<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2003</year><year>2013</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>Records</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
<file>records.xml</file>
</header>
<section>
<title>Records and Tuples</title>
<p>The main advantage of using records rather than tuples is that
fields in a record are accessed by name, whereas fields in a
tuple are accessed by position. To illustrate these differences,
suppose that you want to represent a person with the tuple
<c>{Name, Address, Phone}</c>.</p>
<p>To write functions that manipulate this data, remember the following:</p>
<list type="bulleted">
<item>The <c>Name</c> field is the first element of the tuple.</item>
<item>The <c>Address</c> field is the second element.</item>
<item>The <c>Phone</c> field is the third element.</item>
</list>
<p>For example, to extract data from a variable <c>P</c>
that contains such a tuple, you can write the following code
and then use pattern matching to extract the relevant fields:</p>
<code type="none">
Name = element(1, P),
Address = element(2, P),
...</code>
<p>Such code is difficult to read and understand, and errors
occur if the numbering of the elements in the tuple is wrong.
If the data representation of the fields is changed, by re-ordering,
adding, or removing fields, all references to
the person tuple must be checked and possibly modified.</p>
<p>Records allow references to the fields by name, instead of by
position. In the following example, a record instead of a tuple
is used to store the data:</p>
<code type="none">
-record(person, {name, phone, address}).</code>
<p>This enables references to the fields of the record by name.
For example, if <c>P</c> is a variable whose value is a
<c>person</c> record, the following code access
the name and address fields of the records:</p>
<code type="none">
Name = P#person.name,
Address = P#person.address,
...</code>
<p>Internally, records are represented using tagged tuples:</p>
<code type="none">
{person, Name, Phone, Address}</code>
</section>
<section>
<title>Defining a Record</title>
<p>This following definition of a <c>person</c> is used in several
examples in this section. Three fields are included, <c>name</c>,
<c>phone</c>, and <c>address</c>. The default values for
<c>name</c> and <c>phone</c> is "" and [], respectively.
The default value for <c>address</c> is the atom
<c>undefined</c>, since no default value is supplied for this
field:</p>
<pre>
-record(person, {name = "", phone = [], address}).</pre>
<p>The record must be defined in the shell to enable
use of the record syntax in the examples:</p>
<pre>
> <input>rd(person, {name = "", phone = [], address}).</input>
person</pre>
<p>This is because record definitions are only available
at compile time, not at runtime. For details on records
in the shell, see the
<seealso marker="stdlib:shell">shell(3)</seealso>
manual page in <c>stdlib</c>.</p>
</section>
<section>
<title>Creating a Record</title>
<p>A new <c>person</c> record is created as follows:</p>
<pre>
> <input>#person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.</input>
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}</pre>
<p>As the <c>address</c> field was omitted, its default value
is used.</p>
<p>From Erlang 5.1/OTP R8B, a value to all
fields in a record can be set with the special field <c>_</c>.
<c>_</c> means "all fields not explicitly specified".</p>
<p><em>Example:</em></p>
<pre>
> <input>#person{name = "Jakob", _ = '_'}.</input>
#person{name = "Jakob",phone = '_',address = '_'}</pre>
<p>It is primarily intended to be used in <c>ets:match/2</c> and
<c>mnesia:match_object/3</c>, to set record fields to the atom
<c>'_'</c>. (This is a wildcard in <c>ets:match/2</c>.)</p>
</section>
<section>
<title>Accessing a Record Field</title>
<p>The following example shows how to access a record field:</p>
<pre>
> <input>P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.</input>
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> <input>P#person.name.</input>
"Joe"</pre>
</section>
<section>
<title>Updating a Record</title>
<p>The following example shows how to update a record:</p>
<pre>
> <input>P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.</input>
#person{name = "Joe",phone = [1,2,3],address = "A street"}
> <input>P2 = P1#person{name="Robert"}.</input>
#person{name = "Robert",phone = [1,2,3],address = "A street"}</pre>
</section>
<section>
<title>Type Testing</title>
<p>The following example shows that the guard succeeds if
<c>P</c> is record of type <c>person</c>:</p>
<pre>
foo(P) when is_record(P, person) -> a_person;
foo(_) -> not_a_person.</pre>
</section>
<section>
<title>Pattern Matching</title>
<p>Matching can be used in combination with records, as shown in
the following example:</p>
<pre>
> <input>P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.</input>
#person{name = "Joe",phone = [0,0,7],address = "A street"}
> <input>#person{name = Name} = P3, Name.</input>
"Joe"</pre>
<p>The following function takes a list of <c>person</c> records
and searches for the phone number of a person with a particular
name:</p>
<code type="none">
find_phone([#person{name=Name, phone=Phone} | _], Name) ->
{found, Phone};
find_phone([_| T], Name) ->
find_phone(T, Name);
find_phone([], Name) ->
not_found.</code>
<p>The fields referred to in the pattern can be given in any order.</p>
</section>
<section>
<title>Nested Records</title>
<p>The value of a field in a record can be an instance of a
record. Retrieval of nested data can be done stepwise, or in a
single step, as shown in the following example:</p>
<pre>
-record(name, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).
demo() ->
P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
First = (P#person.name)#name.first.</pre>
<p>Here, <c>demo()</c> evaluates to <c>"Robert"</c>.</p>
</section>
<section>
<title>A Longer Example</title>
<p>Comments are embedded in the following example:</p>
<pre>
%% File: person.hrl
%%-----------------------------------------------------------
%% Data Type: person
%% where:
%% name: A string (default is undefined).
%% age: An integer (default is undefined).
%% phone: A list of integers (default is []).
%% dict: A dictionary containing various information
%% about the person.
%% A {Key, Value} list (default is the empty list).
%%------------------------------------------------------------
-record(person, {name, age, phone = [], dict = []}).</pre>
<pre>
-module(person).
-include("person.hrl").
-compile(export_all). % For test purposes only.
%% This creates an instance of a person.
%% Note: The phone number is not supplied so the
%% default value [] will be used.
make_hacker_without_phone(Name, Age) ->
#person{name = Name, age = Age,
dict = [{computer_knowledge, excellent},
{drinks, coke}]}.
%% This demonstrates matching in arguments
print(#person{name = Name, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
%% Demonstrates type testing, selector, updating.
birthday(P) when record(P, person) ->
P#person{age = P#person.age + 1}.
register_two_hackers() ->
Hacker1 = make_hacker_without_phone("Joe", 29),
OldHacker = birthday(Hacker1),
% The central_register_server should have
% an interface function for this.
central_register_server ! {register_person, Hacker1},
central_register_server ! {register_person,
OldHacker#person{name = "Robert",
phone = [0,8,3,2,4,5,3,1]}}.</pre>
</section>
</chapter>