%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2009-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
-module(sudoku_game).
-export([init/1,
indx/1, rcm/1, level/1]).
-include("sudoku.hrl").
init(GFX) ->
Empty = empty_table(#s{}),
Add = fun({Butt,Val},SN) ->
validate(rcm(Butt),Val,false,SN)
end,
Game = test(),
GFX ! {init, Game},
Self = self(),
Gen = spawn_opt(fun() -> create_games(levels(),Self) end,
[link, {priority,low}]),
loop(lists:foldl(Add,Empty#s{gfx=GFX, gen=Gen},Game)).
%%%%%%%%%%%%%%%%%% Game Engine %%%%%%%%%%%%%%%%%%
empty_table(S) ->
Nine = lists:seq(1,9),
D = gb_sets:from_ordset(Nine),
Mat = list_to_tuple([D || _ <- Nine]),
Poss = list_to_tuple([D || _ <- lists:seq(1,9*9)]),
Vals = list_to_tuple([0 || _ <- lists:seq(1,9*9)]),
Must = list_to_tuple([gb_sets:empty() || _ <- lists:seq(1,9*3)]),
S#s{p=Poss,m=Mat,mr=Must,mc=Must,v=Vals}.
loop(S0 = #s{gfx = Gfx, v=Vs}) ->
receive
quit ->
halt;
{'EXIT', Gfx, Reason} ->
io:format("The GUI crashed: ~p~n", [Reason]);
{validate, Butt, Val} ->
Ix = indx(Butt),
case element(Ix,Vs) of
Val -> loop(S0);
0 ->
S = validate(rcm(Butt),Val,true,S0),
loop(S);
_ ->
S1 = S0#s{v=setelement(Ix,Vs,0)},
S2 = rebuild_all(rcm(Butt),S1),
S = validate(rcm(Butt),Val,true,S2),
loop(S)
end;
{loaded, Game} ->
S1 = empty_table(S0),
Add = fun({Butt,Val},SN) ->
validate(rcm(Butt),Val,true,SN)
end,
loop(lists:foldl(Add,S1,Game));
{op,?EMPTY} ->
loop(empty_table(S0));
{op,?NEW, Level} ->
case find_game(Level,S0) of
{Game, S1} ->
S0#s.gen ! {gen_game, Level},
Gfx ! {busy,start},
Gfx ! {init, Game};
false ->
S1 = S0,
Gfx ! {busy,start},
Temp = new_game(S0),
Game = pick_shown(Temp,Level,Gfx),
S0#s.gen ! {gen_game, Level},
Game
end,
S2 = empty_table(S1),
Add = fun({Butt,Val},SN) ->
validate(rcm(Butt),Val,false, SN)
end,
Gfx ! {init, Game},
Gfx ! {busy,stop},
loop(lists:foldl(Add,S2,Game));
{solve, All} ->
Res = solve(S0, All),
[Gfx ! {set_val, Ind, Val} || {Ind,Val} <- element(2,Res)],
loop(S0);
{get_game, Pid} ->
Pid ! {game, get_known(S0)},
loop(S0);
{game, Game} ->
loop(S0#s{games=[Game|S0#s.games]});
CMD ->
io:format("Game loop got ~p~n", [CMD]),
?MODULE:loop(S0)
end.
validate({R,C,_M},0,Send,St = #s{gfx=Gfx}) ->
if Send -> Gfx ! {correct, {R,C}}; true -> ok end,
St;
validate(RCM={R,C,_M},Val,Send,St = #s{gfx=Gfx,v=Vs}) ->
S = poss(RCM,St),
case gb_sets:is_member(Val,S) of
true ->
if Send -> Gfx ! {correct, {R,C}}; true -> ok end,
add(RCM,Val,St);
false ->
if Send -> Gfx ! {wrong, {R,C}}; true -> ok end,
St#s{v=setelement(indx(R,C),Vs,Val)}
end.
