),
Env1 = ordsets:union(Env, Bound1),
T = erl_syntax:list_comp_template(Tree),
{T1, _, Free2} = vann(T, Env1),
Free = ordsets:union(Free1, ordsets:subtract(Free2, Bound1)),
Bound = [],
Tree1 = rewrite(Tree, erl_syntax:list_comp(T1, Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_list_comp_body_join() ->
fun (T, {Env, Bound, Free}) ->
{T1, Bound1, Free1} = case erl_syntax:type(T) of
binary_generator ->
vann_binary_generator(T,Env);
generator ->
vann_generator(T, Env);
_ ->
%% Bindings in filters are not
%% exported to the rest of the
%% body.
{T2, _, Free2} = vann(T, Env),
{T2, [], Free2}
end,
Env1 = ordsets:union(Env, Bound1),
{T1, {Env1, ordsets:union(Bound, Bound1),
ordsets:union(Free,
ordsets:subtract(Free1, Bound))}}
end.
vann_list_comp_body(Ts, Env) ->
F = vann_list_comp_body_join(),
{Ts1, {_, Bound, Free}} = lists:mapfoldl(F, {Env, [], []}, Ts),
{Ts1, {Bound, Free}}.
vann_binary_comp(Tree, Env) ->
Es = erl_syntax:binary_comp_body(Tree),
{Es1, {Bound1, Free1}} = vann_binary_comp_body(Es, Env),
Env1 = ordsets:union(Env, Bound1),
T = erl_syntax:binary_comp_template(Tree),
{T1, _, Free2} = vann(T, Env1),
Free = ordsets:union(Free1, ordsets:subtract(Free2, Bound1)),
Bound = [],
Tree1 = rewrite(Tree, erl_syntax:binary_comp(T1, Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_binary_comp_body_join() ->
fun (T, {Env, Bound, Free}) ->
{T1, Bound1, Free1} = case erl_syntax:type(T) of
binary_generator ->
vann_binary_generator(T, Env);
generator ->
vann_generator(T, Env);
_ ->
%% Bindings in filters are not
%% exported to the rest of the
%% body.
{T2, _, Free2} = vann(T, Env),
{T2, [], Free2}
end,
Env1 = ordsets:union(Env, Bound1),
{T1, {Env1, ordsets:union(Bound, Bound1),
ordsets:union(Free,
ordsets:subtract(Free1, Bound))}}
end.
vann_binary_comp_body(Ts, Env) ->
F = vann_binary_comp_body_join(),
{Ts1, {_, Bound, Free}} = lists:mapfoldl(F, {Env, [], []}, Ts),
{Ts1, {Bound, Free}}.
%% In list comprehension generators, the pattern variables are always
%% viewed as new occurrences, shadowing whatever is in the input
%% environment (thus, the pattern contains no variable uses, only
%% bindings). Bindings in the generator body are not exported.
vann_generator(Tree, Env) ->
P = erl_syntax:generator_pattern(Tree),
{P1, Bound, _} = vann_pattern(P, []),
E = erl_syntax:generator_body(Tree),
{E1, _, Free} = vann(E, Env),
Tree1 = rewrite(Tree, erl_syntax:generator(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_binary_generator(Tree, Env) ->
P = erl_syntax:binary_generator_pattern(Tree),
{P1, Bound, _} = vann_pattern(P, Env),
E = erl_syntax:binary_generator_body(Tree),
{E1, _, Free} = vann(E, Env),
Tree1 = rewrite(Tree, erl_syntax:binary_generator(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_block_expr(Tree, Env) ->
Es = erl_syntax:block_expr_body(Tree),
{Es1, {Bound, Free}} = vann_body(Es, Env),
Tree1 = rewrite(Tree, erl_syntax:block_expr(Es1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_body_join() ->
fun (T, {Env, Bound, Free}) ->
{T1, Bound1, Free1} = vann(T, Env),
Env1 = ordsets:union(Env, Bound1),
{T1, {Env1, ordsets:union(Bound, Bound1),
ordsets:union(Free,
ordsets:subtract(Free1, Bound))}}
end.
vann_body(Ts, Env) ->
{Ts1, {_, Bound, Free}} = lists:mapfoldl(vann_body_join(),
{Env, [], []}, Ts),
{Ts1, {Bound, Free}}.
%% Macro names must be ignored even if they happen to be variables,
%% lexically speaking.
vann_macro(Tree, Env) ->
{As, {Bound, Free}} = case erl_syntax:macro_arguments(Tree) of
none ->
{none, {[], []}};
As1 ->
vann_list(As1, Env)
end,
N = erl_syntax:macro_name(Tree),
Tree1 = rewrite(Tree, erl_syntax:macro(N, As)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_pattern(Tree, Env) ->
case erl_syntax:type(Tree) of
variable ->
V = erl_syntax:variable_name(Tree),
case ordsets:is_element(V, Env) of
true ->
%% Variable use
Bound = [],
Free = [V],
{ann_bindings(Tree, Env, Bound, Free), Bound, Free};
false ->
%% Variable binding
Bound = [V],
Free = [],
{ann_bindings(Tree, Env, Bound, Free), Bound, Free}
end;
match_expr ->
%% Alias pattern
P = erl_syntax:match_expr_pattern(Tree),
{P1, Bound1, Free1} = vann_pattern(P, Env),
E = erl_syntax:match_expr_body(Tree),
{E1, Bound2, Free2} = vann_pattern(E, Env),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1, Free2),
Tree1 = rewrite(Tree, erl_syntax:match_expr(P1, E1)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free};
macro ->
%% The macro name must be ignored. The arguments are treated
%% as patterns.
