aboutsummaryrefslogblamecommitdiffstats
path: root/system/doc/efficiency_guide/advanced.xml
blob: d4e47f4f104f35e91cc54e99d0ce74056d26febd (plain) (tree)
1
2
3
4
5
6
7
8
9
10
                                       




                                       
                                        


                                                        




                                                                      
 




                                                                              











                                       
                                                           

                                                                        


                                                                         
 

                                                                        


                                

                                         

            





                                                                 

            

                                  

            


                                                                      



                                                                        


                                                        

            

                                                       

            

                                                                            

            

                                                               

            

                                                        

            




                                                                          

            




                                                                      

            







                                                                         

            


                                                                         

            


                                                                        

            

                                                                           
            
                                                              



            




                                                                        
 







































































































                                                                                
























                                                                                                   

                                                                        

                                                             

                                        


            
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>2001</year><year>2013</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
 
          http://www.apache.org/licenses/LICENSE-2.0

      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License.
    </legalnotice>

    <title>Advanced</title>
    <prepared>Kenneth Lundin</prepared>
    <docno></docno>
    <date>2001-08-21</date>
    <rev></rev>
    <file>advanced.xml</file>
  </header>

  <section>
    <title>Memory</title>
    <p>A good start when programming efficiently is to know
      how much memory different data types and operations require. It is
      implementation-dependent how much memory the Erlang data types and
      other items consume, but the following table shows some figures for
      the <c>erts-5.2</c> system in R9B. There have been no significant
      changes in R13.</p>

      <p>The unit of measurement is memory words. There exists both a
      32-bit and a 64-bit implementation. A word is therefore 4 bytes or
      8 bytes, respectively.</p>
    <table>
      <row>
        <cell><em>Data Type</em></cell>
        <cell><em>Memory Size</em></cell>
      </row>
      <row>
        <cell>Small integer</cell>
        <cell>1 word.<br></br>
	On 32-bit architectures: -134217729 &lt; i &lt; 134217728
	(28 bits).<br></br>
	On 64-bit architectures: -576460752303423489 &lt; i &lt;
	576460752303423488 (60 bits).</cell>
      </row>
      <row>
        <cell>Large integer</cell>
        <cell>3..N words.</cell>
      </row>
      <row>
        <cell>Atom</cell>
        <cell>1 word.<br></br>
	An atom refers into an atom table, which also consumes memory.
	The atom text is stored once for each unique atom in this table.
	The atom table is <em>not</em> garbage-collected.</cell>
      </row>
      <row>
        <cell>Float</cell>
        <cell>On 32-bit architectures: 4 words.<br></br>
	On 64-bit architectures: 3 words.</cell>
      </row>
      <row>
        <cell>Binary</cell>
        <cell>3..6 words + data (can be shared).</cell>
      </row>
      <row>
        <cell>List</cell>
        <cell>1 word + 1 word per element + the size of each element.</cell>
      </row>
      <row>
        <cell>String (is the same as a list of integers)</cell>
        <cell>1 word + 2 words per character.</cell>
      </row>
      <row>
        <cell>Tuple</cell>
        <cell>2 words + the size of each element.</cell>
      </row>
      <row>
        <cell>Pid</cell>
        <cell>1 word for a process identifier from the current local node
	+ 5 words for a process identifier from another node.<br></br>
	A process identifier refers into a process table and a node table,
	which also consumes memory.</cell>
      </row>
      <row>
        <cell>Port</cell>
        <cell>1 word for a port identifier from the current local node
	+ 5 words for a port identifier from another node.<br></br>
	A port identifier refers into a port table and a node table,
	which also consumes memory.</cell>
      </row>
      <row>
        <cell>Reference</cell>
        <cell>On 32-bit architectures: 5 words for a reference from the
	current local node + 7 words for a reference from another
	node.<br></br>
	On 64-bit architectures: 4 words for a reference from the current
	local node + 6 words for a reference from another node.<br></br>
	A reference refers into a node table, which also consumes
	memory.</cell>
      </row>
      <row>
        <cell>Fun</cell>
        <cell>9..13 words + the size of environment.<br></br>
	A fun refers into a fun table, which also consumes memory.</cell>
      </row>
      <row>
        <cell>Ets table</cell>
        <cell>Initially 768 words + the size of each element (6 words +
	the size of Erlang data). The table grows when necessary.</cell>
      </row>
      <row>
        <cell>Erlang process</cell>
        <cell>327 words when spawned, including a heap of 233 words.</cell>
      </row>
      <tcaption>Memory Size of Different Data Types</tcaption>
    </table>
  </section>

  <section>
    <title>System Limits</title>
    <p>The Erlang language specification puts no limits on the number of
    processes, length of atoms, and so on. However, for performance and
    memory saving reasons, there will always be limits in a practical
    implementation of the Erlang language and execution environment.</p>

