diff options
author | Stavros Aronis <[email protected]> | 2011-04-02 18:57:42 +0300 |
---|---|---|
committer | Henrik Nord <[email protected]> | 2011-05-04 15:06:15 +0200 |
commit | ca4633fd683527097451ca1398c90c87bb5c14fc (patch) | |
tree | 3d8e18c9becd4feb7d3ceb1eed24bdce2ef69dd6 /lib/dialyzer/test/options1_SUITE_data/src | |
parent | bc619f0cbf9555df6dfc44a499f0cd9cee8bd1be (diff) | |
download | otp-ca4633fd683527097451ca1398c90c87bb5c14fc.tar.gz otp-ca4633fd683527097451ca1398c90c87bb5c14fc.tar.bz2 otp-ca4633fd683527097451ca1398c90c87bb5c14fc.zip |
Rename suite data directories
Diffstat (limited to 'lib/dialyzer/test/options1_SUITE_data/src')
36 files changed, 30136 insertions, 0 deletions
diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_asm.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_asm.erl new file mode 100644 index 0000000000..e3746f3fb6 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_asm.erl @@ -0,0 +1,358 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_asm.erl,v 1.1 2008/12/17 09:53:40 mikpe Exp $ +%% +%% Purpose : Assembler for threaded Beam. + +-module(beam_asm). + +-export([module/4,format_error/1]). +-export([encode/2]). + +-import(lists, [map/2,member/2,keymember/3,duplicate/2]). +-include("beam_opcodes.hrl"). + +-define(bs_aligned, 1). + +module(Code, Abst, SourceFile, Opts) -> + case assemble(Code, Abst, SourceFile, Opts) of + {error, Error} -> + {error, [{none, ?MODULE, Error}]}; + Bin when binary(Bin) -> + {ok, Bin} + end. + +format_error({crashed, Why}) -> + io_lib:format("beam_asm_int: EXIT: ~p", [Why]). + +assemble({Mod,Exp,Attr,Asm,NumLabels}, Abst, SourceFile, Opts) -> + {1,Dict0} = beam_dict:atom(Mod, beam_dict:new()), + NumFuncs = length(Asm), + {Code,Dict1} = assemble_1(Asm, Exp, Dict0, []), + build_file(Code, Attr, Dict1, NumLabels, NumFuncs, Abst, SourceFile, Opts). + +assemble_1([{function,Name,Arity,Entry,Asm}|T], Exp, Dict0, Acc) -> + Dict1 = case member({Name,Arity}, Exp) of + true -> + beam_dict:export(Name, Arity, Entry, Dict0); + false -> + beam_dict:local(Name, Arity, Entry, Dict0) + end, + {Code, Dict2} = assemble_function(Asm, Acc, Dict1), + assemble_1(T, Exp, Dict2, Code); +assemble_1([], _Exp, Dict0, Acc) -> + {IntCodeEnd,Dict1} = make_op(int_code_end, Dict0), + {list_to_binary(lists:reverse(Acc, [IntCodeEnd])),Dict1}. + +assemble_function([H|T], Acc, Dict0) -> + {Code, Dict} = make_op(H, Dict0), + assemble_function(T, [Code| Acc], Dict); +assemble_function([], Code, Dict) -> + {Code, Dict}. + +build_file(Code, Attr, Dict, NumLabels, NumFuncs, Abst, SourceFile, Opts) -> + %% Create the code chunk. + + CodeChunk = chunk(<<"Code">>, + <<16:32, + (beam_opcodes:format_number()):32, + (beam_dict:highest_opcode(Dict)):32, + NumLabels:32, + NumFuncs:32>>, + Code), + + %% Create the atom table chunk. + + {NumAtoms, AtomTab} = beam_dict:atom_table(Dict), + AtomChunk = chunk(<<"Atom">>, <<NumAtoms:32>>, AtomTab), + + %% Create the import table chunk. + + {NumImps, ImpTab0} = beam_dict:import_table(Dict), + Imp = flatten_imports(ImpTab0), + ImportChunk = chunk(<<"ImpT">>, <<NumImps:32>>, Imp), + + %% Create the export table chunk. + + {NumExps, ExpTab0} = beam_dict:export_table(Dict), + Exp = flatten_exports(ExpTab0), + ExpChunk = chunk(<<"ExpT">>, <<NumExps:32>>, Exp), + + %% Create the local function table chunk. + + {NumLocals, Locals} = beam_dict:local_table(Dict), + Loc = flatten_exports(Locals), + LocChunk = chunk(<<"LocT">>, <<NumLocals:32>>, Loc), + + %% Create the string table chunk. + + {_,StringTab} = beam_dict:string_table(Dict), + StringChunk = chunk(<<"StrT">>, StringTab), + + %% Create the fun table chunk. It is important not to build an empty chunk, + %% as that would change the MD5. + + LambdaChunk = case beam_dict:lambda_table(Dict) of + {0,[]} -> []; + {NumLambdas,LambdaTab} -> + chunk(<<"FunT">>, <<NumLambdas:32>>, LambdaTab) + end, + + %% Create the attributes and compile info chunks. + + Essentials = [AtomChunk,CodeChunk,StringChunk,ImportChunk,ExpChunk,LambdaChunk], + {Attributes,Compile} = build_attributes(Opts, SourceFile, Attr, Essentials), + AttrChunk = chunk(<<"Attr">>, Attributes), + CompileChunk = chunk(<<"CInf">>, Compile), + + %% Create the abstract code chunk. + + AbstChunk = chunk(<<"Abst">>, Abst), + + %% Create IFF chunk. + + Chunks = case member(slim, Opts) of + true -> [Essentials,AttrChunk,CompileChunk,AbstChunk]; + false -> [Essentials,LocChunk,AttrChunk,CompileChunk,AbstChunk] + end, + build_form(<<"BEAM">>, Chunks). + +%% Build an IFF form. + +build_form(Id, Chunks0) when size(Id) == 4, list(Chunks0) -> + Chunks = list_to_binary(Chunks0), + Size = size(Chunks), + 0 = Size rem 4, % Assertion: correct padding? + <<"FOR1",(Size+4):32,Id/binary,Chunks/binary>>. + +%% Build a correctly padded chunk (with no sub-header). + +chunk(Id, Contents) when size(Id) == 4, binary(Contents) -> + Size = size(Contents), + [<<Id/binary,Size:32>>,Contents|pad(Size)]; +chunk(Id, Contents) when list(Contents) -> + chunk(Id, list_to_binary(Contents)). + +%% Build a correctly padded chunk (with a sub-header). + +chunk(Id, Head, Contents) when size(Id) == 4, is_binary(Head), is_binary(Contents) -> + Size = size(Head)+size(Contents), + [<<Id/binary,Size:32,Head/binary>>,Contents|pad(Size)]; +chunk(Id, Head, Contents) when list(Contents) -> + chunk(Id, Head, list_to_binary(Contents)). + +pad(Size) -> + case Size rem 4 of + 0 -> []; + Rem -> duplicate(4 - Rem, 0) + end. + +flatten_exports(Exps) -> + list_to_binary(map(fun({F,A,L}) -> <<F:32,A:32,L:32>> end, Exps)). + +flatten_imports(Imps) -> + list_to_binary(map(fun({M,F,A}) -> <<M:32,F:32,A:32>> end, Imps)). + +build_attributes(Opts, SourceFile, Attr, Essentials) -> + Misc = case member(slim, Opts) of + false -> + {{Y,Mo,D},{H,Mi,S}} = erlang:universaltime(), + [{time,{Y,Mo,D,H,Mi,S}},{source,SourceFile}]; + true -> [] + end, + Compile = [{options,Opts},{version,?COMPILER_VSN}|Misc], + {term_to_binary(calc_vsn(Attr, Essentials)),term_to_binary(Compile)}. + +%% +%% If the attributes contains no 'vsn' attribute, we'll insert one +%% with an MD5 "checksum" calculated on the code as its value. +%% We'll not change an existing 'vsn' attribute. +%% + +calc_vsn(Attr, Essentials) -> + case keymember(vsn, 1, Attr) of + true -> Attr; + false -> + <<Number:128>> = erlang:md5(Essentials), + [{vsn,[Number]}|Attr] + end. + +bif_type('-', 1) -> negate; +bif_type('+', 2) -> {op, m_plus}; +bif_type('-', 2) -> {op, m_minus}; +bif_type('*', 2) -> {op, m_times}; +bif_type('/', 2) -> {op, m_div}; +bif_type('div', 2) -> {op, int_div}; +bif_type('rem', 2) -> {op, int_rem}; +bif_type('band', 2) -> {op, int_band}; +bif_type('bor', 2) -> {op, int_bor}; +bif_type('bxor', 2) -> {op, int_bxor}; +bif_type('bsl', 2) -> {op, int_bsl}; +bif_type('bsr', 2) -> {op, int_bsr}; +bif_type('bnot', 1) -> {op, int_bnot}; +bif_type(fnegate, 1) -> {op, fnegate}; +bif_type(fadd, 2) -> {op, fadd}; +bif_type(fsub, 2) -> {op, fsub}; +bif_type(fmul, 2) -> {op, fmul}; +bif_type(fdiv, 2) -> {op, fdiv}; +bif_type(_, _) -> bif. + +make_op(Comment, Dict) when element(1, Comment) == '%' -> + {[],Dict}; +make_op({'%live',_R}, Dict) -> + {[],Dict}; +make_op({bif, Bif, nofail, [], Dest}, Dict) -> + encode_op(bif0, [{extfunc, erlang, Bif, 0}, Dest], Dict); +make_op({bif, raise, _Fail, [A1,A2], _Dest}, Dict) -> + encode_op(raise, [A1,A2], Dict); +make_op({bif, Bif, Fail, Args, Dest}, Dict) -> + Arity = length(Args), + case bif_type(Bif, Arity) of + {op, Op} -> + make_op(list_to_tuple([Op, Fail|Args++[Dest]]), Dict); + negate -> + %% Fake negation operator. + make_op({m_minus, Fail, {integer,0}, hd(Args), Dest}, Dict); + bif -> + BifOp = list_to_atom(lists:concat([bif, Arity])), + encode_op(BifOp, [Fail, {extfunc, erlang, Bif, Arity}|Args++[Dest]], + Dict) + end; +make_op({bs_add=Op,Fail,[Src1,Src2,Unit],Dest}, Dict) -> + encode_op(Op, [Fail,Src1,Src2,Unit,Dest], Dict); +make_op({test,Cond,Fail,Ops}, Dict) when list(Ops) -> + encode_op(Cond, [Fail|Ops], Dict); +make_op({make_fun2,{f,Lbl},Index,OldUniq,NumFree}, Dict0) -> + {Fun,Dict} = beam_dict:lambda(Lbl, Index, OldUniq, NumFree, Dict0), + make_op({make_fun2,Fun}, Dict); +make_op(Op, Dict) when atom(Op) -> + encode_op(Op, [], Dict); +make_op({kill,Y}, Dict) -> + make_op({init,Y}, Dict); +make_op({Name,Arg1}, Dict) -> + encode_op(Name, [Arg1], Dict); +make_op({Name,Arg1,Arg2}, Dict) -> + encode_op(Name, [Arg1,Arg2], Dict); +make_op({Name,Arg1,Arg2,Arg3}, Dict) -> + encode_op(Name, [Arg1,Arg2,Arg3], Dict); +make_op({Name,Arg1,Arg2,Arg3,Arg4}, Dict) -> + encode_op(Name, [Arg1,Arg2,Arg3,Arg4], Dict); +make_op({Name,Arg1,Arg2,Arg3,Arg4,Arg5}, Dict) -> + encode_op(Name, [Arg1,Arg2,Arg3,Arg4,Arg5], Dict); +make_op({Name,Arg1,Arg2,Arg3,Arg4,Arg5,Arg6}, Dict) -> + encode_op(Name, [Arg1,Arg2,Arg3,Arg4,Arg5,Arg6], Dict). + +encode_op(Name, Args, Dict0) when atom(Name) -> + {EncArgs,Dict1} = encode_args(Args, Dict0), + Op = beam_opcodes:opcode(Name, length(Args)), + Dict2 = beam_dict:opcode(Op, Dict1), + {list_to_binary([Op|EncArgs]),Dict2}. + +encode_args([Arg| T], Dict0) -> + {EncArg, Dict1} = encode_arg(Arg, Dict0), + {EncTail, Dict2} = encode_args(T, Dict1), + {[EncArg| EncTail], Dict2}; +encode_args([], Dict) -> + {[], Dict}. + +encode_arg({x, X}, Dict) when X >= 0 -> + {encode(?tag_x, X), Dict}; +encode_arg({y, Y}, Dict) when Y >= 0 -> + {encode(?tag_y, Y), Dict}; +encode_arg({atom, Atom}, Dict0) when atom(Atom) -> + {Index, Dict} = beam_dict:atom(Atom, Dict0), + {encode(?tag_a, Index), Dict}; +encode_arg({integer, N}, Dict) -> + {encode(?tag_i, N), Dict}; +encode_arg(nil, Dict) -> + {encode(?tag_a, 0), Dict}; +encode_arg({f, W}, Dict) -> + {encode(?tag_f, W), Dict}; +encode_arg({'char', C}, Dict) -> + {encode(?tag_h, C), Dict}; +encode_arg({string, String}, Dict0) -> + {Offset, Dict} = beam_dict:string(String, Dict0), + {encode(?tag_u, Offset), Dict}; +encode_arg({extfunc, M, F, A}, Dict0) -> + {Index, Dict} = beam_dict:import(M, F, A, Dict0), + {encode(?tag_u, Index), Dict}; +encode_arg({list, List}, Dict0) -> + {L, Dict} = encode_list(List, Dict0, []), + {[encode(?tag_z, 1), encode(?tag_u, length(List))|L], Dict}; +encode_arg({float, Float}, Dict) when float(Float) -> + {[encode(?tag_z, 0)|<<Float:64/float>>], Dict}; +encode_arg({fr,Fr}, Dict) -> + {[encode(?tag_z, 2),encode(?tag_u,Fr)], Dict}; +encode_arg({field_flags,Flags0}, Dict) -> + Flags = lists:foldl(fun (F, S) -> S bor flag_to_bit(F) end, 0, Flags0), + {encode(?tag_u, Flags), Dict}; +encode_arg({alloc,List}, Dict) -> + {encode_alloc_list(List),Dict}; +encode_arg(Int, Dict) when is_integer(Int) -> + {encode(?tag_u, Int),Dict}. + +flag_to_bit(aligned) -> 16#01; +flag_to_bit(little) -> 16#02; +flag_to_bit(big) -> 16#00; +flag_to_bit(signed) -> 16#04; +flag_to_bit(unsigned)-> 16#00; +flag_to_bit(exact) -> 16#08; +flag_to_bit(native) -> 16#10. + +encode_list([H|T], _Dict, _Acc) when is_list(H) -> + exit({illegal_nested_list,encode_arg,[H|T]}); +encode_list([H|T], Dict0, Acc) -> + {Enc,Dict} = encode_arg(H, Dict0), + encode_list(T, Dict, [Enc|Acc]); +encode_list([], Dict, Acc) -> + {lists:reverse(Acc), Dict}. + +encode_alloc_list(L0) -> + L = encode_alloc_list_1(L0), + [encode(?tag_z, 3),encode(?tag_u, length(L0))|L]. + +encode_alloc_list_1([{words,Words}|T]) -> + [encode(?tag_u, 0),encode(?tag_u, Words)|encode_alloc_list_1(T)]; +encode_alloc_list_1([{floats,Floats}|T]) -> + [encode(?tag_u, 1),encode(?tag_u, Floats)|encode_alloc_list_1(T)]; +encode_alloc_list_1([]) -> []. + +encode(Tag, N) when N < 0 -> + encode1(Tag, negative_to_bytes(N, [])); +encode(Tag, N) when N < 16 -> + (N bsl 4) bor Tag; +encode(Tag, N) when N < 16#800 -> + [((N bsr 3) band 2#11100000) bor Tag bor 2#00001000, N band 16#ff]; +encode(Tag, N) -> + encode1(Tag, to_bytes(N, [])). + +encode1(Tag, Bytes) -> + case length(Bytes) of + Num when 2 =< Num, Num =< 8 -> + [((Num-2) bsl 5) bor 2#00011000 bor Tag| Bytes]; + Num when 8 < Num -> + [2#11111000 bor Tag, encode(?tag_u, Num-9)| Bytes] + end. + +to_bytes(0, [B|Acc]) when B < 128 -> + [B|Acc]; +to_bytes(N, Acc) -> + to_bytes(N bsr 8, [N band 16#ff| Acc]). + +negative_to_bytes(-1, [B1, B2|T]) when B1 > 127 -> + [B1, B2|T]; +negative_to_bytes(N, Acc) -> + negative_to_bytes(N bsr 8, [N band 16#ff|Acc]). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_block.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_block.erl new file mode 100644 index 0000000000..0e3589cdf5 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_block.erl @@ -0,0 +1,601 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_block.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Purpose : Partitions assembly instructions into basic blocks and +%% optimizes them. + +-module(beam_block). + +-export([module/2]). +-export([live_at_entry/1]). %Used by beam_type, beam_bool. +-export([is_killed/2]). %Used by beam_dead, beam_type, beam_bool. +-export([is_not_used/2]). %Used by beam_bool. +-export([merge_blocks/2]). %Used by beam_jump. +-import(lists, [map/2,mapfoldr/3,reverse/1,reverse/2,foldl/3, + member/2,sort/1,all/2]). +-define(MAXREG, 1024). + +module({Mod,Exp,Attr,Fs,Lc}, _Opt) -> + {ok,{Mod,Exp,Attr,map(fun function/1, Fs),Lc}}. + +function({function,Name,Arity,CLabel,Is0}) -> + %% Collect basic blocks and optimize them. + Is = blockify(Is0), + + %% Done. + {function,Name,Arity,CLabel,Is}. + +%% blockify(Instructions0) -> Instructions +%% Collect sequences of instructions to basic blocks and +%% optimize the contents of the blocks. Also do some simple +%% optimations on instructions outside the blocks. + +blockify(Is) -> + blockify(Is, []). + +blockify([{loop_rec,{f,Fail},{x,0}},{loop_rec_end,_Lbl},{label,Fail}|Is], Acc) -> + %% Useless instruction sequence. + blockify(Is, Acc); +blockify([{test,bs_test_tail,F,[Bits]}|Is], + [{test,bs_skip_bits,F,[{integer,I},Unit,_Flags]}|Acc]) -> + blockify(Is, [{test,bs_test_tail,F,[Bits+I*Unit]}|Acc]); +blockify([{test,bs_skip_bits,F,[{integer,I1},Unit1,_]}|Is], + [{test,bs_skip_bits,F,[{integer,I2},Unit2,Flags]}|Acc]) -> + blockify(Is, [{test,bs_skip_bits,F, + [{integer,I1*Unit1+I2*Unit2},1,Flags]}|Acc]); +blockify([{test,is_atom,{f,Fail},[Reg]}=I| + [{select_val,Reg,{f,Fail}, + {list,[{atom,false},{f,_}=BrFalse, + {atom,true}=AtomTrue,{f,_}=BrTrue]}}|Is]=Is0], + [{block,Bl}|_]=Acc) -> + case is_last_bool(Bl, Reg) of + false -> + blockify(Is0, [I|Acc]); + true -> + blockify(Is, [{jump,BrTrue}, + {test,is_eq_exact,BrFalse,[Reg,AtomTrue]}|Acc]) + end; +blockify([{test,is_atom,{f,Fail},[Reg]}=I| + [{select_val,Reg,{f,Fail}, + {list,[{atom,true}=AtomTrue,{f,_}=BrTrue, + {atom,false},{f,_}=BrFalse]}}|Is]=Is0], + [{block,Bl}|_]=Acc) -> + case is_last_bool(Bl, Reg) of + false -> + blockify(Is0, [I|Acc]); + true -> + blockify(Is, [{jump,BrTrue}, + {test,is_eq_exact,BrFalse,[Reg,AtomTrue]}|Acc]) + end; +blockify([I|Is0]=IsAll, Acc) -> + case is_bs_put(I) of + true -> + {BsPuts0,Is} = collect_bs_puts(IsAll), + BsPuts = opt_bs_puts(BsPuts0), + blockify(Is, reverse(BsPuts, Acc)); + false -> + case collect(I) of + error -> blockify(Is0, [I|Acc]); + Instr when is_tuple(Instr) -> + {Block0,Is} = collect_block(IsAll), + Block = opt_block(Block0), + blockify(Is, [{block,Block}|Acc]) + end + end; +blockify([], Acc) -> reverse(Acc). + +is_last_bool([I,{'%live',_}], Reg) -> + is_last_bool([I], Reg); +is_last_bool([{set,[Reg],As,{bif,N,_}}], Reg) -> + Ar = length(As), + erl_internal:new_type_test(N, Ar) orelse erl_internal:comp_op(N, Ar) + orelse