diff options
author | Ingela Anderton Andin <ingela@erlang.org> | 2013-04-26 18:08:48 +0200 |
---|---|---|
committer | Ingela Anderton Andin <ingela@erlang.org> | 2013-05-08 10:39:21 +0200 |
commit | 7c901c92f5936ca2f212300d2f13f899b7a222e0 (patch) | |
tree | b1781efdb7994147653cc2f0dcc5e7e80eab1bb0 | |
parent | 50a75c536b50ac2513a846256ba7798e911c1302 (diff) | |
download | otp-7c901c92f5936ca2f212300d2f13f899b7a222e0.tar.gz otp-7c901c92f5936ca2f212300d2f13f899b7a222e0.tar.bz2 otp-7c901c92f5936ca2f212300d2f13f899b7a222e0.zip |
crypto: Deprecate functions, update doc and specs
-rw-r--r-- | lib/crypto/doc/src/crypto.xml | 1432 | ||||
-rw-r--r-- | lib/crypto/doc/src/crypto_app.xml | 47 | ||||
-rw-r--r-- | lib/crypto/src/crypto.erl | 99 | ||||
-rw-r--r-- | lib/crypto/test/crypto_SUITE.erl | 86 | ||||
-rw-r--r-- | lib/public_key/doc/src/public_key.xml | 16 | ||||
-rw-r--r-- | lib/public_key/include/public_key.hrl | 4 | ||||
-rw-r--r-- | lib/public_key/src/public_key.erl | 21 | ||||
-rw-r--r-- | lib/public_key/test/pkits_SUITE.erl | 11 | ||||
-rw-r--r-- | lib/public_key/test/public_key_SUITE.erl | 2 | ||||
-rw-r--r-- | lib/ssl/doc/src/ssl.xml | 11 | ||||
-rw-r--r-- | lib/ssl/src/ssl_cipher.erl | 2 | ||||
-rw-r--r-- | lib/ssl/src/ssl_cipher.hrl | 2 | ||||
-rw-r--r-- | lib/ssl/src/ssl_handshake.erl | 9 | ||||
-rw-r--r-- | lib/ssl/src/ssl_handshake.hrl | 6 | ||||
-rw-r--r-- | lib/ssl/src/ssl_internal.hrl | 4 | ||||
-rw-r--r-- | lib/stdlib/src/otp_internal.erl | 72 |
16 files changed, 705 insertions, 1119 deletions
diff --git a/lib/crypto/doc/src/crypto.xml b/lib/crypto/doc/src/crypto.xml index 9201d649d7..c4e6993460 100644 --- a/lib/crypto/doc/src/crypto.xml +++ b/lib/crypto/doc/src/crypto.xml @@ -22,100 +22,115 @@ </legalnotice> <title>crypto</title> - <prepared>Peter Högfeldt</prepared> - <docno></docno> - <date>2000-06-20</date> - <rev>B</rev> </header> <module>crypto</module> <modulesummary>Crypto Functions</modulesummary> <description> <p>This module provides a set of cryptographic functions. </p> - <p>References:</p> <list type="bulleted"> <item> - <p>md4: The MD4 Message Digest Algorithm (RFC 1320)</p> - </item> - <item> - <p>md5: The MD5 Message Digest Algorithm (RFC 1321)</p> - </item> - <item> - <p>sha: Secure Hash Standard (FIPS 180-2)</p> - </item> - <item> - <p>hmac: Keyed-Hashing for Message Authentication (RFC 2104)</p> - </item> - <item> - <p>des: Data Encryption Standard (FIPS 46-3)</p> - </item> - <item> - <p>aes: Advanced Encryption Standard (AES) (FIPS 197) </p> + <p>Hash functions - <url href="http://www.ietf.org/rfc/rfc1320.txt">The MD4 Message Digest Algorithm (RFC 1320)</url>, + <url href="http://www.ietf.org/rfc/rfc1321.txt"> The MD5 Message Digest Algorithm (RFC 1321)</url> and + <url href="http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf"> Secure Hash Standard </url> + </p> </item> <item> - <p>ecb, cbc, cfb, ofb, ctr: Recommendation for Block Cipher Modes - of Operation (NIST SP 800-38A).</p> + <p>Hmac functions - <url href="http://www.ietf.org/rfc/rfc2104.txt"> Keyed-Hashing for Message Authentication (RFC 2104) </url></p> </item> <item> - <p>rsa: Recommendation for Block Cipher Modes of Operation - (NIST 800-38A)</p> + <p>Block ciphers - <url href="http://csrc.nist.gov/groups/ST/toolkit/block_ciphers.html"> </url> DES and AES and + and Block Cipher Modes - <url href="http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html"> ECB, CBC, CFB, OFB and CTR </url></p> </item> <item> - <p>dss: Digital Signature Standard (FIPS 186-2)</p> + <p><url href="http://www.ietf.org/rfc/rfc1321.txt"> RSA encryption RFC 1321 </url> </p> </item> <item> - <p>srp: Secure Remote Password Protocol (RFC 2945)</p> + <p>Digital signatures <url href="http://csrc.nist.gov/publications/drafts/fips186-3/fips_186-3.pdf">Digital Signature Standard (DSS) </url> and <url href="http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf">Elliptic Curve Digital + Signature Algorithm (ECDSA) </url> </p> </item> <item> - <p>ecdsa: "Public Key Cryptography for the Financial - Services Industry: The Elliptic Curve Digital - Signature Standard (ECDSA)", November, 2005.</p> + <p><url href="http://www.ietf.org/rfc/rfc2945.txt"> Secure Remote Password Protocol (SRP - RFC 2945) </url></p> </item> - <item> - <p>ec: Standards for Efficient Cryptography Group (SECG), "SEC 1: - Elliptic Curve Cryptography", Version 1.0, September 2000.</p> - </item> - <item> - <p>ecdsa: American National Standards Institute (ANSI), - ANS X9.62-2005: The Elliptic Curve Digital Signature - Algorithm (ECDSA), 2005.</p> - </item> </list> - <p>The above publications can be found at <url href="http://csrc.nist.gov/publications">NIST publications</url>, at <url href="http://www.ietf.org">IETF</url>. - </p> - <p><em>Types</em></p> - <pre> -byte() = 0 ... 255 -ioelem() = byte() | binary() | iolist() -iolist() = [ioelem()] -Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> - </pre> - <p></p> </description> + + <section> + <title>DATA TYPES </title> + + <p><code>byte() = 0 ... 255</code></p> + + <p><code>ioelem() = byte() | binary() | iolist()</code></p> + + <p><code>iolist() = [ioelem()]</code></p> + + <p><code>key_value() = integer() | binary() </code></p> + + <p><code>rsa_public() = [key_value()] = [E, N] </code></p> + <p> Where E is the public exponent and N is public modulus. </p> + + <p><code>rsa_private() = [key_value()] = [E, N, D] | [E, N, D, P1, P2, E1, E2, C] </code></p> + <p>Where E is the public exponent, N is public modulus and D is + the private exponent.The longer key format contains redundant + information that will make the calculation faster. P1,P2 are first + and second prime factors. E1,E2 are first and second exponents. C + is the CRT coefficient. Terminology is taken from RFC 3447. </p> + + <p><code>dss_public() = [key_value()] = [P, Q, G, Y] </code></p> + <p>Where P, Q and G are the dss parameters and Y is the public key.</p> + + <p><code>dss_private() = [key_value()] = [P, Q, G, X] </code></p> + <p>Where P, Q and G are the dss parameters and X is the private key.</p> + + <p><code>dss_public() = [key_value()] =[P, Q, G, Y] </code></p> + + <p><code>srp_public() = key_value() </code></p> + <p>Where is <c>A</c> or <c>B</c> from <url href="http://srp.stanford.edu/design.html">SRP design</url></p> + + <p><code>srp_private() = key_value() </code></p> + <p>Where is <c>a</c> or <c>b</c> from <url href="http://srp.stanford.edu/design.html">SRP design</url></p> + + <p><code>srp_params() = {user, [Generator::binary(), Prime::binary(), Version::atom()]} | + {host, [Verifier::binary(), Generator::binary(), Prime::binary(), Version::atom()]} + | {user, [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom() | [Scrambler:binary()]]} + | {host,[Verifier::binary(), Prime::binary(), Version::atom() | [Scrambler::binary]]} </code></p> + + <p>Where Verifier is <c>v</c>, Generator is <c>g</c> and Prime is<c> N</c>, DerivedKey is <c>X</c>, and Scrambler is + <c>u</c> (optional will be genrated if not provided) from <url href="http://srp.stanford.edu/design.html">SRP design</url> + Version = '3' | '6' | '6a' + </p> + + <p><code>dh_public() = key_value() </code></p> + + <p><code>dh_private() = key_value() </code></p> + + <p><code>dh_params() = [key_value()] = [P, G] </code></p> + + <p><code>ecdh_public() = key_value() </code></p> + + <p><code>ecdh_private() = key_value() </code></p> + + <p><code>ecdh_params() = ec_named_curve() | + {ec_field(), Prime :: key_value(), Point :: key_value(), Order :: integer(), CoFactor :: none | integer()} </code></p> + + <p><code>ec_field() = {prime_field, Prime :: integer()} | + {characteristic_two_field, M :: integer(), Basis :: ec_basis()}</code></p> + + <p><code>ec_basis() = {tpbasis, K :: non_neg_integer()} | + {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} | + onbasis</code></p> + + <p><code>ec_named_curve() -> + sect571r1| sect571k1| sect409r1| sect409k1| secp521r1| secp384r1| secp224r1| secp224k1| + secp192k1| secp160r2| secp128r2| secp128r1| sect233r1| sect233k1| sect193r2| sect193r1| + sect131r2| sect131r1| sect283r1| sect283k1| sect163r2| secp256k1| secp160k1| secp160r1| + secp112r2| secp112r1| sect113r2| sect113r1| sect239k1| sect163r1| sect163k1| secp256r1| + secp192r1 </code></p> + + </section> + <funcs> - <func> - <name>start() -> ok</name> - <fsummary>Start the crypto server.</fsummary> - <desc> - <p>Starts the crypto server.</p> - </desc> - </func> - <func> - <name>stop() -> ok</name> - <fsummary>Stop the crypto server.</fsummary> - <desc> - <p>Stops the crypto server.</p> - </desc> - </func> - <func> - <name>info() -> [atom()]</name> - <fsummary>Provide a list of available crypto functions.</fsummary> - <desc> - <p>Provides the available crypto functions in terms of a list - of atoms.</p> - </desc> - </func> - <func> + <func> <name>algorithms() -> [atom()]</name> <fsummary>Provide a list of available crypto algorithms.</fsummary> <desc> @@ -123,170 +138,52 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> of atoms.</p> </desc> </func> + <func> - <name>info_lib() -> [{Name,VerNum,VerStr}]</name> - <fsummary>Provides information about the libraries used by crypto.</fsummary> - <type> - <v>Name = binary()</v> - <v>VerNum = integer()</v> - <v>VerStr = binary()</v> - </type> - <desc> - <p>Provides the name and version of the libraries used by crypto.</p> - <p><c>Name</c> is the name of the library. <c>VerNum</c> is - the numeric version according to the library's own versioning - scheme. <c>VerStr</c> contains a text variant of the version.</p> - <pre> -> <input>info_lib().</input> -[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}] - </pre> - <note><p> - From OTP R16 the <em>numeric version</em> represents the version of the OpenSSL - <em>header files</em> (<c>openssl/opensslv.h</c>) used when crypto was compiled. - The text variant represents the OpenSSL library used at runtime. - In earlier OTP versions both numeric and text was taken from the library. - </p></note> - </desc> - </func> - <func> - <name>md4(Data) -> Digest</name> - <fsummary>Compute an <c>MD4</c>message digest from <c>Data</c></fsummary> - <type> - <v>Data = iolist() | binary()</v> - <v>Digest = binary()</v> - </type> - <desc> - <p>Computes an <c>MD4</c> message digest from <c>Data</c>, where - the length of the digest is 128 bits (16 bytes).</p> - </desc> - </func> - <func> - <name>md4_init() -> Context</name> - <fsummary>Creates an MD4 context</fsummary> - <type> - <v>Context = binary()</v> - </type> - <desc> - <p>Creates an MD4 context, to be used in subsequent calls to - <c>md4_update/2</c>.</p> - </desc> - </func> - <func> - <name>md4_update(Context, Data) -> NewContext</name> - <fsummary>Update an MD4 <c>Context</c>with <c>Data</c>, and return a <c>NewContext</c></fsummary> - <type> - <v>Data = iolist() | binary()</v> - <v>Context = NewContext = binary()</v> - </type> - <desc> - <p>Updates an MD4 <c>Context</c> with <c>Data</c>, and returns - a <c>NewContext</c>.</p> - </desc> - </func> - <func> - <name>md4_final(Context) -> Digest</name> - <fsummary>Finish the update of an MD4 <c>Context</c>and return the computed <c>MD4</c>message digest</fsummary> - <type> - <v>Context = Digest = binary()</v> - </type> - <desc> - <p>Finishes the update of an MD4 <c>Context</c> and returns - the computed <c>MD4</c> message digest.</p> - </desc> - </func> - <func> - <name>md5(Data) -> Digest</name> - <fsummary>Compute an <c>MD5</c>message digest from <c>Data</c></fsummary> - <type> - <v>Data = iolist() | binary()</v> - <v>Digest = binary()</v> - </type> - <desc> - <p>Computes an <c>MD5</c> message digest from <c>Data</c>, where - the length of the digest is 128 bits (16 bytes).</p> - </desc> - </func> - <func> - <name>md5_init() -> Context</name> - <fsummary>Creates an MD5 context</fsummary> - <type> - <v>Context = binary()</v> - </type> - <desc> - <p>Creates an MD5 context, to be used in subsequent calls to - <c>md5_update/2</c>.</p> - </desc> - </func> - <func> - <name>md5_update(Context, Data) -> NewContext</name> - <fsummary>Update an MD5 <c>Context</c>with <c>Data</c>, and return a <c>NewContext</c></fsummary> - <type> - <v>Data = iolist() | binary()</v> - <v>Context = NewContext = binary()</v> - </type> - <desc> - <p>Updates an MD5 <c>Context</c> with <c>Data</c>, and returns - a <c>NewContext</c>.</p> - </desc> - </func> - <func> - <name>md5_final(Context) -> Digest</name> - <fsummary>Finish the update of an MD5 <c>Context</c>and return the computed <c>MD5</c>message digest</fsummary> - <type> - <v>Context = Digest = binary()</v> - </type> - <desc> - <p>Finishes the update of an MD5 <c>Context</c> and returns - the computed <c>MD5</c> message digest.</p> - </desc> - </func> - <func> - <name>sha(Data) -> Digest</name> - <fsummary>Compute an <c>SHA</c>message digest from <c>Data</c></fsummary> - <type> - <v>Data = iolist() | binary()</v> - <v>Digest = binary()</v> - </type> - <desc> - <p>Computes an <c>SHA</c> message digest from <c>Data</c>, where - the length of the digest is 160 bits (20 bytes).