{As, {Bound, Free}} =
case erl_syntax:macro_arguments(Tree) of
none ->
{none, {[], []}};
As1 ->
vann_patterns(As1, Env)
end,
N = erl_syntax:macro_name(Tree),
Tree1 = rewrite(Tree, erl_syntax:macro(N, As)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free};
_Type ->
F = vann_patterns_join(Env),
{Tree1, {Bound, Free}} = mapfold_subtrees(F, {[], []},
Tree),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}
end.
vann_patterns_join(Env) ->
fun (T, {Bound, Free}) ->
{T1, Bound1, Free1} = vann_pattern(T, Env),
{T1, {ordsets:union(Bound, Bound1),
ordsets:union(Free, Free1)}}
end.
vann_patterns(Ps, Env) ->
lists:mapfoldl(vann_patterns_join(Env), {[], []}, Ps).
vann_clause(C, Env) ->
{Ps, {Bound1, Free1}} = vann_patterns(erl_syntax:clause_patterns(C),
Env),
Env1 = ordsets:union(Env, Bound1),
%% Guards cannot add bindings
{G1, _, Free2} = case erl_syntax:clause_guard(C) of
none ->
{none, [], []};
G ->
vann(G, Env1)
end,
{Es, {Bound2, Free3}} = vann_body(erl_syntax:clause_body(C), Env1),
Bound = ordsets:union(Bound1, Bound2),
Free = ordsets:union(Free1,
ordsets:subtract(ordsets:union(Free2, Free3),
Bound1)),
Tree1 = rewrite(C, erl_syntax:clause(Ps, G1, Es)),
{ann_bindings(Tree1, Env, Bound, Free), Bound, Free}.
vann_clauses_join(Env) ->
fun (C, {Bound, Free}) ->
{C1, Bound1, Free1} = vann_clause(C, Env),
{C1, {ordsets:intersection(Bound, Bound1),
ordsets:union(Free, Free1)}}
end.
vann_clauses([C | Cs], Env) ->
{C1, Bound, Free} = vann_clause(C, Env),
{Cs1, BF} = lists:mapfoldl(vann_clauses_join(Env), {Bound, Free}, Cs),
{[C1 | Cs1], BF};
vann_clauses([], _Env) ->
{[], {[], []}}.
ann_bindings(Tree, Env, Bound, Free) ->
As0 = erl_syntax:get_ann(Tree),
As1 = [{env, Env},
{bound, Bound},
{free, Free}
| delete_binding_anns(As0)],
erl_syntax:set_ann(Tree, As1).
delete_binding_anns([{env, _} | As]) ->
delete_binding_anns(As);
delete_binding_anns([{bound, _} | As]) ->
delete_binding_anns(As);
delete_binding_anns([{free, _} | As]) ->
delete_binding_anns(As);
delete_binding_anns([A | As]) ->
[A | delete_binding_anns(As)];
delete_binding_anns([]) ->
[].
%% =====================================================================
%% @spec is_fail_expr(Tree::syntaxTree()) -> boolean()
%%
%% @doc Returns `true' if `Tree' represents an
%% expression which never terminates normally. Note that the reverse
%% does not apply. Currently, the detected cases are calls to
%% `exit/1', `throw/1',
%% `erlang:error/1' and `erlang:error/2'.
%%
%% @see //erts/erlang:exit/1
%% @see //erts/erlang:throw/1
%% @see //erts/erlang:error/1
%% @see //erts/erlang:error/2
-spec is_fail_expr(erl_syntax:syntaxTree()) -> boolean().
is_fail_expr(E) ->
case erl_syntax:type(E) of
application ->
N = length(erl_syntax:application_arguments(E)),
F = erl_syntax:application_operator(E),
case catch {ok, analyze_function_name(F)} of
syntax_error ->
false;
{ok, exit} when N =:= 1 ->
true;
{ok, throw} when N =:= 1 ->
true;
{ok, {erlang, exit}} when N =:= 1 ->
true;
{ok, {erlang, throw}} when N =:= 1 ->
true;
{ok, {erlang, error}} when N =:= 1 ->
true;
{ok, {erlang, error}} when N =:= 2 ->
true;
{ok, {erlang, fault}} when N =:= 1 ->
true;
{ok, {erlang, fault}} when N =:= 2 ->
true;
_ ->
false
end;
_ ->
false
end.
%% =====================================================================
%% @spec analyze_forms(Forms) -> [{Key, term()}]
%%
%% Forms = syntaxTree() | [syntaxTree()]
%% Key = attributes | errors | exports | functions | imports
%% | module | records | rules | warnings
%%
%% @doc Analyzes a sequence of "program forms". The given
%% `Forms' may be a single syntax tree of type
%% `form_list', or a list of "program form" syntax trees. The
%% returned value is a list of pairs `{Key, Info}', where
%% each value of `Key' occurs at most once in the list; the
%% absence of a particular key indicates that there is no well-defined
%% value for that key.
%%
%% Each entry in the resulting list contains the following
%% corresponding information about the program forms:
%% <dl>
%% <dt>`{attributes, Attributes}'</dt>
%% <dd><ul>
%% <li>`Attributes = [{atom(), term()}]'</li>
%% </ul>
%% `Attributes' is a list of pairs representing the
%% names and corresponding values of all so-called "wild"
%% attributes (as e.g. "`-compile(...)'") occurring in
%% `Forms' (cf. `analyze_wild_attribute/1').
%% We do not guarantee that each name occurs at most once in the
%% list. The order of listing is not defined.</dd>
%%
%% <dt>`{errors, Errors}'</dt>
%% <dd><ul>
%% <li>`Errors = [term()]'</li>
%% </ul>
%% `Errors' is the list of error descriptors of all
%% `error_marker' nodes that occur in
%% `Forms'. The order of listing is not defined.</dd>
%%
%% <dt>`{exports, Exports}'</dt>
%% <dd><ul>
%% <li>`Exports = [FunctionName]'</li>
%% <li>`FunctionName = atom()
%% | {atom(), integer()}
%% | {ModuleName, FunctionName}'</li>
%% <li>`ModuleName = atom()'</li>
%% </ul>
%% `Exports' is a list of representations of those
%% function names that are listed by export declaration attributes
%% in `Forms' (cf.
%% `analyze_export_attribute/1'). We do not guarantee
%% that each name occurs at most once in the list. The order of
%% listing is not defined.</dd>
%%
%% <dt>`{functions, Functions}'</dt>
%% <dd><ul>
%% <li>`Functions = [{atom(), integer()}]'</li>
%% </ul>
%% `Functions' is a list of the names of the functions
%% that are defined in `Forms' (cf.