erl_internal:bool_op(N, Ar); +is_last_bool([_|Is], Reg) -> is_last_bool(Is, Reg); +is_last_bool([], _) -> false. + +collect_block(Is) -> + collect_block(Is, []). + +collect_block([{allocate_zero,Ns,R},{test_heap,Nh,R}|Is], Acc) -> + collect_block(Is, [{allocate,R,{no_opt,Ns,Nh,[]}}|Acc]); +collect_block([I|Is]=Is0, Acc) -> + case collect(I) of + error -> {reverse(Acc),Is0}; + Instr -> collect_block(Is, [Instr|Acc]) + end; +collect_block([], Acc) -> {reverse(Acc),[]}. + +collect({allocate_zero,N,R}) -> {allocate,R,{zero,N,0,[]}}; +collect({test_heap,N,R}) -> {allocate,R,{nozero,nostack,N,[]}}; +collect({bif,N,nofail,As,D}) -> {set,[D],As,{bif,N}}; +collect({bif,N,F,As,D}) -> {set,[D],As,{bif,N,F}}; +collect({move,S,D}) -> {set,[D],[S],move}; +collect({put_list,S1,S2,D}) -> {set,[D],[S1,S2],put_list}; +collect({put_tuple,A,D}) -> {set,[D],[],{put_tuple,A}}; +collect({put,S}) -> {set,[],[S],put}; +collect({put_string,L,S,D}) -> {set,[D],[],{put_string,L,S}}; +collect({get_tuple_element,S,I,D}) -> {set,[D],[S],{get_tuple_element,I}}; +collect({set_tuple_element,S,D,I}) -> {set,[],[S,D],{set_tuple_element,I}}; +collect({get_list,S,D1,D2}) -> {set,[D1,D2],[S],get_list}; +collect(remove_message) -> {set,[],[],remove_message}; +collect({'catch',R,L}) -> {set,[R],[],{'catch',L}}; +collect({'%live',_}=Live) -> Live; +collect(_) -> error. + +opt_block(Is0) -> + %% We explicitly move any allocate instruction upwards before optimising + %% moves, to avoid any potential problems with the calculation of live + %% registers. + Is1 = find_fixpoint(fun move_allocates/1, Is0), + Is2 = find_fixpoint(fun opt/1, Is1), + Is = opt_alloc(Is2), + share_floats(Is). + +find_fixpoint(OptFun, Is0) -> + case OptFun(Is0) of + Is0 -> Is0; + Is1 -> find_fixpoint(OptFun, Is1) + end. + +move_allocates([{set,_Ds,_Ss,{set_tuple_element,_}}|_]=Is) -> Is; +move_allocates([{set,Ds,Ss,_Op}=Set,{allocate,R,Alloc}|Is]) when is_integer(R) -> + [{allocate,live_regs(Ds, Ss, R),Alloc},Set|Is]; +move_allocates([{allocate,R1,Alloc1},{allocate,R2,Alloc2}|Is]) -> + R1 = R2, % Assertion. + move_allocates([{allocate,R1,combine_alloc(Alloc1, Alloc2)}|Is]); +move_allocates([I|Is]) -> + [I|move_allocates(Is)]; +move_allocates([]) -> []. + +combine_alloc({_,Ns,Nh1,Init}, {_,nostack,Nh2,[]}) -> + {zero,Ns,Nh1+Nh2,Init}. + +merge_blocks([{allocate,R,{Attr,Ns,Nh1,Init}}|B1], + [{allocate,_,{_,nostack,Nh2,[]}}|B2]) -> + Alloc = {allocate,R,{Attr,Ns,Nh1+Nh2,Init}}, + [Alloc|merge_blocks(B1, B2)]; +merge_blocks(B1, B2) -> merge_blocks_1(B1++[{set,[],[],stop_here}|B2]). + +merge_blocks_1([{set,[],_,stop_here}|Is]) -> Is; +merge_blocks_1([{set,[D],_,move}=I|Is]) -> + case is_killed(D, Is) of + true -> merge_blocks_1(Is); + false -> [I|merge_blocks_1(Is)] + end; +merge_blocks_1([I|Is]) -> [I|merge_blocks_1(Is)]. + +opt([{set,[Dst],As,{bif,Bif,Fail}}=I1, + {set,[Dst],[Dst],{bif,'not',Fail}}=I2|Is]) -> + %% Get rid of the 'not' if the operation can be inverted. + case inverse_comp_op(Bif) of + none -> [I1,I2|opt(Is)]; + RevBif -> [{set,[Dst],As,{bif,RevBif,Fail}}|opt(Is)] + end; +opt([{set,[X],[X],move}|Is]) -> opt(Is); +opt([{set,[D1],[{integer,Idx1},Reg],{bif,element,{f,0}}}=I1, + {set,[D2],[{integer,Idx2},Reg],{bif,element,{f,0}}}=I2|Is]) + when Idx1 < Idx2, D1 =/= D2, D1 =/= Reg, D2 =/= Reg -> + opt([I2,I1|Is]); +opt([{set,Ds0,Ss,Op}|Is0]) -> + {Ds,Is} = opt_moves(Ds0, Is0), + [{set,Ds,Ss,Op}|opt(Is)]; +opt([I|Is]) -> [I|opt(Is)]; +opt([]) -> []. + +opt_moves([], Is0) -> {[],Is0}; +opt_moves([D0], Is0) -> + {D1,Is1} = opt_move(D0, Is0), + {[D1],Is1}; +opt_moves([X0,Y0]=Ds, Is0) -> + {X1,Is1} = opt_move(X0, Is0), + case opt_move(Y0, Is1) of + {Y1,Is2} when X1 =/= Y1 -> {[X1,Y1],Is2}; + _Other when X1 =/= Y0 -> {[X1,Y0],Is1}; + _Other -> {Ds,Is0} + end. + +opt_move(R, [{set,[D],[R],move}|Is]=Is0) -> + case is_killed(R, Is) of + true -> {D,Is}; + false -> {R,Is0} + end; +opt_move(R, [I|Is0]) -> + case is_transparent(R, I) of + true -> + {D,Is1} = opt_move(R, Is0), + case is_transparent(D, I) of + true -> {D,[I|Is1]}; + false -> {R,[I|Is0]} + end; + false -> {R,[I|Is0]} + end; +opt_move(R, []) -> {R,[]}. + +is_transparent(R, {set,Ds,Ss,_Op}) -> + case member(R, Ds) of + true -> false; + false -> not member(R, Ss) + end; +is_transparent(_, _) -> false. + +%% is_killed(Register, [Instruction]) -> true|false +%% Determine whether a register is killed by the instruction sequence. +%% If true is returned, it means that the register will not be +%% referenced in ANY way (not even indirectly by an allocate instruction); +%% i.e. it is OK to enter the instruction sequence with Register +%% containing garbage. + +is_killed({x,N}=R, [{block,Blk}|Is]) -> + case is_killed(R, Blk) of + true -> true; + false -> + %% Before looking beyond the block, we must be + %% sure that the register is not referenced by + %% any allocate instruction in the block. + case all(fun({allocate,Live,_}) when N < Live -> false; + (_) -> true + end, Blk) of + true -> is_killed(R, Is); + false -> false + end + end; +is_killed(R, [{block,Blk}|Is]) -> + case is_killed(R, Blk) of + true -> true; + false -> is_killed(R, Is) + end; +is_killed(R, [{set,Ds,Ss,_Op}|Is]) -> + case member(R, Ss) of + true -> false; + false -> + case member(R, Ds) of + true -> true; + false -> is_killed(R, Is) + end + end; +is_killed(R, [{case_end,Used}|_]) -> R =/= Used; +is_killed(R, [{badmatch,Used}|_]) -> R =/= Used; +is_killed(_, [if_end|_]) -> true; +is_killed(R, [{func_info,_,_,Ar}|_]) -> + case R of + {x,X} when X < Ar -> false; + _ -> true + end; +is_killed(R, [{kill,R}|_]) -> true; +is_killed(R, [{kill,_}|Is]) -> is_killed(R, Is); +is_killed(R, [{bs_init2,_,_,_,_,_,Dst}|Is]) -> + if + R =:= Dst -> true; + true -> is_killed(R, Is) + end; +is_killed(R, [{bs_put_string,_,_}|Is]) -> is_killed(R, Is); +is_killed({x,R}, [{'%live',Live}|_]) when R >= Live -> true; +is_killed({x,R}, [{'%live',_}|Is]) -> is_killed(R, Is); +is_killed({x,R}, [{allocate,Live,_}|_]) -> + %% Note: To be safe here, we must return either true or false, + %% not looking further at the instructions beyond the allocate + %% instruction. + R >= Live; +is_killed({x,R}, [{call,Live,_}|_]) when R >= Live -> true; +is_killed({x,R}, [{call_last,Live,_,_}|_]) when R >= Live -> true; +is_killed({x,R}, [{call_only,Live,_}|_]) when R >= Live -> true; +is_killed({x,R}, [{call_ext,Live,_}|_]) when R >= Live -> true; +is_killed({x,R}, [{call_ext_last,Live,_,_}|_]) when R >= Live -> true; +is_killed({x,R}, [{call_ext_only,Live,_}|_]) when R >= Live -> true; +is_killed({x,R}, [return|_]) when R > 0 -> true; +is_killed(_, _) -> false. + +%% is_not_used(Register, [Instruction]) -> true|false +%% Determine whether a register is used by the instruction sequence. +%% If true is returned, it means that the register will not be +%% referenced directly, but it may be referenced by an allocate +%% instruction (meaning that it is NOT allowed to contain garbage). + +is_not_used(R, [{block,Blk}|Is]) -> + case is_not_used(R, Blk) of + true -> true; + false -> is_not_used(R, Is) + end; +is_not_used({x,R}=Reg, [{allocate,Live,_}|Is]) -> + if + R >= Live -> true; + true -> is_not_used(Reg, Is) + end; +is_not_used(R, [{set,Ds,Ss,_Op}|Is]) -> + case member(R, Ss) of + true -> false; + false -> + case member(R, Ds) of + true -> true; + false -> is_not_used(R, Is) + end + end; +is_not_used(R, Is) -> is_killed(R, Is). + +%% opt_alloc(Instructions) -> Instructions' +%% Optimises all allocate instructions. + +opt_alloc([{allocate,R,{_,Ns,Nh,[]}}|Is]) -> + [opt_alloc(Is, Ns, Nh, R)|opt(Is)]; +opt_alloc([I|Is]) -> [I|opt_alloc(Is)]; +opt_alloc([]) -> []. + +%% opt_alloc(Instructions, FrameSize, HeapNeed, LivingRegs) -> [Instr] +%% Generates the optimal sequence of instructions for +%% allocating and initalizing the stack frame and needed heap. + +opt_alloc(_Is, nostack, Nh, LivingRegs) -> + {allocate,LivingRegs,{nozero,nostack,Nh,[]}}; +opt_alloc(Is, Ns, Nh, LivingRegs) -> + InitRegs = init_yreg(Is, 0), + case count_ones(InitRegs) of + N when N*2 > Ns -> + {allocate,LivingRegs,{nozero,Ns,Nh,gen_init(Ns, InitRegs)}}; + _ -> + {allocate,LivingRegs,{zero,Ns,Nh,[]}} + end. + +gen_init(Fs, Regs) -> gen_init(Fs, Regs, 0, []). + +gen_init(SameFs, _Regs, SameFs, Acc) -> reverse(Acc); +gen_init(Fs, Regs, Y, Acc) when Regs band 1 == 0 -> + gen_init(Fs, Regs bsr 1, Y+1, [{init, {y,Y}}|Acc]); +gen_init(Fs, Regs, Y, Acc) -> + gen_init(Fs, Regs bsr 1, Y+1, Acc). + +%% init_yreg(Instructions, RegSet) -> RegSetInitialized +%% Calculate the set of initialized y registers. + +init_yreg([{set,_,_,{bif,_,_}}|_], Reg) -> Reg; +init_yreg([{set,Ds,_,_}|Is], Reg) -> init_yreg(Is, add_yregs(Ds, Reg)); +init_yreg(_Is, Reg) -> Reg. + +add_yregs(Ys, Reg) -> foldl(fun(Y, R0) -> add_yreg(Y, R0) end, Reg, Ys). + +add_yreg({y,Y}, Reg) -> Reg bor (1 bsl Y); +add_yreg(_, Reg) -> Reg. + +count_ones(Bits) -> count_ones(Bits, 0). +count_ones(0, Acc) -> Acc; +count_ones(Bits, Acc) -> + count_ones(Bits bsr 1, Acc + (Bits band 1)). + +%% live_at_entry(Is) -> NumberOfRegisters +%% Calculate the number of register live at the entry to the code +%% sequence. + +live_at_entry([{block,[{allocate,R,_}|_]}|_]) -> + R; +live_at_entry([{label,_}|Is]) -> + live_at_entry(Is); +live_at_entry([{block,Bl}|_]) -> + live_at_entry(Bl); +live_at_entry([{func_info,_,_,Ar}|_]) -> + Ar; +live_at_entry(Is0) -> + case reverse(Is0) of + [{'%live',Regs}|Is] -> live_at_entry_1(Is, (1 bsl Regs)-1); + _ -> unknown + end. + +live_at_entry_1([{set,Ds,Ss,_}|Is], Rset0) -> + Rset = x_live(Ss, x_dead(Ds, Rset0)), + live_at_entry_1(Is, Rset); +live_at_entry_1([{allocate,_,_}|Is], Rset) -> + live_at_entry_1(Is, Rset); +live_at_entry_1([], Rset) -> live_regs_1(0, Rset). + +%% Calculate the new number of live registers when we move an allocate +%% instruction upwards, passing a 'set' instruction. + +live_regs(Ds, Ss, Regs0) -> + Rset = x_live(Ss, x_dead(Ds, (1 bsl Regs0)-1)), + live_regs_1(0, Rset). + +live_regs_1(N, 0) -> N; +live_regs_1(N, Regs) -> live_regs_1(N+1, Regs bsr 1). + +x_dead([{x,N}|Rs], Regs) -> x_dead(Rs, Regs band (bnot (1 bsl N))); +x_dead([_|Rs], Regs) -> x_dead(Rs, Regs); +x_dead([], Regs) -> Regs. + +x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N)); +x_live([_|Rs], Regs) -> x_live(Rs, Regs); +x_live([], Regs) -> Regs. + +%% +%% If a floating point literal occurs more than once, move it into +%% a free register and re-use it. +%% + +share_floats([{allocate,_,_}=Alloc|Is]) -> + [Alloc|share_floats(Is)]; +share_floats(Is0) -> + All = get_floats(Is0, []), + MoreThanOnce0 = more_than_once(sort(All), gb_sets:empty()), + case gb_sets:is_empty(MoreThanOnce0) of + true -> Is0; + false -> + MoreThanOnce = gb_sets:to_list(MoreThanOnce0), + FreeX = highest_used(Is0, -1) + 1, + Regs0 = make_reg_map(MoreThanOnce, FreeX, []), + Regs = gb_trees:from_orddict(Regs0), + Is = map(fun({set,Ds,[{float,F}],Op}=I) -> + case gb_trees:lookup(F, Regs) of + none -> I; + {value,R} -> {set,Ds,[R],Op} + end; + (I) -> I + end, Is0), + [{set,[R],[{float,F}],move} || {F,R} <- Regs0] ++ Is + end. + +get_floats([{set,_,[{float,F}],_}|Is], Acc) -> + get_floats(Is, [F|Acc]); +get_floats([_|Is], Acc) -> + get_floats(Is, Acc); +get_floats([], Acc) -> Acc. + +more_than_once([F,F|Fs], Set) -> + more_than_once(Fs, gb_sets:add(F, Set)); +more_than_once([_|Fs], Set) -> + more_than_once(Fs, Set); +more_than_once([], Set) -> Set. + +highest_used([{set,Ds,Ss,_}|Is], High) -> + highest_used(Is, highest(Ds, highest(Ss, High))); +highest_used([{'%live',Live}|Is], High) when Live > High -> + highest_used(Is, Live); +highest_used([_|Is], High) -> + highest_used(Is, High); +highest_used([], High) -> High. + +highest([{x,R}|Rs], High) when R > High -> + highest(Rs, R); +highest([_|Rs], High) -> + highest(Rs, High); +highest([], High) -> High. + +make_reg_map([F|Fs], R, Acc) when R < ?MAXREG -> + make_reg_map(Fs, R+1, [{F,{x,R}}|Acc]); +make_reg_map(_, _, Acc) -> sort(Acc). + +%% inverse_comp_op(Op) -> none|RevOp + +inverse_comp_op('=:=') -> '=/='; +inverse_comp_op('=/=') -> '=:='; +inverse_comp_op('==') -> '/='; +inverse_comp_op('/=') -> '=='; +inverse_comp_op('>') -> '=<'; +inverse_comp_op('<') -> '>='; +inverse_comp_op('>=') -> '<'; +inverse_comp_op('=<') -> '>'; +inverse_comp_op(_) -> none. + +%%% +%%% Evaluation of constant bit fields. +%%% + +is_bs_put({bs_put_integer,_,_,_,_,_}) -> true; +is_bs_put({bs_put_float,_,_,_,_,_}) -> true; +is_bs_put(_) -> false. + +collect_bs_puts(Is) -> + collect_bs_puts_1(Is, []). + +collect_bs_puts_1([I|Is]=Is0, Acc) -> + case is_bs_put(I) of + false -> {reverse(Acc),Is0}; + true -> collect_bs_puts_1(Is, [I|Acc]) + end; +collect_bs_puts_1([], Acc) -> {reverse(Acc),[]}. + +opt_bs_puts(Is) -> + opt_bs_1(Is, []). + +opt_bs_1([{bs_put_float,Fail,{integer,Sz},1,Flags0,Src}=I0|Is], Acc) -> + case catch eval_put_float(Src, Sz, Flags0) of + {'EXIT',_} -> + opt_bs_1(Is, [I0|Acc]); + <<Int:Sz>> -> + Flags = force_big(Flags0), + I = {bs_put_integer,Fail,{integer,Sz},1,Flags,{integer,Int}}, + opt_bs_1([I|Is], Acc) + end; +opt_bs_1([{bs_put_integer,_,{integer,8},1,_,{integer,_}}|_]=IsAll, Acc0) -> + {Is,Acc} = bs_collect_string(IsAll, Acc0), + opt_bs_1(Is, Acc); +opt_bs_1([{bs_put_integer,Fail,{integer,Sz},1,F,{integer,N}}=I|Is0], Acc) when Sz > 8 -> + case field_endian(F) of + big -> + case bs_split_int(N, Sz, Fail, Is0) of + no_split -> opt_bs_1(Is0, [I|Acc]); + Is -> opt_bs_1(Is, Acc) + end; + little -> + case catch <<N:Sz/little>> of + {'EXIT',_} -> + opt_bs_1(Is0, [I|Acc]); + <<Int:Sz>> -> + Flags = force_big(F), + Is = [{bs_put_integer,Fail,{integer,Sz},1, + Flags,{integer,Int}}|Is0], + opt_bs_1(Is, Acc) + end; + native -> opt_bs_1(Is0, [I|Acc]) + end; +opt_bs_1([{Op,Fail,{integer,Sz},U,F,Src}|Is], Acc) when U > 1 -> + opt_bs_1([{Op,Fail,{integer,U*Sz},1,F,Src}|Is], Acc); +opt_bs_1([I|Is], Acc) -> + opt_bs_1(Is, [I|Acc]); +opt_bs_1([], Acc) -> reverse(Acc). + +eval_put_float(Src, Sz, Flags) -> + Val = value(Src), + case field_endian(Flags) of + little -> <<Val:Sz/little-float-unit:1>>; + big -> <<Val:Sz/big-float-unit:1>> + %% native intentionally not handled here - we can't optimize it. + end. + +value({integer,I}) -> I; +value({float,F}) -> F; +value({atom,A}) -> A. + +bs_collect_string(Is, [{bs_put_string,Len,{string,Str}}|Acc]) -> + bs_coll_str_1(Is, Len, reverse(Str), Acc); +bs_collect_string(Is, Acc) -> + bs_coll_str_1(Is, 0, [], Acc). + +bs_coll_str_1([{bs_put_integer,_,{integer,Sz},U,_,{integer,V}}|Is], + Len, StrAcc, IsAcc) when U*Sz =:= 8 -> + Byte = V band 16#FF, + bs_coll_str_1(Is, Len+1, [Byte|StrAcc], IsAcc); +bs_coll_str_1(Is, Len, StrAcc, IsAcc) -> + {Is,[{bs_put_string,Len,{string,reverse(StrAcc)}}|IsAcc]}. + +field_endian({field_flags,F}) -> field_endian_1(F). + +field_endian_1([big=E|_]) -> E; +field_endian_1([little=E|_]) -> E; +field_endian_1([native=E|_]) -> E; +field_endian_1([_|Fs]) -> field_endian_1(Fs). + +force_big({field_flags,F}) -> + {field_flags,force_big_1(F)}. + +force_big_1([big|_]=Fs) -> Fs; +force_big_1([little|Fs]) -> [big|Fs]; +force_big_1([F|Fs]) -> [F|force_big_1(Fs)]. + +bs_split_int(0, Sz, _, _) when Sz > 64 -> + %% We don't want to split in this case because the + %% string will consist of only zeroes. + no_split; +bs_split_int(N, Sz, Fail, Acc) -> + FirstByteSz = case Sz rem 8 of + 0 -> 8; + Rem -> Rem + end, + bs_split_int_1(N, FirstByteSz, Sz, Fail, Acc). + +bs_split_int_1(N, ByteSz, Sz, Fail, Acc) when Sz > 0 -> + Mask = (1 bsl ByteSz) - 1, + I = {bs_put_integer,Fail,{integer,ByteSz},1, + {field_flags,[big]},{integer,N band Mask}}, + bs_split_int_1(N bsr ByteSz, 8, Sz-ByteSz, Fail, [I|Acc]); +bs_split_int_1(_, _, _, _, Acc) -> Acc. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_bool.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_bool.erl new file mode 100644 index 0000000000..b7b28a41a5 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_bool.erl @@ -0,0 +1,617 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_bool.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Purpose: Optimizes booleans in guards. + +-module(beam_bool). + +-export([module/2]). + +-import(lists, [reverse/1,foldl/3,mapfoldl/3,sort/1,member/2]). +-define(MAXREG, 1024). + +-record(st, + {next, %Next label number. + ll %Live regs at labels. + }). + +module({Mod,Exp,Attr,Fs0,Lc}, _Opts) -> + %%io:format("~p:\n", [Mod]), + {Fs,_} = mapfoldl(fun(Fn, Lbl) -> function(Fn, Lbl) end, 100000000, Fs0), + {ok,{Mod,Exp,Attr,Fs,Lc}}. + +function({function,Name,Arity,CLabel,Is0}, Lbl0) -> + %%io:format("~p/~p:\n", [Name,Arity]), + {Is,#st{next=Lbl}} = bool_opt(Is0, Lbl0), + {{function,Name,Arity,CLabel,Is},Lbl}. + +%% +%% Optimize boolean expressions that use guard bifs. Rewrite to +%% use test instructions if possible. +%% + +bool_opt(Asm, Lbl) -> + LiveInfo = index_instructions(Asm), + bopt(Asm, [], #st{next=Lbl,ll=LiveInfo}). + +bopt([{block,Bl0}=Block| + [{jump,{f,Succ}}, + {label,Fail}, + {block,[{set,[Dst],[{atom,false}],move},{'%live',Live}]}, + {label,Succ}|Is]=Is0], Acc0, St) -> + case split_block(Bl0, Dst, Fail) of + failed -> + bopt(Is0, [Block|Acc0], St); + {Bl,PreBlock} -> + Acc1 = case PreBlock of + [] -> Acc0; + _ -> [{block,PreBlock}|Acc0] + end, + Acc = [{protected,[Dst],Bl,{Fail,Succ,Live}}|Acc1], + bopt(Is, Acc, St) + end; +bopt([{test,is_eq_exact,{f,Fail},[Reg,{atom,true}]}=I|Is], [{block,_}|_]=Acc0, St0) -> + case bopt_block(Reg, Fail, Is, Acc0, St0) of + failed -> bopt(Is, [I|Acc0], St0); + {Acc,St} -> bopt(Is, Acc, St) + end; +bopt([I|Is], Acc, St) -> + bopt(Is, [I|Acc], St); +bopt([], Acc, St) -> + {bopt_reverse(Acc, []),St}. + +bopt_reverse([{protected,[Dst],Block,{Fail,Succ,Live}}|Is], Acc0) -> + Acc = [{block,Block},{jump,{f,Succ}}, + {label,Fail}, + {block,[{set,[Dst],[{atom,false}],move},{'%live',Live}]}, + {label,Succ}|Acc0], + bopt_reverse(Is, Acc); +bopt_reverse([I|Is], Acc) -> + bopt_reverse(Is, [I|Acc]); +bopt_reverse([], Acc) -> Acc. + +%% bopt_block(Reg, Fail, OldIs, Accumulator, St) -> failed | {NewAcc,St} +%% Attempt to optimized a block of guard BIFs followed by a test +%% instruction. +bopt_block(Reg, Fail, OldIs, [{block,Bl0}|Acc0], St0) -> + case split_block(Bl0, Reg, Fail) of + failed -> + %% Reason for failure: The block either contained no + %% guard BIFs with the failure label Fail, or the final + %% instruction in the block did not assign the Reg register. + + %%io:format("split ~p: ~P\n", [Reg,Bl0,20]), + failed; + {Bl1,BlPre} -> + %% The block has been splitted. Bl1 is a non-empty list + %% of guard BIF instructions having the failure label Fail. + %% BlPre is a (possibly empty list) of instructions preceeding + %% Bl1. + Acc1 = make_block(BlPre, Acc0), + {Bl,Acc} = extend_block(Bl1, Fail, Acc1), + case catch bopt_block_1(Bl, Fail, St0) of + {'EXIT',_Reason} -> + %% Optimization failed for one of the following reasons: + %% + %% 1. Not possible to rewrite because a boolean value is + %% passed to another guard bif, e.g. 'abs(A > B)' + %% (in this case, obviously nonsense code). Rare in + %% practice. + %% + %% 2. Not possible to rewrite because we have not seen + %% the complete boolan expression (it is spread out + %% over several blocks with jumps and labels). + %% The 'or' and 'and' instructions need to that fully + %% known operands in order to be eliminated. + %% + %% 3. Other bug or limitation. + + %%io:format("~P\n", [_Reason,20]), + failed; + {NewCode,St} -> + case is_opt_safe(Bl, NewCode, OldIs, St) of + false -> + %% The optimization is not safe. (A register + %% used by the instructions following the + %% optimized code is either not assigned a + %% value at all or assigned a different value.) + + %%io:format("\nNot safe:\n"), + %%io:format("~p\n", [Bl]), + %%io:format("~p\n", [reverse(NewCode)]), + failed; + true -> {NewCode++Acc,St} + end + end + end. + +bopt_block_1(Block, Fail, St) -> + {Pre0,[{_,Tree}]} = bopt_tree(Block), + Pre = update_fail_label(Pre0, Fail, []), + bopt_cg(Tree, Fail, make_block(Pre, []), St). + +%% is_opt_safe(OriginalCode, OptCode, FollowingCode, State) -> true|false +%% Comparing the original code to the optimized code, determine +%% whether the optimized code is guaranteed to work in the same +%% way as the original code. + +is_opt_safe(Bl, NewCode, OldIs, St) -> + %% Here are the conditions that must be true for the + %% optimization to be safe. + %% + %% 1. Any register that was assigned a value in the original + %% code, but is not in the optimized code, must be guaranteed + %% to be KILLED in the following code. (NotSet below.) + %% + %% 2. Any register that is assigned a value in the optimized + %% code must be UNUSED in the following code. (NewDst, Set.) + %% (Possible future improvement: Registers that are known + %% to be assigned the SAME value in the original and optimized + %% code don't need to be unused in the following code.) + + PrevDst = dst_regs(Bl), + NewDst = dst_regs(NewCode), + NotSet = ordsets:subtract(PrevDst, NewDst), + + %% Note: The following line is an optimization. We don't need + %% to test whether variables in NotSet for being unused, because + %% they will all be tested for being killed (a stronger condition + %% than being unused). + + Set = ordsets:subtract(NewDst, NotSet), + + all_killed(NotSet, OldIs, St) andalso + none_used(Set, OldIs, St). + +% update_fail_label([{set,_,_,{bif,_,{f,0}}}=I|Is], Fail, Acc) -> +% update_fail_label(Is, Fail, [I|Acc]); +update_fail_label([{set,Ds,As,{bif,N,{f,_}}}|Is], Fail, Acc) -> + update_fail_label(Is, Fail, [{set,Ds,As,{bif,N,{f,Fail}}}|Acc]); +update_fail_label([], _, Acc) -> Acc. + +make_block([], Acc) -> Acc; +make_block(Bl, Acc) -> [{block,Bl}|Acc]. + +extend_block(BlAcc, Fail, [{protected,_,_,_}=Prot|OldAcc]) -> + extend_block([Prot|BlAcc], Fail, OldAcc); +extend_block(BlAcc0, Fail, [{block,Is0}|OldAcc]=OldAcc0) -> + case extend_block_1(reverse(Is0), Fail, BlAcc0) of + {[],_} -> {BlAcc0,OldAcc0}; + {BlAcc,[]} -> extend_block(BlAcc, Fail, OldAcc); + {BlAcc,Is} -> {BlAcc,[{block,Is}|OldAcc]} + end; +extend_block(BlAcc, _, OldAcc) -> {BlAcc,OldAcc}. + +extend_block_1([{set,[_],_,{bif,_,{f,Fail}}}=I|Is], Fail, Acc) -> + extend_block_1(Is, Fail, [I|Acc]); +extend_block_1([{set,[_],As,{bif,Bif,_}}=I|Is]=Is0, Fail, Acc) -> + case safe_bool_op(Bif, length(As)) of + false -> {Acc,reverse(Is0)}; + true -> extend_block_1(Is, Fail, [I|Acc]) + end; +extend_block_1([_|_]=Is, _, Acc) -> {Acc,reverse(Is)}; +extend_block_1([], _, Acc) -> {Acc,[]}. + +split_block(Is0, Dst, Fail) -> + case reverse(Is0) of + [{'%live',_}|[{set,[Dst],_,_}|_]=Is] -> + split_block_1(Is, Fail); + [{set,[Dst],_,_}|_]=Is -> + split_block_1(Is, Fail); + _ -> failed + end. + +split_block_1(Is, Fail) -> + case split_block_2(Is, Fail, []) of + {[],_} -> failed; + {_,_}=Res -> Res + end. + +% split_block_2([{set,[_],_,{bif,_,{f,0}}}=I|Is], Fail, Acc) -> +% split_block_2(Is, Fail, [I|Acc]); +split_block_2([{set,[_],_,{bif,_,{f,Fail}}}=I|Is], Fail, Acc) -> + split_block_2(Is, Fail, [I|Acc]); +split_block_2([{'%live',_}|Is], Fail, Acc) -> + split_block_2(Is, Fail, Acc); +split_block_2(Is, _, Acc) -> {Acc,reverse(Is)}. + +dst_regs(Is) -> + dst_regs(Is, []). + +dst_regs([{block,Bl}|Is], Acc) -> + dst_regs(Bl, dst_regs(Is, Acc)); +dst_regs([{set,[D],_,{bif,_,{f,_}}}|Is], Acc) -> + dst_regs(Is, [D|Acc]); +dst_regs([_|Is], Acc) -> + dst_regs(Is, Acc); +dst_regs([], Acc) -> ordsets:from_list(Acc). + +all_killed([R|Rs], OldIs, St) -> + case is_killed(R, OldIs, St) of + false -> false; + true -> all_killed(Rs, OldIs, St) + end; +all_killed([], _, _) -> true. + +none_used([R|Rs], OldIs, St) -> + case is_not_used(R, OldIs, St) of + false -> false; + true -> none_used(Rs, OldIs, St) + end; +none_used([], _, _) -> true. + +bopt_tree(Block0) -> + Block = ssa_block(Block0), + Reg = free_variables(Block), + %%io:format("~p\n", [Block]), + %%io:format("~p\n", [Reg]), + Res = bopt_tree_1(Block, Reg, []), + %%io:format("~p\n", [Res]), + Res. + +bopt_tree_1([{set,[Dst],As0,{bif,'not',_}}|Is], Forest0, Pre) -> + {[Arg],Forest1} = bopt_bool_args(As0, Forest0), + Forest = gb_trees:enter(Dst, {'not',Arg}, Forest1), + bopt_tree_1(Is, Forest, Pre); +bopt_tree_1([{set,[Dst],As0,{bif,'and',_}}|Is], Forest0, Pre) -> + {As,Forest1} = bopt_bool_args(As0, Forest0), + AndList = make_and_list(As), + Forest = gb_trees:enter(Dst, {'and',AndList}, Forest1), + bopt_tree_1(Is, Forest, Pre); +bopt_tree_1([{set,[Dst],[L0,R0],{bif,'or',_}}|Is], Forest0, Pre) -> + L = gb_trees:get(L0, Forest0), + R = gb_trees:get(R0, Forest0), + Forest1 = gb_trees:delete(L0, gb_trees:delete(R0, Forest0)), + OrList = make_or_list([L,R]), + Forest = gb_trees:enter(Dst, {'or',OrList}, Forest1), + bopt_tree_1(Is, Forest, Pre); +bopt_tree_1([{protected,[Dst],_,_}=Prot|Is], Forest0, Pre) -> + Forest = gb_trees:enter(Dst, Prot, Forest0), + bopt_tree_1(Is, Forest, Pre); +bopt_tree_1([{set,[Dst],As,{bif,N,_}}=Bif|Is], Forest0, Pre) -> + Ar = length(As), + case safe_bool_op(N, Ar) of + false -> + bopt_good_args(As, Forest0), + Forest = gb_trees:enter(Dst, any, Forest0), + bopt_tree_1(Is, Forest, [Bif|Pre]); + true -> + bopt_good_args(As, Forest0), + Test = bif_to_test(Dst, N, As), + Forest = gb_trees:enter(Dst, Test, Forest0), + bopt_tree_1(Is, Forest, Pre) + end; +bopt_tree_1([], Forest, Pre) -> + {Pre,[R || {_,V}=R <- gb_trees:to_list(Forest), V =/= any]}. + +safe_bool_op(internal_is_record, 3) -> true; +safe_bool_op(N, Ar) -> + erl_internal:new_type_test(N, Ar) orelse erl_internal:comp_op(N, Ar). + +bopt_bool_args(As, Forest) -> + mapfoldl(fun bopt_bool_arg/2, Forest, As). + +bopt_bool_arg({T,_}=R, Forest) when T == x; T == y -> + {gb_trees:get(R, Forest),gb_trees:delete(R, Forest)}; +bopt_bool_arg(Term, Forest) -> + {Term,Forest}. + +bopt_good_args([A|As], Regs) -> + bopt_good_arg(A, Regs), + bopt_good_args(As, Regs); +bopt_good_args([], _) -> ok. + +bopt_good_arg({x,_}=X, Regs) -> + case gb_trees:get(X, Regs) of + any -> ok; + _Other -> + %%io:format("not any: ~p: ~p\n", [X,_Other]), + exit(bad_contents) + end; +bopt_good_arg(_, _) -> ok. + +bif_to_test(_, N, As) -> + bif_to_test(N, As). + +bif_to_test(internal_is_record, [_,_,_]=As) -> + {test,internal_is_record,fail,As}; +bif_to_test('=:=', As) -> {test,is_eq_exact,fail,As}; +bif_to_test('=/=', As) -> {test,is_ne_exact,fail,As}; +bif_to_test('==', As) -> {test,is_eq,fail,As}; +bif_to_test('/=', As) -> {test,is_ne,fail,As}; +bif_to_test('=<', [L,R]) -> {test,is_ge,fail,[R,L]}; +bif_to_test('>=', As) -> {test,is_ge,fail,As}; +bif_to_test('>', [L,R]) -> {test,is_lt,fail,[R,L]}; +bif_to_test('<', As) -> {test,is_lt,fail,As}; +bif_to_test(Name, [_]=As) -> + case erl_internal:new_type_test(Name, 1) of + false -> exit({bif_to_test,Name,As,failed}); + true -> {test,Name,fail,As} + end. + +make_and_list([{'and',As}|Is]) -> + make_and_list(As++Is); +make_and_list([I|Is]) -> + [I|make_and_list(Is)]; +make_and_list([]) -> []. + +make_or_list([{'or',As}|Is]) -> + make_or_list(As++Is); +make_or_list([I|Is]) -> + [I|make_or_list(Is)]; +make_or_list([]) -> []. + +%% Code generation for a boolean tree. + +bopt_cg({'not',Arg}, Fail, Acc, St) -> + I = bopt_cg_not(Arg), + bopt_cg(I, Fail, Acc, St); +bopt_cg({'and',As}, Fail, Acc, St) -> + bopt_cg_and(As, Fail, Acc, St); +bopt_cg({'or',As}, Fail, Acc, St0) -> + {Succ,St} = new_label(St0), + bopt_cg_or(As, Succ, Fail, Acc, St); +bopt_cg({test,is_tuple_element,fail,[Tmp,Tuple,RecordTag]}, Fail, Acc, St) -> + {[{test,is_eq_exact,{f,Fail},[Tmp,RecordTag]}, + {get_tuple_element,Tuple,0,Tmp}|Acc],St}; +bopt_cg({inverted_test,is_tuple_element,fail,[Tmp,Tuple,RecordTag]}, Fail, Acc, St) -> + {[{test,is_ne_exact,{f,Fail},[Tmp,RecordTag]}, + {get_tuple_element,Tuple,0,Tmp}|Acc],St}; +bopt_cg({test,N,fail,As}, Fail, Acc, St) -> + Test = {test,N,{f,Fail},As}, + {[Test|Acc],St}; +bopt_cg({inverted_test,N,fail,As}, Fail, Acc, St0) -> + {Lbl,St} = new_label(St0), + {[{label,Lbl},{jump,{f,Fail}},{test,N,{f,Lbl},As}|Acc],St}; +bopt_cg({protected,_,Bl0,{_,_,_}}, Fail, Acc, St0) -> + {Bl,St} = bopt_block_1(Bl0, Fail, St0), + {Bl++Acc,St}; +bopt_cg([_|_]=And, Fail, Acc, St) -> + bopt_cg_and(And, Fail, Acc, St). + +bopt_cg_not({'and',As0}) -> + As = [bopt_cg_not(A) || A <- As0], + {'or',As}; +bopt_cg_not({'or',As0}) -> + As = [bopt_cg_not(A) || A <- As0], + {'and',As}; +bopt_cg_not({test,Test,Fail,As}) -> + {inverted_test,Test,Fail,As}. + +bopt_cg_and([{atom,false}|_], Fail, _, St) -> + {[{jump,{f,Fail}}],St}; +bopt_cg_and([{atom,true}|Is], Fail, Acc, St) -> + bopt_cg_and(Is, Fail, Acc, St); +bopt_cg_and([I|Is], Fail, Acc0, St0) -> + {Acc,St} = bopt_cg(I, Fail, Acc0, St0), + bopt_cg_and(Is, Fail, Acc, St); +bopt_cg_and([], _, Acc, St) -> {Acc,St}. + +bopt_cg_or([I], Succ, Fail, Acc0, St0) -> + {Acc,St} = bopt_cg(I, Fail, Acc0, St0), + {[{label,Succ}|Acc],St}; +bopt_cg_or([I|Is], Succ, Fail, Acc0, St0) -> + {Lbl,St1} = new_label(St0), + {Acc,St} = bopt_cg(I, Lbl, Acc0, St1), + bopt_cg_or(Is, Succ, Fail, [{label,Lbl},{jump,{f,Succ}}|Acc], St). + +new_label(#st{next=LabelNum}=St) when is_integer(LabelNum) -> + {LabelNum,St#st{next=LabelNum+1}}. + +free_variables(Is) -> + E = gb_sets:empty(), + free_vars_1(Is, E, E). + +free_vars_1([{set,[Dst],As,{bif,_,_}}|Is], F0, N0) -> + F = gb_sets:union(F0, gb_sets:difference(var_list(As), N0)), + N = gb_sets:union(N0, var_list([Dst])), + free_vars_1(Is, F, N); +free_vars_1([{protected,_,Pa,_}|Is], F, N) -> + free_vars_1(Pa++Is, F, N); +free_vars_1([], F, _) -> + gb_trees:from_orddict([{K,any} || K <- gb_sets:to_list(F)]). + +var_list(Is) -> + var_list_1(Is, gb_sets:empty()). + +var_list_1([{x,_}=X|Is], D) -> + var_list_1(Is, gb_sets:add(X, D)); +var_list_1([_|Is], D) -> + var_list_1(Is, D); +var_list_1([], D) -> D. + +%%% +%%% Convert a block to Static Single Assignment (SSA) form. +%%% + +-record(ssa, + {live, + sub}). + +ssa_block(Is0) -> + Next = ssa_first_free(Is0, 0), + {Is,_} = ssa_block_1(Is0, #ssa{live=Next,sub=gb_trees:empty()}, []), + Is. + +ssa_block_1([{protected,[_],Pa0,Pb}|Is], Sub0, Acc) -> + {Pa,Sub} = ssa_block_1(Pa0, Sub0, []), + Dst = ssa_last_target(Pa), + ssa_block_1(Is, Sub, [{protected,[Dst],Pa,Pb}|Acc]); +ssa_block_1([{set,[Dst],As,Bif}|Is], Sub0, Acc0) -> + Sub1 = ssa_in_use_list(As, Sub0), + Sub = ssa_assign(Dst, Sub1), + Acc = [{set,[ssa_sub(Dst, Sub)],ssa_sub_list(As, Sub0),Bif}|Acc0], + ssa_block_1(Is, Sub, Acc); +ssa_block_1([], Sub, Acc) -> {reverse(Acc),Sub}. + +ssa_in_use_list(As, Sub) -> + foldl(fun ssa_in_use/2, Sub, As). + +ssa_in_use({x,_}=R, #ssa{sub=Sub0}=Ssa) -> + case gb_trees:is_defined(R, Sub0) of + true -> Ssa; + false -> + Sub = gb_trees:insert(R, R, Sub0), + Ssa#ssa{sub=Sub} + end; +ssa_in_use(_, Ssa) -> Ssa. + +ssa_assign({x,_}=R, #ssa{sub=Sub0}=Ssa0) -> + case gb_trees:is_defined(R, Sub0) of + false -> + Sub = gb_trees:insert(R, R, Sub0), + Ssa0#ssa{sub=Sub}; + true -> + {NewReg,Ssa} = ssa_new_reg(Ssa0), + Sub1 = gb_trees:update(R, NewReg, Sub0), + Sub = gb_trees:insert(NewReg, NewReg, Sub1), + Ssa#ssa{sub=Sub} + end; +ssa_assign(_, Ssa) -> Ssa. + +ssa_sub_list(List, Sub) -> + [ssa_sub(E, Sub) || E <- List]. + +ssa_sub(R0, #ssa{sub=Sub}) -> + case gb_trees:lookup(R0, Sub) of + none -> R0; + {value,R} -> R + end. + +ssa_new_reg(#ssa{live=Reg}=Ssa) -> + {{x,Reg},Ssa#ssa{live=Reg+1}}. + +ssa_first_free([{protected,Ds,_,_}|Is], Next0) -> + Next = ssa_first_free_list(Ds, Next0), + ssa_first_free(Is, Next); +ssa_first_free([{set,[Dst],As,_}|Is], Next0) -> + Next = ssa_first_free_list([Dst|As], Next0), + ssa_first_free(Is, Next); +ssa_first_free([], Next) -> Next. + +ssa_first_free_list(Regs, Next) -> + foldl(fun({x,R}, N) when R >= N -> R+1; + (_, N) -> N end, Next, Regs). + +ssa_last_target([{set,[Dst],_,_},{'%live',_}]) -> Dst; +ssa_last_target([{set,[Dst],_,_}]) -> Dst; +ssa_last_target([_|Is]) -> ssa_last_target(Is). + +%% index_instructions(FunctionIs) -> GbTree([{Label,Is}]) +%% Index the instruction sequence so that we can quickly +%% look up the instruction following a specific label. + +index_instructions(Is) -> + ii_1(Is, []). + +ii_1([{label,Lbl}|Is0], Acc) -> + Is = lists:dropwhile(fun({label,_}) -> true; + (_) -> false end, Is0), + ii_1(Is0, [{Lbl,Is}|Acc]); +ii_1([_|Is], Acc) -> + ii_1(Is, Acc); +ii_1([], Acc) -> gb_trees:from_orddict(sort(Acc)). + +%% is_killed(Register, [Instruction], State) -> true|false +%% Determine whether a register is killed in the instruction sequence. +%% The state is used to allow us to determine the kill state +%% across branches. + +is_killed(R, Is, St) -> + case is_killed_1(R, Is, St) of + false -> + %%io:format("nk ~p: ~P\n", [R,Is,15]), + false; + true -> true + end. + +is_killed_1(R, [{block,Blk}|Is], St) -> + case is_killed_1(R, Blk, St) of + true -> true; + false -> is_killed_1(R, Is, St) + end; +is_killed_1(R, [{test,_,{f,Fail},As}|Is], St) -> + case not member(R, As) andalso is_reg_killed_at(R, Fail, St) of + false -> false; + true -> is_killed_1(R, Is, St) + end; +is_killed_1(R, [{select_val,R,_,_}|_], _) -> false; +is_killed_1(R, [{select_val,_,Fail,{list,Branches}}|_], St) -> + is_killed_at_all(R, [Fail|Branches], St); +is_killed_1(R, [{jump,{f,F}}|_], St) -> + is_reg_killed_at(R, F, St); +is_killed_1(Reg, Is, _) -> + beam_block:is_killed(Reg, Is). + +is_reg_killed_at(R, Lbl, #st{ll=Ll}=St) -> + Is = gb_trees:get(Lbl, Ll), + is_killed_1(R, Is, St). + +is_killed_at_all(R, [{f,Lbl}|T], St) -> + case is_reg_killed_at(R, Lbl, St) of + false -> false; + true -> is_killed_at_all(R, T, St) + end; +is_killed_at_all(R, [_|T], St) -> + is_killed_at_all(R, T, St); +is_killed_at_all(_, [], _) -> true. + +%% is_not_used(Register, [Instruction], State) -> true|false +%% Determine whether a register is never used in the instruction sequence +%% (it could still referenced by an allocate instruction, meaning that +%% it MUST be initialized). +%% The state is used to allow us to determine the usage state +%% across branches. + +is_not_used(R, Is, St) -> + case is_not_used_1(R, Is, St) of + false -> + %%io:format("used ~p: ~P\n", [R,Is,15]), + false; + true -> true + end. + +is_not_used_1(R, [{block,Blk}|Is], St) -> + case is_not_used_1(R, Blk, St) of + true -> true; + false -> is_not_used_1(R, Is, St) + end; +is_not_used_1(R, [{test,_,{f,Fail},As}|Is], St) -> + case not member(R, As) andalso is_reg_not_used_at(R, Fail, St) of + false -> false; + true -> is_not_used_1(R, Is, St) + end; +is_not_used_1(R, [{select_val,R,_,_}|_], _) -> false; +is_not_used_1(R, [{select_val,_,Fail,{list,Branches}}|_], St) -> + is_used_at_none(R, [Fail|Branches], St); +is_not_used_1(R, [{jump,{f,F}}|_], St) -> + is_reg_not_used_at(R, F, St); +is_not_used_1(Reg, Is, _) -> + beam_block:is_not_used(Reg, Is). + +is_reg_not_used_at(R, Lbl, #st{ll=Ll}=St) -> + Is = gb_trees:get(Lbl, Ll), + is_not_used_1(R, Is, St). + +is_used_at_none(R, [{f,Lbl}|T], St) -> + case is_reg_not_used_at(R, Lbl, St) of + false -> false; + true -> is_used_at_none(R, T, St) + end; +is_used_at_none(R, [_|T], St) -> + is_used_at_none(R, T, St); +is_used_at_none(_, [], _) -> true. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_clean.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_clean.erl new file mode 100644 index 0000000000..04225e9bd0 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_clean.erl @@ -0,0 +1,232 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_clean.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Purpose : Clean up, such as removing unused labels and unused functions. + +-module(beam_clean). + +-export([module/2]). +-import(lists, [member/2,map/2,foldl/3,mapfoldl/3,reverse/1]). + +module({Mod,Exp,Attr,Fs0,_}, _Opt) -> + Order = [Lbl || {function,_,_,Lbl,_} <- Fs0], + All = foldl(fun({function,_,_,Lbl,_}=Func,D) -> dict:store(Lbl, Func, D) end, + dict:new(), Fs0), + {WorkList,Used0} = exp_to_labels(Fs0, Exp), + Used = find_all_used(WorkList, All, Used0), + Fs1 = remove_unused(Order, Used, All), + {Fs,Lc} = clean_labels(Fs1), + {ok,{Mod,Exp,Attr,Fs,Lc}}. + +%% Convert the export list ({Name,Arity} pairs) to a list of entry labels. + +exp_to_labels(Fs, Exp) -> exp_to_labels(Fs, Exp, [], sets:new()). + +exp_to_labels([{function,Name,Arity,Lbl,_}|Fs], Exp, Acc, Used) -> + case member({Name,Arity}, Exp) of + true -> exp_to_labels(Fs, Exp, [Lbl|Acc], sets:add_element(Lbl, Used)); + false -> exp_to_labels(Fs, Exp, Acc, Used) + end; +exp_to_labels([], _, Acc, Used) -> {Acc,Used}. + +%% Remove the unused functions. + +remove_unused([F|Fs], Used, All) -> + case sets:is_element(F, Used) of + false -> remove_unused(Fs, Used, All); + true -> [dict:fetch(F, All)|remove_unused(Fs, Used, All)] + end; +remove_unused([], _, _) -> []. + +%% Find all used functions. + +find_all_used([F|Fs0], All, Used0) -> + {function,_,_,_,Code} = dict:fetch(F, All), + {Fs,Used} = update_work_list(Code, {Fs0,Used0}), + find_all_used(Fs, All, Used); +find_all_used([], _All, Used) -> Used. + +update_work_list([{call,_,{f,L}}|Is], Sets) -> + update_work_list(Is, add_to_work_list(L, Sets)); +update_work_list([{call_last,_,{f,L},_}|Is], Sets) -> + update_work_list(Is, add_to_work_list(L, Sets)); +update_work_list([{call_only,_,{f,L}}|Is], Sets) -> + update_work_list(Is, add_to_work_list(L, Sets)); +update_work_list([{make_fun,{f,L},_,_}|Is], Sets) -> + update_work_list(Is, add_to_work_list(L, Sets)); +update_work_list([{make_fun2,{f,L},_,_,_}|Is], Sets) -> + update_work_list(Is, add_to_work_list(L, Sets)); +update_work_list([_|Is], Sets) -> + update_work_list(Is, Sets); +update_work_list([], Sets) -> Sets. + +add_to_work_list(F, {Fs,Used}=Sets) -> + case sets:is_element(F, Used) of + true -> Sets; + false -> {[F|Fs],sets:add_element(F, Used)} + end. + + +%%% +%%% Coalesce adjacent labels. Renumber all labels to eliminate gaps. +%%% This cleanup will slightly reduce file size and slightly speed up loading. +%%% +%%% We also expand internal_is_record/3 to a sequence of instructions. It is done +%%% here merely because this module will always be called even if optimization +%%% is turned off. We don't want to do the expansion in beam_asm because we +%%% want to see the expanded code in a .S file. +%%% + +-record(st, {lmap, %Translation tables for labels. + entry, %Number of entry label. + lc %Label counter + }). + +clean_labels(Fs0) -> + St0 = #st{lmap=dict:new(),lc=1}, + {Fs1,#st{lmap=Lmap,lc=Lc}} = mapfoldl(fun function_renumber/2, St0, Fs0), + {map(fun(F) -> function_replace(F, Lmap) end, Fs1),Lc}. + +function_renumber({function,Name,Arity,_Entry,Asm0}, St0) -> + {Asm,St} = renumber_labels(Asm0, [], St0), + {{function,Name,Arity,St#st.entry,Asm},St}. + +renumber_labels([{bif,internal_is_record,{f,_}, + [Term,Tag,{integer,Arity}],Dst}|Is], Acc, St) -> + ContLabel = 900000000+2*St#st.lc, + FailLabel = ContLabel+1, + Fail = {f,FailLabel}, + Tmp = Dst, + renumber_labels([{test,is_tuple,Fail,[Term]}, + {test,test_arity,Fail,[Term,Arity]}, + {get_tuple_element,Term,0,Tmp}, + {test,is_eq_exact,Fail,[Tmp,Tag]}, + {move,{atom,true},Dst}, + {jump,{f,ContLabel}}, + {label,FailLabel}, + {move,{atom,false},Dst}, + {label,ContLabel}|Is], Acc, St); +renumber_labels([{test,internal_is_record,{f,_}=Fail, + [Term,Tag,{integer,Arity}]}|Is], Acc, St) -> + Tmp = {x,1023}, + case Term of + {Reg,_} when Reg == x; Reg == y -> + renumber_labels([{test,is_tuple,Fail,[Term]}, + {test,test_arity,Fail,[Term,Arity]}, + {get_tuple_element,Term,0,Tmp}, + {test,is_eq_exact,Fail,[Tmp,Tag]}|Is], Acc, St); + _ -> + renumber_labels([{jump,Fail}|Is], Acc, St) + end; +renumber_labels([{label,Old}|Is], [{label,New}|_]=Acc, #st{lmap=D0}=St) -> + D = dict:store(Old, New, D0), + renumber_labels(Is, Acc, St#st{lmap=D}); +renumber_labels([{label,Old}|Is], Acc, St0) -> + New = St0#st.lc, + D = dict:store(Old, New, St0#st.lmap), + renumber_labels(Is, [{label,New}|Acc], St0#st{lmap=D,lc=New+1}); +renumber_labels([{func_info,_,_,_}=Fi|Is], Acc, St0) -> + renumber_labels(Is, [Fi|Acc], St0#st{entry=St0#st.lc}); +renumber_labels([I|Is], Acc, St0) -> + renumber_labels(Is, [I|Acc], St0); +renumber_labels([], Acc, St0) -> {Acc,St0}. + +function_replace({function,Name,Arity,Entry,Asm0}, Dict) -> + Asm = case catch replace(Asm0, [], Dict) of + {'EXIT',_}=Reason -> + exit(Reason); + {error,{undefined_label,Lbl}=Reason} -> + io:format("Function ~s/~w refers to undefined label ~w\n", + [Name,Arity,Lbl]), + exit(Reason); + Asm1 when list(Asm1) -> Asm1 + end, + {function,Name,Arity,Entry,Asm}. + +replace([{test,Test,{f,Lbl},Ops}|Is], Acc, D) -> + replace(Is, [{test,Test,{f,label(Lbl, D)},Ops}|Acc], D); +replace([{select_val,R,{f,Fail0},{list,Vls0}}|Is], Acc, D) -> + Vls1 = map(fun ({f,L}) -> {f,label(L, D)}; + (Other) -> Other end, Vls0), + Fail = label(Fail0, D), + case redundant_values(Vls1, Fail, []) of + [] -> + %% Oops, no choices left. The loader will not accept that. + %% Convert to a plain jump. + replace(Is, [{jump,{f,Fail}}|Acc], D); + Vls -> + replace(Is, [{select_val,R,{f,Fail},{list,Vls}}|Acc], D) + end; +replace([{select_tuple_arity,R,{f,Fail},{list,Vls0}}|Is], Acc, D) -> + Vls = map(fun ({f,L}) -> {f,label(L, D)}; + (Other) -> Other end, Vls0), + replace(Is, [{select_tuple_arity,R,{f,label(Fail, D)},{list,Vls}}|Acc], D); +replace([{'try',R,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{'try',R,{f,label(Lbl, D)}}|Acc], D); +replace([{'catch',R,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{'catch',R,{f,label(Lbl, D)}}|Acc], D); +replace([{jump,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{jump,{f,label(Lbl, D)}}|Acc], D); +replace([{loop_rec,{f,Lbl},R}|Is], Acc, D) -> + replace(Is, [{loop_rec,{f,label(Lbl, D)},R}|Acc], D); +replace([{loop_rec_end,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{loop_rec_end,{f,label(Lbl, D)}}|Acc], D); +replace([{wait,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{wait,{f,label(Lbl, D)}}|Acc], D); +replace([{wait_timeout,{f,Lbl},To}|Is], Acc, D) -> + replace(Is, [{wait_timeout,{f,label(Lbl, D)},To}|Acc], D); +replace([{bif,Name,{f,Lbl},As,R}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bif,Name,{f,label(Lbl, D)},As,R}|Acc], D); +replace([{call,Ar,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{call,Ar,{f,label(Lbl,D)}}|Acc], D); +replace([{call_last,Ar,{f,Lbl},N}|Is], Acc, D) -> + replace(Is, [{call_last,Ar,{f,label(Lbl,D)},N}|Acc], D); +replace([{call_only,Ar,{f,Lbl}}|Is], Acc, D) -> + replace(Is, [{call_only,Ar,{f,label(Lbl, D)}}|Acc], D); +replace([{make_fun,{f,Lbl},U1,U2}|Is], Acc, D) -> + replace(Is, [{make_fun,{f,label(Lbl, D)},U1,U2}|Acc], D); +replace([{make_fun2,{f,Lbl},U1,U2,U3}|Is], Acc, D) -> + replace(Is, [{make_fun2,{f,label(Lbl, D)},U1,U2,U3}|Acc], D); +replace([{bs_init2,{f,Lbl},Sz,Words,R,F,Dst}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_init2,{f,label(Lbl, D)},Sz,Words,R,F,Dst}|Acc], D); +replace([{bs_put_integer,{f,Lbl},Bits,Unit,Fl,Val}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_put_integer,{f,label(Lbl, D)},Bits,Unit,Fl,Val}|Acc], D); +replace([{bs_put_binary,{f,Lbl},Bits,Unit,Fl,Val}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_put_binary,{f,label(Lbl, D)},Bits,Unit,Fl,Val}|Acc], D); +replace([{bs_put_float,{f,Lbl},Bits,Unit,Fl,Val}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_put_float,{f,label(Lbl, D)},Bits,Unit,Fl,Val}|Acc], D); +replace([{bs_final,{f,Lbl},R}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_final,{f,label(Lbl, D)},R}|Acc], D); +replace([{bs_add,{f,Lbl},Src,Dst}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_add,{f,label(Lbl, D)},Src,Dst}|Acc], D); +replace([{bs_bits_to_bytes,{f,Lbl},Bits,Dst}|Is], Acc, D) when Lbl =/= 0 -> + replace(Is, [{bs_bits_to_bytes,{f,label(Lbl, D)},Bits,Dst}|Acc], D); +replace([I|Is], Acc, D) -> + replace(Is, [I|Acc], D); +replace([], Acc, _) -> Acc. + +label(Old, D) -> + case dict:find(Old, D) of + {ok,Val} -> Val; + error -> throw({error,{undefined_label,Old}}) + end. + +redundant_values([_,{f,Fail}|Vls], Fail, Acc) -> + redundant_values(Vls, Fail, Acc); +redundant_values([Val,Lbl|Vls], Fail, Acc) -> + redundant_values(Vls, Fail, [Lbl,Val|Acc]); +redundant_values([], _, Acc) -> reverse(Acc). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_dict.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_dict.erl new file mode 100644 index 0000000000..08eca2fc00 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_dict.erl @@ -0,0 +1,196 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_dict.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Purpose : Maintain atom, import, and export tables for assembler. + +-module(beam_dict). + +-export([new/0, opcode/2, highest_opcode/1, + atom/2, local/4, export/4, import/4, string/2, lambda/5, + atom_table/1, local_table/1, export_table/1, import_table/1, + string_table/1,lambda_table/1]). + +-record(asm_dict, + {atoms = [], % [{Index, Atom}] + exports = [], % [{F, A, Label}] + locals = [], % [{F, A, Label}] + imports = [], % [{Index, {M, F, A}] + strings = [], % Deep list of characters + lambdas = [], % [{...