</p> - </desc> - </func> - <func> - <name>sha_init() -> Context</name> - <fsummary>Create an SHA context</fsummary> + <name>compute_key(Type, OthersPublicKey, MyPrivateKey, Params) -> SharedSecret</name> + <fsummary>Computes the shared secret</fsummary> <type> - <v>Context = binary()</v> + <v> Type = dh | ecdh | srp </v> + <v>OthersPublicKey = dh_public() | ecdh_public() | srp_public() </v> + <v>MyPrivate = dh_private() | ecdh_private() | srp_private() </v> + <v>Params = dh_params() | edhc_params() | srp_params() </v> + <v>SharedSecret = binary()</v> </type> <desc> - <p>Creates an SHA context, to be used in subsequent calls to - <c>sha_update/2</c>.</p> + <p>Computes the shared secret from the private key and the other party's public key. + </p> </desc> </func> + <func> - <name>sha_update(Context, Data) -> NewContext</name> - <fsummary>Update an SHA context</fsummary> + <name>exor(Data1, Data2) -> Result</name> + <fsummary>XOR data</fsummary> <type> - <v>Data = iolist() | binary()</v> - <v>Context = NewContext = binary()</v> + <v>Data1, Data2 = iolist() | binary()</v> + <v>Result = binary()</v> </type> <desc> - <p>Updates an SHA <c>Context</c> with <c>Data</c>, and returns - a <c>NewContext</c>.</p> + <p>Performs bit-wise XOR (exclusive or) on the data supplied.</p> </desc> </func> - <func> - <name>sha_final(Context) -> Digest</name> - <fsummary>Finish the update of an SHA context</fsummary> + + <func> + <name>generate_key(Type, Params) -> {PublicKey, PrivateKey} </name> + <name>generate_key(Type, Params, PrivateKey) -> {PublicKey, PrivateKey} </name> + <fsummary>Generates a public keys of type <c>Type</c></fsummary> <type> - <v>Context = Digest = binary()</v> + <v> Type = dh | ecdh | srp </v> + <v>Params = dh_params() | edhc_params() | srp_params() </v> + <v>PublicKey = dh_public() | ecdh_public() | srp_public() </v> + <v>PrivateKey = dh_private() | ecdh_private() | srp_private() </v> </type> <desc> - <p>Finishes the update of an SHA <c>Context</c> and returns - the computed <c>SHA</c> message digest.</p> + <p>Generates public keys of type <c>Type</c>. + </p> </desc> </func> - <func> + + <func> <name>hash(Type, Data) -> Digest</name> <fsummary></fsummary> <type> @@ -300,6 +197,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> is not supported by the underlying OpenSSL implementation.</p> </desc> </func> + <func> <name>hash_init(Type) -> Context</name> <fsummary></fsummary> @@ -314,6 +212,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> is not supported by the underlying OpenSSL implementation.</p> </desc> </func> + <func> <name>hash_update(Context, Data) -> NewContext</name> <fsummary></fsummary> @@ -341,32 +240,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> function used to generate it.</p> </desc> </func> - <func> - <name>md5_mac(Key, Data) -> Mac</name> - <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary> - <type> - <v>Key = Data = iolist() | binary()</v> - <v>Mac = binary()</v> - </type> - <desc> - <p>Computes an <c>MD5 MAC</c> message authentification code - from <c>Key</c> and <c>Data</c>, where the the length of the - Mac is 128 bits (16 bytes).</p> - </desc> - </func> - <func> - <name>md5_mac_96(Key, Data) -> Mac</name> - <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary> - <type> - <v>Key = Data = iolist() | binary()</v> - <v>Mac = binary()</v> - </type> - <desc> - <p>Computes an <c>MD5 MAC</c> message authentification code - from <c>Key</c> and <c>Data</c>, where the length of the Mac - is 96 bits (12 bytes).</p> - </desc> - </func> + <func> <name>hmac(Type, Key, Data) -> Mac</name> <name>hmac(Type, Key, Data, MacLength) -> Mac</name> @@ -384,6 +258,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> will limit the size of the resultant <c>Mac</c>. </desc> </func> + <func> <name>hmac_init(Type, Key) -> Context</name> <fsummary></fsummary> @@ -398,6 +273,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> key. The key can be any length.</p> </desc> </func> + <func> <name>hmac_update(Context, Data) -> NewContext</name> <fsummary></fsummary> @@ -412,6 +288,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> must be passed into the next call to <c>hmac_update</c>.</p> </desc> </func> + <func> <name>hmac_final(Context) -> Mac</name> <fsummary></fsummary> @@ -423,6 +300,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> determined by the type of hash function used to generate it.</p> </desc> </func> + <func> <name>hmac_final_n(Context, HashLen) -> Mac</name> <fsummary></fsummary> @@ -435,318 +313,143 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> zero. <c>Mac</c> will be a binary with at most <c>HashLen</c> bytes. Note that if HashLen is greater than the actual number of bytes returned from the underlying hash, the returned hash will have fewer than <c>HashLen</c> bytes.</p> </desc> </func> - <func> - <name>sha_mac(Key, Data) -> Mac</name> - <name>sha_mac(Key, Data, MacLength) -> Mac</name> - <fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary> - <type> - <v>Key = Data = iolist() | binary()</v> - <v>Mac = binary()</v> - <v>MacLenength = integer() =< 20 </v> - </type> - <desc> - <p>Computes an <c>SHA MAC</c> message authentification code - from <c>Key</c> and <c>Data</c>, where the default length of the Mac - is 160 bits (20 bytes).</p> - </desc> - </func> - <func> - <name>sha_mac_96(Key, Data) -> Mac</name> - <fsummary>Compute an <c>SHA MAC</c>message authentification code</fsummary> - <type> - <v>Key = Data = iolist() | binary()</v> - <v>Mac = binary()</v> - </type> - <desc> - <p>Computes an <c>SHA MAC</c> message authentification code - from <c>Key</c> and <c>Data</c>, where the length of the Mac - is 96 bits (12 bytes).</p> - </desc> - </func> - <func> - <name>des_cbc_encrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>according to DES in CBC mode</fsummary> - <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> - <desc> - <p>Encrypts <c>Text</c> according to DES in CBC - mode. <c>Text</c> must be a multiple of 64 bits (8 - bytes). <c>Key</c> is the DES key, and <c>IVec</c> is an - arbitrary initializing vector. The lengths of <c>Key</c> and - <c>IVec</c> must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>des_cbc_decrypt(Key, IVec, Cipher) -> Text</name> - <fsummary>Decrypt <c>Cipher</c>according to DES in CBC mode</fsummary> - <type> - <v>Key = Cipher = iolist() | binary()</v> - <v>IVec = Text = binary()</v> - </type> - <desc> - <p>Decrypts <c>Cipher</c> according to DES in CBC mode. - <c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary - initializing vector. <c>Key</c> and <c>IVec</c> must have - the same values as those used when encrypting. <c>Cipher</c> - must be a multiple of 64 bits (8 bytes). The lengths of - <c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>des_cbc_ivec(Data) -> IVec</name> - <fsummary>Get <c>IVec</c> to be used in next iteration of - <c>des_cbc_[ecrypt|decrypt]</c></fsummary> - <type> - <v>Data = iolist() | binary()</v> - <v>IVec = binary()</v> - </type> - <desc> - <p>Returns the <c>IVec</c> to be used in a next iteration of - <c>des_cbc_[encrypt|decrypt]</c>. <c>Data</c> is the encrypted - data from the previous iteration step.</p> - </desc> - </func> - <func> - <name>des_cfb_encrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>according to DES in CFB mode</fsummary> - <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> - <desc> - <p>Encrypts <c>Text</c> according to DES in 8-bit CFB - mode. <c>Key</c> is the DES key, and <c>IVec</c> is an - arbitrary initializing vector. The lengths of <c>Key</c> and - <c>IVec</c> must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>des_cfb_decrypt(Key, IVec, Cipher) -> Text</name> - <fsummary>Decrypt <c>Cipher</c>according to DES in CFB mode</fsummary> - <type> - <v>Key = Cipher = iolist() | binary()</v> - <v>IVec = Text = binary()</v> - </type> - <desc> - <p>Decrypts <c>Cipher</c> according to DES in 8-bit CFB mode. - <c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary - initializing vector. <c>Key</c> and <c>IVec</c> must have - the same values as those used when encrypting. The lengths of - <c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>des_cfb_ivec(IVec, Data) -> NextIVec</name> - <fsummary>Get <c>IVec</c> to be used in next iteration of - <c>des_cfb_[ecrypt|decrypt]</c></fsummary> - <type> - <v>IVec = iolist() | binary()</v> - <v>Data = iolist() | binary()</v> - <v>NextIVec = binary()</v> - </type> - <desc> - <p>Returns the <c>IVec</c> to be used in a next iteration of - <c>des_cfb_[encrypt|decrypt]</c>. <c>IVec</c> is the vector - used in the previous iteration step. <c>Data</c> is the encrypted - data from the previous iteration step.</p> - </desc> - </func> - <func> - <name>des3_cbc_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>according to DES3 in CBC mode</fsummary> - <type> - <v>Key1 =Key2 = Key3 Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> - <desc> - <p>Encrypts <c>Text</c> according to DES3 in CBC - mode. <c>Text</c> must be a multiple of 64 bits (8 - bytes). <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES - keys, and <c>IVec</c> is an arbitrary initializing - vector. The lengths of each of <c>Key1</c>, <c>Key2</c>, - <c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>des3_cbc_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name> - <fsummary>Decrypt <c>Cipher</c>according to DES3 in CBC mode</fsummary> - <type> - <v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v> - <v>IVec = Text = binary()</v> - </type> - <desc> - <p>Decrypts <c>Cipher</c> according to DES3 in CBC mode. - <c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and - <c>IVec</c> is an arbitrary initializing vector. - <c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must - and <c>IVec</c> must have the same values as those used when - encrypting. <c>Cipher</c> must be a multiple of 64 bits (8 - bytes). The lengths of <c>Key1</c>, <c>Key2</c>, - <c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>des3_cfb_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>according to DES3 in CFB mode</fsummary> - <type> - <v>Key1 =Key2 = Key3 Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> + + <func> + <name>info() -> [atom()]</name> + <fsummary>Provide a list of available crypto functions.</fsummary> <desc> - <p>Encrypts <c>Text</c> according to DES3 in 8-bit CFB - mode. <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES - keys, and <c>IVec</c> is an arbitrary initializing - vector. The lengths of each of <c>Key1</c>, <c>Key2</c>, - <c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> - <p>May throw exception <c>notsup</c> for old OpenSSL - versions (0.9.7) that does not support this encryption mode.</p> + <p>Provides the available crypto functions in terms of a list + of atoms.</p> </desc> </func> + <func> - <name>des3_cfb_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name> - <fsummary>Decrypt <c>Cipher</c>according to DES3 in CFB mode</fsummary> + <name>info_lib() -> [{Name,VerNum,VerStr}]</name> + <fsummary>Provides information about the libraries used by crypto.</fsummary> <type> - <v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v> - <v>IVec = Text = binary()</v> + <v>Name = binary()</v> + <v>VerNum = integer()</v> + <v>VerStr = binary()</v> </type> <desc> - <p>Decrypts <c>Cipher</c> according to DES3 in 8-bit CFB mode. - <c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and - <c>IVec</c> is an arbitrary initializing vector. - <c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must - and <c>IVec</c> must have the same values as those used when - encrypting. The lengths of <c>Key1</c>, <c>Key2</c>, - <c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p> - <p>May throw exception <c>notsup</c> for old OpenSSL - versions (0.9.7) that does not support this encryption mode.</p> + <p>Provides the name and version of the libraries used by crypto.</p> + <p><c>Name</c> is the name of the library. <c>VerNum</c> is + the numeric version according to the library's own versioning + scheme. <c>VerStr</c> contains a text variant of the version.</p> + <pre> +> <input>info_lib().</input> +[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}] + </pre> + <note><p> + From OTP R16 the <em>numeric version</em> represents the version of the OpenSSL + <em>header files</em> (<c>openssl/opensslv.h</c>) used when crypto was compiled. + The text variant represents the OpenSSL library used at runtime. + In earlier OTP versions both numeric and text was taken from the library. + </p></note> </desc> </func> <func> - <name>des_ecb_encrypt(Key, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>according to DES in ECB mode</fsummary> + <name>mod_exp_prime(N, P, M) -> Result</name> + <fsummary>Computes the function: N^P mod M</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>Cipher = binary()</v> + <v>N, P, M = binary()</v> + <v>Result = binary() | error</v> </type> <desc> - <p>Encrypts <c>Text</c> according to DES in ECB mode. - <c>Key</c> is the DES key. The lengths of <c>Key</c> and - <c>Text</c> must be 64 bits (8 bytes).</p> + <p>Computes the function <c>N^P mod M</c>.</p> </desc> </func> + <func> - <name>des_ecb_decrypt(Key, Cipher) -> Text</name> - <fsummary>Decrypt <c>Cipher</c>according to DES in ECB mode</fsummary> + <name>rand_bytes(N) -> binary()</name> + <fsummary>Generate a binary of random bytes</fsummary> <type> - <v>Key = Cipher = iolist() | binary()</v> - <v>Text = binary()</v> + <v>N = integer()</v> </type> <desc> - <p>Decrypts <c>Cipher</c> according to DES in ECB mode. - <c>Key</c> is the DES key. The lengths of <c>Key</c> and - <c>Cipher</c> must be 64 bits (8 bytes).