aboutsummaryrefslogtreecommitdiffstats
path: root/HOWTO/DTRACE.md
diff options
context:
space:
mode:
authorLukas Larsson <[email protected]>2012-05-23 16:44:25 +0200
committerLukas Larsson <[email protected]>2012-07-19 12:24:40 +0200
commit6bb1cd1c9595413cdfd9a8875520e1c85e446833 (patch)
treef0edfcdf63e1f74bfddfb27a776e0f4805e6d97d /HOWTO/DTRACE.md
parent4ba364c5df2c574974fb3ec10fe03f2e6ad4f92f (diff)
downloadotp-6bb1cd1c9595413cdfd9a8875520e1c85e446833.tar.gz
otp-6bb1cd1c9595413cdfd9a8875520e1c85e446833.tar.bz2
otp-6bb1cd1c9595413cdfd9a8875520e1c85e446833.zip
Move README and INSTALL to HOWTO folder
Diffstat (limited to 'HOWTO/DTRACE.md')
-rw-r--r--HOWTO/DTRACE.md394
1 files changed, 394 insertions, 0 deletions
diff --git a/HOWTO/DTRACE.md b/HOWTO/DTRACE.md
new file mode 100644
index 0000000000..1d495b0eaf
--- /dev/null
+++ b/HOWTO/DTRACE.md
@@ -0,0 +1,394 @@
+DTrace and Erlang/OTP
+=====================
+
+History
+-------
+
+The first implementation of DTrace probes for the Erlang virtual
+machine was presented at the [2008 Erlang User Conference] [1]. That
+work, based on the Erlang/OTP R12 release, was discontinued due to
+what appears to be miscommunication with the original developers.
+
+Several users have created Erlang port drivers, linked-in drivers, or
+NIFs that allow Erlang code to try to activate a probe,
+e.g. `foo_module:dtrace_probe("message goes here!")`.
+
+Goals
+-----
+
+1. Annotate as much of the Erlang VM as is practical.
+ * The initial goal is to trace file I/O operations.
+2. Support all platforms that implement DTrace: OS X, Solaris,
+ and (I hope) FreeBSD and NetBSD.
+3. To the extent that it's practical, support SystemTap on Linux
+ via DTrace provider compatibility.
+4. Allow Erlang code to supply annotations.
+
+Supported platforms
+-------------------
+
+* OS X 10.6.x / Snow Leopard. It should also work for 10.7 / Lion,
+ but I haven't personally tested it.
+* Solaris 10. I have done limited testing on Solaris 11 and
+ OpenIndiana release 151a, and both appear to work.
+* FreeBSD 9.0, though please see the "FreeBSD 9.0 Release Notes"
+ section below!
+* Linux via SystemTap compatibility. Please see
+ [$ERL_TOP/HOWTO/SYSTEMTAP.md][] for more details.
+
+Just add the `--with-dynamic-trace=dtrace` option to your command when you
+run the `configure` script. If you are using systemtap, the configure option
+is `--with-dynamic-trace=systemtap`
+
+Status
+------
+
+As of R15B01, the dynamic trace code is included in the main OTP distribution,
+although it's considered experimental. The main development of the dtrace code
+still happens outside of Ericsson, but there is no need to fetch a patched
+version of OTP to get the basic funtionality.
+
+Implementation summary
+----------------------
+
+So far, most effort has been focused on the `efile_drv.c` code,
+which implements most file I/O on behalf of the Erlang virtual
+machine. This driver also presents a big challenge: its use of an I/O
+worker pool (enabled by using the `erl +A 8` flag, for example) makes
+it much more difficult to trace I/O activity because each of the
+following may be executed in a different Pthread:
+
+* I/O initiation (Erlang code)
+* I/O proxy process handling, e.g. read/write when file is not opened
+ in `raw` mode, operations executed by the code & file server processes.
+ (Erlang code)
+* `efile_drv` command setup (C code)
+* `efile_drv` command execution (C code)
+* `efile_drv` status return (C code)
+
+**TODO: keep this description up-to-date.**
+
+Example output from `lib/dtrace/examples/efile_drv.d` while executing
+`file:rename("old-name", "new-name")`:
+
+ efile_drv enter tag={3,84} user tag some-user-tag | RENAME (12) | args: old-name new-name , 0 0 (port #Port<0.59>)
+ async I/O worker tag={3,83} | RENAME (12) | efile_drv-int_entry
+ async I/O worker tag={3,83} | RENAME (12) | efile_drv-int_return
+ efile_drv return tag={3,83} user tag | RENAME (12) | errno 2
+
+... where the following key can help decipher the output:
+
+* `{3,83}` is the Erlang scheduler thread number (3) and operation
+ counter number (83) assigned to this I/O operation. Together,
+ these two numbers form a unique ID for the I/O operation.
+* `12` is the command number for the rename operation. See the
+ definition for `FILE_RENAME` in the source code file `efile_drv.c`
+ or the `BEGIN` section of the D script `lib/dtrace/examples/efile_drv.d`.