rebuild_all(_, S0) ->
Solved = get_known(S0),
S1 = empty_table(S0),
lists:foldl(fun({Indx,Val},Acc) ->
add(rcm(Indx),Val,Acc)
end, S1, Solved).
test() -> %% Known to solvable
[{{1,2},6}, {{1,4},1}, {{1,6},4}, {{1,8},5},
{{2,3},8}, {{2,4},3}, {{2,6},5}, {{2,7},6},
{{3,1},2}, {{3,9},1},
{{4,1},8}, {{4,4},4}, {{4,6},7}, {{4,9},6},
{{5,3},6}, {{5,7},3},
{{6,1},7}, {{6,4},9}, {{6,6},1}, {{6,9},4},
{{7,1},5}, {{7,9},2},
{{8,3},7}, {{8,4},2}, {{8,6},6}, {{8,7},9},
{{9,2},4}, {{9,4},5}, {{9,6},8}, {{9,8},7}].
new_game(S) ->
rand:seed(exsplus),
case new_game(1,1,gb_sets:empty(),empty_table(S#s{}),[], 0) of
stop -> new_game(S);
Game -> Game
end.
new_game(_,_,_,_St,_Acc,Cnt) when Cnt > 200 ->
%% Backtracked 200 times, Bad path lets start over
stop;
new_game(R,C,BT,St,Acc,Cnt) when R < 10, C < 10 ->
M = mat(R,C),
U = poss({R,C,M},St),
S = gb_sets:difference(U,BT),
case gb_sets:size(S) of
0 ->
[{{BR,BC},BVal,BBT,BST}|BAcc] = Acc,
new_game(BR,BC,gb_sets:add(BVal,BBT),BST,BAcc,Cnt+1);
Size ->
Ind = rand:uniform(Size),
V = lists:nth(Ind,gb_sets:to_list(S)),
new_game(R,C+1,gb_sets:empty(),
add({R,C,M},V,St),
[{{R,C},V,BT,St}|Acc], Cnt)
end;
new_game(R,_C,Bt,S,Acc,Cnt) when R < 10 ->
new_game(R+1,1,Bt,S,Acc,Cnt);
new_game(_,_,_,S,_Acc,_Cnt) ->
%% io:format("Backtracked ~p ~n",[_Cnt]),
S.
pick_shown(S0, Level, Gfx) ->
Given = gb_sets:from_ordset([I || I <- lists:seq(1,9*9)]),
get_known(pick_shown(Given,Given,S0,level(Level),Gfx)).
get_known(#s{v=Vals}) ->
lists:foldl(fun(Index,Acc) ->
case element(Index,Vals) of
0 -> Acc;
Val ->
{R,C,_} = rcm(Index),
[{{R,C},Val}|Acc]
end
end, [], lists:seq(1,9*9)).
pick_shown(Given,Left,S0,Level,Gfx) ->
LeftSz = gb_sets:size(Left),
GivenSz = gb_sets:size(Given),
if LeftSz == 0 ->
io:format("No left ~p~n", [GivenSz]),
S0;
GivenSz < Level ->
io:format("Below level ~p ~p~n", [GivenSz,Level]),
S0;
true ->
Ran = rand:uniform(LeftSz),
V = lists:nth(Ran,gb_sets:to_list(Left)),
S1 = rebuild_all(rcm(V),S0#s{v=setelement(V,S0#s.v,0)}),
case solve(S1, true) of
{true, _, _} ->
catch Gfx ! {working, 100-LeftSz},
pick_shown(gb_sets:delete(V,Given),
gb_sets:delete(V,Left),
S1, Level,Gfx);
{false,_,_} ->
pick_shown(Given,gb_sets:delete(V,Left),
S0, Level,Gfx)
end
end.
solve(St=#s{v=Vals},All) ->
Unsolved = [I || I <- lists:seq(1,9*9), element(I,Vals) == 0],
solve(Unsolved, All, St, [], [], lists:reverse(Unsolved)).