</p> + <p>Generates N bytes randomly uniform 0..255, and returns the + result in a binary. Uses the <c>crypto</c> library pseudo-random + number generator.</p> </desc> </func> - <func> - <name>blowfish_ecb_encrypt(Key, Text) -> Cipher</name> - <fsummary>Encrypt the first 64 bits of <c>Text</c> using Blowfish in ECB mode</fsummary> + <func> + <name>rand_uniform(Lo, Hi) -> N</name> + <fsummary>Generate a random number</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>Cipher = binary()</v> + <v>Lo, Hi, N = integer()</v> </type> <desc> - <p>Encrypts the first 64 bits of <c>Text</c> using Blowfish in ECB mode. <c>Key</c> is the Blowfish key. The length of <c>Text</c> must be at least 64 bits (8 bytes).</p> + <p>Generate a random number <c><![CDATA[N, Lo =< N < Hi.]]></c> Uses the + <c>crypto</c> library pseudo-random number generator. + <c>Hi</c> must be larger than <c>Lo</c>.</p> </desc> </func> + <func> - <name>blowfish_ecb_decrypt(Key, Text) -> Cipher</name> - <fsummary>Decrypt the first 64 bits of <c>Text</c> using Blowfish in ECB mode</fsummary> + <name>sign(Algorithm, DigestType, Msg, Key) -> binary()</name> + <fsummary> Create digital signature.</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>Cipher = binary()</v> + <v>Algorithm = rsa | dss | ecdsa </v> + <v>Msg = binary() | {digest,binary()}</v> + <d>The msg is either the binary "plain text" data to be + signed or it is the hashed value of "plain text" i.e. the + digest.</d> + <v>DigestType = digest_type()</v> + <v>Key = rsa_private_key() | dsa_private_key() | ec_private_key()</v> </type> <desc> - <p>Decrypts the first 64 bits of <c>Text</c> using Blowfish in ECB mode. <c>Key</c> is the Blowfish key. The length of <c>Text</c> must be at least 64 bits (8 bytes).</p> + <p> Creates a digital signature.</p> </desc> </func> <func> - <name>blowfish_cbc_encrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c> using Blowfish in CBC mode</fsummary> - <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> + <name>start() -> ok</name> + <fsummary> Equivalent to application:start(crypto). </fsummary> <desc> - <p>Encrypts <c>Text</c> using Blowfish in CBC mode. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an - arbitrary initializing vector. The length of <c>IVec</c> - must be 64 bits (8 bytes). The length of <c>Text</c> must be a multiple of 64 bits (8 bytes).</p> + <p> Equivalent to application:start(crypto).</p> </desc> </func> <func> - <name>blowfish_cbc_decrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Decrypt <c>Text</c> using Blowfish in CBC mode</fsummary> - <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> + <name>stop() -> ok</name> + <fsummary> Equivalent to application:stop(crypto).</fsummary> <desc> - <p>Decrypts <c>Text</c> using Blowfish in CBC mode. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an - arbitrary initializing vector. The length of <c>IVec</c> - must be 64 bits (8 bytes). The length of <c>Text</c> must be a multiple 64 bits (8 bytes).</p> + <p> Equivalent to application:stop(crypto).</p> </desc> </func> <func> - <name>blowfish_cfb64_encrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>using Blowfish in CFB mode with 64 - bit feedback</fsummary> - <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> - </type> - <desc> - <p>Encrypts <c>Text</c> using Blowfish in CFB mode with 64 bit - feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an - arbitrary initializing vector. The length of <c>IVec</c> - must be 64 bits (8 bytes).</p> - </desc> - </func> - <func> - <name>blowfish_cfb64_decrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Decrypt <c>Text</c>using Blowfish in CFB mode with 64 - bit feedback</fsummary> + <name>strong_rand_bytes(N) -> binary()</name> + <fsummary>Generate a binary of random bytes</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> + <v>N = integer()</v> </type> <desc> - <p>Decrypts <c>Text</c> using Blowfish in CFB mode with 64 bit - feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an - arbitrary initializing vector. The length of <c>IVec</c> - must be 64 bits (8 bytes).</p> + <p>Generates N bytes randomly uniform 0..255, and returns the + result in a binary. Uses a cryptographically secure prng seeded and + periodically mixed with operating system provided entropy. By default + this is the <c>RAND_bytes</c> method from OpenSSL.</p> + <p>May throw exception <c>low_entropy</c> in case the random generator + failed due to lack of secure "randomness".</p> </desc> </func> - <func> - <name>blowfish_ofb64_encrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>using Blowfish in OFB mode with 64 - bit feedback</fsummary> + <name>verify(Algorithm, DigestType, Msg, Signature, Key) -> boolean()</name> + <fsummary>Verifies a digital signature.</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>IVec = Cipher = binary()</v> + <v> Algorithm = rsa | dss | ecdsa </v> + <v>Msg = binary() | {digest,binary()}</v> + <d>The msg is either the binary "plain text" data + or it is the hashed value of "plain text" i.e. the digest.</d> + <v>DigestType = digest_type()</v> + <v>Signature = binary()</v> + <v>Key = rsa_public_key() | dsa_public_key() | ec_public_key()</v> </type> <desc> - <p>Encrypts <c>Text</c> using Blowfish in OFB mode with 64 bit - feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an - arbitrary initializing vector. The length of <c>IVec</c> - must be 64 bits (8 bytes).</p> + <p>Verifies a digital signature</p> </desc> - </func> + </func> <func> <name>aes_cfb_128_encrypt(Key, IVec, Text) -> Cipher</name> @@ -763,6 +466,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> (16 bytes).</p> </desc> </func> + <func> <name>aes_cfb_128_decrypt(Key, IVec, Cipher) -> Text</name> <fsummary>Decrypt <c>Cipher</c>according to AES in Cipher Feedback mode</fsummary> @@ -778,6 +482,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> <c>Key</c> and <c>IVec</c> must be 128 bits (16 bytes).</p> </desc> </func> + <func> <name>aes_cbc_128_encrypt(Key, IVec, Text) -> Cipher</name> <fsummary>Encrypt <c>Text</c>according to AES in Cipher Block Chaining mode</fsummary> @@ -794,6 +499,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> (16 bytes).</p> </desc> </func> + <func> <name>aes_cbc_128_decrypt(Key, IVec, Cipher) -> Text</name> <fsummary>Decrypt <c>Cipher</c>according to AES in Cipher Block Chaining mode</fsummary> @@ -811,6 +517,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> <c>Key</c> and <c>IVec</c> must be 128 bits (16 bytes).</p> </desc> </func> + <func> <name>aes_cbc_ivec(Data) -> IVec</name> <fsummary>Get <c>IVec</c> to be used in next iteration of @@ -825,6 +532,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> data from the previous iteration step.</p> </desc> </func> + <func> <name>aes_ctr_encrypt(Key, IVec, Text) -> Cipher</name> <fsummary>Encrypt <c>Text</c>according to AES in Counter mode</fsummary> @@ -839,6 +547,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> (16 bytes).</p> </desc> </func> + <func> <name>aes_ctr_decrypt(Key, IVec, Cipher) -> Text</name> <fsummary>Decrypt <c>Cipher</c>according to AES in Counter mode</fsummary> @@ -853,6 +562,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> (16 bytes).</p> </desc> </func> + <func> <name>aes_ctr_stream_init(Key, IVec) -> State</name> <fsummary></fsummary> @@ -870,6 +580,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> <seealso marker="#aes_ctr_stream_decrypt/2">aes_ctr_stream_decrypt</seealso>.</p> </desc> </func> + <func> <name>aes_ctr_stream_encrypt(State, Text) -> { NewState, Cipher}</name> <fsummary></fsummary> @@ -886,6 +597,7 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> <c>Cipher</c> is the encrypted cipher text.</p> </desc> </func> + <func> <name>aes_ctr_stream_decrypt(State, Cipher) -> { NewState, Text }</name> <fsummary></fsummary> @@ -902,620 +614,446 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> <c>Text</c> is the decrypted data.</p> </desc> </func> - <func> - <name>erlint(Mpint) -> N</name> - <name>mpint(N) -> Mpint</name> - <fsummary>Convert between binary multi-precision integer and erlang big integer</fsummary> - <type> - <v>Mpint = binary()</v> - <v>N = integer()</v> - </type> - <desc> - <p>Convert a binary multi-precision integer <c>Mpint</c> to and from - an erlang big integer. A multi-precision integer is a binary - with the following form: - <c><![CDATA[<<ByteLen:32/integer, Bytes:ByteLen/binary>>]]></c> where both - <c>ByteLen</c> and <c>Bytes</c> are big-endian. Mpints are used in - some of the functions in <c>crypto</c> and are not translated - in the API for performance reasons.</p> - </desc> - </func> - <func> - <name>rand_bytes(N) -> binary()</name> - <fsummary>Generate a binary of random bytes</fsummary> - <type> - <v>N = integer()</v> + + <func> + <name>blowfish_ecb_encrypt(Key, Text) -> Cipher</name> + <fsummary>Encrypt the first 64 bits of <c>Text</c> using Blowfish in ECB mode</fsummary> + <type> + <v>Key = Text = iolist() | binary()</v> + <v>Cipher = binary()</v> </type> <desc> - <p>Generates N bytes randomly uniform 0..255, and returns the - result in a binary. Uses the <c>crypto</c> library pseudo-random - number generator.</p> + <p>Encrypts the first 64 bits of <c>Text</c> using Blowfish in ECB mode. <c>Key</c> is the Blowfish key. The length of <c>Text</c> must be at least 64 bits (8 bytes).</p> </desc> </func> + <func> - <name>strong_rand_bytes(N) -> binary()</name> - <fsummary>Generate a binary of random bytes</fsummary> + <name>blowfish_ecb_decrypt(Key, Text) -> Cipher</name> + <fsummary>Decrypt the first 64 bits of <c>Text</c> using Blowfish in ECB mode</fsummary> <type> - <v>N = integer()</v> + <v>Key = Text = iolist() | binary()</v> + <v>Cipher = binary()</v> </type> <desc> - <p>Generates N bytes randomly uniform 0..255, and returns the - result in a binary. Uses a cryptographically secure prng seeded and - periodically mixed with operating system provided entropy. By default - this is the <c>RAND_bytes</c> method from OpenSSL.</p> - <p>May throw exception <c>low_entropy</c> in case the random generator - failed due to lack of secure "randomness".</p> + <p>Decrypts the first 64 bits of <c>Text</c> using Blowfish in ECB mode. <c>Key</c> is the Blowfish key. The length of <c>Text</c> must be at least 64 bits (8 bytes).</p> </desc> </func> + <func> - <name>rand_uniform(Lo, Hi) -> N</name> - <fsummary>Generate a random number</fsummary> + <name>blowfish_cbc_encrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c> using Blowfish in CBC mode</fsummary> <type> - <v>Lo, Hi, N = Mpint | integer()</v> - <v>Mpint = binary()</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Generate a random number <c><![CDATA[N, Lo =< N < Hi.]]></c> Uses the - <c>crypto</c> library pseudo-random number generator. The - arguments (and result) can be either erlang integers or binary - multi-precision integers. <c>Hi</c> must be larger than <c>Lo</c>.</p> + <p>Encrypts <c>Text</c> using Blowfish in CBC mode. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an + arbitrary initializing vector. The length of <c>IVec</c> + must be 64 bits (8 bytes). The length of <c>Text</c> must be a multiple of 64 bits (8 bytes).</p> </desc> </func> <func> - <name>strong_rand_mpint(N, Top, Bottom) -> Mpint</name> - <fsummary>Generate an N bit random number</fsummary> + <name>blowfish_cbc_decrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Decrypt <c>Text</c> using Blowfish in CBC mode</fsummary> <type> - <v>N = non_neg_integer()</v> - <v>Top = -1 | 0 | 1</v> - <v>Bottom = 0 | 1</v> - <v>Mpint = binary()</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Generate an N bit random number using OpenSSL's - cryptographically strong pseudo random number generator - <c>BN_rand</c>.</p> - <p>The parameter <c>Top</c> places constraints on the most - significant bits of the generated number. If <c>Top</c> is 1, then the - two most significant bits will be set to 1, if <c>Top</c> is 0, the - most significant bit will be 1, and if <c>Top</c> is -1 then no - constraints are applied and thus the generated number may be less than - N bits long.</p> - <p>If <c>Bottom</c> is 1, then the generated number is - constrained to be odd.</p> - <p>May throw exception <c>low_entropy</c> in case the random generator - failed due to lack of secure "randomness".</p> + <p>Decrypts <c>Text</c> using Blowfish in CBC mode. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an + arbitrary initializing vector. The length of <c>IVec</c> + must be 64 bits (8 bytes). The length of <c>Text</c> must be a multiple 64 bits (8 bytes).</p> </desc> </func> + <func> - <name>mod_exp(N, P, M) -> Result</name> - <fsummary>Perform N ^ P mod M</fsummary> + <name>blowfish_cfb64_encrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>using Blowfish in CFB mode with 64 + bit feedback</fsummary> <type> - <v>N, P, M, Result = Mpint</v> - <v>Mpint = binary()</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>This function performs the exponentiation <c>N ^ P mod M</c>, - using the <c>crypto</c> library.