aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_flatten.erl
diff options
context:
space:
mode:
authorErlang/OTP <[email protected]>2009-11-20 14:54:40 +0000
committerErlang/OTP <[email protected]>2009-11-20 14:54:40 +0000
commit84adefa331c4159d432d22840663c38f155cd4c1 (patch)
treebff9a9c66adda4df2106dfd0e5c053ab182a12bd /lib/compiler/src/beam_flatten.erl
downloadotp-84adefa331c4159d432d22840663c38f155cd4c1.tar.gz
otp-84adefa331c4159d432d22840663c38f155cd4c1.tar.bz2
otp-84adefa331c4159d432d22840663c38f155cd4c1.zip
The R13B03 release.OTP_R13B03
Diffstat (limited to 'lib/compiler/src/beam_flatten.erl')
-rw-r--r--lib/compiler/src/beam_flatten.erl154
1 files changed, 154 insertions, 0 deletions
diff --git a/lib/compiler/src/beam_flatten.erl b/lib/compiler/src/beam_flatten.erl
new file mode 100644
index 0000000000..d9de7e2495
--- /dev/null
+++ b/lib/compiler/src/beam_flatten.erl
@@ -0,0 +1,154 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 1999-2009. All Rights Reserved.
+%%
+%% The contents of this file are subject to the Erlang Public License,
+%% Version 1.1, (the "License"); you may not use this file except in
+%% compliance with the License. You should have received a copy of the
+%% Erlang Public License along with this software. If not, it can be
+%% retrieved online at http://www.erlang.org/.
+%%
+%% Software distributed under the License is distributed on an "AS IS"
+%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
+%% the License for the specific language governing rights and limitations
+%% under the License.
+%%
+%% %CopyrightEnd%
+%%
+%% Purpose : Converts intermediate assembly code to final format.
+
+-module(beam_flatten).
+
+-export([module/2]).
+
+-import(lists, [reverse/1,reverse/2]).
+
+module({Mod,Exp,Attr,Fs,Lc}, _Opt) ->
+ {ok,{Mod,Exp,Attr,[function(F) || F <- Fs],Lc}}.
+
+function({function,Name,Arity,CLabel,Is0}) ->
+ Is1 = block(Is0),
+ Is = opt(Is1),
+ {function,Name,Arity,CLabel,Is}.
+
+block(Is) ->
+ block(Is, []).
+
+block([{block,Is0}|Is1], Acc) -> block(Is1, norm_block(Is0, Acc));
+block([I|Is], Acc) -> block(Is, [I|Acc]);
+block([], Acc) -> reverse(Acc).
+
+norm_block([{set,[],[],{alloc,R,Alloc}}|Is], Acc0) ->
+ case insert_alloc_in_bs_init(Acc0, Alloc) of
+ impossible ->
+ norm_block(Is, reverse(norm_allocate(Alloc, R), Acc0));
+ Acc ->
+ norm_block(Is, Acc)
+ end;
+norm_block([I|Is], Acc) -> norm_block(Is, [norm(I)|Acc]);
+norm_block([], Acc) -> Acc.
+
+norm({set,[D],As,{bif,N,F}}) -> {bif,N,F,As,D};
+norm({set,[D],As,{alloc,R,{gc_bif,N,F}}}) -> {gc_bif,N,F,R,As,D};
+norm({set,[D],[S],move}) -> {move,S,D};
+norm({set,[D],[S],fmove}) -> {fmove,S,D};
+norm({set,[D],[S],fconv}) -> {fconv,S,D};
+norm({set,[D],[S1,S2],put_list}) -> {put_list,S1,S2,D};
+norm({set,[D],[],{put_tuple,A}}) -> {put_tuple,A,D};
+norm({set,[],[S],put}) -> {put,S};
+norm({set,[D],[],{put_string,L,S}}) -> {put_string,L,S,D};
+norm({set,[D],[S],{get_tuple_element,I}}) -> {get_tuple_element,S,I,D};
+norm({set,[],[S,D],{set_tuple_element,I}}) -> {set_tuple_element,S,D,I};
+norm({set,[D1,D2],[S],get_list}) -> {get_list,S,D1,D2};
+norm({set,[],[],remove_message}) -> remove_message;
+norm({set,[],[],fclearerror}) -> fclearerror;
+norm({set,[],[],fcheckerror}) -> {fcheckerror,{f,0}}.