solve(Rem, false, _St, [Solved|_], Unsolved, _) -> {true, [Solved], Rem ++ Unsolved};
solve([], _, _St, Solved, [], _) -> {true, Solved, []};
solve([], _, _St, Solved, Unsolved, Unsolved) -> {false, Solved, Unsolved};
solve([], _, St, Solved, Unsolved, _Orig) ->
solve(Unsolved,true,St,Solved,[],lists:reverse(Unsolved));
solve([Index|Rest],All, St, S, US, Orig) ->
RCM = rcm(Index),
Poss = poss(RCM,St),
case gb_sets:size(Poss) of
1 ->
%% io:format("S1 ~n",[]),
[Val] = gb_sets:to_list(Poss),
solve(Rest, All, add(RCM,Val,St), [{Index,Val}|S],US,Orig);
_ ->
case solve_1(RCM, Poss, St) of
false ->
solve(Rest, All, St, S, [Index|US],Orig);
Val ->
solve(Rest, All, add(RCM,Val,St), [{Index,Val}|S],US,Orig)
end
end.
solve_1(RCM={R,C,_M}, Avail, St) ->
All = all(RCM),
Poss = fun({RI,CI},Acc) when (RI == R) and (CI == C) -> Acc;
({RI,CI},Acc) -> gb_sets:union(poss(rcm({RI,CI}),St),Acc)
end,
D = fun({RI,CI},Acc) when (RI == R) and (CI == C) ->
io:format("~p:~p: ignore~n",[RI,CI]),
Acc;
({RI,CI},Acc) ->
Res = gb_sets:union(poss(rcm({RI,CI}),St),Acc),
io:format("~p:~p: ~p => ~p ~n",[RI,CI,gb_sets:to_list(poss(rcm({RI,CI}),St)),gb_sets:to_list(Res)]),
Res
end,
solve_2(All,{Poss,D},Avail).
solve_2([],_, _) -> false;
solve_2([First|R],{Poss,D},Avail) ->
All = lists:foldl(Poss, gb_sets:empty(), First),
Res = gb_sets:difference(Avail, All),
case gb_sets:size(Res) of
1 ->
%% lists:foldl(D, gb_sets:empty(), First),
%% io:format("Poss: ~w~nA: ~p O:~p ~n",[First,gb_sets:to_list(Avail),gb_sets:to_list(All)]),
[Val] = gb_sets:to_list(Res),
Val;
_ ->
solve_2(R,{Poss,D},Avail)
end.
all({RI,CI,MI}) -> all(RI,CI,MI).
all(RI,CI,MI) ->
MR = ((MI-1) div 3)*3,
MC = ((MI-1) rem 3)*3,
Ri = [{RI,N} || N <- lists:seq(1,9)],
Ci = [{N,CI} || N <- lists:seq(1,9)],
Mi = [{1+MR,1+MC},{1+MR,2+MC},{1+MR,3+MC},
{2+MR,1+MC},{2+MR,2+MC},{2+MR,3+MC},
{3+MR,1+MC},{3+MR,2+MC},{3+MR,3+MC}],
[Ri,Ci,Mi].
other_mats(N) ->
if N < 4 -> P1=3, P2= 6;
N < 7 -> P1=-3,P2= 3;
true -> P1=-6,P2=-3
end,
case (N-1) rem 3 of
0 -> [N+1,N+2,N+P1,N+P2];
1 -> [N-1,N+1,N+P1,N+P2];
2 -> [N-2,N-1,N+P1,N+P2]
end.
check_must(S=#s{p=Poss,m=MS,mr=MR0,mc=MC0}) ->
List = lists:seq(1,9),
{MR,MC} = lists:foldl(fun(Val,{MRT,MCT}) ->
check_must2(List,Val,Poss,MS,MRT,MCT)
end, {MR0,MC0}, List),
S#s{mr=MR,mc=MC}.