}] + next_atom = 1, + next_import = 0, + string_offset = 0, + highest_opcode = 0 + }). + +new() -> + #asm_dict{}. + +%% Remembers highest opcode. + +opcode(Op, Dict) when Dict#asm_dict.highest_opcode > Op -> Dict; +opcode(Op, Dict) -> Dict#asm_dict{highest_opcode=Op}. + +%% Returns the highest opcode encountered. + +highest_opcode(#asm_dict{highest_opcode=Op}) -> Op. + +%% Returns the index for an atom (adding it to the atom table if necessary). +%% atom(Atom, Dict) -> {Index, Dict'} + +atom(Atom, Dict) when atom(Atom) -> + NextIndex = Dict#asm_dict.next_atom, + case lookup_store(Atom, Dict#asm_dict.atoms, NextIndex) of + {Index, _, NextIndex} -> + {Index, Dict}; + {Index, Atoms, NewIndex} -> + {Index, Dict#asm_dict{atoms=Atoms, next_atom=NewIndex}} + end. + +%% Remembers an exported function. +%% export(Func, Arity, Label, Dict) -> Dict' + +export(Func, Arity, Label, Dict0) when atom(Func), integer(Arity), integer(Label) -> + {Index, Dict1} = atom(Func, Dict0), + Dict1#asm_dict{exports = [{Index, Arity, Label}| Dict1#asm_dict.exports]}. + +%% Remembers a local function. +%% local(Func, Arity, Label, Dict) -> Dict' + +local(Func, Arity, Label, Dict0) when atom(Func), integer(Arity), integer(Label) -> + {Index,Dict1} = atom(Func, Dict0), + Dict1#asm_dict{locals = [{Index,Arity,Label}| Dict1#asm_dict.locals]}. + +%% Returns the index for an import entry (adding it to the import table if necessary). +%% import(Mod, Func, Arity, Dict) -> {Index, Dict'} + +import(Mod, Func, Arity, Dict) when atom(Mod), atom(Func), integer(Arity) -> + NextIndex = Dict#asm_dict.next_import, + case lookup_store({Mod, Func, Arity}, Dict#asm_dict.imports, NextIndex) of + {Index, _, NextIndex} -> + {Index, Dict}; + {Index, Imports, NewIndex} -> + {_, D1} = atom(Mod, Dict#asm_dict{imports=Imports, next_import=NewIndex}), + {_, D2} = atom(Func, D1), + {Index, D2} + end. + +%% Returns the index for a string in the string table (adding the string to the +%% table if necessary). +%% string(String, Dict) -> {Offset, Dict'} + +string(Str, Dict) when list(Str) -> + #asm_dict{strings = Strings, string_offset = NextOffset} = Dict, + case old_string(Str, Strings) of + {true, Offset} -> + {Offset, Dict}; + false -> + NewDict = Dict#asm_dict{strings = Strings++Str, + string_offset = NextOffset+length(Str)}, + {NextOffset, NewDict} + end. + +%% Returns the index for a funentry (adding it to the table if necessary). +%% lambda(Dict, Lbl, Index, Uniq, NumFree) -> {Index,Dict'} + +lambda(Lbl, Index, OldUniq, NumFree, #asm_dict{lambdas=Lambdas0}=Dict) -> + OldIndex = length(Lambdas0), + Lambdas = [{Lbl,{OldIndex,Lbl,Index,NumFree,OldUniq}}|Lambdas0], + {OldIndex,Dict#asm_dict{lambdas=Lambdas}}. + +%% Returns the atom table. +%% atom_table(Dict) -> [Length,AtomString...] + +atom_table(#asm_dict{atoms=Atoms, next_atom=NumAtoms}) -> + Sorted = lists:sort(Atoms), + Fun = fun({_, A}) -> + L = atom_to_list(A), + [length(L)|L] + end, + {NumAtoms-1, lists:map(Fun, Sorted)}. + +%% Returns the table of local functions. +%% local_table(Dict) -> {NumLocals, [{Function, Arity, Label}...]} + +local_table(#asm_dict{locals = Locals}) -> + {length(Locals),Locals}. + +%% Returns the export table. +%% export_table(Dict) -> {NumExports, [{Function, Arity, Label}...]} + +export_table(#asm_dict{exports = Exports}) -> + {length(Exports), Exports}. + +%% Returns the import table. +%% import_table(Dict) -> {NumImports, [{Module, Function, Arity}...]} + +import_table(Dict) -> + #asm_dict{imports = Imports, next_import = NumImports} = Dict, + Sorted = lists:sort(Imports), + Fun = fun({_, {Mod, Func, Arity}}) -> + {Atom0, _} = atom(Mod, Dict), + {Atom1, _} = atom(Func, Dict), + {Atom0, Atom1, Arity} + end, + {NumImports, lists:map(Fun, Sorted)}. + +string_table(#asm_dict{strings = Strings, string_offset = Size}) -> + {Size, Strings}. + +lambda_table(#asm_dict{locals=Loc0,lambdas=Lambdas0}) -> + Lambdas1 = sofs:relation(Lambdas0), + Loc = sofs:relation([{Lbl,{F,A}} || {F,A,Lbl} <- Loc0]), + Lambdas2 = sofs:relative_product1(Lambdas1, Loc), + Lambdas = [<<F:32,A:32,Lbl:32,Index:32,NumFree:32,OldUniq:32>> || + {{_,Lbl,Index,NumFree,OldUniq},{F,A}} <- sofs:to_external(Lambdas2)], + {length(Lambdas),Lambdas}. + +%%% Local helper functions. + +lookup_store(Key, Dict, NextIndex) -> + case catch lookup_store1(Key, Dict, NextIndex) of + Index when integer(Index) -> + {Index, Dict, NextIndex}; + {Index, NewDict} -> + {Index, NewDict, NextIndex+1} + end. + +lookup_store1(Key, [Pair|Dict], NextIndex) when Key > element(2, Pair) -> + {Index, NewDict} = lookup_store1(Key, Dict, NextIndex), + {Index, [Pair|NewDict]}; +lookup_store1(Key, [{Index, Key}|_Dict], _NextIndex) -> + throw(Index); +lookup_store1(Key, Dict, NextIndex) -> + {NextIndex, [{NextIndex, Key}|Dict]}. + +%% Search for string Str in the string pool Pool. +%% old_string(Str, Pool) -> false | {true, Offset} + +old_string(Str, Pool) -> + old_string(Str, Pool, 0). + +old_string([C|Str], [C|Pool], Index) -> + case lists:prefix(Str, Pool) of + true -> + {true, Index}; + false -> + old_string([C|Str], Pool, Index+1) + end; +old_string(Str, [_|Pool], Index) -> + old_string(Str, Pool, Index+1); +old_string(_Str, [], _Index) -> + false. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_disasm.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_disasm.erl new file mode 100644 index 0000000000..0108f91b7f --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_disasm.erl @@ -0,0 +1,964 @@ +%% -*- erlang-indent-level: 4 -*- +%%======================================================================= +%% File : beam_disasm.erl +%% Author : Kostis Sagonas +%% Description : Disassembles an R5-R10 .beam file into symbolic BEAM code +%%======================================================================= +%% $Id: beam_disasm.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%%======================================================================= +%% Notes: +%% 1. It does NOT work for .beam files of previous BEAM versions. +%% 2. If handling of new BEAM instructions is needed, this should be +%% inserted at the end of function resolve_inst(). +%%======================================================================= + +-module(beam_disasm). + +-export([file/1, format_error/1]). + +-author("Kostis Sagonas"). + +-include("beam_opcodes.hrl"). + +%%----------------------------------------------------------------------- + +-define(NO_DEBUG(Str,Xs),ok). +-define(DEBUG(Str,Xs),io:format(Str,Xs)). +-define(exit(Reason),exit({?MODULE,?LINE,Reason})). + +%%----------------------------------------------------------------------- +%% Error information + +format_error({error, Module, Error}) -> + Module:format_error(Error); +format_error({internal, Error}) -> + io_lib:format("~p: disassembly failed with reason ~P.", + [?MODULE, Error, 25]). + +%%----------------------------------------------------------------------- +%% The main exported function +%% File is either a file name or a binary containing the code. +%% Returns `{beam_file, [...]}' or `{error, Module, Reason}'. +%% Call `format_error({error, Module, Reason})' for an error string. +%%----------------------------------------------------------------------- + +file(File) -> + case beam_lib:info(File) of + Info when list(Info) -> + {value,{chunks,Chunks}} = lists:keysearch(chunks,1,Info), + case catch process_chunks(File, Chunks) of + {'EXIT', Error} -> + {error, ?MODULE, {internal, Error}}; + Result -> + Result + end; + Error -> + Error + end. + +%%----------------------------------------------------------------------- +%% Interface might need to be revised -- do not depend on it. +%%----------------------------------------------------------------------- + +process_chunks(F,ChunkInfoList) -> + {ok,{_,Chunks}} = beam_lib:chunks(F, ["Atom","Code","StrT","ImpT","ExpT"]), + [{"Atom",AtomBin},{"Code",CodeBin},{"StrT",StrBin}, + {"ImpT",ImpBin},{"ExpT",ExpBin}] = Chunks, + LambdaBin = optional_chunk(F, "FunT", ChunkInfoList), + LocBin = optional_chunk(F, "LocT", ChunkInfoList), + AttrBin = optional_chunk(F, "Attr", ChunkInfoList), + CompBin = optional_chunk(F, "CInf", ChunkInfoList), + Atoms = beam_disasm_atoms(AtomBin), + Exports = beam_disasm_exports(ExpBin, Atoms), + Imports = beam_disasm_imports(ImpBin, Atoms), + LocFuns = beam_disasm_exports(LocBin, Atoms), + Lambdas = beam_disasm_lambdas(LambdaBin, Atoms), + Str = beam_disasm_strings(StrBin), + Str1 = binary_to_list(Str), %% for debugging -- use Str as far as poss. + Sym_Code = beam_disasm_code(CodeBin,Atoms,Imports,Str,Lambdas), + Attributes = beam_disasm_attributes(AttrBin), + CompInfo = beam_disasm_compilation_info(CompBin), + All = [{exports,Exports}, + {imports,Imports}, + {code,Sym_Code}, + {atoms,Atoms}, + {local_funs,LocFuns}, + {strings,Str1}, + {attributes,Attributes}, + {comp_info,CompInfo}], + {beam_file,[Item || {_Key,Data}=Item <- All, Data =/= none]}. + +%%----------------------------------------------------------------------- +%% Retrieve an optional chunk or none if the chunk doesn't exist. +%%----------------------------------------------------------------------- + +optional_chunk(F, ChunkTag, ChunkInfo) -> + case lists:keymember(ChunkTag, 1, ChunkInfo) of + true -> + {ok,{_,[{ChunkTag,Chunk}]}} = beam_lib:chunks(F, [ChunkTag]), + Chunk; + false -> none + end. + +%%----------------------------------------------------------------------- +%% UTILITIES -- these actually exist in file "beam_lib" +%% -- they should be moved into a common utils file. +%%----------------------------------------------------------------------- + +i32([X1,X2,X3,X4]) -> + (X1 bsl 24) bor (X2 bsl 16) bor (X3 bsl 8) bor X4. + +get_int(B) -> + {I, B1} = split_binary(B, 4), + {i32(binary_to_list(I)), B1}. + +%%----------------------------------------------------------------------- +%% Disassembles the atom table of a BEAM file. +%% - atoms are stored in order 1 ... N (N = Num_atoms, in fact), +%% - each atom name consists of a length byte, followed by that many +%% bytes of name +%% (nb: atom names max 255 chars?!) +%%----------------------------------------------------------------------- + +beam_disasm_atoms(AtomTabBin) -> + {_NumAtoms,B} = get_int(AtomTabBin), + disasm_atoms(B). + +disasm_atoms(AtomBin) -> + disasm_atoms(binary_to_list(AtomBin),1). + +disasm_atoms([Len|Xs],N) -> + {AtomName,Rest} = get_atom_name(Len,Xs), + [{N,list_to_atom(AtomName)}|disasm_atoms(Rest,N+1)]; +disasm_atoms([],_) -> + []. + +get_atom_name(Len,Xs) -> + get_atom_name(Len,Xs,[]). + +get_atom_name(N,[X|Xs],RevName) when N > 0 -> + get_atom_name(N-1,Xs,[X|RevName]); +get_atom_name(0,Xs,RevName) -> + { lists:reverse(RevName), Xs }. + +%%----------------------------------------------------------------------- +%% Disassembles the export table of a BEAM file. +%%----------------------------------------------------------------------- + +beam_disasm_exports(none, _) -> none; +beam_disasm_exports(ExpTabBin, Atoms) -> + {_NumAtoms,B} = get_int(ExpTabBin), + disasm_exports(B,Atoms). + +disasm_exports(Bin,Atoms) -> + resolve_exports(collect_exports(binary_to_list(Bin)),Atoms). + +collect_exports([F3,F2,F1,F0,A3,A2,A1,A0,L3,L2,L1,L0|Exps]) -> + [{i32([F3,F2,F1,F0]), % F = function (atom ID) + i32([A3,A2,A1,A0]), % A = arity (int) + i32([L3,L2,L1,L0])} % L = label (int) + |collect_exports(Exps)]; +collect_exports([]) -> + []. + +resolve_exports(Exps,Atoms) -> + [ {lookup_key(F,Atoms), A, L} || {F,A,L} <- Exps ]. + +%%----------------------------------------------------------------------- +%% Disassembles the import table of a BEAM file. +%%----------------------------------------------------------------------- + +beam_disasm_imports(ExpTabBin,Atoms) -> + {_NumAtoms,B} = get_int(ExpTabBin), + disasm_imports(B,Atoms). + +disasm_imports(Bin,Atoms) -> + resolve_imports(collect_imports(binary_to_list(Bin)),Atoms). + +collect_imports([M3,M2,M1,M0,F3,F2,F1,F0,A3,A2,A1,A0|Exps]) -> + [{i32([M3,M2,M1,M0]), % M = module (atom ID) + i32([F3,F2,F1,F0]), % F = function (atom ID) + i32([A3,A2,A1,A0])} % A = arity (int) + |collect_imports(Exps)]; +collect_imports([]) -> + []. + +resolve_imports(Exps,Atoms) -> + [{extfunc,lookup_key(M,Atoms),lookup_key(F,Atoms),A} || {M,F,A} <- Exps ]. + +%%----------------------------------------------------------------------- +%% Disassembles the lambda (fun) table of a BEAM file. +%%----------------------------------------------------------------------- + +beam_disasm_lambdas(none, _) -> none; +beam_disasm_lambdas(<<_:32,Tab/binary>>, Atoms) -> + disasm_lambdas(Tab, Atoms, 0). + +disasm_lambdas(<<F:32,A:32,Lbl:32,Index:32,NumFree:32,OldUniq:32,More/binary>>, + Atoms, OldIndex) -> + Info = {lookup_key(F, Atoms),A,Lbl,Index,NumFree,OldUniq}, + [{OldIndex,Info}|disasm_lambdas(More, Atoms, OldIndex+1)]; +disasm_lambdas(<<>>, _, _) -> []. + +%%----------------------------------------------------------------------- +%% Disassembles the code chunk of a BEAM file: +%% - The code is first disassembled into a long list of instructions. +%% - This list is then split into functions and all names are resolved. +%%----------------------------------------------------------------------- + +beam_disasm_code(CodeBin,Atoms,Imports,Str,Lambdas) -> + [_SS3,_SS2,_SS1,_SS0, % Sub-Size (length of information before code) + _IS3,_IS2,_IS1,_IS0, % Instruction Set Identifier (always 0) + _OM3,_OM2,_OM1,_OM0, % Opcode Max + _L3,_L2,_L1,_L0,_F3,_F2,_F1,_F0|Code] = binary_to_list(CodeBin), + case catch disasm_code(Code, Atoms) of + {'EXIT',Rsn} -> + ?NO_DEBUG('code disasm failed: ~p~n',[Rsn]), + ?exit(Rsn); + DisasmCode -> + Functions = get_function_chunks(DisasmCode), + LocLabels = local_labels(Functions), + [resolve_names(F,Imports,Str,LocLabels,Lambdas) || F <- Functions] + end. + +%%----------------------------------------------------------------------- + +disasm_code([B|Bs], Atoms) -> + {Instr,RestBs} = disasm_instr(B, Bs, Atoms), + [Instr|disasm_code(RestBs, Atoms)]; +disasm_code([], _) -> []. + +%%----------------------------------------------------------------------- +%% Splits the code stream into chunks representing the code of functions. +%% +%% NOTE: code actually looks like +%% label L1: ... label Ln: +%% func_info ... +%% label entry: +%% ... +%% <on failure, use label Li to show where things died> +%% ... +%% So the labels before each func_info should be included as well. +%% Ideally, only one such label is needed, but the BEAM compiler +%% before R8 didn't care to remove the redundant ones. +%%----------------------------------------------------------------------- + +get_function_chunks([I|Code]) -> + {LastI,RestCode,Labs} = split_head_labels(I,Code,[]), + get_funs(LastI,RestCode,Labs,[]); +get_function_chunks([]) -> + ?exit(empty_code_segment). + +get_funs(PrevI,[I|Is],RevF,RevFs) -> + case I of + {func_info,_Info} -> + [H|T] = RevF, + {Last,Fun,TrailingLabels} = split_head_labels(H,T,[]), + get_funs(I, Is, [PrevI|TrailingLabels], add_funs([Last|Fun],RevFs)); + _ -> + get_funs(I, Is, [PrevI|RevF], RevFs) + end; +get_funs(PrevI,[],RevF,RevFs) -> + case PrevI of + {int_code_end,[]} -> + emit_funs(add_fun(RevF,RevFs)); + _ -> + ?DEBUG('warning: code segment did not end with int_code_end~n',[]), + emit_funs(add_funs([PrevI|RevF],RevFs)) + end. + +split_head_labels({label,L},[I|Code],Labs) -> + split_head_labels(I,Code,[{label,L}|Labs]); +split_head_labels(I,Code,Labs) -> + {I,Code,Labs}. + +add_fun([],Fs) -> + Fs; +add_fun(F,Fs) -> + add_funs(F,Fs). + +add_funs(F,Fs) -> + [ lists:reverse(F) | Fs ]. + +emit_funs(Fs) -> + lists:reverse(Fs). + +%%----------------------------------------------------------------------- +%% Collects local labels -- I am not sure this is 100% what is needed. +%%----------------------------------------------------------------------- + +local_labels(Funs) -> + [local_label(Fun) || Fun <- Funs]. + +%% The first clause below attempts to provide some (limited form of) +%% backwards compatibility; it is not needed for .beam files generated +%% by the R8 compiler. The clause should one fine day be taken out. +local_label([{label,_},{label,L}|Code]) -> + local_label([{label,L}|Code]); +local_label([{label,_}, + {func_info,[M0,F0,{u,A}]}, + {label,[{u,L1}]}|_]) -> + {atom,M} = resolve_arg(M0), + {atom,F} = resolve_arg(F0), + {L1, {M, F, A}}; +local_label(Code) -> + io:format('beam_disasm: no label in ~p~n', [Code]), + {-666,{none,none,0}}. + +%%----------------------------------------------------------------------- +%% Disassembles a single BEAM instruction; most instructions are handled +%% in a generic way; indexing instructions are handled separately. +%%----------------------------------------------------------------------- + +disasm_instr(B, Bs, Atoms) -> + {SymOp,Arity} = beam_opcodes:opname(B), + case SymOp of + select_val -> + disasm_select_inst(select_val, Bs, Atoms); + select_tuple_arity -> + disasm_select_inst(select_tuple_arity, Bs, Atoms); + _ -> + case catch decode_n_args(Arity, Bs, Atoms) of + {'EXIT',Rsn} -> + ?NO_DEBUG("decode_n_args(~p,~p) failed~n",[Arity,Bs]), + {{'EXIT',{SymOp,Arity,Rsn}},[]}; + {Args,RestBs} -> + ?NO_DEBUG("instr ~p~n",[{SymOp,Args}]), + {{SymOp,Args}, RestBs} + end + end. + +%%----------------------------------------------------------------------- +%% Disassembles a BEAM select_* instruction used for indexing. +%% Currently handles {select_val,3} and {select_tuple_arity,3} insts. +%% +%% The arruments of a "select"-type instruction look as follows: +%% <reg>, {f,FailLabel}, {list, <num cases>, [<case1> ... <caseN>]} +%% where each case is of the form [symbol,{f,Label}]. +%%----------------------------------------------------------------------- + +disasm_select_inst(Inst, Bs, Atoms) -> + {X, Bs1} = decode_arg(Bs, Atoms), + {F, Bs2} = decode_arg(Bs1, Atoms), + {Z, Bs3} = decode_arg(Bs2, Atoms), + {U, Bs4} = decode_arg(Bs3, Atoms), + {u,Len} = U, + {List, RestBs} = decode_n_args(Len, Bs4, Atoms), + {{Inst,[X,F,{Z,U,List}]},RestBs}. + +%%----------------------------------------------------------------------- +%% decode_arg([Byte]) -> { Arg, [Byte] } +%% +%% - an arg can have variable length, so we must return arg + remaining bytes +%% - decodes an argument into its 'raw' form: { Tag, Value } +%% several types map to a single tag, so the byte code instr must then +%% assign a type to it +%%----------------------------------------------------------------------- + +decode_arg([B|Bs]) -> + Tag = decode_tag(B band 2#111), + ?NO_DEBUG('Tag = ~p, B = ~p, Bs = ~p~n',[Tag,B,Bs]), + case Tag of + z -> + decode_z_tagged(Tag, B, Bs); + _ -> + %% all other cases are handled as if they were integers + decode_int(Tag, B, Bs) + end. + +decode_arg([B|Bs0], Atoms) -> + Tag = decode_tag(B band 2#111), + ?NO_DEBUG('Tag = ~p, B = ~p, Bs = ~p~n',[Tag,B,Bs]), + case Tag of + z -> + decode_z_tagged(Tag, B, Bs0); + a -> + %% atom or nil + case decode_int(Tag, B, Bs0) of + {{a,0},Bs} -> {nil,Bs}; + {{a,I},Bs} -> {{atom,lookup_key(I, Atoms)},Bs} + end; + _ -> + %% all other cases are handled as if they were integers + decode_int(Tag, B, Bs0) + end. + +%%----------------------------------------------------------------------- +%% Decodes an integer value. Handles positives, negatives, and bignums. +%% +%% Tries to do the opposite of: +%% beam_asm:encode(1, 5) = [81] +%% beam_asm:encode(1, 1000) = [105,232] +%% beam_asm:encode(1, 2047) = [233,255] +%% beam_asm:encode(1, 2048) = [25,8,0] +%% beam_asm:encode(1,-1) = [25,255,255] +%% beam_asm:encode(1,-4294967295) = [121,255,0,0,0,1] +%% beam_asm:encode(1, 4294967295) = [121,0,255,255,255,255] +%% beam_asm:encode(1, 429496729501) = [121,99,255,255,255,157] +%%----------------------------------------------------------------------- + +decode_int(Tag,B,Bs) when (B band 16#08) == 0 -> + %% N < 16 = 4 bits, NNNN:0:TTT + N = B bsr 4, + {{Tag,N},Bs}; +decode_int(Tag,B,Bs) when (B band 16#10) == 0 -> + %% N < 2048 = 11 bits = 3:8 bits, NNN:01:TTT, NNNNNNNN + [B1|Bs1] = Bs, + Val0 = B band 2#11100000, + N = (Val0 bsl 3) bor B1, + ?NO_DEBUG('NNN:01:TTT, NNNNNNNN = ~n~p:01:~p, ~p = ~p~n', [Val0,Tag,B,N]), + {{Tag,N},Bs1}; +decode_int(Tag,B,Bs) -> + {Len,Bs1} = decode_int_length(B,Bs), + {IntBs,RemBs} = take_bytes(Len,Bs1), + N = build_arg(IntBs), + [F|_] = IntBs, + Num = if F > 127, Tag == i -> decode_negative(N,Len); + true -> N + end, + ?NO_DEBUG('Len = ~p, IntBs = ~p, Num = ~p~n', [Len,IntBs,Num]), + {{Tag,Num},RemBs}. + +decode_int_length(B,Bs) -> + %% The following imitates get_erlang_integer() in beam_load.c + %% Len is the size of the integer value in bytes + case B bsr 5 of + 7 -> + {Arg,ArgBs} = decode_arg(Bs), + case Arg of + {u,L} -> + {L+9,ArgBs}; % 9 stands for 7+2 + _ -> + ?exit({decode_int,weird_bignum_sublength,Arg}) + end; + L -> + {L+2,Bs} + end. + +decode_negative(N,Len) -> + N - (1 bsl (Len*8)). % 8 is number of bits in a byte + +%%----------------------------------------------------------------------- +%% Decodes lists and floating point numbers. +%%----------------------------------------------------------------------- + +decode_z_tagged(Tag,B,Bs) when (B band 16#08) == 0 -> + N = B bsr 4, + case N of + 0 -> % float + decode_float(Bs); + 1 -> % list + {{Tag,N},Bs}; + 2 -> % fr + decode_fr(Bs); + 3 -> % allocation list + decode_alloc_list(Bs); + _ -> + ?exit({decode_z_tagged,{invalid_extended_tag,N}}) + end; +decode_z_tagged(_,B,_) -> + ?exit({decode_z_tagged,{weird_value,B}}). + +decode_float(Bs) -> + {FL,RestBs} = take_bytes(8,Bs), + <<Float:64/float>> = list_to_binary(FL), + {{float,Float},RestBs}. + +decode_fr(Bs) -> + {{u,Fr},RestBs} = decode_arg(Bs), + {{fr,Fr},RestBs}. + +decode_alloc_list(Bs) -> + {{u,N},RestBs} = decode_arg(Bs), + decode_alloc_list_1(N, RestBs, []). + +decode_alloc_list_1(0, RestBs, Acc) -> + {{u,{alloc,lists:reverse(Acc)}},RestBs}; +decode_alloc_list_1(N, Bs0, Acc) -> + {{u,Type},Bs1} = decode_arg(Bs0), + {{u,Val},Bs} = decode_arg(Bs1), + case Type of + 0 -> + decode_alloc_list_1(N-1, Bs, [{words,Val}|Acc]); + 1 -> + decode_alloc_list_1(N-1, Bs, [{floats,Val}|Acc]) + end. + +%%----------------------------------------------------------------------- +%% take N bytes from a stream, return { Taken_bytes, Remaining_bytes } +%%----------------------------------------------------------------------- + +take_bytes(N,Bs) -> + take_bytes(N,Bs,[]). + +take_bytes(N,[B|Bs],Acc) when N > 0 -> + take_bytes(N-1,Bs,[B|Acc]); +take_bytes(0,Bs,Acc) -> + { lists:reverse(Acc), Bs }. + +%%----------------------------------------------------------------------- +%% from a list of bytes Bn,Bn-1,...,B1,B0 +%% build (Bn << 8*n) bor ... bor B1 << 8 bor B0 << 0 +%%----------------------------------------------------------------------- + +build_arg(Bs) -> + build_arg(Bs,0). + +build_arg([B|Bs],N) -> + build_arg(Bs, (N bsl 8) bor B); +build_arg([],N) -> + N. + +%%----------------------------------------------------------------------- +%% Decodes a bunch of arguments and returns them in a list +%%----------------------------------------------------------------------- + +decode_n_args(N, Bs, Atoms) when N >= 0 -> + decode_n_args(N, [], Bs, Atoms). + +decode_n_args(N, Acc, Bs0, Atoms) when N > 0 -> + {A1,Bs} = decode_arg(Bs0, Atoms), + decode_n_args(N-1, [A1|Acc], Bs, Atoms); +decode_n_args(0, Acc, Bs, _) -> + {lists:reverse(Acc),Bs}. + +%%----------------------------------------------------------------------- +%% Convert a numeric tag value into a symbolic one +%%----------------------------------------------------------------------- + +decode_tag(?tag_u) -> u; +decode_tag(?tag_i) -> i; +decode_tag(?tag_a) -> a; +decode_tag(?tag_x) -> x; +decode_tag(?tag_y) -> y; +decode_tag(?tag_f) -> f; +decode_tag(?tag_h) -> h; +decode_tag(?tag_z) -> z; +decode_tag(X) -> ?exit({unknown_tag,X}). + +%%----------------------------------------------------------------------- +%% - replace all references {a,I} with the atom with index I (or {atom,A}) +%% - replace all references to {i,K} in an external call position with +%% the proper MFA (position in list, first elt = 0, yields MFA to use) +%% - resolve strings, represented as <offset, length>, into their +%% actual values by using string table +%% (note: string table should be passed as a BINARY so that we can +%% use binary_to_list/3!) +%% - convert instruction to its readable form ... +%% +%% Currently, only the first three are done (systematically, at least). +%% +%% Note: It MAY be premature to remove the lists of args, since that +%% representation means it is simpler to iterate over all args, etc. +%%----------------------------------------------------------------------- + +resolve_names(Fun, Imports, Str, Lbls, Lambdas) -> + [resolve_inst(Instr, Imports, Str, Lbls, Lambdas) || Instr <- Fun]. + +%% +%% New make_fun2/4 instruction added in August 2001 (R8). +%% We handle it specially here to avoid adding an argument to +%% the clause for every instruction. +%% + +resolve_inst({make_fun2,Args},_,_,Lbls,Lambdas) -> + [OldIndex] = resolve_args(Args), + {value,{OldIndex,{F,A,_Lbl,_Index,NumFree,OldUniq}}} = + lists:keysearch(OldIndex, 1, Lambdas), + [{_,{M,_,_}}|_] = Lbls, % Slighly kludgy. + {make_fun2,{M,F,A},OldIndex,OldUniq,NumFree}; +resolve_inst(Instr, Imports, Str, Lbls, _Lambdas) -> + resolve_inst(Instr, Imports, Str, Lbls). + +resolve_inst({label,[{u,L}]},_,_,_) -> + {label,L}; +resolve_inst({func_info,RawMFA},_,_,_) -> + {func_info,resolve_args(RawMFA)}; +% resolve_inst(int_code_end,_,_,_,_) -> % instruction already handled +% int_code_end; % should not really be handled here +resolve_inst({call,[{u,N},{f,L}]},_,_,Lbls) -> + {call,N,catch lookup_key(L,Lbls)}; +resolve_inst({call_last,[{u,N},{f,L},{u,U}]},_,_,Lbls) -> + {call_last,N,catch lookup_key(L,Lbls),U}; +resolve_inst({call_only,[{u,N},{f,L}]},_,_,Lbls) -> + {call_only,N,catch lookup_key(L,Lbls)}; +resolve_inst({call_ext,[{u,N},{u,MFAix}]},Imports,_,_) -> + {call_ext,N,catch lists:nth(MFAix+1,Imports)}; +resolve_inst({call_ext_last,[{u,N},{u,MFAix},{u,X}]},Imports,_,_) -> + {call_ext_last,N,catch lists:nth(MFAix+1,Imports),X}; +resolve_inst({bif0,Args},Imports,_,_) -> + [Bif,Reg] = resolve_args(Args), + {extfunc,_Mod,BifName,_Arity} = lists:nth(Bif+1,Imports), + %?NO_DEBUG('bif0(~p, ~p)~n',[BifName,Reg]), + {bif,BifName,nofail,[],Reg}; +resolve_inst({bif1,Args},Imports,_,_) -> + [F,Bif,A1,Reg] = resolve_args(Args), + {extfunc,_Mod,BifName,_Arity} = lists:nth(Bif+1,Imports), + %?NO_DEBUG('bif1(~p, ~p, ~p, ~p, ~p)~n',[Bif,BifName,F,[A1],Reg]), + {bif,BifName,F,[A1],Reg}; +resolve_inst({bif2,Args},Imports,_,_) -> + [F,Bif,A1,A2,Reg] = resolve_args(Args), + {extfunc,_Mod,BifName,_Arity} = lists:nth(Bif+1,Imports), + %?NO_DEBUG('bif2(~p, ~p, ~p, ~p, ~p)~n',[Bif,BifName,F,[A1,A2],Reg]), + {bif,BifName,F,[A1,A2],Reg}; +resolve_inst({allocate,[{u,X0},{u,X1}]},_,_,_) -> + {allocate,X0,X1}; +resolve_inst({allocate_heap,[{u,X0},{u,X1},{u,X2}]},_,_,_) -> + {allocate_heap,X0,X1,X2}; +resolve_inst({allocate_zero,[{u,X0},{u,X1}]},_,_,_) -> + {allocate_zero,X0,X1}; +resolve_inst({allocate_heap_zero,[{u,X0},{u,X1},{u,X2}]},_,_,_) -> + {allocate_heap_zero,X0,X1,X2}; +resolve_inst({test_heap,[{u,X0},{u,X1}]},_,_,_) -> + {test_heap,X0,X1}; +resolve_inst({init,[Dst]},_,_,_) -> + {init,Dst}; +resolve_inst({deallocate,[{u,L}]},_,_,_) -> + {deallocate,L}; +resolve_inst({return,[]},_,_,_) -> + return; +resolve_inst({send,[]},_,_,_) -> + send; +resolve_inst({remove_message,[]},_,_,_) -> + remove_message; +resolve_inst({timeout,[]},_,_,_) -> + timeout; +resolve_inst({loop_rec,[Lbl,Dst]},_,_,_) -> + {loop_rec,Lbl,Dst}; +resolve_inst({loop_rec_end,[Lbl]},_,_,_) -> + {loop_rec_end,Lbl}; +resolve_inst({wait,[Lbl]},_,_,_) -> + {wait,Lbl}; +resolve_inst({wait_timeout,[Lbl,Int]},_,_,_) -> + {wait_timeout,Lbl,resolve_arg(Int)}; +resolve_inst({m_plus,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'+',W,[SrcR1,SrcR2],DstR}; +resolve_inst({m_minus,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'-',W,[SrcR1,SrcR2],DstR}; +resolve_inst({m_times,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'*',W,[SrcR1,SrcR2],DstR}; +resolve_inst({m_div,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'/',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_div,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'div',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_rem,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'rem',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_band,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'band',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_bor,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'bor',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_bxor,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'bxor',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_bsl,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'bsl',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_bsr,Args},_,_,_) -> + [W,SrcR1,SrcR2,DstR] = resolve_args(Args), + {arithbif,'bsr',W,[SrcR1,SrcR2],DstR}; +resolve_inst({int_bnot,Args},_,_,_) -> + [W,SrcR,DstR] = resolve_args(Args), + {arithbif,'bnot',W,[SrcR],DstR}; +resolve_inst({is_lt=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_ge=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_eq=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_ne=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_eq_exact=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_ne_exact=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_integer=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_float=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_number=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_atom=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_pid=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_reference=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_port=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_nil=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_binary=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_constant=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_list=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_nonempty_list=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({is_tuple=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({test_arity=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({select_val,Args},_,_,_) -> + [Reg,FLbl,{{z,1},{u,_Len},List0}] = Args, + List = resolve_args(List0), + {select_val,Reg,FLbl,{list,List}}; +resolve_inst({select_tuple_arity,Args},_,_,_) -> + [Reg,FLbl,{{z,1},{u,_Len},List0}] = Args, + List = resolve_args(List0), + {select_tuple_arity,Reg,FLbl,{list,List}}; +resolve_inst({jump,[Lbl]},_,_,_) -> + {jump,Lbl}; +resolve_inst({'catch',[Dst,Lbl]},_,_,_) -> + {'catch',Dst,Lbl}; +resolve_inst({catch_end,[Dst]},_,_,_) -> + {catch_end,Dst}; +resolve_inst({move,[Src,Dst]},_,_,_) -> + {move,resolve_arg(Src),Dst}; +resolve_inst({get_list,[Src,Dst1,Dst2]},_,_,_) -> + {get_list,Src,Dst1,Dst2}; +resolve_inst({get_tuple_element,[Src,{u,Off},Dst]},_,_,_) -> + {get_tuple_element,resolve_arg(Src),Off,resolve_arg(Dst)}; +resolve_inst({set_tuple_element,[Src,Dst,{u,Off}]},_,_,_) -> + {set_tuple_element,resolve_arg(Src),resolve_arg(Dst),Off}; +resolve_inst({put_string,[{u,Len},{u,Off},Dst]},_,Strings,_) -> + String = if Len > 0 -> binary_to_list(Strings, Off+1, Off+Len); + true -> "" + end, +?NO_DEBUG('put_string(~p, {string,~p}, ~p)~n',[Len,String,Dst]), + {put_string,Len,{string,String},Dst}; +resolve_inst({put_list,[Src1,Src2,Dst]},_,_,_) -> + {put_list,resolve_arg(Src1),resolve_arg(Src2),Dst}; +resolve_inst({put_tuple,[{u,Arity},Dst]},_,_,_) -> + {put_tuple,Arity,Dst}; +resolve_inst({put,[Src]},_,_,_) -> + {put,resolve_arg(Src)}; +resolve_inst({badmatch,[X]},_,_,_) -> + {badmatch,resolve_arg(X)}; +resolve_inst({if_end,[]},_,_,_) -> + if_end; +resolve_inst({case_end,[X]},_,_,_) -> + {case_end,resolve_arg(X)}; +resolve_inst({call_fun,[{u,N}]},_,_,_) -> + {call_fun,N}; +resolve_inst({make_fun,Args},_,_,Lbls) -> + [{f,L},Magic,FreeVars] = resolve_args(Args), + {make_fun,catch lookup_key(L,Lbls),Magic,FreeVars}; +resolve_inst({is_function=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; +resolve_inst({call_ext_only,[{u,N},{u,MFAix}]},Imports,_,_) -> + {call_ext_only,N,catch lists:nth(MFAix+1,Imports)}; +%% +%% Instructions