</p> + <p>Encrypts <c>Text</c> using Blowfish in CFB mode with 64 bit + feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an + arbitrary initializing vector. The length of <c>IVec</c> + must be 64 bits (8 bytes).</p> </desc> </func> + <func> - <name>mod_exp_prime(N, P, M) -> Result</name> - <fsummary>Computes the function: N^P mod M</fsummary> + <name>blowfish_cfb64_decrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Decrypt <c>Text</c>using Blowfish in CFB mode with 64 + bit feedback</fsummary> <type> - <v>N, P, M = binary()</v> - <v>Result = binary() | error</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Computes the function <c>N^P mod M</c>.</p> + <p>Decrypts <c>Text</c> using Blowfish in CFB mode with 64 bit + feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an + arbitrary initializing vector. The length of <c>IVec</c> + must be 64 bits (8 bytes).</p> </desc> </func> + <func> - <name>rsa_sign(DataOrDigest, Key) -> Signature</name> - <name>rsa_sign(DigestType, DataOrDigest, Key) -> Signature</name> - <fsummary>Sign the data using rsa with the given key.</fsummary> + <name>blowfish_ofb64_encrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>using Blowfish in OFB mode with 64 + bit feedback</fsummary> <type> - <v>DataOrDigest = Data | {digest,Digest}</v> - <v>Data = Mpint</v> - <v>Digest = binary()</v> - <v>Key = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v> - <v>E, N, D = Mpint</v> - <d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and - <c>D</c> is the private exponent.</d> - <v>P1, P2, E1, E2, C = Mpint</v> - <d>The longer key format contains redundant information that will make - the calculation faster. <c>P1,P2</c> are first and second prime factors. - <c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient. - Terminology is taken from RFC 3447.</d> - <v>DigestType = md5 | sha | sha224 | sha256 | sha384 | sha512</v> - <d>The default <c>DigestType</c> is sha.</d> - <v>Mpint = binary()</v> - <v>Signature = binary()</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Creates a RSA signature with the private key <c>Key</c> - of a digest. The digest is either calculated as a - <c>DigestType</c> digest of <c>Data</c> or a precalculated - binary <c>Digest</c>.</p> + <p>Encrypts <c>Text</c> using Blowfish in OFB mode with 64 bit + feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an + arbitrary initializing vector. The length of <c>IVec</c> + must be 64 bits (8 bytes).</p> </desc> </func> <func> - <name>rsa_verify(DataOrDigest, Signature, Key) -> Verified</name> - <name>rsa_verify(DigestType, DataOrDigest, Signature, Key) -> Verified </name> - <fsummary>Verify the digest and signature using rsa with given public key.</fsummary> + <name>des_cbc_encrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>according to DES in CBC mode</fsummary> <type> - <v>Verified = boolean()</v> - <v>DataOrDigest = Data | {digest|Digest}</v> - <v>Data, Signature = Mpint</v> - <v>Digest = binary()</v> - <v>Key = [E, N]</v> - <v>E, N = Mpint</v> - <d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d> - <v>DigestType = md5 | sha | sha224 | sha256 | sha384 | sha512</v> - <d>The default <c>DigestType</c> is sha.</d> - <v>Mpint = binary()</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Verifies that a digest matches the RSA signature using the - signer's public key <c>Key</c>. - The digest is either calculated as a <c>DigestType</c> - digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p> - <p>May throw exception <c>notsup</c> in case the chosen <c>DigestType</c> - is not supported by the underlying OpenSSL implementation.</p> + <p>Encrypts <c>Text</c> according to DES in CBC + mode. <c>Text</c> must be a multiple of 64 bits (8 + bytes). <c>Key</c> is the DES key, and <c>IVec</c> is an + arbitrary initializing vector. The lengths of <c>Key</c> and + <c>IVec</c> must be 64 bits (8 bytes).</p> </desc> </func> - + <func> - <name>rsa_public_encrypt(PlainText, PublicKey, Padding) -> ChipherText</name> - <fsummary>Encrypts Msg using the public Key.</fsummary> + <name>des_cbc_decrypt(Key, IVec, Cipher) -> Text</name> + <fsummary>Decrypt <c>Cipher</c>according to DES in CBC mode</fsummary> <type> - <v>PlainText = binary()</v> - <v>PublicKey = [E, N]</v> - <v>E, N = Mpint</v> - <d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d> - <v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v> - <v>ChipherText = binary()</v> + <v>Key = Cipher = iolist() | binary()</v> + <v>IVec = Text = binary()</v> </type> <desc> - <p>Encrypts the <c>PlainText</c> (usually a session key) using the <c>PublicKey</c> - and returns the cipher. The <c>Padding</c> decides what padding mode is used, - <c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most - used mode and <c>rsa_pkcs1_oaep_padding</c> is EME-OAEP as - defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding - parameter. This mode is recommended for all new applications. - The size of the <c>Msg</c> must be less - than <c>byte_size(N)-11</c> if - <c>rsa_pkcs1_padding</c> is used, <c>byte_size(N)-41</c> if - <c>rsa_pkcs1_oaep_padding</c> is used and <c>byte_size(N)</c> if <c>rsa_no_padding</c> - is used. - Where byte_size(N) is the size part of an <c>Mpint-1</c>. - </p> + <p>Decrypts <c>Cipher</c> according to DES in CBC mode. + <c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary + initializing vector. <c>Key</c> and <c>IVec</c> must have + the same values as those used when encrypting. <c>Cipher</c> + must be a multiple of 64 bits (8 bytes). The lengths of + <c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> </desc> </func> <func> - <name>rsa_private_decrypt(ChipherText, PrivateKey, Padding) -> PlainText</name> - <fsummary>Decrypts ChipherText using the private Key.</fsummary> + <name>des_cbc_ivec(Data) -> IVec</name> + <fsummary>Get <c>IVec</c> to be used in next iteration of + <c>des_cbc_[ecrypt|decrypt]</c></fsummary> <type> - <v>ChipherText = binary()</v> - <v>PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v> - <v>E, N, D = Mpint</v> - <d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and - <c>D</c> is the private exponent.</d> - <v>P1, P2, E1, E2, C = Mpint</v> - <d>The longer key format contains redundant information that will make - the calculation faster. <c>P1,P2</c> are first and second prime factors. - <c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient. - Terminology is taken from RFC 3447.</d> - <v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v> - <v>PlainText = binary()</v> + <v>Data = iolist() | binary()</v> + <v>IVec = binary()</v> </type> <desc> - <p>Decrypts the <c>ChipherText</c> (usually a session key encrypted with - <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>) - using the <c>PrivateKey</c> and returns the - message. The <c>Padding</c> is the padding mode that was - used to encrypt the data, - see <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>. - </p> + <p>Returns the <c>IVec</c> to be used in a next iteration of + <c>des_cbc_[encrypt|decrypt]</c>. <c>Data</c> is the encrypted + data from the previous iteration step.</p> </desc> </func> + <func> - <name>rsa_private_encrypt(PlainText, PrivateKey, Padding) -> ChipherText</name> - <fsummary>Encrypts Msg using the private Key.</fsummary> + <name>des_cfb_encrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>according to DES in CFB mode</fsummary> <type> - <v>PlainText = binary()</v> - <v>PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v> - <v>E, N, D = Mpint</v> - <d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and - <c>D</c> is the private exponent.</d> - <v>P1, P2, E1, E2, C = Mpint</v> - <d>The longer key format contains redundant information that will make - the calculation faster. <c>P1,P2</c> are first and second prime factors. - <c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient. - Terminology is taken from RFC 3447.</d> - <v>Padding = rsa_pkcs1_padding | rsa_no_padding</v> - <v>ChipherText = binary()</v> + <v>Key = Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Encrypts the <c>PlainText</c> using the <c>PrivateKey</c> - and returns the cipher. The <c>Padding</c> decides what padding mode is used, - <c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most - used mode. - The size of the <c>Msg</c> must be less than <c>byte_size(N)-11</c> if - <c>rsa_pkcs1_padding</c> is used, and <c>byte_size(N)</c> if <c>rsa_no_padding</c> - is used. Where byte_size(N) is the size part of an <c>Mpint-1</c>. - </p> + <p>Encrypts <c>Text</c> according to DES in 8-bit CFB + mode. <c>Key</c> is the DES key, and <c>IVec</c> is an + arbitrary initializing vector. The lengths of <c>Key</c> and + <c>IVec</c> must be 64 bits (8 bytes).</p> </desc> </func> <func> - <name>rsa_public_decrypt(ChipherText, PublicKey, Padding) -> PlainText</name> - <fsummary>Decrypts ChipherText using the public Key.</fsummary> + <name>des_cfb_decrypt(Key, IVec, Cipher) -> Text</name> + <fsummary>Decrypt <c>Cipher</c>according to DES in CFB mode</fsummary> <type> - <v>ChipherText = binary()</v> - <v>PublicKey = [E, N]</v> - <v>E, N = Mpint</v> - <d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus</d> - <v>Padding = rsa_pkcs1_padding | rsa_no_padding</v> - <v>PlainText = binary()</v> + <v>Key = Cipher = iolist() | binary()</v> + <v>IVec = Text = binary()</v> </type> <desc> - <p>Decrypts the <c>ChipherText</c> (encrypted with - <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>) - using the <c>PrivateKey</c> and returns the - message. The <c>Padding</c> is the padding mode that was - used to encrypt the data, - see <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>. - </p> + <p>Decrypts <c>Cipher</c> according to DES in 8-bit CFB mode. + <c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary + initializing vector. <c>Key</c> and <c>IVec</c> must have + the same values as those used when encrypting. The lengths of + <c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> </desc> </func> - + <func> - <name>dss_sign(DataOrDigest, Key) -> Signature</name> - <name>dss_sign(DigestType, DataOrDigest, Key) -> Signature</name> - <fsummary>Sign the data using dsa with given private key.</fsummary> + <name>des_cfb_ivec(IVec, Data) -> NextIVec</name> + <fsummary>Get <c>IVec</c> to be used in next iteration of + <c>des_cfb_[ecrypt|decrypt]</c></fsummary> <type> - <v>DigestType = sha</v> - <v>DataOrDigest = Mpint | {digest,Digest}</v> - <v>Key = [P, Q, G, X]</v> - <v>P, Q, G, X = Mpint</v> - <d> Where <c>P</c>, <c>Q</c> and <c>G</c> are the dss - parameters and <c>X</c> is the private key.</d> - <v>Digest = binary() with length 20 bytes</v> - <v>Signature = binary()</v> + <v>IVec = iolist() | binary()</v> + <v>Data = iolist() | binary()</v> + <v>NextIVec = binary()</v> </type> <desc> - <p>Creates a DSS signature with the private key <c>Key</c> of - a digest. The digest is either calculated as a SHA1 - digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p> - <p>A deprecated feature is having <c>DigestType = 'none'</c> - in which case <c>DataOrDigest</c> is a precalculated SHA1 - digest.</p> + <p>Returns the <c>IVec</c> to be used in a next iteration of + <c>des_cfb_[encrypt|decrypt]</c>. <c>IVec</c> is the vector + used in the previous iteration step. <c>Data</c> is the encrypted + data from the previous iteration step.</p> </desc> </func> <func> - <name>dss_verify(DataOrDigest, Signature, Key) -> Verified</name> - <name>dss_verify(DigestType, DataOrDigest, Signature, Key) -> Verified</name> - <fsummary>Verify the data and signature using dsa with given public key.</fsummary> + <name>des3_cbc_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>according to DES3 in CBC mode</fsummary> <type> - <v>Verified = boolean()</v> - <v>DigestType = sha</v> - <v>DataOrDigest = Mpint | {digest,Digest}</v> - <v>Data = Mpint | ShaDigest</v> - <v>Signature = Mpint</v> - <v>Key = [P, Q, G, Y]</v> - <v>P, Q, G, Y = Mpint</v> - <d> Where <c>P</c>, <c>Q</c> and <c>G</c> are the dss - parameters and <c>Y</c> is the public key.</d> - <v>Digest = binary() with length 20 bytes</v> + <v>Key1 =Key2 = Key3 Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Verifies that a digest matches the DSS signature using the - public key <c>Key</c>. The digest is either calculated as a SHA1 - digest of <c>Data</c> or is a precalculated binary <c>Digest</c>.</p> - <p>A deprecated feature is having <c>DigestType = 'none'</c> - in which case <c>DataOrDigest</c> is a precalculated SHA1 - digest binary.</p> + <p>Encrypts <c>Text</c> according to DES3 in CBC + mode. <c>Text</c> must be a multiple of 64 bits (8 + bytes). <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES + keys, and <c>IVec</c> is an arbitrary initializing + vector. The lengths of each of <c>Key1</c>, <c>Key2</c>, + <c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> </desc> </func> <func> - <name>rc2_cbc_encrypt(Key, IVec, Text) -> Cipher</name> - <fsummary>Encrypt <c>Text</c>according to RC2 in CBC mode</fsummary> + <name>des3_cbc_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name> + <fsummary>Decrypt <c>Cipher</c>according to DES3 in CBC mode</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>Ivec = Cipher = binary()</v> + <v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v> + <v>IVec = Text = binary()</v> </type> <desc> - <p>Encrypts <c>Text</c> according to RC2 in CBC mode.