%% `analyze_function/1'). We do not guarantee that each
%% name occurs at most once in the list. The order of listing is
%% not defined.</dd>
%%
%% <dt>`{imports, Imports}'</dt>
%% <dd><ul>
%% <li>`Imports = [{Module, Names}]'</li>
%% <li>`Module = atom()'</li>
%% <li>`Names = [FunctionName]'</li>
%% <li>`FunctionName = atom()
%% | {atom(), integer()}
%% | {ModuleName, FunctionName}'</li>
%% <li>`ModuleName = atom()'</li>
%% </ul>
%% `Imports' is a list of pairs representing those
%% module names and corresponding function names that are listed
%% by import declaration attributes in `Forms' (cf.
%% `analyze_import_attribute/1'), where each
%% `Module' occurs at most once in
%% `Imports'. We do not guarantee that each name occurs
%% at most once in the lists of function names. The order of
%% listing is not defined.</dd>
%%
%% <dt>`{module, ModuleName}'</dt>
%% <dd><ul>
%% <li>`ModuleName = atom()'</li>
%% </ul>
%% `ModuleName' is the name declared by a module
%% attribute in `Forms'. If no module name is defined
%% in `Forms', the result will contain no entry for the
%% `module' key. If multiple module name declarations
%% should occur, all but the first will be ignored.</dd>
%%
%% <dt>`{records, Records}'</dt>
%% <dd><ul>
%% <li>`Records = [{atom(), Fields}]'</li>
%% <li>`Fields = [{atom(), Default}]'</li>
%% <li>`Default = none | syntaxTree()'</li>
%% </ul>
%% `Records' is a list of pairs representing the names
%% and corresponding field declarations of all record declaration
%% attributes occurring in `Forms'. For fields declared
%% without a default value, the corresponding value for
%% `Default' is the atom `none' (cf.
%% `analyze_record_attribute/1'). We do not guarantee
%% that each record name occurs at most once in the list. The
%% order of listing is not defined.</dd>
%%
%% <dt>`{rules, Rules}'</dt>
%% <dd><ul>
%% <li>`Rules = [{atom(), integer()}]'</li>
%% </ul>
%% `Rules' is a list of the names of the rules that are
%% defined in `Forms' (cf.
%% `analyze_rule/1'). We do not guarantee that each
%% name occurs at most once in the list. The order of listing is
%% not defined.</dd>
%%
%% <dt>`{warnings, Warnings}'</dt>
%% <dd><ul>
%% <li>`Warnings = [term()]'</li>
%% </ul>
%% `Warnings' is the list of error descriptors of all
%% `warning_marker' nodes that occur in
%% `Forms'. The order of listing is not defined.</dd>
%% </dl>
%%
%% The evaluation throws `syntax_error' if an ill-formed
%% Erlang construct is encountered.
%%
%% @see analyze_wild_attribute/1
%% @see analyze_export_attribute/1
%% @see analyze_import_attribute/1
%% @see analyze_record_attribute/1
%% @see analyze_function/1
%% @see analyze_rule/1
%% @see erl_syntax:error_marker_info/1
%% @see erl_syntax:warning_marker_info/1
-type key() :: 'attributes' | 'errors' | 'exports' | 'functions' | 'imports'
| 'module' | 'records' | 'rules' | 'warnings'.
-type info_pair() :: {key(), term()}.
-spec analyze_forms(erl_syntax:forms()) -> [info_pair()].
analyze_forms(Forms) when is_list(Forms) ->
finfo_to_list(lists:foldl(fun collect_form/2, new_finfo(), Forms));
analyze_forms(Forms) ->
analyze_forms(
erl_syntax:form_list_elements(
erl_syntax:flatten_form_list(Forms))).
collect_form(Node, Info) ->
case analyze_form(Node) of
{attribute, {Name, Data}} ->
collect_attribute(Name, Data, Info);
{attribute, preprocessor} ->
Info;
{function, Name} ->
finfo_add_function(Name, Info);
{rule, Name} ->
finfo_add_rule(Name, Info);
{error_marker, Data} ->
finfo_add_error(Data, Info);
{warning_marker, Data} ->
finfo_add_warning(Data, Info);
_ ->
Info
end.
collect_attribute(module, M, Info) ->
finfo_set_module(M, Info);
collect_attribute(export, L, Info) ->
finfo_add_exports(L, Info);
collect_attribute(import, {M, L}, Info) ->
finfo_add_imports(M, L, Info);
collect_attribute(import, M, Info) ->
finfo_add_module_import(M, Info);
collect_attribute(file, _, Info) ->
Info;
collect_attribute(record, {R, L}, Info) ->
finfo_add_record(R, L, Info);
collect_attribute(spec, _, Info) ->
Info;
collect_attribute(_, {N, V}, Info) ->
finfo_add_attribute(N, V, Info).
%% Abstract datatype for collecting module information.
-record(forms, {module = none :: 'none' | {'value', atom()},
exports = [] :: [{atom(), arity()}],
module_imports = [] :: [atom()],
imports = [] :: [{atom(), [{atom(), arity()}]}],
attributes = [] :: [{atom(), term()}],
records = [] :: [{atom(), [{atom(), field_default()}]}],
errors = [] :: [term()],
warnings = [] :: [term()],
functions = [] :: [{atom(), arity()}],
rules = [] :: [{atom(), arity()}]}).
-type field_default() :: 'none' | erl_syntax:syntaxTree().
new_finfo() ->
#forms{}.
finfo_set_module(Name, Info) ->
case Info#forms.module of
none ->
Info#forms{module = {value, Name}};
{value, _} ->
Info
end.
finfo_add_exports(L, Info) ->
Info#forms{exports = L ++ Info#forms.exports}.
finfo_add_module_import(M, Info) ->
Info#forms{module_imports = [M | Info#forms.module_imports]}.
finfo_add_imports(M, L, Info) ->
Es = Info#forms.imports,
case lists:keyfind(M, 1, Es) of
{_, L1} ->
Es1 = lists:keyreplace(M, 1, Es, {M, L ++ L1}),
Info#forms{imports = Es1};
false ->
Info#forms{imports = [{M, L} | Es]}
end.
finfo_add_attribute(Name, Val, Info) ->
Info#forms{attributes = [{Name, Val} | Info#forms.attributes]}.
