diff options
author | Raimo Niskanen <[email protected]> | 2018-03-20 03:34:23 -0700 |
---|---|---|
committer | Raimo Niskanen <[email protected]> | 2018-03-22 12:18:11 +0100 |
commit | d86fd35ca0c65069955a34d6ae9fbc33b9663eb0 (patch) | |
tree | 81c804acf4e080541bd8fc008c71bcbf4ee0e0be | |
parent | ea1963553ffb06eb1bda636f328718f91136ed9c (diff) | |
download | otp-d86fd35ca0c65069955a34d6ae9fbc33b9663eb0.tar.gz otp-d86fd35ca0c65069955a34d6ae9fbc33b9663eb0.tar.bz2 otp-d86fd35ca0c65069955a34d6ae9fbc33b9663eb0.zip |
Update User's Guide and pointers to it
-rw-r--r-- | lib/stdlib/doc/src/gen_statem.xml | 89 | ||||
-rw-r--r-- | system/doc/design_principles/statem.xml | 543 |
2 files changed, 474 insertions, 158 deletions
diff --git a/lib/stdlib/doc/src/gen_statem.xml b/lib/stdlib/doc/src/gen_statem.xml index be0d64feba..252a8370ad 100644 --- a/lib/stdlib/doc/src/gen_statem.xml +++ b/lib/stdlib/doc/src/gen_statem.xml @@ -32,39 +32,43 @@ <modulesummary>Generic state machine behavior.</modulesummary> <description> <p> - This behavior module provides a state machine. Two - <seealso marker="#type-callback_mode"><em>callback modes</em></seealso> - are supported: + <c>gen_statem</c> provides a generic state machine behaviour + and replaces its predecessor + <seealso marker="gen_fsm"><c>gen_fsm</c> </seealso> + since Erlang/OTP 20.0. + </p> + <p> + This reference manual describes types generated from the types + in the <c>gen_statem</c> source code, so they are correct. + However, the generated descriptions also reflect the type hiearchy, + which makes them kind of hard to read. + </p> + <p> + To get an overview of the concepts and operation of <c>gen_statem</c>, + do read the + <seealso marker="doc/design_principles:statem">User's Guide</seealso>. + It frequently links back to this reference manual to avoid containing + detailed facts that may rot by age. </p> - <list type="bulleted"> - <item> - <p>One for finite-state machines - (<seealso marker="gen_fsm"><c>gen_fsm</c></seealso> like), - which requires the state to be an atom and uses that state as - the name of the current callback function - </p> - </item> - <item> - <p>One without restriction on the state data type - that uses one callback function for all states - </p> - </item> - </list> <note> <p> - This is a new behavior in Erlang/OTP 19.0. - It has been thoroughly reviewed, is stable enough - to be used by at least two heavy OTP applications, - and is here to stay. - Depending on user feedback, we do not expect - but can find it necessary to make minor - not backward compatible changes into Erlang/OTP 20.0. + This behavior appeared in Erlang/OTP 19.0. + In OTP 19.1 a backwards incompatible change of + the return tuple from + <seealso marker="#Module:init/1"><c>Module:init/1</c></seealso> + was made and the mandatory callback function + <seealso marker="#Module:callback_mode/0"> + <c>Module:callback_mode/0</c> + </seealso> + was introduced. In OTP 20.0 the + <seealso marker="#type-generic_timeout"><c>generic timeouts</c></seealso> + were added. </p> </note> <p> - The <c>gen_statem</c> behavior replaces - <seealso marker="gen_fsm"><c>gen_fsm</c> </seealso> in Erlang/OTP 20.0. - It has the same features and adds some really useful: + <c>gen_statem</c> has got the same features that + <seealso marker="gen_fsm"><c>gen_fsm</c> </seealso> + had and adds some really useful: </p> <list type="bulleted"> <item>Gathered state code.</item> @@ -78,6 +82,27 @@ <item>Reply from other state than the request.</item> <item>Multiple <c>sys</c> traceable replies.