check_must2([M|Rest],Val,Poss,Ms,MR0,MC0) ->
case gb_sets:is_member(Val, element(M,Ms)) of
true ->
{Rows,Cols} = rc_in_mat(M),
MR1 = check_must3(Rows,Val,Poss,row,MR0),
MC1 = check_must3(Cols,Val,Poss,col,MC0),
check_must2(Rest,Val,Poss,Ms,MR1,MC1);
false ->
check_must2(Rest,Val,Poss,Ms,MR0,MC0)
end;
check_must2([],_,_,_,MR,MC) -> {MR,MC}.
check_must3({F1,F2,F3},Val,Check,Type,Must0) ->
R1 = not gb_sets:is_member(Val, get_poss(F1,Check,gb_sets:empty())),
R2 = not gb_sets:is_member(Val, get_poss(F2,Check,gb_sets:empty())),
R3 = not gb_sets:is_member(Val, get_poss(F3,Check,gb_sets:empty())),
%% io:format("M=~p ~p ~p ~p ~p~n",[M,[R1,R2,R3],gb_sets:to_list(element(F1,Check)),gb_sets:to_list(element(F2,Check)),gb_sets:to_list(element(F3,Check))]),
if R1,R2 -> update_must(Type,F3,Val,Must0);
R1,R3 -> update_must(Type,F2,Val,Must0);
R2,R3 -> update_must(Type,F1,Val,Must0);
true -> Must0
end.
update_must(Type,[Indx|_],Val,Must) ->
N = mindx(Type, Indx),
%% io:format("~p ~p ~p must contain ~p~n",[Type,N,rcm(Indx),Val]),
Set = element(N,Must),
setelement(N,Must, gb_sets:add(Val,Set)).
add(RCM={R,C,M},Val,S=#s{p=P0,m=MS,v=Vals,mr=MR0,mc=MC0}) ->
Ri = mindx(R,M),
Ci = mindx(M,C),
MR = delete(Val,Ri,MR0),
MC = delete(Val,Ci,MC0),
P1 = setelement(indx(RCM),P0,gb_sets:empty()),
check_must(S#s{p=delete(Val,lists:flatten(all(RCM)),P1),
m=delete(Val,M,MS),
mr=MR,mc=MC,
v=setelement(indx(RCM),Vals,Val)}).
poss(RCM={R,C,M}, #s{p=P,v=Vals,mr=MR,mc=MC}) ->
I = indx(R,C),
case element(I, Vals) of
0 ->
Rm = mindx(R,M),
Cm = mindx(M,C),
T1 = gb_sets:intersection(element(Rm,MR),element(Cm,MC)),
case gb_sets:size(T1) of
1 -> T1;
_ ->
Not = get_nots(RCM,MR,MC),
gb_sets:difference(element(I,P),Not)
end;
_ ->
gb_sets:empty()
end.
get_nots({R,C,M},MR,MC) ->
[RM1,RM2,CM1,CM2] = other_mats(M),
R1 = get_poss([mindx(R,RM1),mindx(R,RM2)],MR,gb_sets:empty()),
R2 = get_poss([mindx(CM1,C),mindx(CM2,C)],MC,R1),
%% io:format("~p:~p:~p ~p ~p~n",
%% [C,CM1,CM2,
%% gb_sets:to_list(element(mindx(CM1,C),MC)),
%% gb_sets:to_list(element(mindx(CM2,C),MC))]),
R2.
get_poss([],_,Tot) -> Tot;
get_poss([H|R],What,Tot) ->
%% io:format("~p~n",[H]),
get_poss(R,What, gb_sets:union(element(H,What),Tot)).
mindx(row,Indx) ->
{R,_C,M} = rcm(Indx),
mindx(R,M);
mindx(col,Indx) ->
{_R,C,M} = rcm(Indx),
mindx(M,C);
mindx(R,M) ->
1+(R-1)*3 + (M-1) rem 3.