finfo_add_record(R, L, Info) ->
Info#forms{records = [{R, L} | Info#forms.records]}.
finfo_add_error(R, Info) ->
Info#forms{errors = [R | Info#forms.errors]}.
finfo_add_warning(R, Info) ->
Info#forms{warnings = [R | Info#forms.warnings]}.
finfo_add_function(F, Info) ->
Info#forms{functions = [F | Info#forms.functions]}.
finfo_add_rule(F, Info) ->
Info#forms{rules = [F | Info#forms.rules]}.
finfo_to_list(Info) ->
[{Key, Value}
|| {Key, {value, Value}} <-
[{module, Info#forms.module},
{exports, list_value(Info#forms.exports)},
{imports, list_value(Info#forms.imports)},
{module_imports, list_value(Info#forms.module_imports)},
{attributes, list_value(Info#forms.attributes)},
{records, list_value(Info#forms.records)},
{errors, list_value(Info#forms.errors)},
{warnings, list_value(Info#forms.warnings)},
{functions, list_value(Info#forms.functions)},
{rules, list_value(Info#forms.rules)}
]].
list_value([]) ->
none;
list_value(List) ->
{value, List}.
%% =====================================================================
%% @spec analyze_form(Node::syntaxTree()) -> {atom(), term()} | atom()
%%
%% @doc Analyzes a "source code form" node. If `Node' is a
%% "form" type (cf. `erl_syntax:is_form/1'), the returned
%% value is a tuple `{Type, Info}' where `Type' is
%% the node type and `Info' depends on `Type', as
%% follows:
%% <dl>
%% <dt>`{attribute, Info}'</dt>
%%
%% <dd>where `Info = analyze_attribute(Node)'.</dd>
%%
%% <dt>`{error_marker, Info}'</dt>
%%
%% <dd>where `Info =
%% erl_syntax:error_marker_info(Node)'.</dd>
%%
%% <dt>`{function, Info}'</dt>
%%
%% <dd>where `Info = analyze_function(Node)'.</dd>
%%
%% <dt>`{rule, Info}'</dt>
%%
%% <dd>where `Info = analyze_rule(Node)'.</dd>
%%
%% <dt>`{warning_marker, Info}'</dt>
%%
%% <dd>where `Info =
%% erl_syntax:warning_marker_info(Node)'.</dd>
%% </dl>
%% For other types of forms, only the node type is returned.
%%
%% The evaluation throws `syntax_error' if
%% `Node' is not well-formed.
%%
%% @see analyze_attribute/1
%% @see analyze_function/1
%% @see analyze_rule/1
%% @see erl_syntax:is_form/1
%% @see erl_syntax:error_marker_info/1
%% @see erl_syntax:warning_marker_info/1
-spec analyze_form(erl_syntax:syntaxTree()) -> {atom(), term()} | atom().
analyze_form(Node) ->
case erl_syntax:type(Node) of
attribute ->
{attribute, analyze_attribute(Node)};
function ->
{function, analyze_function(Node)};
rule ->
{rule, analyze_rule(Node)};
error_marker ->
{error_marker, erl_syntax:error_marker_info(Node)};
warning_marker ->
{warning_marker, erl_syntax:warning_marker_info(Node)};
_ ->
case erl_syntax:is_form(Node) of
true ->
erl_syntax:type(Node);
false ->
throw(syntax_error)
end
end.
%% =====================================================================
%% @spec analyze_attribute(Node::syntaxTree()) ->
%% preprocessor | {atom(), atom()}
%%
%% @doc Analyzes an attribute node. If `Node' represents a
%% preprocessor directive, the atom `preprocessor' is
%% returned. Otherwise, if `Node' represents a module
%% attribute "`-<em>Name</em>...'", a tuple `{Name,
%% Info}' is returned, where `Info' depends on
%% `Name', as follows:
%% <dl>
%% <dt>`{module, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_module_attribute(Node)'.</dd>
%%
%% <dt>`{export, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_export_attribute(Node)'.</dd>
%%
%% <dt>`{import, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_import_attribute(Node)'.</dd>
%%
%% <dt>`{file, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_file_attribute(Node)'.</dd>
%%
%% <dt>`{record, Info}'</dt>
%%
%% <dd>where `Info =
%% analyze_record_attribute(Node)'.</dd>
%%
%% <dt>`{Name, Info}'</dt>
%%
%% <dd>where `{Name, Info} =
%% analyze_wild_attribute(Node)'.</dd>
%% </dl>
%% The evaluation throws `syntax_error' if `Node'
%% does not represent a well-formed module attribute.
%%
%% @see analyze_module_attribute/1
%% @see analyze_export_attribute/1
%% @see analyze_import_attribute/1
%% @see analyze_file_attribute/1
%% @see analyze_record_attribute/1
%% @see analyze_wild_attribute/1
-spec analyze_attribute(erl_syntax:syntaxTree()) ->
'preprocessor' | {atom(), term()}. % XXX: underspecified
analyze_attribute(Node) ->
Name = erl_syntax:attribute_name(Node),
case erl_syntax:type(Name) of
atom ->
case erl_syntax:atom_value(Name) of
define -> preprocessor;
undef -> preprocessor;
include -> preprocessor;
include_lib -> preprocessor;
ifdef -> preprocessor;
ifndef -> preprocessor;
else -> preprocessor;
endif -> preprocessor;
A ->
{A, analyze_attribute(A, Node)}
end;
_ ->
throw(syntax_error)
end.
analyze_attribute(module, Node) ->
analyze_module_attribute(Node);
analyze_attribute(export, Node) ->
analyze_export_attribute(Node);
analyze_attribute(import, Node) ->
analyze_import_attribute(Node);
analyze_attribute(file, Node) ->
analyze_file_attribute(Node);
analyze_attribute(record, Node) ->
analyze_record_attribute(Node);
analyze_attribute(define, _Node) ->
define;
analyze_attribute(spec, _Node) ->
spec;
analyze_attribute(_, Node) ->
%% A "wild" attribute (such as e.g. a `compile' directive).
analyze_wild_attribute(Node).
