diff options
author | Björn Gustavsson <[email protected]> | 2014-12-08 12:33:12 +0100 |
---|---|---|
committer | Björn Gustavsson <[email protected]> | 2015-01-09 13:18:44 +0100 |
commit | 7b10ff77235532923558a30759ed9b5fe6d994a5 (patch) | |
tree | 98bdf359c9df1f077335dfe16ca7c621cc5a3777 /lib/compiler | |
parent | 4f7edc376ee61238699f68c8721ab23ee56eafee (diff) | |
download | otp-7b10ff77235532923558a30759ed9b5fe6d994a5.tar.gz otp-7b10ff77235532923558a30759ed9b5fe6d994a5.tar.bz2 otp-7b10ff77235532923558a30759ed9b5fe6d994a5.zip |
beam_dead: Optimize branches from relational conditionals
The BEAM compiler translates code such as:
is_hex_digit(D) when $0 =< D, D =< $9 -> true;
is_hex_digit(D) when $a =< D, D =< $z -> true;
is_hex_digit(D) when $A =< D, D =< $Z -> true;
is_hex_digit(_) -> false.
to something like this:
L0: test is_ge L1 {x,0} 48
test is_ge L1 57 {x,0}
move true {x,0}
return.
L1: test is_ge L2 {x,0} 97
test is_ge L2 122 {x,0}
move true {x,0}
return
L2: test is_ge L3 {x,0} 65
test is_ge L3 90 {x,0}
move true {x,0}
return
L3: move false {x,0}
return
We can see that tests will be repeated even if they cannot possibly
succeed. For instance, if we pass in {x,0} equal to 32, the first
test that {x,0} is greater than or equal to 48 at L0 will fail.
The control will transfer to L1, where it will be tested whether
{x,0} is greater than 97. That test will fail and control
will pass to L2, where again the test will fail.
The compiler can do better by short-circuiting repeating tests:
L0: test is_ge L3 {x,0} 48
test is_ge L1 57 {x,0}
move true {x,0}
return.
L1: test is_ge L2 {x,0} 97
test is_ge L3 122 {x,0}
move true {x,0}
return
L2: test is_ge L3 {x,0} 65
test is_ge L3 90 {x,0}
move true {x,0}
return
L3: move false {x,0}
return
Diffstat (limited to 'lib/compiler')
-rw-r--r-- | lib/compiler/src/beam_dead.erl | 349 | ||||
-rw-r--r-- | lib/compiler/test/guard_SUITE.erl | 230 |
2 files changed, 563 insertions, 16 deletions
diff --git a/lib/compiler/src/beam_dead.erl b/lib/compiler/src/beam_dead.erl index b15adfa889..9703b1a847 100644 --- a/lib/compiler/src/beam_dead.erl +++ b/lib/compiler/src/beam_dead.erl @@ -215,15 +215,13 @@ forward([{test,is_eq_exact,_,[Dst,Src]}=I,{move,Src,Dst}|Is], D, Lc, Acc) -> forward([I|Is], D, Lc, Acc); forward([{test,is_nil,_,[Dst]}=I,{move,nil,Dst}|Is], D, Lc, Acc) -> forward([I|Is], D, Lc, Acc); -forward([{test,is_eq_exact,_,_}=I|Is], D, Lc, Acc) -> - case Is of - [{label,_}|_] -> forward(Is, D, Lc, [I|Acc]); - _ -> forward(Is, D, Lc+1, [{label,Lc},I|Acc]) - end; -forward([{test,is_ne_exact,_,_}=I|Is], D, Lc, Acc) -> - case Is of - [{label,_}|_] -> forward(Is, D, Lc, [I|Acc]); - _ -> forward(Is, D, Lc+1, [{label,Lc},I|Acc]) +forward([{test,_,_,_}=I|Is]=Is0, D, Lc, Acc) -> + %% Help the second, backward pass to by inserting labels after + %% relational operators so that they can be skipped if they are + %% known to be true. + case useful_to_insert_label(Is0) of + false -> forward(Is, D, Lc, [I|Acc]); + true -> forward(Is, D, Lc+1, [{label,Lc},I|Acc]) end; forward([I|Is], D, Lc, Acc) -> forward(Is, D, Lc, [I|Acc]); @@ -239,6 +237,17 @@ update_value_dict([Lit,{f,Lbl}|T], Reg, D0) -> update_value_dict(T, Reg, D); update_value_dict([], _, D) -> D. +useful_to_insert_label([_,{label,_}|_]) -> + false; +useful_to_insert_label([{test,Op,_,_}|_]) -> + case Op of + is_lt -> true; + is_ge -> true; + is_eq_exact -> true; + is_ne_exact -> true; + _ -> false + end. + %%% %%% Scan instructions in reverse execution order and remove dead code. %%% @@ -309,20 +318,22 @@ backward([{test,is_eq_exact,{f,To0},[Reg,{atom,Val}]=Ops}|Is], D, Acc) -> backward([{test,Op,{f,To0},Ops0}|Is], D, Acc) -> To1 = shortcut_bs_test(To0, Is, D), To2 = shortcut_label(To1, D), + To3 = shortcut_rel_op(To2, Op, Ops0, D), + %% Try to shortcut a repeated test: %% %% test Op {f,Fail1} Operands test Op {f,Fail2} Operands %% . . . ==> ... %% Fail1: test Op {f,Fail2} Operands Fail1: test Op {f,Fail2} Operands %% - To = case beam_utils:code_at(To2, D) of - [{test,Op,{f,To3},Ops}|_] -> + To = case beam_utils:code_at(To3, D) of + [{test,Op,{f,To4},Ops}|_] -> case equal_ops(Ops0, Ops) of - true -> To3; - false -> To2 + true -> To4; + false -> To3 end; _Code -> - To2 + To3 end, I = case Op of is_eq_exact -> combine_eqs(To, Ops0, D, Acc); @@ -562,3 +573,313 @@ shortcut_bs_start_match_2([{test,bs_start_match2,{f,To},_,[Reg|_],_}|_], Reg, _) To; shortcut_bs_start_match_2(_Is, _Reg, To) -> To. + +%% shortcut_rel_op(FailLabel, Operator, [Operand], D) -> FailLabel' +%% Try to shortcut the given test instruction. Example: +%% +%% is_ge L1 {x,0} 48 +%% . +%% . +%% . +%% L1: is_ge L2 {x,0} 65 +%% +%% The first test instruction can be rewritten to "is_ge L2 {x,0} 48" +%% since the instruction at L1 will also fail. +%% +%% If there are instructions between L1 and the other test instruction +%% it may still be possible to do the shortcut. For example: +%% +%% L1: is_eq_exact L3 {x,0} 92 +%% is_ge L2 {x,0} 65 +%% +%% Since the first test instruction failed, we know that {x,0} must +%% be less than 48; therefore, we know that {x,0} cannot be equal to +%% 92 and the jump to L3 cannot happen. + +shortcut_rel_op(To, Op, Ops, D) -> + case normalize_op({test,Op,{f,To},Ops}) of + {{NormOp,A,B},_} -> + Normalized = {negate_op(NormOp),A,B}, + shortcut_rel_op_fp(To, Normalized, D); + {_,_} -> + To; + error -> + To + end. + +shortcut_rel_op_fp(To0, Normalized, D) -> + Code = beam_utils:code_at(To0, D), + case shortcut_any_label(Code, Normalized) of + error -> + To0; + To -> + shortcut_rel_op_fp(To, Normalized, D) + end. + +%% shortcut_any_label([Instruction], PrevCondition) -> FailLabel | error +%% Using PrevCondition (a previous condition known to be true), +%% try to shortcut to another failure label. + +shortcut_any_label([{jump,{f,Lbl}}|_], _Prev) -> + Lbl; +shortcut_any_label([{label,Lbl}|_], _Prev) -> + Lbl; +shortcut_any_label([{select,select_val,R,{f,Fail},L}|_], Prev) -> + shortcut_selectval(L, R, Fail, Prev); +shortcut_any_label([I|Is], Prev) -> + case normalize_op(I) of + error -> + error; + {Normalized,Fail} -> + %% We have a relational operator. + case will_succeed(Prev, Normalized) of + no -> + %% This test instruction will always branch + %% to Fail. + Fail; + yes -> + %% This test instruction will never branch, + %% so we will look at the next instruction. + shortcut_any_label(Is, Prev); + maybe -> + %% May or may not branch. From now on, we can only + %% shortcut to the this specific failure label + %% Fail. + shortcut_specific_label(Is, Fail, Prev) + end + end. + +%% shortcut_specific_label([Instruction], FailLabel, PrevCondition) -> +%% FailLabel | error +%% We have previously encountered a test instruction that may or +%% may not branch to FailLabel. Therefore we are only allowed +%% to do the shortcut to the same fail label (FailLabel). + +shortcut_specific_label([{label,_}|Is], Fail, Prev) -> + shortcut_specific_label(Is, Fail, Prev); +shortcut_specific_label([{select,select_val,R,{f,F},L}|_], Fail, Prev) -> + case shortcut_selectval(L, R, F, Prev) of + Fail -> Fail; + _ -> error + end; +shortcut_specific_label([I|Is], Fail, Prev) -> + case normalize_op(I) of + error -> + error; + {Normalized,Fail} -> + case will_succeed(Prev, Normalized) of + no -> + %% Will branch to FailLabel. + Fail; + yes -> + %% Will definitely never branch. + shortcut_specific_label(Is, Fail, Prev); + maybe -> + %% May branch, but still OK since it will branch + %% to FailLabel. + shortcut_specific_label(Is, Fail, Prev) + end; + {Normalized,_} -> + %% This test instruction will branch to a different + %% fail label, if it branches at all. + case will_succeed(Prev, Normalized) of + yes -> + %% Still OK, since the branch will never be + %% taken. + shortcut_specific_label(Is, Fail, Prev); + no -> + %% Give up. The branch will definitely be taken + %% to a different fail label. + error; + maybe -> + %% Give up. If the branch is taken, it will be + %% to a different fail label. + error + end + end. + + +%% shortcut_selectval(List, Reg, Fail, PrevCond) -> FailLabel | error +%% Try to shortcut a selectval instruction. A selectval instruction +%% is equivalent to the following instruction sequence: +%% +%% is_ne_exact L1 Reg Value1 +%% . +%% . +%% . +%% is_ne_exact LN Reg ValueN +%% jump DefaultFailLabel +%% +shortcut_selectval([Val,{f,Lbl}|T], R, Fail, Prev) -> + case will_succeed(Prev, {'=/=',R,get_literal(Val)}) of + yes -> shortcut_selectval(T, R, Fail, Prev); + no -> Lbl; + maybe -> error + end; +shortcut_selectval([], _, Fail, _) -> Fail. + +%% will_succeed(PrevCondition, Condition) -> yes | no | maybe +%% PrevCondition is a condition known to be true. This function +%% will tell whether Condition will succeed. + +will_succeed({Op1,Reg,A}, {Op2,Reg,B}) -> + will_succeed_1(Op1, A, Op2, B); +will_succeed({'=:=',Reg,{literal,A}}, {TypeTest,Reg}) -> + case erlang:TypeTest(A) of + false -> no; + true -> yes + end; +will_succeed({_,_,_}, maybe) -> + maybe; +will_succeed({_,_,_}, Test) when is_tuple(Test) -> + maybe. + +will_succeed_1('=:=', A, '<', B) -> + if + B =< A -> no; + true -> yes + end; +will_succeed_1('=:=', A, '=<', B) -> + if + B < A -> no; + true -> yes + end; +will_succeed_1('=:=', A, '=:=', B) -> + if + A =:= B -> yes; + true -> no + end; +will_succeed_1('=:=', A, '=/=', B) -> + if + A =:= B -> no; + true -> yes + end; +will_succeed_1('=:=', A, '>=', B) -> + if + B > A -> no; + true -> yes + end; +will_succeed_1('=:=', A, '>', B) -> + if + B >= A -> no; + true -> yes + end; + +will_succeed_1('=/=', A, '=/=', B) when A =:= B -> yes; +will_succeed_1('=/=', A, '=:=', B) when A =:= B -> no; + +will_succeed_1('<', A, '=:=', B) when B >= A -> no; +will_succeed_1('<', A, '=/=', B) when B >= A -> yes; +will_succeed_1('<', A, '<', B) when B >= A -> yes; +will_succeed_1('<', A, '=<', B) when B > A -> yes; +will_succeed_1('<', A, '>=', B) when B > A -> no; +will_succeed_1('<', A, '>', B) when B >= A -> no; + +will_succeed_1('=<', A, '=:=', B) when B > A -> no; +will_succeed_1('=<', A, '=/=', B) when B > A -> yes; +will_succeed_1('=<', A, '<', B) when B > A -> yes; +will_succeed_1('=<', A, '=<', B) when B >= A -> yes; +will_succeed_1('=<', A, '>=', B) when B > A -> no; +will_succeed_1('=<', A, '>', B) when B >= A -> no; + +will_succeed_1('>=', A, '=:=', B) when B < A -> no; +will_succeed_1('>=', A, '=/=', B) when B < A -> yes; +will_succeed_1('>=', A, '<', B) when B =< A -> no; +will_succeed_1('>=', A, '=<', B) when B < A -> no; +will_succeed_1('>=', A, '>=', B) when B =< A -> yes; +will_succeed_1('>=', A, '>', B) when B < A -> yes; + +will_succeed_1('>', A, '=:=', B) when B =< A -> no; +will_succeed_1('>', A, '=/=', B) when B =< A -> yes; +will_succeed_1('>', A, '<', B) when B =< A -> no; +will_succeed_1('>', A, '=<', B) when B < A -> no; +will_succeed_1('>', A, '>=', B) when B =< A -> yes; +will_succeed_1('>', A, '>', B) when B < A -> yes; + +will_succeed_1(_, _, _, _) -> maybe. + +%% normalize_op(Instruction) -> {Normalized,FailLabel} | error +%% Normalized = {Operator,Register,Literal} | +%% {TypeTest,Register} | +%% maybe +%% Operation = '<' | '=<' | '=:=' | '=/=' | '>=' | '>' +%% TypeTest = is_atom | is_integer ... +%% Literal = {literal,Term} +%% +%% Normalize a relational operator to facilitate further +%% comparisons between operators. Always make the register +%% operand the first operand. Thus the following instruction: +%% +%% {test,is_ge,{f,99},{integer,13},{x,0}} +%% +%% will be normalized to: +%% +%% {'=<',{x,0},{literal,13}} +%% +%% NOTE: Bit syntax test instructions are scary. They may change the +%% state of match contexts and update registers, so we don't dare +%% mess with them. + +normalize_op({test,is_ge,{f,Fail},Ops}) -> + normalize_op_1('>=', Ops, Fail); +normalize_op({test,is_lt,{f,Fail},Ops}) -> + normalize_op_1('<', Ops, Fail); +normalize_op({test,is_eq_exact,{f,Fail},Ops}) -> + normalize_op_1('=:=', Ops, Fail); +normalize_op({test,is_ne_exact,{f,Fail},Ops}) -> + normalize_op_1('=/=', Ops, Fail); +normalize_op({test,is_nil,{f,Fail},[R]}) -> + normalize_op_1('=:=', [R,nil], Fail); +normalize_op({test,Op,{f,Fail},[R]}) -> + case erl_internal:new_type_test(Op, 1) of + true -> {{Op,R},Fail}; + false -> {maybe,Fail} + end; +normalize_op({test,_,{f,Fail},_}=I) -> + case beam_utils:is_pure_test(I) of + true -> {maybe,Fail}; + false -> error + end; +normalize_op(_) -> + error. + +normalize_op_1(Op, [Op1,Op2], Fail) -> + case {get_literal(Op1),get_literal(Op2)} of + {error,error} -> + %% Both operands are registers. + {maybe,Fail}; + {error,Lit} -> + {{Op,Op1,Lit},Fail}; + {Lit,error} -> + {{turn_op(Op),Op2,Lit},Fail}; + {_,_} -> + %% Both operands are literals. Can probably only + %% happen if the Core Erlang optimizations passes were + %% turned off, so don't bother trying to do something + %% smart here. + {maybe,Fail} + end. + +turn_op('<') -> '>'; +turn_op('>=') -> '=<'; +turn_op('=:='=Op) -> Op; +turn_op('=/='=Op) -> Op. + +negate_op('>=') -> '<'; +negate_op('<') -> '>='; +negate_op('=<') -> '>'; +negate_op('>') -> '=<'; +negate_op('=:=') -> '=/='; +negate_op('=/=') -> '=:='. + +get_literal({atom,Val}) -> + {literal,Val}; +get_literal({integer,Val}) -> + {literal,Val}; +get_literal({float,Val}) -> + {literal,Val}; +get_literal(nil) -> + {literal,[]}; +get_literal({literal,_}=Lit) -> + Lit; +get_literal({_,_}) -> error. diff --git a/lib/compiler/test/guard_SUITE.erl b/lib/compiler/test/guard_SUITE.erl index eb205d09a7..689c65f537 100644 --- a/lib/compiler/test/guard_SUITE.erl +++ b/lib/compiler/test/guard_SUITE.erl @@ -30,7 +30,7 @@ old_guard_tests/1, build_in_guard/1,gbif/1, t_is_boolean/1,is_function_2/1, - tricky/1,rel_ops/1,literal_type_tests/1, + tricky/1,rel_ops/1,rel_op_combinations/1,literal_type_tests/1, basic_andalso_orelse/1,traverse_dcd/1, check_qlc_hrl/1,andalso_semi/1,t_tuple_size/1,binary_part/1, bad_constants/1,bad_guards/1]). @@ -47,7 +47,8 @@ groups() -> semicolon,complex_semicolon,comma,or_guard, more_or_guards,complex_or_guards,and_guard,xor_guard, more_xor_guards,build_in_guard,old_guard_tests,gbif, - t_is_boolean,is_function_2,tricky,rel_ops, + t_is_boolean,is_function_2,tricky, + rel_ops,rel_op_combinations, literal_type_tests,basic_andalso_orelse,traverse_dcd, check_qlc_hrl,andalso_semi,t_tuple_size,binary_part, bad_constants,bad_guards]}]. @@ -1122,6 +1123,231 @@ rel_ops(Config) when is_list(Config) -> -undef(TestOp). +rel_op_combinations(Config) when is_list(Config) -> + Digits0 = lists:seq(16#0030, 16#0039) ++ + lists:seq(16#0660, 16#0669) ++ + lists:seq(16#06F0, 16#06F9), + Digits = gb_sets:from_list(Digits0), + rel_op_combinations_1(16#0700, Digits), + + BrokenRange0 = lists:seq(3, 5) ++ + lists:seq(10, 12) ++ lists:seq(14, 20), + BrokenRange = gb_sets:from_list(BrokenRange0), + rel_op_combinations_2(30, BrokenRange), + + Red0 = [{I,2*I} || I <- lists:seq(0, 50)] ++ + [{I,5*I} || I <- lists:seq(51, 80)], + Red = gb_trees:from_orddict(Red0), + rel_op_combinations_3(100, Red). + +rel_op_combinations_1(0, _) -> + ok; +rel_op_combinations_1(N, Digits) -> + Bool = gb_sets:is_member(N, Digits), + Bool = is_digit_1(N), + Bool = is_digit_2(N), + Bool = is_digit_3(N), + Bool = is_digit_4(N), + Bool = is_digit_5(N), + Bool = is_digit_6(N), + Bool = is_digit_7(N), + Bool = is_digit_8(N), + rel_op_combinations_1(N-1, Digits). + +is_digit_1(X) when 16#0660 =< X, X =< 16#0669 -> true; +is_digit_1(X) when 16#0030 =< X, X =< 16#0039 -> true; +is_digit_1(X) when 16#06F0 =< X, X =< 16#06F9 -> true; +is_digit_1(_) -> false. + +is_digit_2(X) when (16#0030-1) < X, X =< 16#0039 -> true; +is_digit_2(X) when (16#0660-1) < X, X =< 16#0669 -> true; +is_digit_2(X) when (16#06F0-1) < X, X =< 16#06F9 -> true; +is_digit_2(_) -> false. + +is_digit_3(X) when 16#0660 =< X, X < (16#0669+1) -> true; +is_digit_3(X) when 16#0030 =< X, X < (16#0039+1) -> true; +is_digit_3(X) when 16#06F0 =< X, X < (16#06F9+1) -> true; +is_digit_3(_) -> false. + +is_digit_4(X) when (16#0660-1) < X, X < (16#0669+1) -> true; +is_digit_4(X) when (16#0030-1) < X, X < (16#0039+1) -> true; +is_digit_4(X) when (16#06F0-1) < X, X < (16#06F9+1) -> true; +is_digit_4(_) -> false. + +is_digit_5(X) when X >= 16#0660, X =< 16#0669 -> true; +is_digit_5(X) when X >= 16#0030, X =< 16#0039 -> true; +is_digit_5(X) when X >= 16#06F0, X =< 16#06F9 -> true; +is_digit_5(_) -> false. + +is_digit_6(X) when X > (16#0660-1), X =< 16#0669 -> true; +is_digit_6(X) when X > (16#0030-1), X =< 16#0039 -> true; +is_digit_6(X) when X > (16#06F0-1), X =< 16#06F9 -> true; +is_digit_6(_) -> false. + +is_digit_7(X) when 16#0660 =< X, X =< 16#0669 -> true; +is_digit_7(X) when 16#0030 =< X, X =< 16#003A, X =/= 16#003A -> true; +is_digit_7(X) when 16#06F0 =< X, X =< 16#06F9 -> true; +is_digit_7(_) -> false. + +is_digit_8(X) when X =< 16#0039, X > (16#0030-1) -> true; +is_digit_8(X) when X =< 16#06F9, X > (16#06F0-1) -> true; +is_digit_8(X) when X =< 16#0669, X > (16#0660-1) -> true; +is_digit_8(16#0670) -> false; +is_digit_8(_) -> false. + +rel_op_combinations_2(0, _) -> + ok; +rel_op_combinations_2(N, Range) -> + Bool = gb_sets:is_member(N, Range), + Bool = broken_range_1(N), + Bool = broken_range_2(N), + Bool = broken_range_3(N), + Bool = broken_range_4(N), + Bool = broken_range_5(N), + Bool = broken_range_6(N), + Bool = broken_range_7(N), + Bool = broken_range_8(N), + Bool = broken_range_9(N), + Bool = broken_range_10(N), + Bool = broken_range_11(N), + Bool = broken_range_12(N), + Bool = broken_range_13(N), + rel_op_combinations_2(N-1, Range). + +broken_range_1(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_1(X) when X >= 3, X =< 5 -> true; +broken_range_1(_) -> false. + +broken_range_2(X) when X >= 10, X =< 12 -> true; +broken_range_2(X) when X >= 14, X =< 20 -> true; +broken_range_2(X) when X >= 3, X =< 5 -> true; +broken_range_2(_) -> false. + +broken_range_3(X) when X >= 10, X =< 12 -> true; +broken_range_3(X) when X >= 14, X < 21 -> true; +broken_range_3(3) -> true; +broken_range_3(4) -> true; +broken_range_3(5) -> true; +broken_range_3(_) -> false. + +broken_range_4(X) when X =< 5, X >= 3 -> true; +broken_range_4(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_4(X) when X =< 100 -> false; +broken_range_4(_) -> false. + +broken_range_5(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_5(X) when X > 2, X =< 5 -> true; +broken_range_5(_) -> false. + +broken_range_6(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_6(X) when X > 2, X < 6 -> true; +broken_range_6(_) -> false. + +broken_range_7(X) when X > 2, X < 6 -> true; +broken_range_7(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_7(X) when X > 30 -> false; +broken_range_7(_) -> false. + +broken_range_8(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_8(X) when