+* `old-name` and `new-name` are the two string arguments for the
+ source and destination of the `rename(2)` system call.
+ The two integer arguments are unused; the simple formatting code
+ prints the arguments anyway, 0 and 0.
+* The worker pool code was called on behalf of Erlang port `#Port<0.59>`.
+* The system call failed with a POSIX errno value of 2: `ENOENT`,
+ because the path `old-name` does not exist.
+* The `efile_drv-int_entry` and `efile_drv_int_return` probes are
+ provided in case the user is
+ interested in measuring only the latency of code executed by
+ `efile_drv` asynchronous functions by I/O worker pool threads
+ and the OS system call that they encapsulate.
+
+So, where does the `some-user-tag` string come from?
+
+At the moment, the user tag comes from code like the following:
+
+ put(dtrace_utag, "some-user-tag"),
+ file:rename("old-name", "new-name").
+
+This method of tagging I/O at the Erlang level is subject to change.
+
+Example DTrace probe specification
+----------------------------------
+
+ /**
+ * Fired when a message is sent from one local process to another.
+ *
+ * NOTE: The 'size' parameter is in machine-dependent words and
+ * that the actual size of any binary terms in the message
+ * are not included.
+ *
+ * @param sender the PID (string form) of the sender
+ * @param receiver the PID (string form) of the receiver
+ * @param size the size of the message being delivered (words)
+ * @param token_label for the sender's sequential trace token
+ * @param token_previous count for the sender's sequential trace token
+ * @param token_current count for the sender's sequential trace token
+ */
+ probe message__send(char *sender, char *receiver, uint32_t size,
+ int token_label, int token_previous, int token_current);
+
+ /**
+ * Fired when a message is sent from a local process to a remote process.
+ *
+ * NOTE: The 'size' parameter is in machine-dependent words and
+ * that the actual size of any binary terms in the message
+ * are not included.
+ *
+ * @param sender the PID (string form) of the sender
+ * @param node_name the Erlang node name (string form) of the receiver
+ * @param receiver the PID/name (string form) of the receiver
+ * @param size the size of the message being delivered (words)
+ * @param token_label for the sender's sequential trace token
+ * @param token_previous count for the sender's sequential trace token
+ * @param token_current count for the sender's sequential trace token
+ */
+ probe message__send__remote(char *sender, char *node_name, char *receiver,
+ uint32_t size,
+ int token_label, int token_previous, int token_current);
+
+ /**
+ * Fired when a message is queued to a local process. This probe
+ * will not fire if the sender's pid == receiver's pid.
+ *
+ * NOTE: The 'size' parameter is in machine-dependent words and
+ * that the actual size of any binary terms in the message
+ * are not included.
+ *
+ * @param receiver the PID (string form) of the receiver
+ * @param size the size of the message being delivered (words)
+ * @param queue_len length of the queue of the receiving process
+ * @param token_label for the sender's sequential trace token
+ * @param token_previous count for the sender's sequential trace token
+ * @param token_current count for the sender's sequential trace token
+ */
+ probe message__queued(char *receiver, uint32_t size, uint32_t queue_len,
+ int token_label, int token_previous, int token_current);
+
+ /**
+ * Fired when a message is 'receive'd by a local process and removed
+ * from its mailbox.
+ *
+ * NOTE: The 'size' parameter is in machine-dependent words and
+ * that the actual size of any binary terms in the message
+ * are not included.
+ *
+ * @param receiver the PID (string form) of the receiver
+ * @param size the size of the message being delivered (words)
+ * @param queue_len length of the queue of the receiving process
+ * @param token_label for the sender's sequential trace token
+ * @param token_previous count for the sender's sequential trace token
+ * @param token_current count for the sender's sequential trace token
+ */
+ probe message__receive(char *receiver, uint32_t size, uint32_t queue_len,
+ int token_label, int token_previous, int token_current);
+
+ /* ... */
+
+ /* Async driver pool */
+
+ /**
+ * Show the post-add length of the async driver thread pool member's queue.
+ *
+ * NOTE: The port name is not available: additional lock(s) must
+ * be acquired in order to get the port name safely in an SMP
+ * environment. The same is true for the aio__pool_get probe.
+ *
+ * @param port the Port (string form)
+ * @param new queue length
+ */
+ probe aio_pool__add(char *, int);
+
+ /**
+ * Show the post-get length of the async driver thread pool member's queue.
+ *
+ * @param port the Port (string form)
+ * @param new queue length
+ */
+ probe aio_pool__get(char *, int);
+
+ /* Probes for efile_drv.c */
+
+ /**
+ * Entry into the efile_drv.c file I/O driver
+ *
+ * For a list of command numbers used by this driver, see the section
+ * "Guide to probe arguments" in ../../../README.md. That section
+ * also contains explanation of the various integer and string
+ * arguments that may be present when any particular probe fires.
+ *
+ * TODO: Adding the port string, args[10], is a pain. Making that
+ * port string available to all the other efile_drv.c probes
+ * will be more pain. Is the pain worth it? If yes, then
+ * add them everywhere else and grit our teeth. If no, then
+ * rip it out.