%% =====================================================================
%% @spec analyze_module_attribute(Node::syntaxTree()) ->
%% Name::atom() | {Name::atom(), Variables::[atom()]}
%%
%% @doc Returns the module name and possible parameters declared by a
%% module attribute. If the attribute is a plain module declaration such
%% as `-module(name)', the result is the module name. If the attribute
%% is a parameterized module declaration, the result is a tuple
%% containing the module name and a list of the parameter variable
%% names.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed module attribute.
%%
%% @see analyze_attribute/1
-spec analyze_module_attribute(erl_syntax:syntaxTree()) ->
atom() | {atom(), [atom()]}.
analyze_module_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[M] ->
module_name_to_atom(M);
[M, L] ->
M1 = module_name_to_atom(M),
L1 = analyze_variable_list(L),
{M1, L1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
analyze_variable_list(Node) ->
case erl_syntax:is_proper_list(Node) of
true ->
[erl_syntax:variable_name(V)
|| V <- erl_syntax:list_elements(Node)];
false ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_export_attribute(Node::syntaxTree()) -> [FunctionName]
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the list of function names declared by an export
%% attribute. We do not guarantee that each name occurs at most once in
%% the list. The order of listing is not defined.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed export attribute.
%%
%% @see analyze_attribute/1
-type functionN() :: atom() | {atom(), arity()}.
-type functionName() :: functionN() | {atom(), functionN()}.
-spec analyze_export_attribute(erl_syntax:syntaxTree()) -> [functionName()].
analyze_export_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[L] ->
analyze_function_name_list(L);
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
analyze_function_name_list(Node) ->
case erl_syntax:is_proper_list(Node) of
true ->
[analyze_function_name(F)
|| F <- erl_syntax:list_elements(Node)];
false ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_function_name(Node::syntaxTree()) -> FunctionName
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the function name represented by a syntax tree. If
%% `Node' represents a function name, such as
%% "`foo/1'" or "`bloggs:fred/2'", a uniform
%% representation of that name is returned. Different nestings of arity
%% and module name qualifiers in the syntax tree does not affect the
%% result.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed function name.
-spec analyze_function_name(erl_syntax:syntaxTree()) -> functionName().
analyze_function_name(Node) ->
case erl_syntax:type(Node) of
atom ->
erl_syntax:atom_value(Node);
arity_qualifier ->
A = erl_syntax:arity_qualifier_argument(Node),
case erl_syntax:type(A) of
integer ->
F = erl_syntax:arity_qualifier_body(Node),
F1 = analyze_function_name(F),
append_arity(erl_syntax:integer_value(A), F1);
_ ->
throw(syntax_error)
end;
module_qualifier ->
M = erl_syntax:module_qualifier_argument(Node),
case erl_syntax:type(M) of
atom ->
F = erl_syntax:module_qualifier_body(Node),
F1 = analyze_function_name(F),
{erl_syntax:atom_value(M), F1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
append_arity(A, {Module, Name}) ->
{Module, append_arity(A, Name)};
append_arity(A, Name) when is_atom(Name) ->
{Name, A};
append_arity(A, A) ->
A;
append_arity(_A, Name) ->
Name. % quietly drop extra arity in case of conflict
%% =====================================================================
%% @spec analyze_import_attribute(Node::syntaxTree()) ->
%% {atom(), [FunctionName]} | atom()
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the module name and (if present) list of function names
%% declared by an import attribute. The returned value is an atom
%% `Module' or a pair `{Module, Names}', where
%% `Names' is a list of function names declared as imported
%% from the module named by `Module'. We do not guarantee
%% that each name occurs at most once in `Names'. The order
%% of listing is not defined.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed import attribute.
%%
%% @see analyze_attribute/1
-spec analyze_import_attribute(erl_syntax:syntaxTree()) ->
{atom(), [functionName()]} | atom().
analyze_import_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[M] ->
module_name_to_atom(M);
[M, L] ->
M1 = module_name_to_atom(M),
L1 = analyze_function_name_list(L),
{M1, L1};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_wild_attribute(Node::syntaxTree()) -> {atom(), term()}
%%
%% @doc Returns the name and value of a "wild" attribute. The result is
%% the pair `{Name, Value}', if `Node' represents "`-Name(Value)'".
%%
%% Note that no checking is done whether `Name' is a
%% reserved attribute name such as `module' or
%% `export': it is assumed that the attribute is "wild".
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed wild attribute.
%%
%% @see analyze_attribute/1
-spec analyze_wild_attribute(erl_syntax:syntaxTree()) -> {atom(), term()}.
analyze_wild_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
N = erl_syntax:attribute_name(Node),
case erl_syntax:type(N) of
atom ->
case erl_syntax:attribute_arguments(Node) of
[V] ->
case catch {ok, erl_syntax:concrete(V)} of
{ok, Val} ->
{erl_syntax:atom_value(N), Val};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_record_attribute(Node::syntaxTree()) ->
%% {atom(), Fields}
%%
%% Fields = [{atom(), none | syntaxTree()}]
%%
%% @doc Returns the name and the list of fields of a record declaration
%% attribute. The result is a pair `{Name, Fields}', if
%% `Node' represents "`-record(Name, {...}).'",
%% where `Fields' is a list of pairs `{Label,
%% Default}' for each field "`Label'" or "`Label =
%% <em>Default</em>'" in the declaration, listed in left-to-right
%% order. If the field has no default-value declaration, the value for
%% `Default' will be the atom `none'. We do not
%% guarantee that each label occurs at most one in the list.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed record declaration
%% attribute.
%%
%% @see analyze_attribute/1
%% @see analyze_record_field/1
-type fields() :: [{atom(), 'none' | erl_syntax:syntaxTree()}].
