<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>1997</year><year>2009</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>Sys and Proc_Lib</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
<file>spec_proc.xml</file>
</header>
<p>The module <c>sys</c> contains functions for simple debugging of
processes implemented using behaviours.</p>
<p>There are also functions that, together with functions in
the module <c>proc_lib</c>, can be used to implement a
<em>special process</em>, a process which comply to the OTP design
principles without making use of a standard behaviour. They can
also be used to implement user defined (non-standard) behaviours.</p>
<p>Both <c>sys</c> and <c>proc_lib</c> belong to the STDLIB
application.</p>
<section>
<title>Simple Debugging</title>
<p>The module <c>sys</c> contains some functions for simple debugging
of processes implemented using behaviours. We use the
<c>code_lock</c> example from
the <seealso marker="fsm#ex">gen_event</seealso> chapter to
illustrate this:</p>
<pre>
% <input>erl</input>
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
Eshell V5.2.3.6 (abort with ^G)
1> <input>code_lock:start_link([1,2,3,4]).</input>
{ok,<0.32.0>}
2> <input>sys:statistics(code_lock, true).</input>
ok
3> <input>sys:trace(code_lock, true).</input>
ok
4> <input>code_lock:button(4).</input>
*DBG* code_lock got event {button,4} in state closed
ok
*DBG* code_lock switched to state closed
5> <input>code_lock:button(3).</input>
*DBG* code_lock got event {button,3} in state closed
ok
*DBG* code_lock switched to state closed
6> <input>code_lock:button(2).</input>
*DBG* code_lock got event {button,2} in state closed
ok
*DBG* code_lock switched to state closed
7> <input>code_lock:button(1).</input>
*DBG* code_lock got event {button,1} in state closed
ok
OPEN DOOR
*DBG* code_lock switched to state open
*DBG* code_lock got event timeout in state open
CLOSE DOOR
*DBG* code_lock switched to state closed
8> <input>sys:statistics(code_lock, get).</input>
{ok,[{start_time,{{2003,6,12},{14,11,40}}},
{current_time,{{2003,6,12},{14,12,14}}},
{reductions,333},
{messages_in,5},
{messages_out,0}]}
9> <input>sys:statistics(code_lock, false).</input>
ok
10> <input>sys:trace(code_lock, false).</input>
ok
11> <input>sys:get_status(code_lock).</input>
{status,<0.32.0>,
{module,gen_fsm},
[[{'$ancestors',[<0.30.0>]},
{'$initial_call',{gen,init_it,
[gen_fsm,<0.30.0>,<0.30.0>,
{local,code_lock},
code_lock,
[1,2,3,4],
[]]}}],
running,<0.30.0>,[],
[code_lock,closed,{[],[1,2,3,4]},code_lock,infinity]]}</pre>
</section>
<section>
<title>Special Processes</title>
<p>This section describes how to write a process which comply to
the OTP design principles, without making use of a standard
behaviour. Such a process should:</p>
<list type="bulleted">
<item>be started in a way that makes the process fit into a
supervision tree,</item>
<item>support the <c>sys</c><seealso marker="#debug">debug facilities</seealso>, and</item>
<item>take care of <seealso marker="#msg">system messages</seealso>.</item>
</list>
<p>System messages are messages with special meaning, used in
the supervision tree. Typical system messages are requests for
trace output, and requests to suspend or resume process execution
(used during release handling). Processes implemented using
standard behaviours automatically understand these messages.</p>
<section>
<title>Example</title>
<p>The simple server from
the <seealso marker="des_princ#ch1">Overview</seealso> chapter,
implemented using <c>sys</c> and <c>proc_lib</c> so it fits into
a supervision tree:</p>
<marker id="ex"></marker>
<pre>
-module(ch4).
-export([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1]).