+
+norm_allocate({_Zero,nostack,Nh,[]}, Regs) ->
+ [{test_heap,Nh,Regs}];
+norm_allocate({zero,0,Nh,[]}, Regs) ->
+ norm_allocate({nozero,0,Nh,[]}, Regs);
+norm_allocate({zero,Ns,0,[]}, Regs) ->
+ [{allocate_zero,Ns,Regs}];
+norm_allocate({zero,Ns,Nh,[]}, Regs) ->
+ [{allocate_heap_zero,Ns,Nh,Regs}];
+norm_allocate({nozero,Ns,0,Inits}, Regs) ->
+ [{allocate,Ns,Regs}|Inits];
+norm_allocate({nozero,Ns,Nh,Inits}, Regs) ->
+ [{allocate_heap,Ns,Nh,Regs}|Inits].
+
+%% insert_alloc_in_bs_init(ReverseInstructionStream, AllocationInfo) ->
+%% impossible | ReverseInstructionStream'
+%% A bs_init2/6 instruction should not be followed by a test heap instruction.
+%% Given the AllocationInfo from a test heap instruction, merge the
+%% allocation amounts into the previous bs_init2/6 instruction (if any).
+%%
+insert_alloc_in_bs_init([I|_]=Is, Alloc) ->
+ case is_bs_constructor(I) of
+ false -> impossible;
+ true -> insert_alloc_1(Is, Alloc, [])
+ end.
+
+insert_alloc_1([{bs_init2=Op,Fail,Bs,Ws1,Regs,F,Dst}|Is], {_,nostack,Ws2,[]}, Acc) ->
+ Al = beam_utils:combine_heap_needs(Ws1, Ws2),
+ I = {Op,Fail,Bs,Al,Regs,F,Dst},
+ reverse(Acc, [I|Is]);
+insert_alloc_1([{bs_init_bits=Op,Fail,Bs,Ws1,Regs,F,Dst}|Is], {_,nostack,Ws2,[]}, Acc) ->
+ Al = beam_utils:combine_heap_needs(Ws1, Ws2),
+ I = {Op,Fail,Bs,Al,Regs,F,Dst},
+ reverse(Acc, [I|Is]);
+insert_alloc_1([{bs_append,Fail,Sz,Ws1,Regs,U,Bin,Fl,Dst}|Is],
+ {_,nostack,Ws2,[]}, Acc) ->
+ Al = beam_utils:combine_heap_needs(Ws1, Ws2),
+ I = {bs_append,Fail,Sz,Al,Regs,U,Bin,Fl,Dst},
+ reverse(Acc, [I|Is]);
+insert_alloc_1([I|Is], Alloc, Acc) ->
+ insert_alloc_1(Is, Alloc, [I|Acc]).
+
+
+%% is_bs_constructor(Instruction) -> true|false.
+%% Test whether the instruction is a bit syntax construction
+%% instruction that can occur at the end of a bit syntax
+%% construction. (Since an empty binary would be expressed
+%% as a literal, the bs_init2/6 instruction will not occur
+%% at the end and therefore it is no need to test for it here.)
+%%
+is_bs_constructor({bs_put_integer,_,_,_,_,_}) -> true;
+is_bs_constructor({bs_put_utf8,_,_,_}) -> true;
+is_bs_constructor({bs_put_utf16,_,_,_}) -> true;
+is_bs_constructor({bs_put_utf32,_,_,_}) -> true;
+is_bs_constructor({bs_put_float,_,_,_,_,_}) -> true;
+is_bs_constructor({bs_put_binary,_,_,_,_,_}) -> true;
+is_bs_constructor({bs_put_string,_,_}) -> true;
+is_bs_constructor(_) -> false.
+
+%% opt(Is0) -> Is
+%% Simple peep-hole optimization to move a {move,Any,{x,0}} past
+%% any kill up to the next call instruction. (To give the loader
+%% an opportunity to combine the 'move' and the 'call' instructions.)
+%%
+opt(Is) ->
+ opt_1(Is, []).
+
+opt_1([{move,_,{x,0}}=I|Is0], Acc0) ->
+ case move_past_kill(Is0, I, Acc0) of
+ impossible -> opt_1(Is0, [I|Acc0]);
+ {Is,Acc} -> opt_1(Is, Acc)
+ end;
+opt_1([I|Is], Acc) ->
+ opt_1(Is, [I|Acc]);
+opt_1([], Acc) -> reverse(Acc).
+
+move_past_kill([{kill,Src}|_], {move,Src,_}, _) ->
+ impossible;
+move_past_kill([{kill,_}=I|Is], Move, Acc) ->
+ move_past_kill(Is, Move, [I|Acc]);
+move_past_kill([{trim,N,_}=I|Is], {move,Src,Dst}=Move, Acc) ->
+ case Src of
+ {y,Y} when Y < N-> impossible;
+ {y,Y} -> {Is,[{move,{y,Y-N},Dst},I|Acc]};
+ _ -> {Is,[Move,I|Acc]}
+ end;
+move_past_kill(Is, Move, Acc) ->
+ {Is,[Move|Acc]}.