-spec analyze_record_attribute(erl_syntax:syntaxTree()) -> {atom(), fields()}.
analyze_record_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[R, T] ->
case erl_syntax:type(R) of
atom ->
Es = analyze_record_attribute_tuple(T),
{erl_syntax:atom_value(R), Es};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
analyze_record_attribute_tuple(Node) ->
case erl_syntax:type(Node) of
tuple ->
[analyze_record_field(F)
|| F <- erl_syntax:tuple_elements(Node)];
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_record_expr(Node::syntaxTree()) ->
%% {atom(), Info} | atom()
%%
%% Info = {atom(), [{atom(), Value}]} | {atom(), atom()} | atom()
%% Value = none | syntaxTree()
%%
%% @doc Returns the record name and field name/names of a record
%% expression. If `Node' has type `record_expr',
%% `record_index_expr' or `record_access', a pair
%% `{Type, Info}' is returned, otherwise an atom
%% `Type' is returned. `Type' is the node type of
%% `Node', and `Info' depends on
%% `Type', as follows:
%% <dl>
%% <dt>`record_expr':</dt>
%% <dd>`{atom(), [{atom(), Value}]}'</dd>
%% <dt>`record_access':</dt>
%% <dd>`{atom(), atom()} | atom()'</dd>
%% <dt>`record_index_expr':</dt>
%% <dd>`{atom(), atom()}'</dd>
%% </dl>
%%
%% For a `record_expr' node, `Info' represents
%% the record name and the list of descriptors for the involved fields,
%% listed in the order they appear. (See
%% `analyze_record_field/1' for details on the field
%% descriptors). For a `record_access' node,
%% `Info' represents the record name and the field name (or
%% if the record name is not included, only the field name; this is
%% allowed only in Mnemosyne-query syntax). For a
%% `record_index_expr' node, `Info' represents the
%% record name and the name field name.
%%
%% The evaluation throws `syntax_error' if
%% `Node' represents a record expression that is not
%% well-formed.
%%
%% @see analyze_record_attribute/1
%% @see analyze_record_field/1
-type info() :: {atom(), [{atom(), 'none' | erl_syntax:syntaxTree()}]}
| {atom(), atom()} | atom().
-spec analyze_record_expr(erl_syntax:syntaxTree()) -> {atom(), info()} | atom().
analyze_record_expr(Node) ->
case erl_syntax:type(Node) of
record_expr ->
A = erl_syntax:record_expr_type(Node),
case erl_syntax:type(A) of
atom ->
Fs = [analyze_record_field(F)
|| F <- erl_syntax:record_expr_fields(Node)],
{record_expr, {erl_syntax:atom_value(A), Fs}};
_ ->
throw(syntax_error)
end;
record_access ->
F = erl_syntax:record_access_field(Node),
case erl_syntax:type(F) of
atom ->
case erl_syntax:record_access_type(Node) of
none ->
{record_access, erl_syntax:atom_value(F)};
A ->
case erl_syntax:type(A) of
atom ->
{record_access,
{erl_syntax:atom_value(A),
erl_syntax:atom_value(F)}};
_ ->
throw(syntax_error)
end
end;
_ ->
throw(syntax_error)
end;
record_index_expr ->
F = erl_syntax:record_index_expr_field(Node),
case erl_syntax:type(F) of
atom ->
A = erl_syntax:record_index_expr_type(Node),
case erl_syntax:type(A) of
atom ->
{record_index_expr,
{erl_syntax:atom_value(A),
erl_syntax:atom_value(F)}};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
Type ->
Type
end.
%% =====================================================================
%% @spec analyze_record_field(Node::syntaxTree()) -> {atom(), Value}
%%
%% Value = none | syntaxTree()
%%
%% @doc Returns the label and value-expression of a record field
%% specifier. The result is a pair `{Label, Value}', if
%% `Node' represents "`Label = <em>Value</em>'" or
%% "`Label'", where in the first case, `Value' is
%% a syntax tree, and in the second case `Value' is
%% `none'.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed record field
%% specifier.
%%
%% @see analyze_record_attribute/1
%% @see analyze_record_expr/1
-spec analyze_record_field(erl_syntax:syntaxTree()) ->
{atom(), 'none' | erl_syntax:syntaxTree()}.
analyze_record_field(Node) ->
case erl_syntax:type(Node) of
record_field ->
A = erl_syntax:record_field_name(Node),
case erl_syntax:type(A) of
atom ->
T = erl_syntax:record_field_value(Node),
{erl_syntax:atom_value(A), T};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_file_attribute(Node::syntaxTree()) ->
%% {string(), integer()}
%%
%% @doc Returns the file name and line number of a `file'
%% attribute. The result is the pair `{File, Line}' if
%% `Node' represents "`-file(File, Line).'".
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed `file'
%% attribute.
%%
%% @see analyze_attribute/1
-spec analyze_file_attribute(erl_syntax:syntaxTree()) -> {string(), integer()}.
analyze_file_attribute(Node) ->
case erl_syntax:type(Node) of
attribute ->
case erl_syntax:attribute_arguments(Node) of
[F, N] ->
case (erl_syntax:type(F) =:= string)
and (erl_syntax:type(N) =:= integer) of
true ->
{erl_syntax:string_value(F),
erl_syntax:integer_value(N)};
false ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_function(Node::syntaxTree()) -> {atom(), integer()}
%%
%% @doc Returns the name and arity of a function definition. The result
%% is a pair `{Name, A}' if `Node' represents a
%% function definition "`Name(<em>P_1</em>, ..., <em>P_A</em>) ->
%% ...'".
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed function
%% definition.
%%
%% @see analyze_rule/1
-spec analyze_function(erl_syntax:syntaxTree()) -> {atom(), arity()}.
analyze_function(Node) ->
case erl_syntax:type(Node) of
function ->
N = erl_syntax:function_name(Node),
case erl_syntax:type(N) of
atom ->
{erl_syntax:atom_value(N),
erl_syntax:function_arity(Node)};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_rule(Node::syntaxTree()) -> {atom(), integer()}
%%
%% @doc Returns the name and arity of a Mnemosyne rule. The result is a
%% pair `{Name, A}' if `Node' represents a rule
%% "`Name(<em>P_1</em>, ..., <em>P_A</em>) :- ...'".
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed Mnemosyne
%% rule.
%%
%% @see analyze_function/1
-spec analyze_rule(erl_syntax:syntaxTree()) -> {atom(), arity()}.
analyze_rule(Node) ->
case erl_syntax:type(Node) of
rule ->
N = erl_syntax:rule_name(Node),
case erl_syntax:type(N) of
atom ->
{erl_syntax:atom_value(N),
erl_syntax:rule_arity(Node)};
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_implicit_fun(Node::syntaxTree()) -> FunctionName
%%
%% FunctionName = atom() | {atom(), integer()}
%% | {ModuleName, FunctionName}
%% ModuleName = atom()
%%
%% @doc Returns the name of an implicit fun expression "`fun
%% <em>F</em>'". The result is a representation of the function
%% name `F'. (Cf. `analyze_function_name/1'.)