</item> </list> + + + <p> + Two + <seealso marker="#type-callback_mode"><em>callback modes</em></seealso> + are supported: + </p> + <list type="bulleted"> + <item> + <p>One for finite-state machines + (<seealso marker="gen_fsm"><c>gen_fsm</c></seealso> like), + which requires the state to be an atom and uses that state as + the name of the current callback function + </p> + </item> + <item> + <p>One without restriction on the state data type + that uses one callback function for all states + </p> + </item> + </list> <p> The callback model(s) for <c>gen_statem</c> differs from the one for <seealso marker="gen_fsm"><c>gen_fsm</c></seealso>, @@ -252,6 +277,16 @@ erlang:'!' -----> Module:StateName/3 to use after every event; see <seealso marker="erts:erlang#hibernate/3"><c>erlang:hibernate/3</c></seealso>. </p> + <p> + There is also a server start option + <seealso marker="#type-hibernate_after_opt"> + <c>{hibernate_after, Timeout}</c> + </seealso> + for + <seealso marker="#start/3"><c>start/3,4</c></seealso> or + <seealso marker="#start_link/3"><c>start_link/3,4</c></seealso> + that may be used to automatically hibernate the server. + </p> </description> <section> diff --git a/system/doc/design_principles/statem.xml b/system/doc/design_principles/statem.xml index 5be2981f62..16f6ce8348 100644 --- a/system/doc/design_principles/statem.xml +++ b/system/doc/design_principles/statem.xml @@ -36,16 +36,6 @@ manual page in STDLIB, where all interface functions and callback functions are described in detail. </p> - <note> - <p> - This is a new behavior in Erlang/OTP 19.0. - It has been thoroughly reviewed, is stable enough - to be used by at least two heavy OTP applications, and is here to stay. - Depending on user feedback, we do not expect - but can find it necessary to make minor - not backward compatible changes into Erlang/OTP 20.0. - </p> - </note> <!-- =================================================================== --> @@ -95,60 +85,96 @@ State(S) x Event(E) -> Actions(A), State(S')</pre> <!-- =================================================================== --> <section> + <marker id="Callback Module" /> + <title>Callback Module</title> + <p> + The callback module contains functions that implement + the state machine. + When an event occurs, + the <c>gen_statem</c> behaviour engine + calls a function in the callback module with the event, + current state and server data. + This function performs the actions for this event, + and returns the new state and server data + and also actions to be performed by the behaviour engine. + </p> + <p> + The behaviour engine holds the state machine state, + server data, timer references, a queue of posponed messages + and other metadata. It receives all process messages, + handles the system messages, and calls the callback module + with machine specific events. + </p> + </section> + +<!-- =================================================================== --> + + <section> <marker id="Callback Modes" /> <title>Callback Modes</title> <p> The <c>gen_statem</c> behavior supports two callback modes: </p> - <list type="bulleted"> + <taglist> + <tag> + <seealso marker="stdlib:gen_statem#type-callback_mode"> + <c>state_functions</c> + </seealso> + </tag> <item> <p> - In mode - <seealso marker="stdlib:gen_statem#type-callback_mode"><c>state_functions</c></seealso>, - the state transition rules are written as some Erlang - functions, which conform to the following convention: - </p> - <pre> -StateName(EventType, EventContent, Data) -> - ... code for actions here ... - {next_state, NewStateName, NewData}. - </pre> - <p> - This form is used in most examples here for example in section - <seealso marker="#Example">Example</seealso>. + Events are handled by one callback functions per state. </p> </item> + <tag> + <seealso marker="stdlib:gen_statem#type-callback_mode"> + <c>handle_event_function</c> + </seealso> + </tag> <item> <p> - In mode - <seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>, - only one Erlang function provides all state transition rules: - </p> - <pre> -handle_event(EventType, EventContent, State, Data) -> - ... code for actions here ... - {next_state, NewState, NewData} - </pre> - <p> - See section - <seealso marker="#One Event Handler">One Event Handler</seealso> - for an example. + Events are handled by one single callback function. </p> </item> - </list> + </taglist> <p> - Both these modes