</p> + <p>Decrypts <c>Cipher</c> according to DES3 in CBC mode. + <c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and + <c>IVec</c> is an arbitrary initializing vector. + <c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must + and <c>IVec</c> must have the same values as those used when + encrypting. <c>Cipher</c> must be a multiple of 64 bits (8 + bytes). The lengths of <c>Key1</c>, <c>Key2</c>, + <c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p> </desc> </func> <func> - <name>rc2_cbc_decrypt(Key, IVec, Cipher) -> Text</name> - <fsummary>Decrypts <c>Cipher</c>according to RC2 in CBC mode</fsummary> + <name>des3_cfb_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>according to DES3 in CFB mode</fsummary> <type> - <v>Key = Text = iolist() | binary()</v> - <v>Ivec = Cipher = binary()</v> + <v>Key1 =Key2 = Key3 Text = iolist() | binary()</v> + <v>IVec = Cipher = binary()</v> </type> <desc> - <p>Decrypts <c>Cipher</c> according to RC2 in CBC mode.</p> + <p>Encrypts <c>Text</c> according to DES3 in 8-bit CFB + mode. <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES + keys, and <c>IVec</c> is an arbitrary initializing + vector. The lengths of each of <c>Key1</c>, <c>Key2</c>, + <c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p> + <p>May throw exception <c>notsup</c> for old OpenSSL + versions (0.9.7) that does not support this encryption mode.</p> </desc> </func> - + <func> - <name>rc4_encrypt(Key, Data) -> Result</name> - <fsummary>Encrypt data using RC4</fsummary> + <name>des3_cfb_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name> + <fsummary>Decrypt <c>Cipher</c>according to DES3 in CFB mode</fsummary> <type> - <v>Key, Data = iolist() | binary()</v> - <v>Result = binary()</v> + <v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v> + <v>IVec = Text = binary()</v> </type> <desc> - <p>Encrypts the data with RC4 symmetric stream encryption. - Since it is symmetric, the same function is used for - decryption.</p> + <p>Decrypts <c>Cipher</c> according to DES3 in 8-bit CFB mode. + <c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and + <c>IVec</c> is an arbitrary initializing vector. + <c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must + and <c>IVec</c> must have the same values as those used when + encrypting. The lengths of <c>Key1</c>, <c>Key2</c>, + <c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p> + <p>May throw exception <c>notsup</c> for old OpenSSL + versions (0.9.7) that does not support this encryption mode.</p> </desc> </func> <func> - <name>dh_generate_key(DHParams) -> {PublicKey,PrivateKey} </name> - <name>dh_generate_key(PrivateKey, DHParams) -> {PublicKey,PrivateKey} </name> - <fsummary>Generates a Diffie-Hellman public key</fsummary> + <name>des_ecb_encrypt(Key, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>according to DES in ECB mode</fsummary> <type> - <v>DHParameters = [P, G]</v> - <v>P, G = Mpint</v> - <d> Where <c>P</c> is the shared prime number and <c>G</c> is the shared generator.</d> - <v>PublicKey, PrivateKey = Mpint()</v> + <v>Key = Text = iolist() | binary()</v> + <v>Cipher = binary()</v> </type> <desc> - <p>Generates a Diffie-Hellman <c>PublicKey</c> and <c>PrivateKey</c> (if not given). - </p> + <p>Encrypts <c>Text</c> according to DES in ECB mode. + <c>Key</c> is the DES key. The lengths of <c>Key</c> and + <c>Text</c> must be 64 bits (8 bytes).</p> </desc> </func> - <func> - <name>dh_compute_key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret</name> - <fsummary>Computes the shared secret</fsummary> + <name>des_ecb_decrypt(Key, Cipher) -> Text</name> + <fsummary>Decrypt <c>Cipher</c>according to DES in ECB mode</fsummary> <type> - <v>DHParameters = [P, G]</v> - <v>P, G = Mpint</v> - <d> Where <c>P</c> is the shared prime number and <c>G</c> is the shared generator.</d> - <v>OthersPublicKey, MyPrivateKey = Mpint()</v> - <v>SharedSecret = binary()</v> + <v>Key = Cipher = iolist() | binary()</v> + <v>Text = binary()</v> </type> <desc> - <p>Computes the shared secret from the private key and the other party's public key. - </p> + <p>Decrypts <c>Cipher</c> according to DES in ECB mode. + <c>Key</c> is the DES key. The lengths of <c>Key</c> and + <c>Cipher</c> must be 64 bits (8 bytes).</p> </desc> </func> - - <func> - <name>srp_generate_key(Generator, Prime, Version) -> {PublicKey, PrivateKey} </name> - <name>srp_generate_key(Generator, Prime, Version, Private) -> {PublicKey, PrivateKey} </name> - <name>srp_generate_key(Verifier, Generator, Prime, Version) -> {PublicKey, PrivateKey} </name> - <name>srp_generate_key(Verifier, Generator, Prime, Version, Private) -> {PublicKey, PrivateKey} </name> - <fsummary>Generates SRP public keys</fsummary> + <func> + <name>rc2_cbc_encrypt(Key, IVec, Text) -> Cipher</name> + <fsummary>Encrypt <c>Text</c>according to RC2 in CBC mode</fsummary> <type> - <v>Verifier = binary()</v> - <d>Parameter v from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Generator = binary() </v> - <d>Parameter g from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Prime = binary() </v> - <d>Parameter N from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Version = '3' | '6' | '6a' </v> - <d>SRP version, TLS SRP cipher suites uses '6a'.</d> - <v>PublicKey = binary()</v> - <d> Parameter A or B from <url href="http://srp.stanford.edu/design.html">SRP design</url></d> - <v>Private = PrivateKey = binary() - generated if not supplied</v> - <d>Parameter a or b from <url href="http://srp.stanford.edu/design.html">SRP design</url></d> + <v>Key = Text = iolist() | binary()</v> + <v>Ivec = Cipher = binary()</v> </type> <desc> - <p>Generates SRP public keys for the client side (first argument is Generator) - or for the server side (first argument is Verifier).</p> + <p>Encrypts <c>Text</c> according to RC2 in CBC mode.</p> </desc> </func> <func> - <name>srp_compute_key(DerivedKey, Prime, Generator, - ClientPublic, ClientPrivate, ServerPublic, Version) -> SessionKey</name> - <name>srp_compute_key(DerivedKey, Prime, Generator, - ClientPublic, ClientPrivate, ServerPublic, Version, Scrambler) -> SessionKey</name> - <name>srp_compute_key(Verifier, Prime, - ClientPublic, ServerPublic, ServerPrivate, Version, Scrambler)-> SessionKey</name> - <name>srp_compute_key(Verifier, Prime, - ClientPublic, ServerPublic, ServerPrivate, Version) -> SessionKey</name> - - <fsummary>Computes SRP session key</fsummary> + <name>rc2_cbc_decrypt(Key, IVec, Cipher) -> Text</name> + <fsummary>Decrypts <c>Cipher</c>according to RC2 in CBC mode</fsummary> <type> - <v>DerivedKey = binary()</v> - <d>Parameter x from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Verifier = binary()</v> - <d>Parameter v from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Prime = binary() </v> - <d>Parameter N from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Generator = binary() </v> - <d>Parameter g from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>ClientPublic = binary() </v> - <d>Parameter A from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>ClientPrivate = binary() </v> - <d>Parameter a from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>ServerPublic = binary() </v> - <d>Parameter B from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>ServerPrivate = binary() </v> - <d>Parameter b from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> - <v>Version = '3' | '6' | '6a' </v> - <d>SRP version, TLS SRP cipher suites uses '6a'.</d> - <v>SessionKey = binary()</v> - <d>Result K from <url href="http://srp.stanford.edu/design.html">SRP design</url> - </d> + <v>Key = Text = iolist() | binary()</v> + <v>Ivec = Cipher = binary()</v> </type> <desc> - <p> - Computes the SRP session key (shared secret) for the client side (first argument is DerivedKey) - or for the server side (first argument is Verifier). Also used - as premaster secret by TLS-SRP cipher suites. - </p> + <p>Decrypts <c>Cipher</c> according to RC2 in CBC mode.</p> </desc> </func> <func> - <name>ec_key_new(NamedCurve) -> ECKey</name> + <name>rc4_encrypt(Key, Data) -> Result</name> + <fsummary>Encrypt data using RC4</fsummary> <type> - <v>NamedCurve = atom()</v> - <v>ECKey = EC key resource()</v> + <v>Key, Data = iolist() | binary()</v> + <v>Result = binary()</v> </type> <desc> - <p>Generate an new EC key from the named curve. The private key - will be initialized with random data. - </p> + <p>Encrypts the data with RC4 symmetric stream encryption. + Since it is symmetric, the same function is used for + decryption.</p> </desc> </func> - <func> - <name>ec_key_generate(ECKey) -> ok | error</name> - <type> - <v>ECKey = EC key resource()</v> - </type> - <desc> - <p>Fills in the public key if only the private key is known or generates - a new private/public key pair if only the curve parameters are known. - </p> - </desc> - </func> <func> - <name>ec_key_to_term(ECKey) -> ECKeyTerm.</name> + <name>rsa_public_encrypt(PlainText, PublicKey, Padding) -> ChipherText</name> + <fsummary>Encrypts Msg using the public Key.</fsummary> <type> - <v>ECKey = EC key resource()</v> - <v>ECKeyTerm = EC key as Erlang term</v> + <v>PlainText = binary()</v> + <v>PublicKey = [E, N]</v> + <v>E, N = integer()</v> + <d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d> + <v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v> + <v>ChipherText = binary()</v> </type> <desc> - <p>Convert a EC key from a NIF resource into an Erlang term. + <p>Encrypts the <c>PlainText</c> (usually a session key) using the <c>PublicKey</c> + and returns the cipher. The <c>Padding</c> decides what padding mode is used, + <c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most + used mode and <c>rsa_pkcs1_oaep_padding</c> is EME-OAEP as + defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding + parameter. This mode is recommended for all new applications. + The size of the <c>Msg</c> must be less + than <c>byte_size(N)-11</c> if + <c>rsa_pkcs1_padding</c> is used, <c>byte_size(N)-41</c> if + <c>rsa_pkcs1_oaep_padding</c> is used and <c>byte_size(N)</c> if <c>rsa_no_padding</c> + is used. </p> </desc> </func> <func> - <name>term_to_ec_key(ECKeyTerm) -> ECKey</name> + <name>rsa_private_decrypt(ChipherText, PrivateKey, Padding) -> PlainText</name> + <fsummary>Decrypts ChipherText using the private Key.</fsummary> <type> - <v>ECKeyTerm = EC key as Erlang term</v> - <v>ECKey = EC key resource()</v> + <v>ChipherText = binary()</v> + <v>PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v> + <v>E, N, D = integer()</v> + <d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and + <c>D</c> is the private exponent.</d> + <v>P1, P2, E1, E2, C = integer()</v> + <d>The longer key format contains redundant information that will make + the calculation faster. <c>P1,P2</c> are first and second prime factors. + <c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient. + Terminology is taken from RFC 3447.</d> + <v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v> + <v>PlainText = binary()</v> </type> <desc> - <p>Convert a EC key an Erlang term into a NIF resource. + <p>Decrypts the <c>ChipherText</c> (usually a session key encrypted with + <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>) + using the <c>PrivateKey</c> and returns the + message. The <c>Padding</c> is the padding mode that was + used to encrypt the data, + see <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>. </p> </desc> </func> <func> - <name>ecdsa_sign(DataOrDigest, ECKey) -> Signature</name> - <name>ecdsa_sign(DigestType, DataOrDigest, ECKey) -> Signature</name> - <fsummary>Sign the data using ecdsa with the given key.</fsummary> - <type> - <v>DataOrDigest = Data | {digest,Digest}</v> - <v>Data = Mpint</v> - <v>Digest = binary()</v> - <v>ECKey = EC key resource()</v> - <v>DigestType = md5 | sha | sha256 | sha384 | sha512</v> - <d>The default <c>DigestType</c> is sha.</d> - <v>Mpint = binary()</v> - <v>Signature = binary()</v> - </type> - <desc> - <p>Creates a ESDSA signature with the private key <c>Key</c> - of a digest. The digest is either calculated as a - <c>DigestType</c> digest of <c>Data</c> or a precalculated - binary <c>Digest</c>.</p> - </desc> - </func> - - <func> - <name>ecdsa_verify(DataOrDigest, Signature, ECKey) -> Verified</name> - <name>ecdsa_verify(DigestType, DataOrDigest, Signature, ECKey) -> Verified </name> - <fsummary>Verify the digest and signature using ecdsa with given public key.</fsummary> - <type> - <v>Verified = boolean()</v> - <v>DataOrDigest = Data | {digest|Digest}</v> - <v>Data, Signature = Mpint</v> - <v>Digest = binary()</v> - <v>ECKey = EC key resource()</v> - <v>DigestType = md5 | sha | sha256 | sha384 | sha512</v> - <d>The default <c>DigestType</c> is sha.</d> - <v>Mpint = binary()</v> - </type> - <desc> - <p>Verifies that a digest matches the ECDSA signature using the - signer's public key <c>Key</c>. - The digest is either calculated as a <c>DigestType</c> - digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p> - <p>May throw exception <c>notsup</c> in case the chosen <c>DigestType</c> - is not supported by the underlying OpenSSL implementation.