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed implicit fun.
%%
%% @see analyze_function_name/1
-spec analyze_implicit_fun(erl_syntax:syntaxTree()) -> functionName().
analyze_implicit_fun(Node) ->
case erl_syntax:type(Node) of
implicit_fun ->
analyze_function_name(erl_syntax:implicit_fun_name(Node));
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec analyze_application(Node::syntaxTree()) -> FunctionName | Arity
%%
%% FunctionName = {atom(), Arity}
%% | {ModuleName, FunctionName}
%% Arity = integer()
%% ModuleName = atom()
%%
%% @doc Returns the name of a called function. The result is a
%% representation of the name of the applied function `F/A',
%% if `Node' represents a function application
%% "`<em>F</em>(<em>X_1</em>, ..., <em>X_A</em>)'". If the
%% function is not explicitly named (i.e., `F' is given by
%% some expression), only the arity `A' is returned.
%%
%% The evaluation throws `syntax_error' if `Node' does not represent a
%% well-formed application expression.
%%
%% @see analyze_function_name/1
-type appFunName() :: {atom(), arity()} | {atom(), {atom(), arity()}}.
-spec analyze_application(erl_syntax:syntaxTree()) -> appFunName() | arity().
analyze_application(Node) ->
case erl_syntax:type(Node) of
application ->
A = length(erl_syntax:application_arguments(Node)),
F = erl_syntax:application_operator(Node),
case catch {ok, analyze_function_name(F)} of
syntax_error ->
A;
{ok, N} ->
append_arity(A, N);
_ ->
throw(syntax_error)
end;
_ ->
throw(syntax_error)
end.
%% =====================================================================
%% @spec function_name_expansions(Names::[Name]) -> [{ShortName, Name}]
%%
%% Name = ShortName | {atom(), Name}
%% ShortName = atom() | {atom(), integer()}
%%
%% @doc Creates a mapping from corresponding short names to full
%% function names. Names are represented by nested tuples of atoms and
%% integers (cf. `analyze_function_name/1'). The result is a
%% list containing a pair `{ShortName, Name}' for each
%% element `Name' in the given list, where the corresponding
%% `ShortName' is the rightmost-innermost part of
%% `Name'. The list thus represents a finite mapping from
%% unqualified names to the corresponding qualified names.
%%
%% Note: the resulting list can contain more than one tuple
%% `{ShortName, Name}' for the same `ShortName',
%% possibly with different values for `Name', depending on
%% the given list.
%%
%% @see analyze_function_name/1
-type shortname() :: atom() | {atom(), arity()}.
-type name() :: shortname() | {atom(), shortname()}.
-spec function_name_expansions([name()]) -> [{shortname(), name()}].
function_name_expansions(Fs) ->
function_name_expansions(Fs, []).
function_name_expansions([F | Fs], Ack) ->
function_name_expansions(Fs,
function_name_expansions(F, F, Ack));
function_name_expansions([], Ack) ->
Ack.
function_name_expansions({A, N}, Name, Ack) when is_integer(N) ->
[{{A, N}, Name} | Ack];
function_name_expansions({_, N}, Name, Ack) ->
function_name_expansions(N, Name, Ack);
function_name_expansions(A, Name, Ack) ->
[{A, Name} | Ack].
%% =====================================================================
%% @spec strip_comments(Tree::syntaxTree()) -> syntaxTree()
%%
%% @doc Removes all comments from all nodes of a syntax tree. All other
%% attributes (such as position information) remain unchanged.
%% Standalone comments in form lists are removed; any other standalone
%% comments are changed into null-comments (no text, no indentation).
-spec strip_comments(erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
strip_comments(Tree) ->
map(fun strip_comments_1/1, Tree).
strip_comments_1(T) ->
case erl_syntax:type(T) of
form_list ->
Es = erl_syntax:form_list_elements(T),
Es1 = [E || E <- Es, erl_syntax:type(E) /= comment],
T1 = erl_syntax:copy_attrs(T, erl_syntax:form_list(Es1)),
erl_syntax:remove_comments(T1);
comment ->
erl_syntax:comment([]);
_ ->
erl_syntax:remove_comments(T)
end.
%% =====================================================================
%% @spec to_comment(Tree) -> syntaxTree()
%% @equiv to_comment(Tree, "% ")
-spec to_comment(erl_syntax:syntaxTree()) -> erl_syntax:syntaxTree().
to_comment(Tree) ->
to_comment(Tree, "% ").
%% =====================================================================
%% @spec to_comment(Tree::syntaxTree(), Prefix::string()) ->
%% syntaxTree()
%%
%% @doc Equivalent to `to_comment(Tree, Prefix, F)' for a
%% default formatting function `F'. The default
%% `F' simply calls `erl_prettypr:format/1'.
%%
%% @see to_comment/3
%% @see erl_prettypr:format/1
-spec to_comment(erl_syntax:syntaxTree(), string()) -> erl_syntax:syntaxTree().
to_comment(Tree, Prefix) ->
F = fun (T) -> erl_prettypr:format(T) end,
to_comment(Tree, Prefix, F).
%% =====================================================================
%% @spec to_comment(Tree::syntaxTree(), Prefix::string(), Printer) ->
%% syntaxTree()
%%
%% Printer = (syntaxTree()) -> string()
%%
%% @doc Transforms a syntax tree into an abstract comment. The lines of
%% the comment contain the text for `Node', as produced by
%% the given `Printer' function. Each line of the comment is
%% prefixed by the string `Prefix' (this does not include the
%% initial "`%'" character of the comment line).
%%
%% For example, the result of
%% `to_comment(erl_syntax:abstract([a,b,c]))' represents
%% <pre>
%% %% [a,b,c]</pre>
%% (cf. `to_comment/1').
%%
%% Note: the text returned by the formatting function will be split
%% automatically into separate comment lines at each line break. No
%% extra work is needed.