X =:= 3 -> true; +broken_range_8(X) when X >= 3, X =< 5 -> true; +broken_range_8(_) -> false. + +broken_range_9(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_9(X) when X =:= 13 -> false; +broken_range_9(X) when X >= 3, X =< 5 -> true; +broken_range_9(_) -> false. + +broken_range_10(X) when X >= 3, X =< 5 -> true; +broken_range_10(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_10(X) when X =/= 13 -> false; +broken_range_10(_) -> false. + +broken_range_11(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_11(X) when is_tuple(X), X =:= 10 -> true; +broken_range_11(X) when X >= 3, X =< 5 -> true; +broken_range_11(_) -> false. + +broken_range_12(X) when X >= 3, X =< 5 -> true; +broken_range_12(X) when X >= 10, X =< 20, X =/= 13 -> true; +broken_range_12(X) when X < 30, X > 20 -> false; +broken_range_12(_) -> false. + +broken_range_13(X) when X >= 10, X =< 20, 13 =/= X -> true; +broken_range_13(X) when X >= 3, X =< 5 -> true; +broken_range_13(_) -> false. + +rel_op_combinations_3(0, _) -> + ok; +rel_op_combinations_3(N, Red) -> + Val = case gb_trees:lookup(N, Red) of + none -> none; + {value,V} -> V + end, + Val = redundant_1(N), + Val = redundant_2(N), + Val = redundant_3(N), + Val = redundant_4(N), + Val = redundant_5(N), + Val = redundant_6(N), + Val = redundant_7(N), + Val = redundant_8(N), + Val = redundant_9(N), + Val = redundant_10(N), + Val = redundant_11(N), + rel_op_combinations_3(N-1, Red). + +redundant_1(X) when X >= 51, X =< 80 -> 5*X; +redundant_1(X) when X < 51 -> 2*X; +redundant_1(_) -> none. + +redundant_2(X) when X < 51 -> 2*X; +redundant_2(X) when X >= 51, X =< 80 -> 5*X; +redundant_2(_) -> none. + +redundant_3(X) when X < 51 -> 2*X; +redundant_3(X) when X =< 80, X >= 51 -> 5*X; +redundant_3(X) when X =/= 100 -> none; +redundant_3(_) -> none. + +redundant_4(X) when X < 51 -> 2*X; +redundant_4(X) when X =< 80, X > 50 -> 5*X; +redundant_4(X) when X =/= 100 -> none; +redundant_4(_) -> none. + +redundant_5(X) when X < 51 -> 2*X; +redundant_5(X) when X > 50, X < 81 -> 5*X; +redundant_5(X) when X =< 10 -> none; +redundant_5(_) -> none. + +redundant_6(X) when X > 50, X =< 80 -> 5*X; +redundant_6(X) when X < 51 -> 2*X; +redundant_6(_) -> none. + +redundant_7(X) when is_integer(X), X >= 51, X =< 80 -> 5*X; +redundant_7(X) when is_integer(X), X < 51 -> 2*X; +redundant_7(_) -> none. + +redundant_8(X) when X >= 51, X =< 80 -> 5*X; +redundant_8(X) when X < 51 -> 2*X; +redundant_8(_) -> none. + +redundant_9(X) when X >= 51, X =< 80 -> 5*X; +redundant_9(X) when X < 51 -> 2*X; +redundant_9(90) -> none; +redundant_9(X) when X =/= 90 -> none; +redundant_9(_) -> none. + +redundant_10(X) when X >= 51, X =< 80 -> 5*X; +redundant_10(X) when X < 51 -> 2*X; +redundant_10(90) -> none; +redundant_10(X) when X =:= 90 -> none; +redundant_10(_) -> none. + +redundant_11(X) when X < 51 -> 2*X; +redundant_11(X) when X =:= 10 -> 2*X; +redundant_11(X) when X >= 51, X =< 80 -> 5*X; +redundant_11(_) -> none. %% Test type tests on literal values. (From emulator test suites.) literal_type_tests(Config) when is_list(Config) -> |