rcm(Indx) when is_integer(Indx) ->
rcm({((Indx-1) div 9)+1, (Indx-1) rem 9+1});
rcm({R,C}) ->
M = mat(R,C),
{R,C,M}.
mat(R,C) ->
1+(C-1) div 3 + ((R-1) div 3)*3.
rc_in_mat(M) ->
R1 = 1+3*((M-1) div 3),
C1 = 1+3*((M-1) rem 3),
{{[indx({R1+0,C1+0}),indx({R1+0,C1+1}),indx({R1+0,C1+2})],
[indx({R1+1,C1+0}),indx({R1+1,C1+1}),indx({R1+1,C1+2})],
[indx({R1+2,C1+0}),indx({R1+2,C1+1}),indx({R1+2,C1+2})]},
{[indx({R1+0,C1+0}),indx({R1+1,C1+0}),indx({R1+2,C1+0})],
[indx({R1+0,C1+1}),indx({R1+1,C1+1}),indx({R1+2,C1+1})],
[indx({R1+0,C1+2}),indx({R1+1,C1+2}),indx({R1+2,C1+2})]}}.
indx(Indx) when is_integer(Indx) -> Indx;
indx({Row, Col}) ->
indx(Row,Col);
indx({Row, Col,_}) ->
indx(Row,Col).
indx(Row, Col) ->
(Row-1)*9+Col.
delete(_Val,[],S0) -> S0;
delete(Val,[I1|R],S0) ->
I = if is_integer(I1) -> I1;
true -> indx(I1)
end,
S = setelement(I,S0,gb_sets:delete_any(Val, element(I,S0))),
delete(Val,R,S);
delete(Val,I,S) ->
setelement(I,S,gb_sets:delete_any(Val, element(I,S))).
%%%%%%%%%%%%%%%%%%%%%%%%%
%% Pre generate games on low priority
create_games(Levels,Engine) ->
gen_loop(Levels, Engine, 5).
gen_loop([], Engine,_) ->
receive
{gen_game, Level} ->
gen_loop([Level], Engine,5)
end;
gen_loop([Level|Ls], Engine, N) when N > 0 ->
Empty = empty_table(#s{}),
Temp = new_game(Empty),
Game = pick_shown(Temp,Level,undefined),
ResLev = length(Game),
Engine ! {game, {ResLev, Game}},
case ResLev =< level(Level) of
true ->
gen_loop(Ls,Engine, 5);
false ->
gen_loop([Level|Ls],Engine, N-1)
end;
gen_loop([_|Ls],Engine, _) ->
gen_loop(Ls,Engine, 5).
find_game(_, #s{games=[]}) -> false;
find_game(hardest, S = #s{games=Gs0}) ->
Hard = level(hard),
case lists:sort(Gs0) of
[{Level,G}|Gs] when Level < (Hard-5) ->
{G, S#s{games=Gs}};
_ -> false
end;
find_game(Level, S = #s{games=Gs0}) ->
case find_game2(level(Level), lists:reverse(lists:sort(Gs0)), []) of
false -> false;
{Game, Gs} -> {Game,S#s{games=Gs}}
end.
find_game2(Hard, [{Level,G}|Gs], Acc) when Level =< Hard, Level > (Hard-5) ->
{G, Gs ++ Acc};
find_game2(Hard, [G|Gs], Acc) ->
find_game2(Hard, Gs, [G|Acc]);
find_game2(_Hard, [], _ ) -> false.
levels() ->
[trivial,easy,normal,hard,hardest].
level(Level) when is_atom(Level) ->
case Level of
all -> 100;
trivial -> 40;
easy -> 35;
normal -> 30;
hard -> 25;
hardest -> 0
end;
level(Int) when is_integer(Int) ->
if
Int =< 20 -> hardest;
Int =< 25 -> hard;
Int =< 30 -> normal;
Int =< 35 -> easy;
true -> trivial
end.