</p> - </desc> - </func> - - <func> - <name>ecdh_compute_key(OthersPublicKey, MyPrivateKey) -> SharedSecret</name> - <name>ecdh_compute_key(OthersPublicKey, MyECPoint) -> SharedSecret</name> - <fsummary>Computes the shared secret</fsummary> + <name>rsa_private_encrypt(PlainText, PrivateKey, Padding) -> ChipherText</name> + <fsummary>Encrypts Msg using the private Key.</fsummary> <type> - <v>OthersPublicKey, MyPrivateKey = ECKey()</v> - <v>MyPrivatePoint = binary()</v> - <v>SharedSecret = binary()</v> + <v>PlainText = binary()</v> + <v>PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v> + <v>E, N, D = integer()</v> + <d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and + <c>D</c> is the private exponent.</d> + <v>P1, P2, E1, E2, C = integer()</v> + <d>The longer key format contains redundant information that will make + the calculation faster. <c>P1,P2</c> are first and second prime factors. + <c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient. + Terminology is taken from RFC 3447.</d> + <v>Padding = rsa_pkcs1_padding | rsa_no_padding</v> + <v>ChipherText = binary()</v> </type> <desc> - <p>Computes the shared secret from the private key and the other party's public key. + <p>Encrypts the <c>PlainText</c> using the <c>PrivateKey</c> + and returns the cipher. The <c>Padding</c> decides what padding mode is used, + <c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most + used mode. + The size of the <c>Msg</c> must be less than <c>byte_size(N)-11</c> if + <c>rsa_pkcs1_padding</c> is used, and <c>byte_size(N)</c> if <c>rsa_no_padding</c> + is used. </p> </desc> </func> - <func> - <name>exor(Data1, Data2) -> Result</name> - <fsummary>XOR data</fsummary> + <name>rsa_public_decrypt(ChipherText, PublicKey, Padding) -> PlainText</name> + <fsummary>Decrypts ChipherText using the public Key.</fsummary> <type> - <v>Data1, Data2 = iolist() | binary()</v> - <v>Result = binary()</v> + <v>ChipherText = binary()</v> + <v>PublicKey = [E, N]</v> + <v>E, N = integer() </v> + <d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus</d> + <v>Padding = rsa_pkcs1_padding | rsa_no_padding</v> + <v>PlainText = binary()</v> </type> <desc> - <p>Performs bit-wise XOR (exclusive or) on the data supplied.</p> + <p>Decrypts the <c>ChipherText</c> (encrypted with + <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>) + using the <c>PrivateKey</c> and returns the + message. The <c>Padding</c> is the padding mode that was + used to encrypt the data, + see <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>. + </p> </desc> </func> - </funcs> - - <section> - <title>Elliptic Curve Key</title> - <p>Elliptic Curve keys consist of the curve paramters and a the - private and public keys (points on the curve). Translating the - raw curve paraters into something usable for the underlying - OpenSSL implementation is a complicated process. The main cryptografic - functions therefore expect a NIF resource as input that contains the - key in an internal format. Two functions <b>ec_key_to_term/1</b> - and <b>term_to_ec_key</b> are provided to convert between Erlang - terms and the resource format</p> - <p><em>Key in term form</em></p> - <pre> -ec_named_curve() = atom() -ec_point() = binary() -ec_basis() = {tpbasis, K :: non_neg_integer()} | {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} | onbasis -ec_field() = {prime_field, Prime :: Mpint()} | {characteristic_two_field, M :: integer(), Basis :: ec_basis()} -ec_prime() = {A :: Mpint(), B :: Mpint(), Seed :: binary()} -ec_curve_spec() = {Field :: ec_field(), Prime :: ec_prime(), Point :: ec_point(), Order :: Mpint(), CoFactor :: none | Mpint()} -ec_curve() = ec_named_curve() | ec_curve_spec() -ec_key() = {Curve :: ec_curve(), PrivKey :: Mpint() | undefined, PubKey :: ec_point() | undefined} - </pre> - </section> + </funcs> <section> <title>DES in CBC mode</title> diff --git a/lib/crypto/doc/src/crypto_app.xml b/lib/crypto/doc/src/crypto_app.xml index 8371db1ff2..20f4ed5c45 100644 --- a/lib/crypto/doc/src/crypto_app.xml +++ b/lib/crypto/doc/src/crypto_app.xml @@ -1,4 +1,4 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE appref SYSTEM "appref.dtd"> <appref> @@ -24,23 +24,14 @@ </legalnotice> <title>crypto</title> - <prepared>Peter Högfeldt</prepared> - <responsible>Peter Högfeldt</responsible> - <docno></docno> - <approved>Peter Högfeldt</approved> - <checked>Peter Högfeldt</checked> - <date>2003-06-01</date> - <rev>B</rev> <file>crypto_app.sgml</file> </header> <app>crypto</app> <appsummary>The Crypto Application</appsummary> <description> - <p>The purpose of the Crypto application is to provide message - digest and DES encryption for SMNPv3. It provides computation of - message digests MD5 and SHA, and CBC-DES encryption and - decryption.</p> - <p></p> + <p>The purpose of the Crypto application is to provide erlang + acess to crypto graphic functions in openssl. + </p> </description> <section> @@ -68,36 +59,6 @@ <p>Source releases of OpenSSL can be downloaded from the <url href="http://www.openssl.org">OpenSSL</url> project home page, or mirror sites listed there. </p> - <p>The same URL also contains links to some compiled binaries and - libraries of OpenSSL (see the <c>Related/Binaries</c> menu) of - which the <url href="http://www.shininglightpro.com/search.php?searchname=Win32+OpenSSL">Shining Light Productions Win32 and OpenSSL</url> pages are of - interest for the Win32 user. - </p> - <p>For some Unix flavours there are binary packages available - on the net. - </p> - <p>If you cannot find a suitable binary OpenSSL package, you - have to fetch an OpenSSL source release and compile it. - </p> - <p>You then have to compile and install the library - <c>libcrypto.so</c> (Unix), or the library <c>libeay32.dll</c> - (Win32). - </p> - <p>For Unix The <c>crypto_drv</c> dynamic driver is delivered linked - to OpenSSL libraries in <c>/usr/local/lib</c>, but the default - dynamic linking will also accept libraries in <c>/lib</c> and - <c>/usr/lib</c>. - </p> - <p>If that is not applicable to the particular Unix operating - system used, the example <c>Makefile</c> in the Crypto - <c>priv/obj</c> directory, should be used as a basis for - relinking the final version of the port program. - </p> - <p>For <c>Win32</c> it is only required that the library can be - found from the <c>PATH</c> environment variable, or that they - reside in the appropriate <c>SYSTEM32</c> directory; hence no - particular relinking is need. Hence no example <c>Makefile</c> - for Win32 is provided.</p> </section> <section> diff --git a/lib/crypto/src/crypto.erl b/lib/crypto/src/crypto.erl index f87644b3fe..2b5ccb6ef4 100644 --- a/lib/crypto/src/crypto.erl +++ b/lib/crypto/src/crypto.erl @@ -23,19 +23,13 @@ -export([start/0, stop/0, info/0, info_lib/0, algorithms/0, version/0]). -export([hash/2, hash_init/1, hash_update/2, hash_final/1]). --export([md4/1, md4_init/0, md4_update/2, md4_final/1]). --export([md5/1, md5_init/0, md5_update/2, md5_final/1]). --export([sha/1, sha_init/0, sha_update/2, sha_final/1]). --export([sha224/1, sha224_init/0, sha224_update/2, sha224_final/1]). --export([sha256/1, sha256_init/0, sha256_update/2, sha256_final/1]). --export([sha384/1, sha384_init/0, sha384_update/2, sha384_final/1]). --export([sha512/1, sha512_init/0, sha512_update/2, sha512_final/1]). --export([md5_mac/2, md5_mac_96/2, sha_mac/2, sha_mac/3, sha_mac_96/2]). --export([sha224_mac/2, sha224_mac/3]). --export([sha256_mac/2, sha256_mac/3]). --export([sha384_mac/2, sha384_mac/3]). --export([sha512_mac/2, sha512_mac/3]). +-export([sign/4, verify/5]). +-export([generate_key/2, generate_key/3, compute_key/4]). -export([hmac/3, hmac/4, hmac_init/2, hmac_update/2, hmac_final/1, hmac_final_n/2]). +-export([exor/2]). +-export([strong_rand_bytes/1, mod_exp_prime/3]). +-export([rand_bytes/1, rand_bytes/3, rand_uniform/2]). + -export([des_cbc_encrypt/3, des_cbc_decrypt/3, des_cbc_ivec/1]). -export([des_ecb_encrypt/2, des_ecb_decrypt/2]). -export([des_cfb_encrypt/3, des_cfb_decrypt/3, des_cfb_ivec/2]). @@ -47,41 +41,69 @@ -export([blowfish_ofb64_encrypt/3]). -export([des_ede3_cbc_encrypt/5, des_ede3_cbc_decrypt/5]). -export([aes_cfb_128_encrypt/3, aes_cfb_128_decrypt/3]). --export([exor/2]). -export([rc4_encrypt/2, rc4_set_key/1, rc4_encrypt_with_state/2]). -export([rc2_cbc_encrypt/3, rc2_cbc_decrypt/3, rc2_40_cbc_encrypt/3, rc2_40_cbc_decrypt/3]). --export([dss_verify/3, dss_verify/4, rsa_verify/3, rsa_verify/4]). --export([dss_sign/2, dss_sign/3, rsa_sign/2, rsa_sign/3]). -export([rsa_public_encrypt/3, rsa_private_decrypt/3]). -export([rsa_private_encrypt/3, rsa_public_decrypt/3]). --export([dh_generate_key/1, dh_generate_key/2, dh_compute_key/3]). --export([rand_bytes/1, rand_bytes/3, rand_uniform/2]). --export([strong_rand_bytes/1, strong_rand_mpint/3]). --export([mod_exp/3, mod_exp_prime/3, mpint/1, erlint/1]). - -%% -export([idea_cbc_encrypt/3, idea_cbc_decrypt/3]). -export([aes_cbc_128_encrypt/3, aes_cbc_128_decrypt/3]). -export([aes_cbc_256_encrypt/3, aes_cbc_256_decrypt/3]). -export([aes_cbc_ivec/1]). -export([aes_ctr_encrypt/3, aes_ctr_decrypt/3]). -export([aes_ctr_stream_init/2, aes_ctr_stream_encrypt/2, aes_ctr_stream_decrypt/2]). --export([sign/4, verify/5]). --export([generate_key/2, generate_key/3, compute_key/4]). +-export([dh_generate_parameters/2, dh_check/1]). %% Testing see + +%% DEPRECATED +-export([md4/1, md4_init/0, md4_update/2, md4_final/1]). +-export([md5/1, md5_init/0, md5_update/2, md5_final/1]). +-export([sha/1, sha_init/0, sha_update/2, sha_final/1]). +-deprecated({md4, 1, next_major_release}). +-deprecated({md5, 1, next_major_release}). +-deprecated({sha, 1, next_major_release}). +-deprecated({md4_init, 0, next_major_release}). +-deprecated({md5_init, 0, next_major_release}). +-deprecated({sha_init, 0, next_major_release}). +-deprecated({md4_update, 2, next_major_release}). +-deprecated({md5_update, 2, next_major_release}). +-deprecated({sha_update, 2, next_major_release}). +-deprecated({md4_final, 1, next_major_release}). +-deprecated({md5_final, 1, next_major_release}). +-deprecated({sha_final, 1, next_major_release}). + +-export([md5_mac/2, md5_mac_96/2, sha_mac/2, sha_mac/3, sha_mac_96/2]). +-deprecated({md5_mac, 2, next_major_release}). +-deprecated({md5_mac_96, 2, next_major_release}). +-deprecated({sha_mac, 2, next_major_release}). +-deprecated({sha_mac, 3, next_major_release}). +-deprecated({sha_mac_96, 2, next_major_release}). --export([dh_generate_parameters/2, dh_check/1]). %% Testing see below +-export([dss_verify/3, dss_verify/4, rsa_verify/3, rsa_verify/4]). +-export([dss_sign/2, dss_sign/3, rsa_sign/2, rsa_sign/3]). +-deprecated({dss_verify, 3, next_major_release}). +-deprecated({dss_verify, 4, next_major_release}). +-deprecated({rsa_verify, 3, next_major_release}). +-deprecated({rsa_verify, 4, next_major_release}). +-deprecated({dss_sign, 2, next_major_release}). +-deprecated({dss_sign, 3, next_major_release}). +-deprecated({rsa_sign, 2, next_major_release}). +-deprecated({rsa_sign, 3, next_major_release}). +-export([dh_generate_key/1, dh_generate_key/2, dh_compute_key/3]). +-deprecated({dh_generate_key, 1, next_major_release}). +-deprecated({dh_generate_key, 2, next_major_release}). +-deprecated({dh_compute_key, 3, next_major_release}). + +-export([mod_exp/3, mpint/1, erlint/1, strong_rand_mpint/3]). +-deprecated({mod_exp, 3, next_major_release}). +-deprecated({mpint, 1, next_major_release}). +-deprecated({erlint, 1, next_major_release}). +-deprecated({strong_rand_mpint, 3, next_major_release}). -define(FUNC_LIST, [md4, md4_init, md4_update, md4_final, md5, md5_init, md5_update, md5_final, sha, sha_init, sha_update, sha_final, - sha224, sha224_init, sha224_update, sha224_final, - sha256, sha256_init, sha256_update, sha256_final, - sha384, sha384_init, sha384_update, sha384_final, - sha512, sha512_init, sha512_update, sha512_final, md5_mac, md5_mac_96, sha_mac, sha_mac_96, - sha224_mac, sha256_mac, sha384_mac, sha512_mac, des_cbc_encrypt, des_cbc_decrypt, des_cfb_encrypt, des_cfb_decrypt, des_ecb_encrypt, des_ecb_decrypt, @@ -102,7 +124,6 @@ exor, rc4_encrypt, rc4_set_key, rc4_encrypt_with_state, rc2_40_cbc_encrypt, rc2_40_cbc_decrypt, - %% idea_cbc_encrypt, idea_cbc_decrypt, aes_cbc_256_encrypt, aes_cbc_256_decrypt, aes_ctr_encrypt, aes_ctr_decrypt, aes_ctr_stream_init, aes_ctr_stream_encrypt, aes_ctr_stream_decrypt, @@ -124,13 +145,13 @@ -type crypto_integer() :: binary() | integer(). -type ec_key_res() :: any(). %% nif resource -type ec_named_curve() :: atom(). --type ec_point() :: binary(). +-type ec_point() :: crypto_integer(). -type ec_basis() :: {tpbasis, K :: non_neg_integer()} | {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} | onbasis. --type ec_field() :: {prime_field, Prime :: mpint()} | {characteristic_two_field, M :: integer(), Basis :: ec_basis()}. --type ec_prime() :: {A :: mpint(), B :: mpint(), Seed :: binary()}. --type ec_curve_spec() :: {Field :: ec_field(), Prime :: ec_prime(), Point :: ec_point(), Order :: mpint(), CoFactor :: none | mpint()}. +-type ec_field() :: {prime_field, Prime :: integer()} | {characteristic_two_field, M :: integer(), Basis :: ec_basis()}. +-type ec_prime() :: {A :: crypto_integer(), B :: crypto_integer(), Seed :: binary() | none}. +-type ec_curve_spec() :: {Field :: ec_field(), Prime :: ec_prime(), Point :: crypto_integer(), Order :: integer(), CoFactor :: none | integer()}. -type ec_curve() :: ec_named_curve() | ec_curve_spec(). --type ec_key() :: {Curve :: ec_curve(), PrivKey :: mpint() | undefined, PubKey :: ec_point() | undefined}. +-type ec_key() :: {Curve :: ec_curve(), PrivKey :: binary() | undefined, PubKey :: ec_point() | undefined}. -define(nif_stub,nif_stub_error(?LINE)). @@ -944,11 +965,11 @@ ecdsa_sign_nif(_Type, _DataOrDigest, _Key) -> ?nif_stub. -spec rsa_public_encrypt(binary(), [binary()], rsa_padding()) -> binary(). --spec rsa_public_decrypt(binary(), [binary()], rsa_padding()) -> +-spec rsa_public_decrypt(binary(), [integer() | mpint()], rsa_padding()) -> binary(). --spec rsa_private_encrypt(binary(), [binary()], rsa_padding()) -> +-spec rsa_private_encrypt(binary(), [integer() | mpint()], rsa_padding()) -> binary(). --spec rsa_private_decrypt(binary(), [binary()], rsa_padding()) -> +-spec rsa_private_decrypt(binary(), [integer() | mpint()], rsa_padding()) -> binary(). %% Binary, Key = [E,N] @@ -1216,8 +1237,6 @@ ecdh_compute_key_nif(_Others, _My) -> ?nif_stub. %% %% EC %% - --spec ec_key_to_term(ec_key_res()) -> ec_key(). ec_key_to_term(Key) -> case ec_key_to_term_nif(Key) of {PrivKey, PubKey} -> diff --git a/lib/crypto/test/crypto_SUITE.erl b/lib/crypto/test/crypto_SUITE.erl index 3ebe10866c..eff0f8a878 100644 --- a/lib/crypto/test/crypto_SUITE.erl +++ b/lib/crypto/test/crypto_SUITE.erl @@ -360,7 +360,7 @@ hmac_update_sha(Config) when is_list(Config) -> ?line Ctx2 = crypto:hmac_update(Ctx, Data), ?line Ctx3 = crypto:hmac_update(Ctx2, Data2), ?line Mac = crypto:hmac_final(Ctx3), - ?line Exp = crypto:sha_mac(Key, lists:flatten([Data, Data2])), + ?line Exp = crypto:hmac(sha, Key, lists:flatten([Data, Data2])), ?line m(Exp, Mac). hmac_update_sha256(doc) -> @@ -382,7 +382,7 @@ hmac_update_sha256_do() -> ?line Ctx2 = crypto:hmac_update(Ctx, Data), ?line Ctx3 = crypto:hmac_update(Ctx2, Data2), ?line Mac = crypto:hmac_final(Ctx3), - ?line Exp = crypto:sha256_mac(Key, lists:flatten([Data, Data2])), + ?line Exp = crypto:hmac(sha256, Key, lists:flatten([Data, Data2])), ?line m(Exp, Mac). hmac_update_sha512(doc) -> @@ -404,7 +404,7 @@ hmac_update_sha512_do() -> ?line Ctx2 = crypto:hmac_update(Ctx, Data), ?line Ctx3 = crypto:hmac_update(Ctx2, Data2), ?line Mac = crypto:hmac_final(Ctx3), - ?line Exp = crypto:sha512_mac(Key, lists:flatten([Data, Data2])), + ?line Exp = crypto:hmac(sha512, Key, lists:flatten([Data, Data2])), ?line m(Exp, Mac). hmac_update_md5(doc) -> @@ -619,68 +619,64 @@ hmac_rfc4231_sha512(suite) -> hmac_rfc4231_sha512(Config) when is_list(Config) -> if_supported(sha512, fun() -> hmac_rfc4231_sha512_do() end). -hmac_rfc4231_case(Hash, HashFun, case1, Exp) -> +hmac_rfc4231_case(Hash, case1, Exp) -> %% Test 1 Key = binary:copy(<<16#0b>>, 20), Data = <<"Hi There">>, - hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp); + hmac_rfc4231_case(Hash, Key, Data, Exp); -hmac_rfc4231_case(Hash, HashFun, case2, Exp) -> +hmac_rfc4231_case(Hash, case2, Exp) -> %% Test 2 Key = <<"Jefe">>, Data = <<"what do ya want for nothing?">>, - hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp); + hmac_rfc4231_case(Hash, Key, Data, Exp); -hmac_rfc4231_case(Hash, HashFun, case3, Exp) -> +hmac_rfc4231_case(Hash, case3, Exp) -> %% Test 3 Key = binary:copy(<<16#aa>>, 20), Data = binary:copy(<<16#dd>>, 50), - hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp); + hmac_rfc4231_case(Hash, Key, Data, Exp); -hmac_rfc4231_case(Hash, HashFun, case4, Exp) -> +hmac_rfc4231_case(Hash, case4, Exp) -> %% Test 4 Key = list_to_binary(lists:seq(1, 16#19)), Data = binary:copy(<<16#cd>>, 50), - hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp); + hmac_rfc4231_case(Hash, Key, Data, Exp); -hmac_rfc4231_case(Hash, HashFun, case5, Exp) -> +hmac_rfc4231_case(Hash, case5, Exp) -> %% Test 5 Key = binary:copy(<<16#0c>>, 20), Data = <<"Test With Truncation">>, - hmac_rfc4231_case(Hash, HashFun, Key, Data, 16, Exp); + hmac_rfc4231_case(Hash, Key, Data, 16, Exp); -hmac_rfc4231_case(Hash, HashFun, case6, Exp) -> +hmac_rfc4231_case(Hash, case6, Exp) -> %% Test 6 Key = binary:copy(<<16#aa>>, 131), Data = <<"Test Using Larger Than Block-Size Key - Hash Key First">>, - hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp); + hmac_rfc4231_case(Hash, Key, Data, Exp); -hmac_rfc4231_case(Hash, HashFun, case7, Exp) -> +hmac_rfc4231_case(Hash, case7, Exp) -> %% Test Case 7 Key = binary:copy(<<16#aa>>, 131), Data = <<"This is a test using a larger than block-size key and a larger t", "han block-size data. The key needs to be hashed before being use", "d by the HMAC algorithm.">>, - hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp). + hmac_rfc4231_case(Hash, Key, Data, Exp). -hmac_rfc4231_case(Hash, HashFun, Key, Data, Exp) -> +hmac_rfc4231_case(Hash, Key, Data, Exp) -> ?line Ctx = crypto:hmac_init(Hash, Key), ?line Ctx2 = crypto:hmac_update(Ctx, Data), ?line Mac1 = crypto:hmac_final(Ctx2), - ?line Mac2 = crypto:HashFun(Key, Data), ?line Mac3 = crypto:hmac(Hash, Key, Data), ?line m(Exp, Mac1), - ?line m(Exp, Mac2), ?line m(Exp, Mac3). -hmac_rfc4231_case(Hash, HashFun, Key, Data, Trunc, Exp) -> +hmac_rfc4231_case(Hash, Key, Data, Trunc, Exp) -> ?line Ctx = crypto:hmac_init(Hash, Key), ?line Ctx2 = crypto:hmac_update(Ctx, Data), ?line Mac1 = crypto:hmac_final_n(Ctx2, Trunc), - ?line Mac2 = crypto:HashFun(Key, Data, Trunc), ?line Mac3 = crypto:hmac(Hash, Key, Data, Trunc), ?line m(Exp, Mac1), - ?line m(Exp, Mac2), ?line m(Exp, Mac3). hmac_rfc4231_sha224_do() -> @@ -697,7 +693,7 @@ hmac_rfc4231_sha224_do() -> "d499f112f2d2b7273fa6870e"), Case7 = hexstr2bin("3a854166ac5d9f023f54d517d0b39dbd" "946770db9c2b95c9f6f565d1"), - hmac_rfc4231_cases_do(sha224, sha224_mac, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). + hmac_rfc4231_cases_do(sha224, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). hmac_rfc4231_sha256_do() -> Case1 = hexstr2bin("b0344c61d8db38535ca8afceaf0bf12b" @@ -713,7 +709,7 @@ hmac_rfc4231_sha256_do() -> "8e0bc6213728c5140546040f0ee37f54"), Case7 = hexstr2bin("9b09ffa71b942fcb27635fbcd5b0e944" "bfdc63644f0713938a7f51535c3a35e2"), - hmac_rfc4231_cases_do(sha256, sha256_mac, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). + hmac_rfc4231_cases_do(sha256, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). hmac_rfc4231_sha384_do() -> Case1 = hexstr2bin("afd03944d84895626b0825f4ab46907f" @@ -735,7 +731,7 @@ hmac_rfc4231_sha384_do() -> Case7 = hexstr2bin("6617178e941f020d351e2f254e8fd32c" "602420feb0b8fb9adccebb82461e99c5" "a678cc31e799176d3860e6110c46523e"), - hmac_rfc4231_cases_do(sha384, sha384_mac, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). + hmac_rfc4231_cases_do(sha384, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). hmac_rfc4231_sha512_do() -> Case1 = hexstr2bin("87aa7cdea5ef619d4ff0b4241a1d6cb0" @@ -763,16 +759,16 @@ hmac_rfc4231_sha512_do() -> "debd71f8867289865df5a32d20cdc944" "b6022cac3c4982b10d5eeb55c3e4de15" "134676fb6de0446065c97440fa8c6a58"), - hmac_rfc4231_cases_do(sha512, sha512_mac, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). + hmac_rfc4231_cases_do(sha512, [Case1, Case2, Case3, Case4, Case5, Case6, Case7]). -hmac_rfc4231_cases_do(Hash, HashFun, CasesData) -> - hmac_rfc4231_cases_do(Hash, HashFun, [case1, case2, case3, case4, case5, case6, case7], CasesData). +hmac_rfc4231_cases_do(Hash, CasesData) -> + hmac_rfc4231_cases_do(Hash, [case1, case2, case3, case4, case5, case6, case7], CasesData). -hmac_rfc4231_cases_do(_Hash, _HashFun, _, []) -> +hmac_rfc4231_cases_do(_Hash, _, []) -> ok; -hmac_rfc4231_cases_do(Hash, HashFun, [C|Cases], [D|CasesData]) -> - hmac_rfc4231_case(Hash, HashFun, C, D), - hmac_rfc4231_cases_do(Hash, HashFun, Cases, CasesData). +hmac_rfc4231_cases_do(Hash, [C|Cases], [D|CasesData]) -> + hmac_rfc4231_case(Hash, C, D), + hmac_rfc4231_cases_do(Hash, Cases, CasesData). hmac_update_md5_io(doc) -> ["Generate an MD5 HMAC using hmac_init, hmac_update, and hmac_final. " @@ -859,10 +855,10 @@ sha256(Config) when is_list(Config) -> if_supported(sha256, fun() -> sha256_do() end). sha256_do() -> - ?line m(crypto:sha256("abc"), + ?line m(crypto:hash(sha256, "abc"), hexstr2bin("BA7816BF8F01CFEA4141" "40DE5DAE2223B00361A396177A9CB410FF61F20015AD")), - ?line m(crypto:sha256("abcdbcdecdefdefgefghfghighijhijkijkljklmklm" + ?line m(crypto:hash(sha256, "abcdbcdecdefdefgefghfghighijhijkijkljklmklm" "nlmnomnopnopq"), hexstr2bin("248D6A61D20638B8" "E5C026930C3E6039A33CE45964FF2167F6ECEDD419DB06C1")). @@ -878,10 +874,10 @@ sha256_update(Config) when is_list(Config) -> if_supported(sha256, fun() -> sha256_update_do() end). sha256_update_do() -> - ?line Ctx = crypto:sha256_init(), - ?line Ctx1 = crypto:sha256_update(Ctx, "abcdbcdecdefdefgefghfghighi"), - ?line Ctx2 = crypto:sha256_update(Ctx1, "jhijkijkljklmklmnlmnomnopnopq"), - ?line m(crypto:sha256_final(Ctx2), + ?line Ctx = crypto:hash_init(sha256), + ?line Ctx1 = crypto:hash_update(Ctx, "abcdbcdecdefdefgefghfghighi"), + ?line Ctx2 = crypto:hash_update(Ctx1, "jhijkijkljklmklmnlmnomnopnopq"), + ?line m(crypto:hash_final(Ctx2), hexstr2bin("248D6A61D20638B8" "E5C026930C3E6039A33CE45964FF2167F6ECEDD419DB06C1")). @@ -897,11 +893,11 @@ sha512(Config) when is_list(Config) -> if_supported(sha512, fun() -> sha512_do() end). sha512_do() -> - ?line m(crypto:sha512("abc"), + ?line m(crypto:hash(sha512, "abc"), hexstr2bin("DDAF35A193617ABACC417349AE20413112E6FA4E89A97EA2" "0A9EEEE64B55D39A2192992A274FC1A836BA3C23A3FEEBBD" "454D4423643CE80E2A9AC94FA54CA49F")), - ?line m(crypto:sha512("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" + ?line m(crypto:hash(sha512, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), hexstr2bin("8E959B75DAE313DA8CF4F72814FC143F8F7779C6EB9F7FA1" "7299AEADB6889018501D289E4900F7E4331B99DEC4B5433A" @@ -918,10 +914,10 @@ sha512_update(Config) when is_list(Config) -> if_supported(sha512, fun() -> sha512_update_do() end). sha512_update_do() -> - ?line Ctx = crypto:sha512_init(), - ?line Ctx1 = crypto:sha512_update(Ctx, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"), - ?line Ctx2 = crypto:sha512_update(Ctx1, "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), - ?line m(crypto:sha512_final(Ctx2), + ?line Ctx = crypto:hash_init(sha512), + ?line Ctx1 = crypto:hash_update(Ctx, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"), + ?line Ctx2 = crypto:hash_update(Ctx1, "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), + ?line m(crypto:hash_final(Ctx2), hexstr2bin("8E959B75DAE313DA8CF4F72814FC143F8F7779C6EB9F7FA1" "7299AEADB6889018501D289E4900F7E4331B99DEC4B5433A" "C7D329EEB6DD26545E96E55B874BE909")). diff --git a/lib/public_key/doc/src/public_key.xml b/lib/public_key/doc/src/public_key.xml index 9cad17e4c3..45aaf21b80 100644 --- a/lib/public_key/doc/src/public_key.xml +++ b/lib/public_key/doc/src/public_key.xml @@ -100,8 +100,10 @@ <p><code>dsa_public_key() = {integer(), #'Dss-Parms'{}} </code></p> <p><code>dsa_private_key() = #'DSAPrivateKey'{}</code></p> + + <p><code>ec_public_key() = {#'ECPoint'{}, #'OTPEcpkParameters'{} | {namedCurve, oid()}} </code></p> - <p><code>ec_key() = {'ECKey', Key}</code></p> + <p><code>ec_private_key() = #'ECPrivateKey'{}</code></p> <p><code> public_crypt_options() = [{rsa_pad, rsa_padding()}]. </code></p> @@ -112,7 +114,7 @@ <p><code> dss_digest_type() = 'sha' </code></p> - <p><code> ecdsa_digest_type() = 'sha' </code></p> + <p><code> ecdsa_digest_type() = 'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512' </code></p> <p><code> crl_reason() = unspecified | keyCompromise | cACompromise | affiliationChanged | superseded | cessationOfOperation | certificateHold | privilegeWithdrawn | aACompromise </code></p> @@ -534,7 +536,7 @@ fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom()} | signed or it is the hashed value of "plain text" i.e. the digest.</d> <v>DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()</v> - <v>Key = rsa_private_key() | dsa_private_key() | ec_key()</v> + <v>Key = rsa_private_key() | dsa_private_key() | ec_private_key()</v> </type> <desc> <p> Creates a digital signature.</p> @@ -599,10 +601,10 @@ fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom()} | or it is the hashed value of "plain text" i.e. the digest.