for handling binaries added in R7A & R7B +%% +resolve_inst({bs_start_match,[F,Reg]},_,_,_) -> + {bs_start_match,F,Reg}; +resolve_inst({bs_get_integer=I,[Lbl,Arg2,{u,N},{u,U},Arg5]},_,_,_) -> + [A2,A5] = resolve_args([Arg2,Arg5]), + {test,I,Lbl,[A2,N,decode_field_flags(U),A5]}; +resolve_inst({bs_get_float=I,[Lbl,Arg2,{u,N},{u,U},Arg5]},_,_,_) -> + [A2,A5] = resolve_args([Arg2,Arg5]), + {test,I,Lbl,[A2,N,decode_field_flags(U),A5]}; +resolve_inst({bs_get_binary=I,[Lbl,Arg2,{u,N},{u,U},Arg5]},_,_,_) -> + [A2,A5] = resolve_args([Arg2,Arg5]), + {test,I,Lbl,[A2,N,decode_field_flags(U),A5]}; +resolve_inst({bs_skip_bits,[Lbl,Arg2,{u,N},{u,U}]},_,_,_) -> + [A2] = resolve_args([Arg2]), + {test,bs_skip_bits,Lbl,[A2,N,decode_field_flags(U)]}; +resolve_inst({bs_test_tail,[F,{u,N}]},_,_,_) -> + {test,bs_test_tail,F,[N]}; +resolve_inst({bs_save,[{u,N}]},_,_,_) -> + {bs_save,N}; +resolve_inst({bs_restore,[{u,N}]},_,_,_) -> + {bs_restore,N}; +resolve_inst({bs_init,[{u,N},{u,U}]},_,_,_) -> + {bs_init,N,decode_field_flags(U)}; +resolve_inst({bs_final,[F,X]},_,_,_) -> + {bs_final,F,X}; +resolve_inst({bs_put_integer,[Lbl,Arg2,{u,N},{u,U},Arg5]},_,_,_) -> + [A2,A5] = resolve_args([Arg2,Arg5]), + {bs_put_integer,Lbl,A2,N,decode_field_flags(U),A5}; +resolve_inst({bs_put_binary,[Lbl,Arg2,{u,N},{u,U},Arg5]},_,_,_) -> + [A2,A5] = resolve_args([Arg2,Arg5]), + ?NO_DEBUG('bs_put_binary(~p,~p,~p,~p,~p})~n',[Lbl,A2,N,U,A5]), + {bs_put_binary,Lbl,A2,N,decode_field_flags(U),A5}; +resolve_inst({bs_put_float,[Lbl,Arg2,{u,N},{u,U},Arg5]},_,_,_) -> + [A2,A5] = resolve_args([Arg2,Arg5]), + ?NO_DEBUG('bs_put_float(~p,~p,~p,~p,~p})~n',[Lbl,A2,N,U,A5]), + {bs_put_float,Lbl,A2,N,decode_field_flags(U),A5}; +resolve_inst({bs_put_string,[{u,Len},{u,Off}]},_,Strings,_) -> + String = if Len > 0 -> binary_to_list(Strings, Off+1, Off+Len); + true -> "" + end, + ?NO_DEBUG('bs_put_string(~p, {string,~p})~n',[Len,String]), + {bs_put_string,Len,{string,String}}; +resolve_inst({bs_need_buf,[{u,N}]},_,_,_) -> + {bs_need_buf,N}; + +%% +%% Instructions for handling floating point numbers added in June 2001 (R8). +%% +resolve_inst({fclearerror,[]},_,_,_) -> + fclearerror; +resolve_inst({fcheckerror,Args},_,_,_) -> + [Fail] = resolve_args(Args), + {fcheckerror,Fail}; +resolve_inst({fmove,Args},_,_,_) -> + [FR,Reg] = resolve_args(Args), + {fmove,FR,Reg}; +resolve_inst({fconv,Args},_,_,_) -> + [Reg,FR] = resolve_args(Args), + {fconv,Reg,FR}; +resolve_inst({fadd=I,Args},_,_,_) -> + [F,A1,A2,Reg] = resolve_args(Args), + {arithfbif,I,F,[A1,A2],Reg}; +resolve_inst({fsub=I,Args},_,_,_) -> + [F,A1,A2,Reg] = resolve_args(Args), + {arithfbif,I,F,[A1,A2],Reg}; +resolve_inst({fmul=I,Args},_,_,_) -> + [F,A1,A2,Reg] = resolve_args(Args), + {arithfbif,I,F,[A1,A2],Reg}; +resolve_inst({fdiv=I,Args},_,_,_) -> + [F,A1,A2,Reg] = resolve_args(Args), + {arithfbif,I,F,[A1,A2],Reg}; +resolve_inst({fnegate,Args},_,_,_) -> + [F,Arg,Reg] = resolve_args(Args), + {arithfbif,fnegate,F,[Arg],Reg}; + +%% +%% Instructions for try expressions added in January 2003 (R10). +%% + +resolve_inst({'try',[Reg,Lbl]},_,_,_) -> % analogous to 'catch' + {'try',Reg,Lbl}; +resolve_inst({try_end,[Reg]},_,_,_) -> % analogous to 'catch_end' + {try_end,Reg}; +resolve_inst({try_case,[Reg]},_,_,_) -> % analogous to 'catch_end' + {try_case,Reg}; +resolve_inst({try_case_end,[Reg]},_,_,_) -> + {try_case_end,Reg}; +resolve_inst({raise,[Reg1,Reg2]},_,_,_) -> + {bif,raise,{f,0},[Reg1,Reg2],{x,0}}; + +%% +%% New bit syntax instructions added in February 2004 (R10B). +%% + +resolve_inst({bs_init2,[Lbl,Arg2,{u,W},{u,R},{u,F},Arg6]},_,_,_) -> + [A2,A6] = resolve_args([Arg2,Arg6]), + {bs_init2,Lbl,A2,W,R,decode_field_flags(F),A6}; +resolve_inst({bs_bits_to_bytes,[Lbl,Arg2,Arg3]},_,_,_) -> + [A2,A3] = resolve_args([Arg2,Arg3]), + {bs_bits_to_bytes,Lbl,A2,A3}; +resolve_inst({bs_add=I,[Lbl,Arg2,Arg3,Arg4,Arg5]},_,_,_) -> + [A2,A3,A4,A5] = resolve_args([Arg2,Arg3,Arg4,Arg5]), + {I,Lbl,[A2,A3,A4],A5}; + +%% +%% New apply instructions added in April 2004 (R10B). +%% +resolve_inst({apply,[{u,Arity}]},_,_,_) -> + {apply,Arity}; +resolve_inst({apply_last,[{u,Arity},{u,D}]},_,_,_) -> + {apply_last,Arity,D}; + +%% +%% New test instruction added in April 2004 (R10B). +%% +resolve_inst({is_boolean=I,Args0},_,_,_) -> + [L|Args] = resolve_args(Args0), + {test,I,L,Args}; + +%% +%% Catches instructions that are not yet handled. +%% + +resolve_inst(X,_,_,_) -> ?exit({resolve_inst,X}). + +%%----------------------------------------------------------------------- +%% Resolves arguments in a generic way. +%%----------------------------------------------------------------------- + +resolve_args(Args) -> [resolve_arg(A) || A <- Args]. + +resolve_arg({u,N}) -> N; +resolve_arg({i,N}) -> {integer,N}; +resolve_arg({atom,Atom}=A) when is_atom(Atom) -> A; +resolve_arg(nil) -> nil; +resolve_arg(Arg) -> Arg. + +%%----------------------------------------------------------------------- +%% The purpose of the following is just to add a hook for future changes. +%% Currently, field flags are numbers 1-2-4-8 and only two of these +%% numbers (BSF_LITTLE 2 -- BSF_SIGNED 4) have a semantic significance; +%% others are just hints for speeding up the execution; see "erl_bits.h". +%%----------------------------------------------------------------------- + +decode_field_flags(FF) -> + {field_flags,FF}. + +%%----------------------------------------------------------------------- +%% Each string is denoted in the assembled code by its offset into this +%% binary. This binary contains all strings concatenated together. +%%----------------------------------------------------------------------- + +beam_disasm_strings(Bin) -> + Bin. + +%%----------------------------------------------------------------------- +%% Disassembles the attributes of a BEAM file. +%%----------------------------------------------------------------------- + +beam_disasm_attributes(none) -> none; +beam_disasm_attributes(AttrBin) -> binary_to_term(AttrBin). + +%%----------------------------------------------------------------------- +%% Disassembles the compilation information of a BEAM file. +%%----------------------------------------------------------------------- + +beam_disasm_compilation_info(none) -> none; +beam_disasm_compilation_info(Bin) -> binary_to_term(Bin). + +%%----------------------------------------------------------------------- +%% Private Utilities +%%----------------------------------------------------------------------- + +%%----------------------------------------------------------------------- + +lookup_key(Key,[{Key,Val}|_]) -> + Val; +lookup_key(Key,[_|KVs]) -> + lookup_key(Key,KVs); +lookup_key(Key,[]) -> + ?exit({lookup_key,{key_not_found,Key}}). + +%%----------------------------------------------------------------------- diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_flatten.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_flatten.erl new file mode 100644 index 0000000000..5c08c6a797 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_flatten.erl @@ -0,0 +1,137 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_flatten.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Purpose : Converts intermediate assembly code to final format. + +-module(beam_flatten). + +-export([module/2]). +-import(lists, [reverse/1,reverse/2,map/2]). + +module({Mod,Exp,Attr,Fs,Lc}, _Opt) -> + {ok,{Mod,Exp,Attr,map(fun function/1, Fs),Lc}}. + +function({function,Name,Arity,CLabel,Is0}) -> + Is1 = block(Is0), + Is = opt(Is1), + {function,Name,Arity,CLabel,Is}. + +block(Is) -> + block(Is, []). + +block([{block,Is0}|Is1], Acc) -> block(Is1, norm_block(Is0, Acc)); +block([I|Is], Acc) -> block(Is, [I|Acc]); +block([], Acc) -> reverse(Acc). + +norm_block([{allocate,R,Alloc}|Is], Acc0) -> + case insert_alloc_in_bs_init(Acc0, Alloc) of + not_possible -> + norm_block(Is, reverse(norm_allocate(Alloc, R), Acc0)); + Acc -> + norm_block(Is, Acc) + end; +norm_block([I|Is], Acc) -> norm_block(Is, [norm(I)|Acc]); +norm_block([], Acc) -> Acc. + +norm({set,[D],As,{bif,N}}) -> {bif,N,nofail,As,D}; +norm({set,[D],As,{bif,N,F}}) -> {bif,N,F,As,D}; +norm({set,[D],[S],move}) -> {move,S,D}; +norm({set,[D],[S],fmove}) -> {fmove,S,D}; +norm({set,[D],[S],fconv}) -> {fconv,S,D}; +norm({set,[D],[S1,S2],put_list}) -> {put_list,S1,S2,D}; +norm({set,[D],[],{put_tuple,A}}) -> {put_tuple,A,D}; +norm({set,[],[S],put}) -> {put,S}; +norm({set,[D],[],{put_string,L,S}}) -> {put_string,L,S,D}; +norm({set,[D],[S],{get_tuple_element,I}}) -> {get_tuple_element,S,I,D}; +norm({set,[],[S,D],{set_tuple_element,I}}) -> {set_tuple_element,S,D,I}; +norm({set,[D1,D2],[S],get_list}) -> {get_list,S,D1,D2}; +norm({set,[],[],remove_message}) -> remove_message; +norm({set,[],[],fclearerror}) -> fclearerror; +norm({set,[],[],fcheckerror}) -> {fcheckerror,{f,0}}; +norm({'%',_}=Comment) -> Comment; +norm({'%live',R}) -> {'%live',R}. + +norm_allocate({_Zero,nostack,Nh,[]}, Regs) -> + [{test_heap,Nh,Regs}]; +norm_allocate({_Zero,nostack,Nh,Nf,[]}, Regs) -> + [{test_heap,alloc_list(Nh, Nf),Regs}]; +norm_allocate({zero,0,Nh,[]}, Regs) -> + norm_allocate({nozero,0,Nh,[]}, Regs); +norm_allocate({zero,0,Nh,Nf,[]}, Regs) -> + norm_allocate({nozero,0,Nh,Nf,[]}, Regs); +norm_allocate({zero,Ns,0,[]}, Regs) -> + [{allocate_zero,Ns,Regs}]; +norm_allocate({zero,Ns,Nh,[]}, Regs) -> + [{allocate_heap_zero,Ns,Nh,Regs}]; +norm_allocate({nozero,Ns,0,Inits}, Regs) -> + [{allocate,Ns,Regs}|Inits]; +norm_allocate({nozero,Ns,Nh,Inits}, Regs) -> + [{allocate_heap,Ns,Nh,Regs}|Inits]; +norm_allocate({nozero,Ns,Nh,Floats,Inits}, Regs) -> + [{allocate_heap,Ns,alloc_list(Nh, Floats),Regs}|Inits]; +norm_allocate({zero,Ns,Nh,Floats,Inits}, Regs) -> + [{allocate_heap_zero,Ns,alloc_list(Nh, Floats),Regs}|Inits]. + +insert_alloc_in_bs_init([I|_]=Is, Alloc) -> + case is_bs_put(I) of + false -> + not_possible; + true -> + insert_alloc_1(Is, Alloc, []) + end. + +insert_alloc_1([{bs_init2,Fail,Bs,Ws,Regs,F,Dst}|Is], {_,nostack,Nh,Nf,[]}, Acc) -> + Al = alloc_list(Ws+Nh, Nf), + I = {bs_init2,Fail,Bs,Al,Regs,F,Dst}, + reverse(Acc, [I|Is]); +insert_alloc_1([I|Is], Alloc, Acc) -> + insert_alloc_1(Is, Alloc, [I|Acc]). + +is_bs_put({bs_put_integer,_,_,_,_,_}) -> true; +is_bs_put({bs_put_float,_,_,_,_,_}) -> true; +is_bs_put({bs_put_binary,_,_,_,_,_}) -> true; +is_bs_put({bs_put_string,_,_}) -> true; +is_bs_put(_) -> false. + +alloc_list(Words, Floats) -> + {alloc,[{words,Words},{floats,Floats}]}. + + +%% opt(Is0) -> Is +%% Simple peep-hole optimization to move a {move,Any,{x,0}} past +%% any kill up to the next call instruction. + +opt(Is) -> + opt_1(Is, []). + +opt_1([{move,_,{x,0}}=I|Is0], Acc0) -> + case move_past_kill(Is0, I, Acc0) of + impossible -> opt_1(Is0, [I|Acc0]); + {Is,Acc} -> opt_1(Is, Acc) + end; +opt_1([I|Is], Acc) -> + opt_1(Is, [I|Acc]); +opt_1([], Acc) -> reverse(Acc). + +move_past_kill([{'%live',_}|Is], Move, Acc) -> + move_past_kill(Is, Move, Acc); +move_past_kill([{kill,Src}|_], {move,Src,_}, _) -> + impossible; +move_past_kill([{kill,_}=I|Is], Move, Acc) -> + move_past_kill(Is, Move, [I|Acc]); +move_past_kill(Is, Move, Acc) -> + {Is,[Move|Acc]}. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_jump.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_jump.erl new file mode 100644 index 0000000000..b3c234c7bb --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_jump.erl @@ -0,0 +1,477 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_jump.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%%% Purpose : Optimise jumps and remove unreachable code. + +-module(beam_jump). + +-export([module/2,module_labels/1, + is_unreachable_after/1,remove_unused_labels/1]). + +%%% The following optimisations are done: +%%% +%%% (1) This code with two identical instruction sequences +%%% +%%% L1: <Instruction sequence> +%%% L2: +%%% . . . +%%% L3: <Instruction sequence> +%%% L4: +%%% +%%% can be replaced with +%%% +%%% L1: jump L3 +%%% L2: +%%% . . . +%%% L3: <Instruction sequence> +%%% L4 +%%% +%%% Note: The instruction sequence must end with an instruction +%%% such as a jump that never transfers control to the instruction +%%% following it. +%%% +%%% (2) case_end, if_end, and badmatch, and function calls that cause an +%%% exit (such as calls to exit/1) are moved to the end of the function. +%%% The purpose is to allow further optimizations at the place from +%%% which the code was moved. +%%% +%%% (3) Any unreachable code is removed. Unreachable code is code after +%%% jump, call_last and other instructions which never transfer control +%%% to the following instruction. Code is unreachable up to the next +%%% *referenced* label. Note that the optimisations below might +%%% generate more possibilities for removing unreachable code. +%%% +%%% (4) This code: +%%% L1: jump L2 +%%% . . . +%%% L2: ... +%%% +%%% will be changed to +%%% +%%% jump L2 +%%% . . . +%%% L1: +%%% L2: ... +%%% +%%% If the jump is unreachable, it will be removed according to (1). +%%% +%%% (5) In +%%% +%%% jump L1 +%%% L1: +%%% +%%% the jump will be removed. +%%% +%%% (6) If test instructions are used to skip a single jump instruction, +%%% the test is inverted and the jump is eliminated (provided that +%%% the test can be inverted). Example: +%%% +%%% is_eq L1 {x,1} {x,2} +%%% jump L2 +%%% L1: +%%% +%%% will be changed to +%%% +%%% is_ne L2 {x,1} {x,2} +%%% +%%% (The label L1 will be retained if there were previous references to it.) +%%% +%%% (7) Some redundant uses of is_boolean/1 is optimized away. +%%% +%%% Terminology note: The optimisation done here is called unreachable-code +%%% elimination, NOT dead-code elimination. Dead code elimination +%%% means the removal of instructions that are executed, but have no visible +%%% effect on the program state. +%%% + +-import(lists, [reverse/1,reverse/2,map/2,mapfoldl/3,foldl/3, + last/1,foreach/2,member/2]). + +module({Mod,Exp,Attr,Fs0,Lc}, _Opt) -> + Fs = map(fun function/1, Fs0), + {ok,{Mod,Exp,Attr,Fs,Lc}}. + +module_labels({Mod,Exp,Attr,Fs,Lc}) -> + {Mod,Exp,Attr,map(fun function_labels/1, Fs),Lc}. + +function_labels({function,Name,Arity,CLabel,Asm0}) -> + Asm = remove_unused_labels(Asm0), + {function,Name,Arity,CLabel,Asm}. + +function({function,Name,Arity,CLabel,Asm0}) -> + Asm1 = share(Asm0), + Asm2 = bopt(Asm1), + Asm3 = move(Asm2), + Asm4 = opt(Asm3, CLabel), + Asm = remove_unused_labels(Asm4), + {function,Name,Arity,CLabel,Asm}. + +%%% +%%% (1) We try to share the code for identical code segments by replacing all +%%% occurrences except the last with jumps to the last occurrence. +%%% + +share(Is) -> + share_1(reverse(Is), gb_trees:empty(), [], []). + +share_1([{label,_}=Lbl|Is], Dict, [], Acc) -> + share_1(Is, Dict, [], [Lbl|Acc]); +share_1([{label,L}=Lbl|Is], Dict0, Seq, Acc) -> + case is_unreachable_after(last(Seq)) of + false -> + share_1(Is, Dict0, [], [Lbl|Seq ++ Acc]); + true -> + case gb_trees:lookup(Seq, Dict0) of + none -> + Dict = gb_trees:insert(Seq, L, Dict0), + share_1(Is, Dict, [], [Lbl|Seq ++ Acc]); + {value,Label} -> + share_1(Is, Dict0, [], [Lbl,{jump,{f,Label}}|Acc]) + end + end; +share_1([{func_info,_,_,_}=I|Is], _, [], Acc) -> + Is++[I|Acc]; +share_1([I|Is], Dict, Seq, Acc) -> + case is_unreachable_after(I) of + false -> + share_1(Is, Dict, [I|Seq], Acc); + true -> + share_1(Is, Dict, [I], Acc) + end. + +%%% +%%% (2) Move short code sequences ending in an instruction that causes an exit +%%% to the end of the