+ *
+ * @param thread-id number of the scheduler Pthread arg0
+ * @param tag number: {thread-id, tag} uniquely names a driver operation
+ * @param user-tag string arg2
+ * @param command number arg3
+ * @param string argument 1 arg4
+ * @param string argument 2 arg5
+ * @param integer argument 1 arg6
+ * @param integer argument 2 arg7
+ * @param integer argument 3 arg8
+ * @param integer argument 4 arg9
+ * @param port the port ID of the busy port args[10]
+ */
+ probe efile_drv__entry(int, int, char *, int, char *, char *,
+ int64_t, int64_t, int64_t, int64_t, char *);
+
+ /**
+ * Entry into the driver's internal work function. Computation here
+ * is performed by a async worker pool Pthread.
+ *
+ * @param thread-id number
+ * @param tag number
+ * @param command number
+ */
+ probe efile_drv__int_entry(int, int, int);
+
+ /**
+ * Return from the driver's internal work function.
+ *
+ * @param thread-id number
+ * @param tag number
+ * @param command number
+ */
+ probe efile_drv__int_return(int, int, int);
+
+ /**
+ * Return from the efile_drv.c file I/O driver
+ *
+ * @param thread-id number arg0
+ * @param tag number arg1
+ * @param user-tag string arg2
+ * @param command number arg3
+ * @param Success? 1 is success, 0 is failure arg4
+ * @param If failure, the errno of the error. arg5
+ */
+ probe efile_drv__return(int, int, char *, int, int, int);
+
+Guide to efile_drv.c probe arguments
+------------------------------------
+
+ /* Driver op code: used by efile_drv-entry arg3 */
+ /* used by efile_drv-int_entry arg3 */
+ /* used by efile_drv-int_return arg3 */
+ /* used by efile_drv-return arg3 */
+
+ #define FILE_OPEN 1 (probe arg3)
+ probe arg6 = C driver dt_i1 = flags;
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_READ 2 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+ probe arg8 = C driver dt_i3 = size;
+
+ #define FILE_LSEEK 3 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = offset;
+ probe arg8 = C driver dt_i3 = origin;
+
+ #define FILE_WRITE 4 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+ probe arg8 = C driver dt_i3 = size;
+
+ #define FILE_FSTAT 5 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+
+ #define FILE_PWD 6 (probe arg3)
+ none
+
+ #define FILE_READDIR 7 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_CHDIR 8 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_FSYNC 9 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+
+ #define FILE_MKDIR 10 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_DELETE 11 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_RENAME 12 (probe arg3)
+ probe arg4 = C driver dt_s1 = old_name;
+ probe arg5 = C driver dt_s2 = new_name;
+
+ #define FILE_RMDIR 13 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_TRUNCATE 14 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+
+ #define FILE_READ_FILE 15 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_WRITE_INFO 16 (probe arg3)
+ probe arg6 = C driver dt_i1 = mode;
+ probe arg7 = C driver dt_i2 = uid;
+ probe arg8 = C driver dt_i3 = gid;
+
+ #define FILE_LSTAT 19 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_READLINK 20 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_LINK 21 (probe arg3)
+ probe arg4 = C driver dt_s1 = existing_path;
+ probe arg5 = C driver dt_s2 = new_path;
+
+ #define FILE_SYMLINK 22 (probe arg3)
+ probe arg4 = C driver dt_s1 = existing_path;
+ probe arg5 = C driver dt_s2 = new_path;
+
+ #define FILE_CLOSE 23 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+
+ #define FILE_PWRITEV 24 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+ probe arg8 = C driver dt_i3 = size;
+
+ #define FILE_PREADV 25 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+ probe arg8 = C driver dt_i3 = size;
+
+ #define FILE_SETOPT 26 (probe arg3)
+ probe arg6 = C driver dt_i1 = opt_name;
+ probe arg7 = C driver dt_i2 = opt_specific_value;
+
+ #define FILE_IPREAD 27 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+ probe arg8 = C driver dt_i3 = offsets[0];
+ probe arg9 = C driver dt_i4 = size;
+
+ #define FILE_ALTNAME 28 (probe arg3)
+ probe arg4 = C driver dt_s1 = path;
+
+ #define FILE_READ_LINE 29 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = flags;
+ probe arg8 = C driver dt_i3 = read_offset;
+ probe arg9 = C driver dt_i4 = read_ahead;
+
+ #define FILE_FDATASYNC 30 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+
+ #define FILE_FADVISE 31 (probe arg3)
+ probe arg6 = C driver dt_i1 = fd;
+ probe arg7 = C driver dt_i2 = offset;
+ probe arg8 = C driver dt_i3 = length;
+ probe arg9 = C driver dt_i4 = advise_type;
+
+ [1]: http://www.erlang.org/euc/08/
+ [$ERL_TOP/HOWTO/SYSTEMTAP.md]: SYSTEMTAP.md