</d> <v>DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()</v> <v>Signature = binary()</v> - <v>Key = rsa_public_key() | dsa_public_key() | ec_key()</v> - </type> - <desc> - <p>Verifies a digital signature</p> + <v>Key = rsa_public_key() | dsa_public_key() | ec_public_key()</v> + </type> + <desc> + <p>Verifies a digital signature</p> </desc> </func> diff --git a/lib/public_key/include/public_key.hrl b/lib/public_key/include/public_key.hrl index 976104fe6c..363305957c 100644 --- a/lib/public_key/include/public_key.hrl +++ b/lib/public_key/include/public_key.hrl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2008-2012. All Rights Reserved. +%% Copyright Ericsson AB 2008-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -93,6 +93,8 @@ -type rsa_private_key() :: #'RSAPrivateKey'{}. -type dsa_private_key() :: #'DSAPrivateKey'{}. -type dsa_public_key() :: {integer(), #'Dss-Parms'{}}. +-type ec_public_key() :: {#'ECPoint'{},{namedCurve, Oid::tuple()} | #'OTPECParameters'{}}. +-type ec_private_key() :: #'ECPrivateKey'{}. -type der_encoded() :: binary(). -type decrypt_der() :: binary(). -type pki_asn1_type() :: 'Certificate' | 'RSAPrivateKey' | 'RSAPublicKey' diff --git a/lib/public_key/src/public_key.erl b/lib/public_key/src/public_key.erl index a8fe9213ea..96eaacf60e 100644 --- a/lib/public_key/src/public_key.erl +++ b/lib/public_key/src/public_key.erl @@ -54,6 +54,7 @@ -type public_crypt_options() :: [{rsa_pad, rsa_padding()}]. -type rsa_digest_type() :: 'md5' | 'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'. -type dss_digest_type() :: 'none' | 'sha'. %% None is for backwards compatibility +-type ecdsa_digest_type() :: 'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'. -type crl_reason() :: unspecified | keyCompromise | cACompromise | affiliationChanged | superseded | cessationOfOperation | certificateHold | privilegeWithdrawn | aACompromise. -type oid() :: tuple(). @@ -97,7 +98,7 @@ pem_entry_decode({'SubjectPublicKeyInfo', Der, _}) -> 'DSAPublicKey' -> {params, DssParams} = der_decode('DSAParams', Params), {der_decode(KeyType, Key0), DssParams}; - 'ECPrivateKey' -> + 'ECPoint' -> der_decode(KeyType, Key0) end; pem_entry_decode({Asn1Type, Der, not_encrypted}) when is_atom(Asn1Type), @@ -355,7 +356,7 @@ compute_key(PubKey, PrivKey, #'DHParameter'{prime = P, base = G}) -> -spec pkix_sign_types(SignatureAlg::oid()) -> %% Relevant dsa digest type is subpart of rsa digest type { DigestType :: rsa_digest_type(), - SignatureType :: rsa | dsa + SignatureType :: rsa | dsa | ecdsa }. %% Description: %%-------------------------------------------------------------------- @@ -387,9 +388,9 @@ pkix_sign_types(?'ecdsa-with-SHA512') -> {sha512, ecdsa}. %%-------------------------------------------------------------------- --spec sign(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type(), +-spec sign(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type() | ecdsa_digest_type(), rsa_private_key() | - dsa_private_key()) -> Signature :: binary(). + dsa_private_key() | ec_private_key()) -> Signature :: binary(). %% Description: Create digital signature. %%-------------------------------------------------------------------- sign(DigestOrPlainText, DigestType, Key = #'RSAPrivateKey'{}) -> @@ -408,9 +409,9 @@ sign(Digest, none, #'DSAPrivateKey'{} = Key) -> sign({digest,Digest}, sha, Key). %%-------------------------------------------------------------------- --spec verify(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type(), +-spec verify(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type() | ecdsa_digest_type(), Signature :: binary(), rsa_public_key() - | dsa_public_key()) -> boolean(). + | dsa_public_key() | ec_public_key()) -> boolean(). %% Description: Verifies a digital signature. %%-------------------------------------------------------------------- verify(DigestOrPlainText, DigestType, Signature, @@ -452,7 +453,7 @@ pkix_sign(#'OTPTBSCertificate'{signature = %%-------------------------------------------------------------------- -spec pkix_verify(Cert::binary(), rsa_public_key()| - dsa_public_key()) -> boolean(). + dsa_public_key() | ec_public_key()) -> boolean(). %% %% Description: Verify pkix x.509 certificate signature. %%-------------------------------------------------------------------- @@ -879,12 +880,6 @@ ec_curve_spec( #'OTPECParameters'{fieldID = FieldId, curve = PCurve, base = Base ec_curve_spec({namedCurve, OID}) -> pubkey_cert_records:namedCurves(OID). -ec_key({PrivateKey, PubKey}, Curve) when is_atom(Curve) -> - #'ECPrivateKey'{version = 1, - privateKey = int2list(PrivateKey), - parameters = {namedCurve, pubkey_cert_records:namedCurves(Curve)}, - publicKey = {0, PubKey}}; - ec_key({PrivateKey, PubKey}, Params) -> #'ECPrivateKey'{version = 1, privateKey = int2list(PrivateKey), diff --git a/lib/public_key/test/pkits_SUITE.erl b/lib/public_key/test/pkits_SUITE.erl index d901adaadd..8cdf0aaae3 100644 --- a/lib/public_key/test/pkits_SUITE.erl +++ b/lib/public_key/test/pkits_SUITE.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2008-2012. All Rights Reserved. +%% Copyright Ericsson AB 2008-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -758,11 +758,10 @@ warning(Format, Args, File0, Line) -> io:format("~s(~p): Warning "++Format, [File,Line|Args]). crypto_support_check(Config) -> - try crypto:sha256(<<"Test">>) of - _ -> - Config - catch error:notsup -> - crypto:stop(), + case proplists:get_bool(sha256, crypto:algorithms()) of + true -> + Config; + false -> {skip, "To old version of openssl"} end. diff --git a/lib/public_key/test/public_key_SUITE.erl b/lib/public_key/test/public_key_SUITE.erl index 0de80edeac..5a64140c67 100644 --- a/lib/public_key/test/public_key_SUITE.erl +++ b/lib/public_key/test/public_key_SUITE.erl @@ -551,7 +551,7 @@ dsa_sign_verify(Config) when is_list(Config) -> false = public_key:verify(Msg, sha, <<1:8, DSASign/binary>>, {DSAPublicKey, DSAParams}), - Digest = crypto:sha(Msg), + Digest = crypto:hash(sha,Msg), DigestSign = public_key:sign(Digest, none, DSAPrivateKey), true = public_key:verify(Digest, none, DigestSign, {DSAPublicKey, DSAParams}), <<_:8, RestDigest/binary>> = Digest, diff --git a/lib/ssl/doc/src/ssl.xml b/lib/ssl/doc/src/ssl.xml index b02493d2cb..1645eb15f3 100644 --- a/lib/ssl/doc/src/ssl.xml +++ b/lib/ssl/doc/src/ssl.xml @@ -41,16 +41,17 @@ <item>For security reasons sslv2 is not supported.</item> <item>Ephemeral Diffie-Hellman cipher suites are supported but not Diffie Hellman Certificates cipher suites.</item> - <item>Elliptic Curve cipher suites are supported on - systems with a OpenSSL library that has EC support - compiled in.</item> + <item>Elliptic Curve cipher suites are supported if crypto + supports it and named curves are used. + </item> <item>Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.</item> <item>IDEA cipher suites are not supported as they have become deprecated by the latest TLS spec so there is not any real motivation to implement them.</item> - <item>CRL and policy certificate - extensions are not supported yet. </item> + <item>CRL and policy certificate extensions are not supported + yet. However CRL verification is supported by public_key, only not integrated + in ssl yet. </item> </list> </section> diff --git a/lib/ssl/src/ssl_cipher.erl b/lib/ssl/src/ssl_cipher.erl index b162d862af..1bf3a885b2 100644 --- a/lib/ssl/src/ssl_cipher.erl +++ b/lib/ssl/src/ssl_cipher.erl @@ -219,7 +219,7 @@ anonymous_suites() -> ?TLS_ECDH_anon_WITH_AES_256_CBC_SHA]. %%-------------------------------------------------------------------- --spec psk_suites(tls_version()) -> [cipher_suite()]. +-spec psk_suites(tls_version() | integer()) -> [cipher_suite()]. %% %% Description: Returns a list of the PSK cipher suites, only supported %% if explicitly set by user. diff --git a/lib/ssl/src/ssl_cipher.hrl b/lib/ssl/src/ssl_cipher.hrl index c59f5e81c8..32b2c0d392 100644 --- a/lib/ssl/src/ssl_cipher.hrl +++ b/lib/ssl/src/ssl_cipher.hrl @@ -28,7 +28,7 @@ -type cipher() :: null |rc4_128 | idea_cbc | des40_cbc | des_cbc | '3des_ede_cbc' | aes_128_cbc | aes_256_cbc. --type hash() :: null | sha | md5 | sha256 | sha384 | sha512. +-type hash() :: null | sha | md5 | ssh224 | sha256 | sha384 | sha512. -type erl_cipher_suite() :: {key_algo(), cipher(), hash()}. -type int_cipher_suite() :: {key_algo(), cipher(), hash(), hash()}. -type cipher_suite() :: binary(). diff --git a/lib/ssl/src/ssl_handshake.erl b/lib/ssl/src/ssl_handshake.erl index 338319ab9e..1cca644956 100644 --- a/lib/ssl/src/ssl_handshake.erl +++ b/lib/ssl/src/ssl_handshake.erl @@ -139,7 +139,8 @@ hello_request() -> atom(), #connection_states{}, binary()}, boolean()) -> {tls_version(), session_id(), #connection_states{}, binary() | undefined}| - {tls_version(), {resumed | new, #session{}}, #connection_states{}, list(binary()) | undefined} | + {tls_version(), {resumed | new, #session{}}, #connection_states{}, [binary()] | undefined, + [oid()] | undefined, [oid()] | undefined} | #alert{}. %% %% Description: Handles a recieved hello message @@ -372,8 +373,7 @@ certificate_request(ConnectionStates, CertDbHandle, CertDbRef) -> {dh, binary()} | {dh, {binary(), binary()}, #'DHParameter'{}, {HashAlgo::atom(), SignAlgo::atom()}, binary(), binary(), private_key()} | - {ecdh, {'ECKey', any()}, {HashAlgo::atom(), SignAlgo::atom()}, - binary(), binary(), private_key()} | + {ecdh, #'ECPrivateKey'{}} | {psk, binary()} | {dhe_psk, binary(), binary()} | {srp, {binary(), binary()}, #srp_user{}, {HashAlgo::atom(), SignAlgo::atom()}, @@ -417,7 +417,7 @@ key_exchange(client, _Version, {psk_premaster_secret, PskIdentity, Secret, {_, P encrypted_premaster_secret(Secret, PublicKey), #client_key_exchange{ exchange_keys = #client_rsa_psk_identity{ - identity = PskIdentity, + identity = PskIdentity, exchange_keys = EncPremasterSecret}}; key_exchange(client, _Version, {srp, PublicKey}) -> @@ -596,6 +596,7 @@ get_tls_handshake(Version, Data, Buffer) -> -spec decode_client_key(binary(), key_algo(), tls_version()) -> #encrypted_premaster_secret{} | #client_diffie_hellman_public{} + | #client_ec_diffie_hellman_public{} | #client_psk_identity{} | #client_dhe_psk_identity{} | #client_rsa_psk_identity{} diff --git a/lib/ssl/src/ssl_handshake.hrl b/lib/ssl/src/ssl_handshake.hrl index df21468862..2519fba4e1 100644 --- a/lib/ssl/src/ssl_handshake.hrl +++ b/lib/ssl/src/ssl_handshake.hrl @@ -28,9 +28,9 @@ -include_lib("public_key/include/public_key.hrl"). --type algo_oid() :: ?'rsaEncryption' | ?'id-dsa'. --type public_key_params() :: #'Dss-Parms'{} | term(). --type public_key_info() :: {algo_oid(), #'RSAPublicKey'{} | integer() , public_key_params()}. +-type oid() :: tuple(). +-type public_key_params() :: #'Dss-Parms'{} | {namedCurve, oid()} | #'OTPECParameters'{} | term(). +-type public_key_info() :: {oid(), #'RSAPublicKey'{} | integer() | #'ECPoint'{}, public_key_params()}. -type tls_handshake_history() :: {[binary()], [binary()]}. -define(NO_PROTOCOL, <<>>). diff --git a/lib/ssl/src/ssl_internal.hrl b/lib/ssl/src/ssl_internal.hrl index 96a1c8e1ce..89fee38c46 100644 --- a/lib/ssl/src/ssl_internal.hrl +++ b/lib/ssl/src/ssl_internal.hrl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2007-2012. All Rights Reserved. +%% Copyright Ericsson AB 2007-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -39,7 +39,7 @@ -type db_handle() :: term(). -type key_algo() :: null | rsa | dhe_rsa | dhe_dss | dh_anon. -type der_cert() :: binary(). --type private_key() :: #'RSAPrivateKey'{} | #'DSAPrivateKey'{}. +-type private_key() :: #'RSAPrivateKey'{} | #'DSAPrivateKey'{} | #'ECPrivateKey'{}. -type issuer() :: tuple(). -type serialnumber() :: integer(). -type cert_key() :: {reference(), integer(), issuer()}. diff --git a/lib/stdlib/src/otp_internal.erl b/lib/stdlib/src/otp_internal.erl index a4f4035c79..9805414a9a 100644 --- a/lib/stdlib/src/otp_internal.erl +++ b/lib/stdlib/src/otp_internal.erl @@ -66,6 +66,78 @@ obsolete_1(rpc, safe_multi_server_call, A) when A =:= 2; A =:= 3 -> {deprecated, {rpc, multi_server_call, A}}; +%% *** CRYPTO add in R16B01 *** + +obsolete_1(crypto, md4, 1) -> + {deprecated, {crypto, hash, 2}}; +obsolete_1(crypto, md5, 1) -> + {deprecated, {crypto, hash, 2}}; +obsolete_1(crypto, sha, 1) -> + {deprecated, {crypto, hash, 2}}; + +obsolete_1(crypto, md4_init, 1) -> + {deprecated, {crypto, hash_init, 2}}; +obsolete_1(crypto, md5_init, 1) -> + {deprecated, {crypto, hash_init, 2}}; +obsolete_1(crypto, sha_init, 1) -> + {deprecated, {crypto, hash_init, 2}}; + +obsolete_1(crypto, md4_update, 2) -> + {deprecated, {crypto, hash_update, 3}}; +obsolete_1(crypto, md5_update, 2) -> + {deprecated, {crypto, hash_update, 3}}; +obsolete_1(crypto, sah_update, 2) -> + {deprecated, {crypto, hash_update, 3}}; + +obsolete_1(crypto, md4_final, 1) -> + {deprecated, {crypto, hash_final, 2}}; +obsolete_1(crypto, md5_final, 1) -> + {deprecated, {crypto, hash_final, 2}}; +obsolete_1(crypto, sha_final, 1) -> + {deprecated, {crypto, hash_final, 2}}; + +obsolete_1(crypto, md5_mac, 2) -> + {deprecated, {crypto, hmac, 3}}; +obsolete_1(crypto, sha_mac, 2) -> + {deprecated, {crypto, hmac, 3}}; + +obsolete_1(crypto, sha_mac_96, 2) -> + {deprecated, {crypto, hmac_n, 3}}; +obsolete_1(crypto, md5_mac_96, 2) -> + {deprecated, {crypto, hmac_n, 3}}; + +obsolete_1(crypto, rsa_sign, 3) -> + {deprecated, {crypto, sign, 4}}; +obsolete_1(crypto, rsa_verify, 3) -> + {deprecated, {crypto, verify, 4}}; + +obsolete_1(crypto, dss_sign, 2) -> + {deprecated, {crypto, sign, 4}}; +obsolete_1(crypto, dss_sign, 3) -> + {deprecated, {crypto, sign, 4}}; + +obsolete_1(crypto, dss_verify, 3) -> + {deprecated, {crypto, verify, 4}}; +obsolete_1(crypto, dss_verify, 4) -> + {deprecated, {crypto, verify, 4}}; + +obsolete_1(crypto, mod_exp, 3) -> + {deprecated, {crypto, mod_exp_prime, 3}}; + +obsolete_1(crypto, dh_compute_key, 3) -> + {deprecated, {crypto, compute_key, 4}}; +obsolete_1(crypto, dh_generate_key, 1) -> + {deprecated, {crypto, generate_key, 3}}; +obsolete_1(crypto, dh_generate_key, 2) -> + {deprecated, {crypto, generate_key, 3}}; + +obsolete_1(crypto, strong_rand_mpint, 3) -> + {deprecated, "needed only by deprecated functions"}; +obsolete_1(crypto, erlint, 3) -> + {deprecated, "needed only by deprecated functions"}; +obsolete_1(crypto, mpint, 3) -> + {deprecated, "needed only by deprecated functions"}; + %% *** SNMP *** obsolete_1(snmp, N, A) -> |