    <table>
      <row>
        <cell>Processes</cell>
        <cell>The maximum number of simultaneously alive Erlang processes
	is by default 32,768. This limit can be configured at startup.
	For more information, see the
	<seealso marker="erts:erl#max_processes"><c>+P</c></seealso>
	command-line flag in the
	<seealso marker="erts:erl"><c>erl(1)</c></seealso>
	manual page in <c>erts</c>.</cell>
      </row>
      <row>
	<cell>Known nodes</cell>
	<cell>A remote node Y must be known to node X if there exists
	any pids, ports, references, or funs (Erlang data types) from Y
	on X, or if X and Y are connected. The maximum number of remote
	nodes simultaneously/ever known to a node is limited by the
	<seealso marker="#atoms">maximum number of atoms</seealso>
	available for node names. All data concerning remote nodes,
	except for the node name atom, are garbage-collected.</cell>
      </row>
      <row>
	<cell>Connected nodes</cell>
	<cell>The maximum number of simultaneously connected nodes is
	limited by either the maximum number of simultaneously known
	remote nodes,
	<seealso marker="#ports">the maximum number of (Erlang) ports</seealso>
	available, or
	<seealso marker="#files_sockets">the maximum number of sockets</seealso>
	available.</cell>
      </row>
      <row>
	<cell>Characters in an atom</cell>
	<cell>255.</cell>
      </row>
      <row>
	<cell><marker id="atoms"></marker>Atoms</cell>
	<cell>By default, the maximum number of atoms is 1,048,576. This
	limit can be raised or lowered using the <c>+t</c> option.</cell>
      </row>
      <row>
	<cell>Ets tables</cell>
	<cell>Default is 1400. It can be changed with the environment
	variable <c>ERL_MAX_ETS_TABLES</c>.</cell>
      </row>
      <row>
	<cell>Elements in a tuple</cell>
	<cell>The maximum number of elements in a tuple is 67,108,863
	(26-bit unsigned integer). Clearly, other factors such as the
	available memory can make it difficult to create a tuple of
	that size.</cell>
      </row>
      <row>
	<cell>Size of binary</cell>
	<cell>In the 32-bit implementation of Erlang, 536,870,911
	bytes is the largest binary that can be constructed or matched
	using the bit syntax. In the 64-bit implementation, the maximum
	size is 2,305,843,009,213,693,951 bytes. If the limit is
	exceeded, bit syntax construction fails with a
	<c>system_limit</c> exception, while any attempt to match a
	binary that is too large fails. This limit is enforced starting
	in R11B-4.<br></br>
	In earlier Erlang/OTP releases, operations on too large
	binaries in general either fail or give incorrect results. In
	future releases, other operations that create binaries (such as
	<c>list_to_binary/1</c>) will probably also enforce the same
	limit.</cell>
      </row>
      <row>
	<cell>Total amount of data allocated by an Erlang node</cell>
	<cell>The Erlang runtime system can use the complete 32-bit
	(or 64-bit) address space, but the operating system often
	limits a single process to use less than that.</cell>
      </row>
      <row>
	<cell>Length of a node name</cell>
	<cell>An Erlang node name has the form host@shortname or
	host@longname. The node name is  used as an atom within
	the system, so the maximum size of 255 holds also for the
	node name.</cell>
      </row>
      <row>
	<cell><marker id="ports"></marker>Open ports</cell>
	<cell>The maximum number of simultaneously open Erlang ports is
	often by default 16,384. This limit can be configured at startup.
	For more information, see the
	<seealso marker="erts:erl#max_ports"><c>+Q</c></seealso>
	command-line flag in the
	<seealso marker="erts:erl"><c>erl(1)</c></seealso> manual page
	in <c>erts</c>.</cell>
      </row>
      <row>
	<cell><marker id="files_sockets"></marker>Open files and
	sockets</cell>
	<cell>The maximum number of simultaneously open files and
	sockets depends on
	<seealso marker="#ports">the maximum number of Erlang ports</seealso>
	available, as well as on operating system-specific settings
	and limits.</cell>
      </row>
      <row>
	<cell>Number of arguments to a function or fun</cell>
	<cell>255</cell>
      </row>
      <row>
        <cell><marker id="unique_references"/>Unique References on a Runtime System Instance</cell>
        <cell>Each scheduler thread has its own set of references, and all
        other threads have a shared set of references. Each set of references
        consist of <c>2⁶⁴ - 1</c> unique references. That is the total
        amount of unique references that can be produced on a runtime
        system instance is <c>(NoSchedulers + 1) * (2⁶⁴ - 1)</c>. If a
        scheduler thread create a new reference each nano second,
        references will at earliest be reused after more than 584 years.
	That is, for the foreseeable future they are unique enough.</cell>
      </row>
      <row>
        <cell><marker id="unique_integers"/>Unique Integers on a Runtime System Instance</cell>
        <cell>There are two types of unique integers both created using the
        <seealso marker="erts:erlang#unique_integer/1">erlang:unique_integer()</seealso>
        BIF. Unique integers created:
         <taglist>
	  <tag>with the <c>monotonic</c> modifier</tag>
	  <item>consist of a set of <c>2⁶⁴ - 1</c> unique integers.</item>
	  <tag>without the <c>monotonic</c> modifier</tag>
	  <item>consist of a set of <c>2⁶⁴ - 1</c> unique integers per scheduler
	  thread and a set of <c>2⁶⁴ - 1</c> unique integers shared by
	  other threads. That is the total amount of unique integers without
	  the <c>monotonic</c> modifier is <c>(NoSchedulers + 1) * (2⁶⁴ - 1)</c></item>
        </taglist>
      If a unique integer is created each nano second, unique integers
      will at earliest be reused after more than 584 years. That is, for
	the foreseeable future they are unique enough.</cell>
      </row>	
      <tcaption>System Limits</tcaption>
    </table>
  </section>
</chapter>