-export([system_continue/3, system_terminate/4,
write_debug/3]).
start_link() ->
proc_lib:start_link(ch4, init, [self()]).
alloc() ->
ch4 ! {self(), alloc},
receive
{ch4, Res} ->
Res
end.
free(Ch) ->
ch4 ! {free, Ch},
ok.
init(Parent) ->
register(ch4, self()),
Chs = channels(),
Deb = sys:debug_options([]),
proc_lib:init_ack(Parent, {ok, self()}),
loop(Chs, Parent, Deb).
loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle_debug(Deb2, {ch4, write_debug},
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);
{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent,
ch4, Deb, Chs)
end.
system_continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).
system_terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).
write_debug(Dev, Event, Name) ->
io:format(Dev, "~p event = ~p~n", [Name, Event]).</pre>
<p>Example on how the simple debugging functions in <c>sys</c> can
be used for <c>ch4</c> as well:</p>
<pre>
% <input>erl</input>
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
Eshell V5.2.3.6 (abort with ^G)
1> <input>ch4:start_link().</input>
{ok,<0.30.0>}
2> <input>sys:statistics(ch4, true).</input>
ok
3> <input>sys:trace(ch4, true).</input>
ok
4> <input>ch4:alloc().</input>
ch4 event = {in,alloc,<0.25.0>}
ch4 event = {out,{ch4,ch1},<0.25.0>}
ch1
5> <input>ch4:free(ch1).</input>
ch4 event = {in,{free,ch1}}
ok
6> <input>sys:statistics(ch4, get).</input>
{ok,[{start_time,{{2003,6,13},{9,47,5}}},
{current_time,{{2003,6,13},{9,47,56}}},
{reductions,109},
{messages_in,2},
{messages_out,1}]}
7> <input>sys:statistics(ch4, false).</input>
ok
8> <input>sys:trace(ch4, false).</input>
ok
9> <input>sys:get_status(ch4).</input>
{status,<0.30.0>,
{module,ch4},
[[{'$ancestors',[<0.25.0>]},{'$initial_call',{ch4,init,[<0.25.0>]}}],
running,<0.25.0>,[],
[ch1,ch2,ch3]]}</pre>
</section>
<section>
<title>Starting the Process</title>
<p>A function in the <c>proc_lib</c> module should be used to
start the process. There are several possible functions, for
example <c>spawn_link/3,4</c> for asynchronous start and
<c>start_link/3,4,5</c> for synchronous start.</p>
<p>A process started using one of these functions will store
information that is needed for a process in a supervision tree,
for example about the ancestors and initial call.</p>
<p>Also, if the process terminates with another reason than
<c>normal</c> or <c>shutdown</c>, a crash report (see SASL
User's Guide) is generated.</p>
<p>In the example, synchronous start is used. The process is
started by calling <c>ch4:start_link()</c>:</p>
<code type="none">
start_link() ->
proc_lib:start_link(ch4, init, [self()]).</code>
<p><c>ch4:start_link</c> calls the function
<c>proc_lib:start_link</c>. This function takes a module name,
a function name and an argument list as arguments and spawns
and links to a new process. The new process starts by executing
the given function, in this case <c>ch4:init(Pid)</c>, where
<c>Pid</c> is the pid (<c>self()</c>) of the first process, that
is the parent process.</p>
<p>In <c>init</c>, all initialization including name registration
is done. The new process must also acknowledge that it has been
started to the parent:</p>
<code type="none">
init(Parent) ->
...
proc_lib:init_ack(Parent, {ok, self()}),
loop(...).</code>
<p><c>proc_lib:start_link</c> is synchronous and does not return
until <c>proc_lib:init_ack</c> has been called.</p>
</section>
<section>
<marker id="debug"></marker>
<title>Debugging</title>
<p>To support the debug facilites in <c>sys</c>, we need a
<em>debug structure</em>, a term <c>Deb</c> which is
initialized using <c>sys:debug_options/1</c>:</p>
<code type="none">
init(Parent) ->
...
Deb = sys:debug_options([]),
...
loop(Chs, Parent, Deb).</code>
<p><c>sys:debug_options/1</c> takes a list of options as argument.
Here the list is empty, which means no debugging is enabled
initially. See <c>sys(3)</c> for information about possible
options.</p>
<p>Then for each <em>system event</em> that we want to be logged
or traced, the following function should be called.</p>
<code type="none">
sys:handle_debug(Deb, Func, Info, Event) => Deb1</code>
<list type="bulleted">
<item>
<p><c>Deb</c> is the debug structure.</p>
</item>
<item>
<p><c>Func</c> is a tuple <c>{Module, Name}</c> (or a fun) and
should specify a (user defined) function used to format
trace output. For each system event, the format function is
called as <c>Module:Name(Dev, Event, Info)</c>, where:</p>
<list type="bulleted">
<item>
<p><c>Dev</c> is the IO device to which the output should
be printed. See <c>io(3)</c>.</p>
</item>
<item>
<p><c>Event</c> and <c>Info</c> are passed as-is from
<c>handle_debug</c>.</p>
</item>
</list>
</item>
<item>
<p><c>Info</c> is used to pass additional information to
<c>Func</c>, it can be any term and is passed as-is.</p>
</item>
<item>
<p><c>Event</c> is the system event. It is up to the user to
define what a system event is and how it should be
represented, but typically at least incoming and outgoing
messages are considered system events and represented by
the tuples <c>{in,Msg[,From]}</c> and <c>{out,Msg,To}</c>,
respectively.</p>
</item>
</list>
<p><c>handle_debug</c> returns an updated debug structure
<c>Deb1</c>.</p>
<p>In the example, <c>handle_debug</c> is called for each incoming
and outgoing message. The format function <c>Func</c> is
the function <c>ch4:write_debug/3</c> which prints the message
using <c>io:format/3</c>.</p>
<code type="none">
loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle_debug(Deb2, {ch4, write_debug},
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);
...