allow other return tuples; see - <seealso marker="stdlib:gen_statem#Module:StateName/3"><c>Module:StateName/3</c></seealso> - in the <c>gen_statem</c> manual page. - These other return tuples can, for example, stop the machine, - execute state transition actions on the machine engine itself, - and send replies. + The callback mode is selected at server start + and may be changed with a code upgrade/downgrade. + </p> + <p> + See the section + <seealso marker="#Event Handler">Event Handler</seealso> + that describes the event handling callback function(s). + </p> + <p> + The callback mode is selected by implementing a callback function + <seealso marker="stdlib:gen_statem#Module:callback_mode/0"> + <c>Module:callback_mode()</c> + </seealso> + that returns one of the callback modes. + </p> + <p> + The + <seealso marker="stdlib:gen_statem#Module:callback_mode/0"> + <c>Module:callback_mode()</c> + </seealso> + function may also return a list containing the callback mode + and the atom <c>state_enter</c> in which case + <seealso marker="#State Enter Calls">state enter calls</seealso> + are activated for the callback mode. </p> <section> <marker id="Choosing the Callback Mode" /> <title>Choosing the Callback Mode</title> <p> + The short version: choose <c>state_functions</c> - + it is the one most like <c>gen_fsm</c>. + But if you do not want the restriction that the state + must be an atom, or if having to write an event handler function + per state is not as you like it; please read on... + </p> + <p> The two <seealso marker="#Callback Modes">callback modes</seealso> give different possibilities @@ -186,7 +212,9 @@ handle_event(EventType, EventContent, State, Data) -> This mode works equally well when you want to focus on one event at the time or on one state at the time, but function - <seealso marker="stdlib:gen_statem#Module:handle_event/4"><c>Module:handle_event/4</c></seealso> + <seealso marker="stdlib:gen_statem#Module:handle_event/4"> + <c>Module:handle_event/4</c> + </seealso> quickly grows too large to handle without branching to helper functions. </p> @@ -208,36 +236,166 @@ handle_event(EventType, EventContent, State, Data) -> <!-- =================================================================== --> <section> - <marker id="State Enter Calls" /> - <title>State Enter Calls</title> + <marker id="Event Handler" /> + <title>Event Handler</title> <p> - The <c>gen_statem</c> behavior can regardless of callback mode - automatically - <seealso marker="stdlib:gen_statem#type-state_enter"> - call the state callback - </seealso> - with special arguments whenever the state changes - so you can write state entry actions - near the rest of the state transition rules. - It typically looks like this: + Which callback function that handles an event + depends on the callback mode: </p> - <pre> -StateName(enter, _OldState, Data) -> - ... code for state entry actions here ... - {keep_state, NewData}; -StateName(EventType, EventContent, Data) -> - ... code for actions here ... - {next_state, NewStateName, NewData}.</pre> + <taglist> + <tag><c>state_functions</c></tag> + <item> + The event is handled by:<br /> + <seealso marker="stdlib:gen_statem#Module:StateName/3"> + <c>Module:StateName(EventType, EventContent, Data)</c> + </seealso> + <p> + This form is the one mostly used in the + <seealso marker="#Example">Example</seealso> + section. + </p> + </item> + <tag><c>handle_event_function</c></tag> + <item> + The event is handled by:<br /> + <seealso marker="stdlib:gen_statem#Module:handle_event/4"> + <c>Module:handle_event(EventType, EventContent, State, Data)</c> + </seealso> + <p> + See section + <seealso marker="#One Event Handler">One Event Handler</seealso> + for an example. + </p> + </item> + </taglist> <p> - Depending on how your state machine is specified, - this can be a very useful feature, - but it forces you to handle the state enter calls in all states. - See also the - <seealso marker="#State Entry Actions"> - State