diff options
author | Björn Gustavsson <[email protected]> | 2019-02-05 02:46:45 +0100 |
---|---|---|
committer | Björn Gustavsson <[email protected]> | 2019-02-06 10:34:23 +0100 |
commit | 077cfc59f1dca89aa1231ce291100aa4b33c50e0 (patch) | |
tree | 3f0eb95adda9f0432b18a7021a3d97599a34fb00 /lib/compiler/src/beam_ssa.erl | |
parent | e82637d6f078409db27449383df5342294df0b63 (diff) | |
download | otp-077cfc59f1dca89aa1231ce291100aa4b33c50e0.tar.gz otp-077cfc59f1dca89aa1231ce291100aa4b33c50e0.tar.bz2 otp-077cfc59f1dca89aa1231ce291100aa4b33c50e0.zip |
Optimize ssa_opt_sink for huge functions
The ssa_opt_sink optimization of beam_ssa_opt could get very slow
for certain huge functions. 9a190cae9bd7 partly addressed this issue
by terminating the optimization early if there happened to be no
get_tuple_element instructions at all in the function.
This commit addresses the issue more directly by making the dominator
calculation in beam_ssa:dominators/1 more efficient. The same
algorithm as before is used, but it is implemented in a more efficient
way based on the ideas in "A Simple, Fast Dominance Algorithm"
(http://www.hipersoft.rice.edu/grads/publications/dom14.pdf).
As well as being more efficient, the new implementation also gives
an explicit representation of the dominator tree, which makes it
possible to simplify and optimize the ssa_opt_sink optimization.
Diffstat (limited to 'lib/compiler/src/beam_ssa.erl')
-rw-r--r-- | lib/compiler/src/beam_ssa.erl | 73 |
1 files changed, 60 insertions, 13 deletions
diff --git a/lib/compiler/src/beam_ssa.erl b/lib/compiler/src/beam_ssa.erl index 9c29c98064..0f662d851d 100644 --- a/lib/compiler/src/beam_ssa.erl +++ b/lib/compiler/src/beam_ssa.erl @@ -23,7 +23,7 @@ -export([add_anno/3,get_anno/2,get_anno/3, clobbers_xregs/1,def/2,def_used/2, definitions/1, - dominators/1, + dominators/1,common_dominators/3, flatmapfold_instrs_rpo/4, fold_po/3,fold_po/4,fold_rpo/3,fold_rpo/4, fold_instrs_rpo/4, @@ -85,7 +85,8 @@ -type anno() :: #{atom() := any()}. -type block_map() :: #{label():=b_blk()}. --type dominator_map() :: #{label():=ordsets:ordset(label())}. +-type dominator_map() :: #{label():=[label()]}. +-type numbering_map() :: #{label():=non_neg_integer()}. -type usage_map() :: #{b_var():=[{label(),b_set() | terminator()}]}. -type definition_map() :: #{b_var():=b_set()}. -type rename_map() :: #{b_var():=value()}. @@ -327,18 +328,41 @@ def_used(Ls, Blocks) -> Preds = cerl_sets:from_list(Top), def_used_1(Blks, Preds, [], []). +%% dominators(BlockMap) -> {Dominators,Numbering}. +%% Calculate the dominator tree, returning a map where each entry +%% in the map is a list that gives the path from that block to +%% the top of the dominator tree. (Note that the suffixes of the +%% paths are shared with each other, which make the representation +%% of the dominator tree highly memory-efficient.) +%% +%% The implementation is based on: +%% +%% http://www.hipersoft.rice.edu/grads/publications/dom14.pdf +%% Cooper, Keith D.; Harvey, Timothy J; Kennedy, Ken (2001). +%% A Simple, Fast Dominance Algorithm. + -spec dominators(Blocks) -> Result when Blocks :: block_map(), - Result :: dominator_map(). - + Result :: {dominator_map(), numbering_map()}. dominators(Blocks) -> Preds = predecessors(Blocks), Top0 = rpo(Blocks), - Top = [{L,map_get(L, Preds)} || L <- Top0], + Df = maps:from_list(number(Top0, 0)), + [{0,[]}|Top] = [{L,map_get(L, Preds)} || L <- Top0], %% The flow graph for an Erlang function is reducible, and %% therefore one traversal in reverse postorder is sufficient. - iter_dominators(Top, #{}). + Acc = #{0=>[0]}, + {dominators_1(Top, Df, Acc),Df}. + +%% common_dominators([Label], Dominators, Numbering) -> [Label]. +%% Calculate the common dominators for the given list of blocks +%% and Dominators and Numbering as returned from dominators/1. + +-spec common_dominators([label()], dominator_map(), numbering_map()) -> [label()]. +common_dominators(Ls, Dom, Numbering) -> + Doms = [map_get(L, Dom) || L <- Ls], + dom_intersection(Doms, Numbering). -spec fold_instrs_rpo(Fun, From, Acc0, Blocks) -> any() when Fun :: fun((b_blk()|terminator(), any()) -> any()), @@ -657,14 +681,37 @@ def_is([#b_set{dst=Dst}|Is], Def) -> def_is(Is, [Dst|Def]); def_is([], Def) -> Def. -iter_dominators([{0,[]}|Ls], _Doms) -> - Dom = [0], - iter_dominators(Ls, #{0=>Dom}); -iter_dominators([{L,Preds}|Ls], Doms) -> +dominators_1([{L,Preds}|Ls], Df, Doms) -> DomPreds = [map_get(P, Doms) || P <- Preds, is_map_key(P, Doms)], - Dom = ordsets:add_element(L, ordsets:intersection(DomPreds)), - iter_dominators(Ls, Doms#{L=>Dom}); -iter_dominators([], Doms) -> Doms. + Dom = [L|dom_intersection(DomPreds, Df)], + dominators_1(Ls, Df, Doms#{L=>Dom}); +dominators_1([], _Df, Doms) -> Doms. + +dom_intersection([S], _Df) -> + S; +dom_intersection([S|Ss], Df) -> + dom_intersection(S, Ss, Df). + +dom_intersection(S1, [S2|Ss], Df) -> + dom_intersection(dom_intersection_1(S1, S2, Df), Ss, Df); +dom_intersection(S, [], _Df) -> S. + +dom_intersection_1([E1|Es1]=Set1, [E2|Es2]=Set2, Df) -> + %% Blocks are numbered in the order they are found in + %% reverse postorder. + #{E1:=Df1,E2:=Df2} = Df, + if Df1 > Df2 -> + dom_intersection_1(Es1, Set2, Df); + Df2 > Df1 -> + dom_intersection_1(Es2, Set1, Df); %switch arguments! + true -> %Set1 == Set2 + %% The common suffix of the sets is the intersection. + Set1 + end. + +number([L|Ls], N) -> + [{L,N}|number(Ls, N+1)]; +number([], _) -> []. fold_rpo_1([L|Ls], Fun, Blocks, Acc0) -> Block = map_get(L, Blocks), |