%%
%% @see to_comment/1
%% @see to_comment/2
-spec to_comment(erl_syntax:syntaxTree(), string(),
fun((erl_syntax:syntaxTree()) -> string())) ->
erl_syntax:syntaxTree().
to_comment(Tree, Prefix, F) ->
erl_syntax:comment(split_lines(F(Tree), Prefix)).
%% =====================================================================
%% @spec limit(Tree, Depth) -> syntaxTree()
%%
%% @doc Equivalent to `limit(Tree, Depth, Text)' using the
%% text `"..."' as default replacement.
%%
%% @see limit/3
%% @see erl_syntax:text/1
-spec limit(erl_syntax:syntaxTree(), integer()) -> erl_syntax:syntaxTree().
limit(Tree, Depth) ->
limit(Tree, Depth, erl_syntax:text("...")).
%% =====================================================================
%% @spec limit(Tree::syntaxTree(), Depth::integer(),
%% Node::syntaxTree()) -> syntaxTree()
%%
%% @doc Limits a syntax tree to a specified depth. Replaces all non-leaf
%% subtrees in `Tree' at the given `Depth' by
%% `Node'. If `Depth' is negative, the result is
%% always `Node', even if `Tree' has no subtrees.
%%
%% When a group of subtrees (as e.g., the argument list of an
%% `application' node) is at the specified depth, and there
%% are two or more subtrees in the group, these will be collectively
%% replaced by `Node' even if they are leaf nodes. Groups of
%% subtrees that are above the specified depth will be limited in size,
%% as if each subsequent tree in the group were one level deeper than
%% the previous. E.g., if `Tree' represents a list of
%% integers "`[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]'", the result
%% of `limit(Tree, 5)' will represent `[1, 2, 3, 4,
%% ...]'.
%%
%% The resulting syntax tree is typically only useful for
%% pretty-printing or similar visual formatting.
%%
%% @see limit/2
-spec limit(erl_syntax:syntaxTree(), integer(), erl_syntax:syntaxTree()) ->
erl_syntax:syntaxTree().
limit(_Tree, Depth, Node) when Depth < 0 ->
Node;
limit(Tree, Depth, Node) ->
limit_1(Tree, Depth, Node).
limit_1(Tree, Depth, Node) ->
%% Depth is nonnegative here.
case erl_syntax:subtrees(Tree) of
[] ->
if Depth > 0 ->
Tree;
true ->
case is_simple_leaf(Tree) of
true ->
Tree;
false ->
Node
end
end;
Gs ->
if Depth > 1 ->
Gs1 = [[limit_1(T, Depth - 1, Node)
|| T <- limit_list(G, Depth, Node)]
|| G <- Gs],
rewrite(Tree,
erl_syntax:make_tree(erl_syntax:type(Tree),
Gs1));
Depth =:= 0 ->
%% Depth is zero, and this is not a leaf node
%% so we always replace it.
Node;
true ->
%% Depth is 1, so all subtrees are to be cut.
%% This is done groupwise.
Gs1 = [cut_group(G, Node) || G <- Gs],
rewrite(Tree,
erl_syntax:make_tree(erl_syntax:type(Tree),
Gs1))
end
end.
cut_group([], _Node) ->
[];
cut_group([T], Node) ->
%% Only if the group contains a single subtree do we try to
%% preserve it if suitable.
[limit_1(T, 0, Node)];
cut_group(_Ts, Node) ->
[Node].
is_simple_leaf(Tree) ->
case erl_syntax:type(Tree) of
atom -> true;
char -> true;
float -> true;
integer -> true;
nil -> true;
operator -> true;
tuple -> true;
underscore -> true;
variable -> true;
_ -> false
end.
%% If list has more than N elements, take the N - 1 first and
%% append Node; otherwise return list as is.
limit_list(Ts, N, Node) ->
if length(Ts) > N ->
limit_list_1(Ts, N - 1, Node);
true ->
Ts
end.
limit_list_1([T | Ts], N, Node) ->
if N > 0 ->
[T | limit_list_1(Ts, N - 1, Node)];
true ->
[Node]
end;
limit_list_1([], _N, _Node) ->
[].
%% =====================================================================
%% Utility functions
rewrite(Tree, Tree1) ->
erl_syntax:copy_attrs(Tree, Tree1).
module_name_to_atom(M) ->
case erl_syntax:type(M) of
atom ->
erl_syntax:atom_value(M);
qualified_name ->
list_to_atom(packages:concat(
[erl_syntax:atom_value(A)
|| A <- erl_syntax:qualified_name_segments(M)])
);
_ ->
throw(syntax_error)
end.
%% This splits lines at line terminators and expands tab characters to
%% spaces. The width of a tab is assumed to be 8.
% split_lines(Cs) ->
% split_lines(Cs, "").
split_lines(Cs, Prefix) ->
split_lines(Cs, Prefix, 0).
split_lines(Cs, Prefix, N) ->
lists:reverse(split_lines(Cs, N, [], [], Prefix)).
split_lines([$\r, $\n | Cs], _N, Cs1, Ls, Prefix) ->
split_lines_1(Cs, Cs1, Ls, Prefix);
split_lines([$\r | Cs], _N, Cs1, Ls, Prefix) ->
split_lines_1(Cs, Cs1, Ls, Prefix);
split_lines([$\n | Cs], _N, Cs1, Ls, Prefix) ->
split_lines_1(Cs, Cs1, Ls, Prefix);
split_lines([$\t | Cs], N, Cs1, Ls, Prefix) ->
split_lines(Cs, 0, push(8 - (N rem 8), $\040, Cs1), Ls,
Prefix);
split_lines([C | Cs], N, Cs1, Ls, Prefix) ->
split_lines(Cs, N + 1, [C | Cs1], Ls, Prefix);
split_lines([], _, [], Ls, _) ->
Ls;
split_lines([], _N, Cs, Ls, Prefix) ->
[Prefix ++ lists:reverse(Cs) | Ls].
split_lines_1(Cs, Cs1, Ls, Prefix) ->
split_lines(Cs, 0, [], [Prefix ++ lists:reverse(Cs1) | Ls],
Prefix).
push(N, C, Cs) when N > 0 ->
push(N - 1, C, [C | Cs]);
push(0, _, Cs) ->
Cs.