Entry Actions + The state is either the name of the function itself or an argument to it. + The other arguments are the <c>EventType</c> described in section + <seealso marker="#Event Types">Event Types</seealso>, + the event dependent <c>EventContent</c>, and the current server <c>Data</c>. + </p> + <p> + State enter calls are also handled by the event handler and have + slightly different arguments. See the section + <seealso marker="#State Enter Calls">State Enter Calls</seealso>. + </p> + <p> + The event handler return values are defined in the description of + <seealso marker="stdlib:gen_statem#Module:StateName/3"> + <c>Module:StateName/3</c> </seealso> - chapter. + in the <c>gen_statem</c> manual page, but here is + a more readable list: </p> + <taglist> + <tag> + <c>{next_state, NextState, NewData, Actions}</c><br /> + <c>{next_state, NextState, NewData}</c> + </tag> + <item> + <p> + Set next state and update the server data. + If the <c>Actions</c> field is used, execute state transition actions. + An empty <c>Actions</c> list is equivalent to not returning the field. + </p> + <p> + See section + <seealso marker="#Actions">Actions</seealso> for a list of possible + state transition actions. + </p> + <p> + If <c>NextState =/= State</c> the state machine changes + to a new state. A + <seealso marker="#State Enter Calls">state enter call</seealso> + is performed if enabled and all + <seealso marker="#Postponing Events">postponed events</seealso> + are retried. + </p> + </item> + <tag> + <c>{keep_state, NewData, Actions}</c><br /> + <c>{keep_state, NewData}</c> + </tag> + <item> + <p> + Same as the <c>next_state</c> values with + <c>NextState =:= State</c>, that is no state change. + </p> + </item> + <tag> + <c>{keep_state_and_data, Actions}</c><br /> + <c>keep_state_and_data</c> + </tag> + <item> + <p> + Same as the <c>keep_state</c> values with + <c>NextData =:= Data</c>, that is no change in server data. + </p> + </item> + <tag> + <c>{repeat_state, NewData, Actions}</c><br /> + <c>{repeat_state, NewData}</c><br /> + <c>{repeat_state_and_data, Actions}</c><br /> + <c>repeat_state_and_data</c> + </tag> + <item> + <p> + Same as the <c>keep_state</c> or <c>keep_state_and_data</c> values, + and if <seealso marker="#State Enter Calls">state enter calls</seealso> + are enabled, repeat that call. + </p> + </item> + <tag> + <c>{stop, Reason, NewData}</c><br /> + <c>{stop, Reason}</c> + </tag> + <item> + <p> + Stop the server with reason <c>Reason</c>. + If the <c>NewData</c> field is used, first update the server data. + </p> + </item> + <tag> + <c>{stop_and_reply, Reason, NewData, Actions}</c><br /> + <c>{stop_and_reply, Reason, Actions}</c> + </tag> + <item> + <p> + Same as the <c>stop</c> values, but first execute the given + state transition actions that may only be reply actions. + </p> + </item> + </taglist> + + <section> + <marker id="The First State" /> + <title>The First State</title> + <p> + To decide the first state the + <seealso marker="stdlib:gen_statem#Module:init/1"> + <c>Module:init(Args)</c> + </seealso> + callback function is called before any + <seealso marker="#Event Handler">event handler</seealso> + is called. This function behaves exactly as an event handler + function, but gets its only argument <c>Args</c> from + the <c>gen_statem</c> + <seealso marker="stdlib:gen_statem#start/3"> + <c>start/3,4</c> + </seealso> + or + <seealso marker="stdlib:gen_statem#start_link/3"> + <c>start_link/3,4</c> + </seealso> + function, and returns <c>{ok, State, Data}</c> + or <c>{ok, State, Data, Actions}</c>. + If you use the + <seealso marker="#Postponing Events"><c>postpone</c></seealso> + action from this function, that action is ignored, + since there is no event to postpone. + </p> + </section> + </section> <!