end.
write_debug(Dev, Event, Name) ->
io:format(Dev, "~p event = ~p~n", [Name, Event]).</code>
</section>
<section>
<marker id="msg"></marker>
<title>Handling System Messages</title>
<p><em>System messages</em> are received as:</p>
<code type="none">
{system, From, Request}</code>
<p>The content and meaning of these messages do not need to be
interpreted by the process. Instead the following function
should be called:</p>
<code type="none">
sys:handle_system_msg(Request, From, Parent, Module, Deb, State)</code>
<p>This function does not return. It will handle the system
message and then call:</p>
<code type="none">
Module:system_continue(Parent, Deb, State)</code>
<p>if process execution should continue, or:</p>
<code type="none">
Module:system_terminate(Reason, Parent, Deb, State)</code>
<p>if the process should terminate. Note that a process in a
supervision tree is expected to terminate with the same reason as
its parent.</p>
<list type="bulleted">
<item><c>Request</c> and <c>From</c> should be passed as-is from
the system message to the call to <c>handle_system_msg</c>.</item>
<item><c>Parent</c> is the pid of the parent.</item>
<item><c>Module</c> is the name of the module.</item>
<item><c>Deb</c> is the debug structure.</item>
<item><c>State</c> is a term describing the internal state and
is passed to <c>system_continue</c>/<c>system_terminate</c>.</item>
</list>
<p>In the example:</p>
<code type="none">
loop(Chs, Parent, Deb) ->
receive
...
{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent,
ch4, Deb, Chs)
end.
system_continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).
system_terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).</code>
<p>If the special process is set to trap exits, note that if
the parent process terminates, the expected behavior is to
terminate with the same reason:</p>
<code type="none">
init(...) ->
...,
process_flag(trap_exit, true),
...,
loop(...).
loop(...) ->
receive
...
{'EXIT', Parent, Reason} ->
..maybe some cleaning up here..
exit(Reason);
...
end.</code>
</section>
</section>
<section>
<title>User-Defined Behaviours</title>
<p>To implement a user-defined behaviour, write code similar to
code for a special process but calling functions in a callback
module for handling specific tasks.</p>
<p>If it is desired that the compiler should warn for missing
callback functions, as it does for the OTP behaviours, implement
and export the function:</p>
<code type="none">
behaviour_info(callbacks) ->
[{Name1,Arity1},...,{NameN,ArityN}].</code>
<p>where each <c>{Name,Arity}</c> specifies the name and arity of
a callback function.</p>
<p>When the compiler encounters the module attribute
<c>-behaviour(Behaviour).</c> in a module <c>Mod</c>, it will call
<c>Behaviour:behaviour_info(callbacks)</c> and compare the result
with the set of functions actually exported from <c>Mod</c>, and
issue a warning if any callback function is missing.</p>
<p>Example:</p>
<code type="none">
%% User-defined behaviour module
-module(simple_server).
-export([start_link/2,...]).
-export([behaviour_info/1]).
behaviour_info(callbacks) ->
[{init,1},
{handle_req,1},
{terminate,0}].
start_link(Name, Module) ->
proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
init(Parent, Name, Module) ->
register(Name, self()),
...,
Dbg = sys:debug_options([]),
proc_lib:init_ack(Parent, {ok, self()}),
loop(Parent, Module, Deb, ...).
...</code>
<p>In a callback module:</p>
<code type="none">
-module(db).
-behaviour(simple_server).
-export([init/0, handle_req/1, terminate/0]).
...</code>
</section>
</chapter>