diff options
author | Rickard Green <[email protected]> | 2011-01-02 10:03:54 +0100 |
---|---|---|
committer | Rickard Green <[email protected]> | 2011-06-14 11:40:19 +0200 |
commit | 7f19af0423934f85c74ccb75546e5e3a6b6d10e8 (patch) | |
tree | 612d1010f37517f813a94d8a5f38cfd0126ce3f8 /erts/include/internal/ppc32/rwlock.h | |
parent | 4a5a75811e2cd590b5c94f71864a5245fd511ccf (diff) | |
download | otp-7f19af0423934f85c74ccb75546e5e3a6b6d10e8.tar.gz otp-7f19af0423934f85c74ccb75546e5e3a6b6d10e8.tar.bz2 otp-7f19af0423934f85c74ccb75546e5e3a6b6d10e8.zip |
Improve ethread atomics
The ethread atomics API now also provide double word size atomics.
Double word size atomics are implemented using native atomic
instructions on x86 (when the cmpxchg8b instruction is available)
and on x86_64 (when the cmpxchg16b instruction is available). On
other hardware where 32-bit atomics or word size atomics are
available, an optimized fallback is used; otherwise, a spinlock,
or a mutex based fallback is used.
The ethread library now performs runtime tests for presence of
hardware features, such as for example SSE2 instructions, instead
of requiring this to be determined at compile time.
There are now functions implementing each atomic operation with the
following implied memory barrier semantics: none, read, write,
acquire, release, and full. Some of the operation-barrier
combinations aren't especially useful. But instead of filtering
useful ones out, and potentially miss a useful one, we implement
them all.
A much smaller set of functionality for native atomics are required
to be implemented than before. More or less only cmpxchg and a
membar macro are required to be implemented for each atomic size.
Other functions will automatically be constructed from these. It is,
of course, often wise to implement more that this if possible from a
performance perspective.
Diffstat (limited to 'erts/include/internal/ppc32/rwlock.h')
-rw-r--r-- | erts/include/internal/ppc32/rwlock.h | 15 |
1 files changed, 9 insertions, 6 deletions
diff --git a/erts/include/internal/ppc32/rwlock.h b/erts/include/internal/ppc32/rwlock.h index 19ec26ab68..311f000b69 100644 --- a/erts/include/internal/ppc32/rwlock.h +++ b/erts/include/internal/ppc32/rwlock.h @@ -1,7 +1,7 @@ /* * %CopyrightBegin% * - * Copyright Ericsson AB 2005-2010. All Rights Reserved. + * Copyright Ericsson AB 2005-2011. All Rights Reserved. * * The contents of this file are subject to the Erlang Public License, * Version 1.1, (the "License"); you may not use this file except in @@ -23,12 +23,14 @@ * * Based on the examples in Appendix E of Motorola's * "Programming Environments Manual For 32-Bit Implementations - * of the PowerPC Architecture". Uses eieio instead of sync - * in the unlock sequence, as suggested in the manual. + * of the PowerPC Architecture". */ #ifndef ETHREAD_PPC_RWLOCK_H #define ETHREAD_PPC_RWLOCK_H +#define ETHR_HAVE_NATIVE_RWSPINLOCKS 1 +#define ETHR_NATIVE_RWSPINLOCK_IMPL "ethread" + /* Unlocked if zero, read-locked if negative, write-locked if +1. */ typedef struct { volatile int lock; @@ -47,9 +49,10 @@ ethr_native_read_unlock(ethr_native_rwlock_t *lock) { int tmp; - /* this is eieio + ethr_native_atomic_inc() - isync */ + ETHR_MEMBAR(ETHR_LoadStore|ETHR_StoreStore); + + /* this is ethr_native_atomic_inc() - isync */ __asm__ __volatile__( - "eieio\n\t" "1:\t" "lwarx %0,0,%1\n\t" "addic %0,%0,1\n\t" @@ -105,7 +108,7 @@ ethr_native_read_lock(ethr_native_rwlock_t *lock) static ETHR_INLINE void ethr_native_write_unlock(ethr_native_rwlock_t *lock) { - __asm__ __volatile__("eieio" : : : "memory"); + ETHR_MEMBAR(ETHR_LoadStore|ETHR_StoreStore); lock->lock = 0; } |