-- =================================================================== --> @@ -246,10 +404,8 @@ StateName(EventType, EventContent, Data) -> <marker id="Actions" /> <title>Actions</title> <p> - In the first section - <seealso marker="#Event-Driven State Machines"> - Event-Driven State Machines - </seealso> + In the first + <seealso marker="#Event-Driven State Machines">section</seealso> actions were mentioned as a part of the general state machine model. These general actions are implemented with the code that callback module @@ -264,72 +420,97 @@ StateName(EventType, EventContent, Data) -> These are ordered by returning a list of <seealso marker="stdlib:gen_statem#type-action">actions</seealso> in the - <seealso marker="stdlib:gen_statem#type-state_callback_result">return tuple</seealso> + <seealso marker="stdlib:gen_statem#type-state_callback_result"> + return value + </seealso> from the <seealso marker="stdlib:gen_statem#Module:StateName/3">callback function</seealso>. - These state transition actions affect the <c>gen_statem</c> - engine itself and can do the following: + These are the possible state transition actions: </p> - <list type="bulleted"> - <item> + <taglist> + <tag> <seealso marker="stdlib:gen_statem#type-postpone"> - Postpone + <c>postpone</c> </seealso> - the current event, see section + <br /> + <c>{postpone, Boolean}</c> + </tag> + <item> + If set postpone the current event, see section <seealso marker="#Postponing Events">Postponing Events</seealso> </item> - <item> + <tag> <seealso marker="stdlib:gen_statem#type-hibernate"> - Hibernate + <c>hibernate</c> </seealso> - the <c>gen_statem</c>, treated in + <br /> + <c>{hibernate, Boolean}</c> + </tag> + <item> + If set hibernate the <c>gen_statem</c>, treated in section <seealso marker="#Hibernation">Hibernation</seealso> </item> - <item> - Start a + <tag> <seealso marker="stdlib:gen_statem#type-state_timeout"> - state time-out</seealso>, - read more in section + <c>{state_timeout, Time}</c> + </seealso> + <br /> + <c>{state_timeout, Time, Opts}</c> + </tag> + <item> + Start a state time-out, read more in section <seealso marker="#State Time-Outs">State Time-Outs</seealso> </item> - <item> - Start a + <tag> <seealso marker="stdlib:gen_statem#type-generic_timeout"> - generic time-out</seealso>, - read more in section + <c>{{timeout, Name}, Time}</c> + </seealso> + <br /> + <c>{{timeout, Name}, Time, Opts}</c> + </tag> + <item> + Start a generic time-out, read more in section <seealso marker="#Generic Time-Outs">Generic Time-Outs</seealso> </item> + <tag> + <seealso marker="stdlib:gen_statem#type-event_timeout"> + <c>{timeout, Time}</c> + </seealso> + <br /> + <c>{timeout, Time, Opts}</c><br /> + <c>Time</c> + </tag> <item> - Start an - <seealso marker="stdlib:gen_statem#type-event_timeout">event time-out</seealso>, - see more in section + Start an event time-out, see more in section <seealso marker="#Event Time-Outs">Event Time-Outs</seealso> </item> - <item> + <tag> <seealso marker="stdlib:gen_statem#type-reply_action"> - Reply + <c>{reply, From, Reply}</c> </seealso> - to a caller, mentioned at the end of section + </tag> + <item> + Reply to a caller, mentioned at the end of section <seealso marker="#All State Events">All State Events</seealso> </item> - <item> - Generate the + <tag> <seealso marker="stdlib:gen_statem#type-action"> - next event + <c>{next_event, EventType, EventContent}</c> </seealso> - to handle, see section - <seealso marker="#Self-Generated Events">Self-Generated Events</seealso> + </tag> + <item> + Generate the next event to handle, see section + <seealso marker="#Inserted Events">Inserted Events</seealso> </item> - </list> + </taglist> <p> - For details, see the - <seealso marker="stdlib:gen_statem#type-action"> - <c>gen_statem(3)</c> - </seealso> - manual page. + For details, see the <c>gen_statem(3)</c> + manual page for type + <seealso marker="stdlib:gen_statem#type-action"><c>action()</c></seealso>. You can, for example, reply to many callers, generate multiple next events, - and set time-outs to relative or absolute times. + and set a time-out to use absolute instead of relative time + (using the <c>Opts</c> field). </p> </section> @@ -341,8 +522,8 @@ StateName(EventType, EventContent, Data) -> <p> Events are categorized in different <seealso marker="stdlib:gen_statem#type-event_type">event types</seealso>. - Events of all types are handled in the same callback function, - for a given state, and the function gets + Events of all types are for a given state + handled in the same callback function, and that function gets <c>EventType</c> and <c>EventContent</c> as arguments. </p> <p> @@ -350,12 +531,20 @@ StateName(EventType, EventContent, Data) -> they come from: </p> <taglist> - <tag><c>cast</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-external_event_type"> + <c>cast</c> + </seealso> + </tag> <item> Generated by <seealso marker="stdlib:gen_statem#cast/2"><c>gen_statem:cast</c></seealso>. </item> - <tag><c>{call,From}</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-external_event_type"> + <c>{call,From}</c> + </seealso> + </tag> <item> Generated by <seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call</c></seealso>, @@ -364,12 +553,20 @@ StateName(EventType, EventContent, Data) -> <c>{reply,From,Msg}</c> or by calling <seealso marker="stdlib:gen_statem#reply/1"><c>gen_statem:reply</c></seealso>. </item> - <tag><c>info</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-external_event_type"> + <c>info</c> + </seealso> + </tag> <item> Generated by any regular process message sent to the <c>gen_statem</c> process. </item> - <tag><c>state_timeout</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-timeout_event_type"> + <c>state_timeout</c> + </seealso> + </tag> <item> Generated by state transition action <seealso marker="stdlib:gen_statem#type-state_timeout"> @@ -377,7 +574,11 @@ StateName(EventType, EventContent, Data) -> </seealso> state timer timing out. </item> - <tag><c>{timeout,Name}</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-timeout_event_type"> + <c>{timeout,Name}</c> + </seealso> + </tag> <item> Generated by state transition action <seealso marker="stdlib:gen_statem#type-generic_timeout"> @@ -385,7 +586,11 @@ StateName(EventType, EventContent, Data) -> </seealso> generic timer timing out. </item> - <tag><c>timeout</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-timeout_event_type"> + <c>timeout</c> + </seealso> + </tag> <item> Generated by state transition action <seealso marker="stdlib:gen_statem#type-event_timeout"> @@ -394,7 +599,11 @@ StateName(EventType, EventContent, Data) -> (or its short form <c>Time</c>) event timer timing out. </item> - <tag><c>internal</c></tag> + <tag> + <seealso marker="stdlib:gen_statem#type-event_type"> + <c>internal</c> + </seealso> + </tag> <item> Generated by state transition <seealso marker="stdlib:gen_statem#type-action">action</seealso> @@ -408,6 +617,61 @@ StateName(EventType, EventContent, Data) -> <!-- =================================================================== --> <section> + <marker id="State Enter Calls" /> + <title>State Enter Calls</title> + <p> + The <c>gen_statem</c> behavior can if this is enabled, + regardless of callback mode, + automatically + <seealso marker="stdlib:gen_statem#type-state_enter"> + call the state callback + </seealso> + with special arguments whenever the state changes + so you can write state enter actions + near the rest of the state transition rules. + It typically looks like this: + </p> + <pre> +StateName(enter, OldState, Data) -> + ... code for state enter actions here ... + {keep_state, NewData}; +StateName(EventType, EventContent, Data) -> + ... code for actions here ... + {next_state, NewStateName, NewData}.</pre> + <p> + Since the state enter call is not an event there are restrictions + on the allowed return value and + <seealso marker="#Actions">state transition actions</seealso>. + You may not change the state, + <seealso marker="#Postponing Events">postpone</seealso> + this non-event, or + <seealso marker="#Inserted Events">insert events</seealso>. + </p> + <p> + The first state that is entered will get a state enter call + with <c>OldState</c> equal to the current state. + </p> + <p> + You may repeat the state enter call using the <c>{repeat_state,...}</c> + return value from the + <seealso marker="#Event Handler">event handler</seealso>. + In this case <c>OldState</c> will also be equal to the current state. + </p> + <p> + Depending on how your state machine is specified, + this can be a very useful feature, + but it forces you to handle the state enter calls in all states. + See also the + <seealso marker="#State Enter Actions"> + State Enter Actions + </seealso> + chapter. + </p> + </section> + +<!-- =================================================================== --> + + <section> <marker id="Example" /> <title>Example</title> <p> @@ -1196,14 +1460,14 @@ do_unlock() -> <!-- =================================================================== --> <section> - <marker id="State Entry Actions" /> - <title>State Entry Actions</title> + <marker id="State Enter Actions" /> + <title>State Enter Actions</title> <p> Say you have a state machine specification - that uses state entry actions. - Allthough you can code this using self-generated events + that uses state enter actions. + Allthough you can code this using inserted events (described in the next section), especially if just - one or a few states has got state entry actions, + one or a few states has got state enter actions, this is a perfect use case for the built in <seealso marker="#State Enter Calls">state enter calls</seealso>. </p> @@ -1244,7 +1508,7 @@ open(state_timeout, lock, Data) -> ... ]]></code> <p> - You can repeat the state entry code by returning one of + You can repeat the state enter code by returning one of <c>{repeat_state, ...}</c>, <c>{repeat_state_and_data,_}</c> or <c>repeat_state_and_data</c> that otherwise behaves exactly like their <c>keep_state</c> siblings. @@ -1259,8 +1523,8 @@ open(state_timeout, lock, Data) -> <!-- =================================================================== --> <section> - <marker id="Self-Generated Events" /> - <title>Self-Generated Events</title> + <marker id="Inserted Events" /> + <title>Inserted Events</title> <p> It can sometimes be beneficial to be able to generate events to your own state machine. @@ -1279,14 +1543,18 @@ open(state_timeout, lock, Data) -> <p> One example for this is to pre-process incoming data, for example decrypting chunks or collecting characters up to a line break. + </p> + <p> Purists may argue that this should be modelled with a separate state machine that sends pre-processed events - to the main state machine. - But to decrease overhead the small pre-processing state machine + to the main state machine, + but to decrease overhead the small pre-processing state machine can be implemented in the common state event handling of the main state machine using a few state data variables that then sends the pre-processed events as internal events to the main state machine. + Using internal events also can make it easier + to synchronize the state machines. </p> <p> The following example uses an input model where you give the lock @@ -1800,10 +2068,23 @@ handle_event( </p> <p> Another not uncommon scenario is to use the event time-out - to triger hibernation after a certain time of inactivity. + to trigger hibernation after a certain time of inactivity. + There is also a server start option + <seealso marker="stdlib:gen_statem#type-hibernate_after_opt"> + <c>{hibernate_after, Timeout}</c> + </seealso> + for + <seealso marker="stdlib:gen_statem#start/3"> + <c>start/3,4</c> + </seealso> + or + <seealso marker="stdlib:gen_statem#start_link/3"> + <c>start_link/3,4</c> + </seealso> + that may be used to automatically hibernate the server. </p> <p> - This server probably does not use + This particular server probably does not use heap memory worth hibernating for. To gain anything from hibernation, your server would have to produce some garbage during callback execution, |