function. +%%% + +move(Is) -> + move_1(Is, [], []). + +move_1([I|Is], End, Acc) -> + case is_exit_instruction(I) of + false -> move_1(Is, End, [I|Acc]); + true -> move_2(I, Is, End, Acc) + end; +move_1([], End, Acc) -> + reverse(Acc, reverse(End)). + +move_2(Exit, Is, End, [{block,_},{label,_},{func_info,_,_,_}|_]=Acc) -> + move_1(Is, End, [Exit|Acc]); +move_2(Exit, Is, End, [{kill,_Y}|Acc]) -> + move_2(Exit, Is, End, Acc); +move_2(Exit, Is, End, [{block,_}=Blk,{label,_}=Lbl,Dead|More]=Acc) -> + case is_unreachable_after(Dead) of + false -> + move_1(Is, End, [Exit|Acc]); + true -> + move_1([Dead|Is], [Exit,Blk,Lbl|End], More) + end; +move_2(Exit, Is, End, [{label,_}=Lbl,Dead|More]=Acc) -> + case is_unreachable_after(Dead) of + false -> + move_1(Is, End, [Exit|Acc]); + true -> + move_1([Dead|Is], [Exit,Lbl|End], More) + end; +move_2(Exit, Is, End, Acc) -> + move_1(Is, End, [Exit|Acc]). + +%%% +%%% (7) Remove redundant is_boolean tests. +%%% + +bopt(Is) -> + bopt_1(Is, []). + +bopt_1([{test,is_boolean,_,_}=I|Is], Acc0) -> + case opt_is_bool(I, Acc0) of + no -> bopt_1(Is, [I|Acc0]); + yes -> bopt_1(Is, Acc0); + {yes,Acc} -> bopt_1(Is, Acc) + end; +bopt_1([I|Is], Acc) -> bopt_1(Is, [I|Acc]); +bopt_1([], Acc) -> reverse(Acc). + +opt_is_bool({test,is_boolean,{f,Lbl},[Reg]}, Acc) -> + opt_is_bool_1(Acc, Reg, Lbl). + +opt_is_bool_1([{test,is_eq_exact,{f,Lbl},[Reg,{atom,true}]}|_], Reg, Lbl) -> + %% Instruction not needed in this context. + yes; +opt_is_bool_1([{test,is_ne_exact,{f,Lbl},[Reg,{atom,true}]}|Acc], Reg, Lbl) -> + %% Rewrite to shorter test. + {yes,[{test,is_eq_exact,{f,Lbl},[Reg,{atom,false}]}|Acc]}; +opt_is_bool_1([{test,_,{f,Lbl},_}=Test|Acc0], Reg, Lbl) -> + case opt_is_bool_1(Acc0, Reg, Lbl) of + {yes,Acc} -> {yes,[Test|Acc]}; + Other -> Other + end; +opt_is_bool_1(_, _, _) -> no. + +%%% +%%% (3) (4) (5) (6) Jump and unreachable code optimizations. +%%% + +-record(st, {fc, %Label for function class errors. + entry, %Entry label (must not be moved). + mlbl, %Moved labels. + labels %Set of referenced labels. + }). + +opt([{label,Fc}|_]=Is, CLabel) -> + Lbls = initial_labels(Is), + St = #st{fc=Fc,entry=CLabel,mlbl=dict:new(),labels=Lbls}, + opt(Is, [], St). + +opt([{test,Test0,{f,Lnum}=Lbl,Ops}=I|Is0], Acc, St) -> + case Is0 of + [{jump,To}|[{label,Lnum}|Is2]=Is1] -> + case invert_test(Test0) of + not_possible -> + opt(Is0, [I|Acc], label_used(Lbl, St)); + Test -> + Is = case is_label_used(Lnum, St) of + true -> Is1; + false -> Is2 + end, + opt([{test,Test,To,Ops}|Is], Acc, label_used(To, St)) + end; + _Other -> + opt(Is0, [I|Acc], label_used(Lbl, St)) + end; +opt([{select_val,_R,Fail,{list,Vls}}=I|Is], Acc, St) -> + skip_unreachable(Is, [I|Acc], label_used([Fail|Vls], St)); +opt([{select_tuple_arity,_R,Fail,{list,Vls}}=I|Is], Acc, St) -> + skip_unreachable(Is, [I|Acc], label_used([Fail|Vls], St)); +opt([{'try',_R,Lbl}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{'catch',_R,Lbl}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{label,L}=I|Is], Acc, #st{entry=L}=St) -> + %% NEVER move the entry label. + opt(Is, [I|Acc], St); +opt([{label,L1},{jump,{f,L2}}=I|Is], [Prev|Acc], St0) -> + St = St0#st{mlbl=dict:append(L2, L1, St0#st.mlbl)}, + opt([Prev,I|Is], Acc, label_used({f,L2}, St)); +opt([{label,Lbl}=I|Is], Acc, #st{mlbl=Mlbl}=St0) -> + case dict:find(Lbl, Mlbl) of + {ok,Lbls} -> + %% Essential to remove the list of labels from the dictionary, + %% since we will rescan the inserted labels. We MUST rescan. + St = St0#st{mlbl=dict:erase(Lbl, Mlbl)}, + insert_labels([Lbl|Lbls], Is, Acc, St); + error -> opt(Is, [I|Acc], St0) + end; +opt([{jump,{f,Lbl}},{label,Lbl}=I|Is], Acc, St) -> + opt([I|Is], Acc, St); +opt([{jump,Lbl}=I|Is], Acc, St) -> + skip_unreachable(Is, [I|Acc], label_used(Lbl, St)); +opt([{loop_rec,Lbl,_R}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bif,_Name,Lbl,_As,_R}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_put_integer,Lbl,_Bits,_Unit,_Fl,_Val}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_put_binary,Lbl,_Bits,_Unit,_Fl,_Val}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_put_float,Lbl,_Bits,_Unit,_Fl,_Val}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_final,Lbl,_R}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_init2,Lbl,_,_,_,_,_}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_add,Lbl,_,_}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([{bs_bits_to_bytes,Lbl,_,_}=I|Is], Acc, St) -> + opt(Is, [I|Acc], label_used(Lbl, St)); +opt([I|Is], Acc, St) -> + case is_unreachable_after(I) of + true -> skip_unreachable(Is, [I|Acc], St); + false -> opt(Is, [I|Acc], St) + end; +opt([], Acc, #st{fc=Fc,mlbl=Mlbl}) -> + Code = reverse(Acc), + case dict:find(Fc, Mlbl) of + {ok,Lbls} -> insert_fc_labels(Lbls, Mlbl, Code); + error -> Code + end. + +insert_fc_labels([L|Ls], Mlbl, Acc0) -> + Acc = [{label,L}|Acc0], + case dict:find(L, Mlbl) of + error -> + insert_fc_labels(Ls, Mlbl, Acc); + {ok,Lbls} -> + insert_fc_labels(Lbls++Ls, Mlbl, Acc) + end; +insert_fc_labels([], _, Acc) -> Acc. + +%% invert_test(Test0) -> not_possible | Test + +invert_test(is_ge) -> is_lt; +invert_test(is_lt) -> is_ge; +invert_test(is_eq) -> is_ne; +invert_test(is_ne) -> is_eq; +invert_test(is_eq_exact) -> is_ne_exact; +invert_test(is_ne_exact) -> is_eq_exact; +invert_test(_) -> not_possible. + +insert_labels([L|Ls], Is, [{jump,{f,L}}|Acc], St) -> + insert_labels(Ls, [{label,L}|Is], Acc, St); +insert_labels([L|Ls], Is, Acc, St) -> + insert_labels(Ls, [{label,L}|Is], Acc, St); +insert_labels([], Is, Acc, St) -> + opt(Is, Acc, St). + +%% Skip unreachable code up to the next referenced label. + +skip_unreachable([{label,L}|Is], [{jump,{f,L}}|Acc], St) -> + opt([{label,L}|Is], Acc, St); +skip_unreachable([{label,L}|Is], Acc, St) -> + case is_label_used(L, St) of + true -> opt([{label,L}|Is], Acc, St); + false -> skip_unreachable(Is, Acc, St) + end; +skip_unreachable([_|Is], Acc, St) -> + skip_unreachable(Is, Acc, St); +skip_unreachable([], Acc, St) -> + opt([], Acc, St). + +%% Add one or more label to the set of used labels. + +label_used({f,0}, St) -> St; +label_used({f,L}, St) -> St#st{labels=gb_sets:add(L, St#st.labels)}; +label_used([H|T], St0) -> label_used(T, label_used(H, St0)); +label_used([], St) -> St; +label_used(_Other, St) -> St. + +%% Test if label is used. + +is_label_used(L, St) -> + gb_sets:is_member(L, St#st.labels). + +%% is_unreachable_after(Instruction) -> true|false +%% Test whether the code after Instruction is unreachable. + +is_unreachable_after({func_info,_M,_F,_A}) -> true; +is_unreachable_after(return) -> true; +is_unreachable_after({call_ext_last,_Ar,_ExtFunc,_D}) -> true; +is_unreachable_after({call_ext_only,_Ar,_ExtFunc}) -> true; +is_unreachable_after({call_last,_Ar,_Lbl,_D}) -> true; +is_unreachable_after({call_only,_Ar,_Lbl}) -> true; +is_unreachable_after({apply_last,_Ar,_N}) -> true; +is_unreachable_after({jump,_Lbl}) -> true; +is_unreachable_after({select_val,_R,_Lbl,_Cases}) -> true; +is_unreachable_after({select_tuple_arity,_R,_Lbl,_Cases}) -> true; +is_unreachable_after({loop_rec_end,_}) -> true; +is_unreachable_after({wait,_}) -> true; +is_unreachable_after(I) -> is_exit_instruction(I). + +%% is_exit_instruction(Instruction) -> true|false +%% Test whether the instruction Instruction always +%% causes an exit/failure. + +is_exit_instruction({call_ext,_,{extfunc,M,F,A}}) -> + is_exit_instruction_1(M, F, A); +is_exit_instruction({call_ext_last,_,{extfunc,M,F,A},_}) -> + is_exit_instruction_1(M, F, A); +is_exit_instruction({call_ext_only,_,{extfunc,M,F,A}}) -> + is_exit_instruction_1(M, F, A); +is_exit_instruction(if_end) -> true; +is_exit_instruction({case_end,_}) -> true; +is_exit_instruction({try_case_end,_}) -> true; +is_exit_instruction({badmatch,_}) -> true; +is_exit_instruction(_) -> false. + +is_exit_instruction_1(erlang, exit, 1) -> true; +is_exit_instruction_1(erlang, throw, 1) -> true; +is_exit_instruction_1(erlang, error, 1) -> true; +is_exit_instruction_1(erlang, error, 2) -> true; +is_exit_instruction_1(erlang, fault, 1) -> true; +is_exit_instruction_1(erlang, fault, 2) -> true; +is_exit_instruction_1(_, _, _) -> false. + +%% remove_unused_labels(Instructions0) -> Instructions +%% Remove all unused labels. + +remove_unused_labels(Is) -> + Used0 = initial_labels(Is), + Used = foldl(fun ulbl/2, Used0, Is), + rem_unused(Is, Used, []). + +rem_unused([{label,Lbl}=I|Is], Used, Acc) -> + case gb_sets:is_member(Lbl, Used) of + false -> rem_unused(Is, Used, Acc); + true -> rem_unused(Is, Used, [I|Acc]) + end; +rem_unused([I|Is], Used, Acc) -> + rem_unused(Is, Used, [I|Acc]); +rem_unused([], _, Acc) -> reverse(Acc). + +initial_labels(Is) -> + initial_labels(Is, []). + +initial_labels([{label,Lbl}|Is], Acc) -> + initial_labels(Is, [Lbl|Acc]); +initial_labels([{func_info,_,_,_},{label,Lbl}|_], Acc) -> + gb_sets:from_list([Lbl|Acc]). + +ulbl({test,_,Fail,_}, Used) -> + mark_used(Fail, Used); +ulbl({select_val,_,Fail,{list,Vls}}, Used) -> + mark_used_list(Vls, mark_used(Fail, Used)); +ulbl({select_tuple_arity,_,Fail,{list,Vls}}, Used) -> + mark_used_list(Vls, mark_used(Fail, Used)); +ulbl({'try',_,Lbl}, Used) -> + mark_used(Lbl, Used); +ulbl({'catch',_,Lbl}, Used) -> + mark_used(Lbl, Used); +ulbl({jump,Lbl}, Used) -> + mark_used(Lbl, Used); +ulbl({loop_rec,Lbl,_}, Used) -> + mark_used(Lbl, Used); +ulbl({loop_rec_end,Lbl}, Used) -> + mark_used(Lbl, Used); +ulbl({wait,Lbl}, Used) -> + mark_used(Lbl, Used); +ulbl({wait_timeout,Lbl,_To}, Used) -> + mark_used(Lbl, Used); +ulbl({bif,_Name,Lbl,_As,_R}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_init2,Lbl,_,_,_,_,_}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_put_integer,Lbl,_Bits,_Unit,_Fl,_Val}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_put_float,Lbl,_Bits,_Unit,_Fl,_Val}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_put_binary,Lbl,_Bits,_Unit,_Fl,_Val}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_final,Lbl,_}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_add,Lbl,_,_}, Used) -> + mark_used(Lbl, Used); +ulbl({bs_bits_to_bytes,Lbl,_,_}, Used) -> + mark_used(Lbl, Used); +ulbl(_, Used) -> Used. + +mark_used({f,0}, Used) -> Used; +mark_used({f,L}, Used) -> gb_sets:add(L, Used); +mark_used(_, Used) -> Used. + +mark_used_list([H|T], Used) -> + mark_used_list(T, mark_used(H, Used)); +mark_used_list([], Used) -> Used. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_listing.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_listing.erl new file mode 100644 index 0000000000..5def6816b2 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_listing.erl @@ -0,0 +1,117 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_listing.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +-module(beam_listing). + +-export([module/2]). + +-include("v3_life.hrl"). + +-import(lists, [foreach/2]). + +module(File, Core) when element(1, Core) == c_module -> + %% This is a core module. + io:put_chars(File, core_pp:format(Core)); +module(File, Kern) when element(1, Kern) == k_mdef -> + %% This is a kernel module. + io:put_chars(File, v3_kernel_pp:format(Kern)); + %%io:put_chars(File, io_lib:format("~p~n", [Kern])); +module(File, {Mod,Exp,Attr,Kern}) -> + %% This is output from beam_life (v3). + io:fwrite(File, "~w.~n~p.~n~p.~n", [Mod,Exp,Attr]), + foreach(fun (F) -> function(File, F) end, Kern); +module(Stream, {Mod,Exp,Attr,Code,NumLabels}) -> + %% This is output from beam_codegen. + io:format(Stream, "{module, ~s}. %% version = ~w\n", + [Mod, beam_opcodes:format_number()]), + io:format(Stream, "\n{exports, ~p}.\n", [Exp]), + io:format(Stream, "\n{attributes, ~p}.\n", [Attr]), + io:format(Stream, "\n{labels, ~p}.\n", [NumLabels]), + foreach( + fun ({function,Name,Arity,Entry,Asm}) -> + io:format(Stream, "\n\n{function, ~w, ~w, ~w}.\n", + [Name, Arity, Entry]), + foreach(fun(Op) -> print_op(Stream, Op) end, Asm) end, + Code); +module(Stream, {Mod,Exp,Inter}) -> + %% Other kinds of intermediate formats. + io:fwrite(Stream, "~w.~n~p.~n", [Mod,Exp]), + foreach(fun (F) -> io:format(Stream, "~p.\n", [F]) end, Inter); +module(Stream, [_|_]=Fs) -> + %% Form-based abstract format. + foreach(fun (F) -> io:format(Stream, "~p.\n", [F]) end, Fs). + +print_op(Stream, Label) when element(1, Label) == label -> + io:format(Stream, " ~p.\n", [Label]); +print_op(Stream, Op) -> + io:format(Stream, " ~p.\n", [Op]). + +function(File, {function,Name,Arity,Args,Body,Vdb}) -> + io:nl(File), + io:format(File, "function ~p/~p.\n", [Name,Arity]), + io:format(File, " ~p.\n", [Args]), + print_vdb(File, Vdb), + put(beam_listing_nl, true), + foreach(fun(F) -> format(File, F, []) end, Body), + nl(File), + erase(beam_listing_nl). + +format(File, #l{ke=Ke,i=I,vdb=Vdb}, Ind) -> + nl(File), + ind_format(File, Ind, "~p ", [I]), + print_vdb(File, Vdb), + nl(File), + format(File, Ke, Ind); +format(File, Tuple, Ind) when is_tuple(Tuple) -> + ind_format(File, Ind, "{", []), + format_list(File, tuple_to_list(Tuple), [$\s|Ind]), + ind_format(File, Ind, "}", []); +format(File, List, Ind) when is_list(List) -> + ind_format(File, Ind, "[", []), + format_list(File, List, [$\s|Ind]), + ind_format(File, Ind, "]", []); +format(File, F, Ind) -> + ind_format(File, Ind, "~p", [F]). + +format_list(File, [F], Ind) -> + format(File, F, Ind); +format_list(File, [F|Fs], Ind) -> + format(File, F, Ind), + ind_format(File, Ind, ",", []), + format_list(File, Fs, Ind); +format_list(_, [], _) -> ok. + + +print_vdb(File, [{Var,F,E}|Vs]) -> + io:format(File, "~p:~p..~p ", [Var,F,E]), + print_vdb(File, Vs); +print_vdb(_, []) -> ok. + +ind_format(File, Ind, Format, Args) -> + case get(beam_listing_nl) of + true -> + put(beam_listing_nl, false), + io:put_chars(File, Ind); + false -> ok + end, + io:format(File, Format, Args). + +nl(File) -> + case put(beam_listing_nl, true) of + true -> ok; + false -> io:nl(File) + end. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_opcodes.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_opcodes.erl new file mode 100644 index 0000000000..a4f5fd34d2 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_opcodes.erl @@ -0,0 +1,240 @@ +-module(beam_opcodes). +%% Warning: Do not edit this file. It was automatically +%% generated by 'beam_makeops' on Wed Nov 24 17:52:43 2004. + +-export([format_number/0]). +-export([opcode/2,opname/1]). + +format_number() -> 0. + +opcode(label, 1) -> 1; +opcode(func_info, 3) -> 2; +opcode(int_code_end, 0) -> 3; +opcode(call, 2) -> 4; +opcode(call_last, 3) -> 5; +opcode(call_only, 2) -> 6; +opcode(call_ext, 2) -> 7; +opcode(call_ext_last, 3) -> 8; +opcode(bif0, 2) -> 9; +opcode(bif1, 4) -> 10; +opcode(bif2, 5) -> 11; +opcode(allocate, 2) -> 12; +opcode(allocate_heap, 3) -> 13; +opcode(allocate_zero, 2) -> 14; +opcode(allocate_heap_zero, 3) -> 15; +opcode(test_heap, 2) -> 16; +opcode(init, 1) -> 17; +opcode(deallocate, 1) -> 18; +opcode(return, 0) -> 19; +opcode(send, 0) -> 20; +opcode(remove_message, 0) -> 21; +opcode(timeout, 0) -> 22; +opcode(loop_rec, 2) -> 23; +opcode(loop_rec_end, 1) -> 24; +opcode(wait, 1) -> 25; +opcode(wait_timeout, 2) -> 26; +opcode(m_plus, 4) -> 27; +opcode(m_minus, 4) -> 28; +opcode(m_times, 4) -> 29; +opcode(m_div, 4) -> 30; +opcode(int_div, 4) -> 31; +opcode(int_rem, 4) -> 32; +opcode(int_band, 4) -> 33; +opcode(int_bor, 4) -> 34; +opcode(int_bxor, 4) -> 35; +opcode(int_bsl, 4) -> 36; +opcode(int_bsr, 4) -> 37; +opcode(int_bnot, 3) -> 38; +opcode(is_lt, 3) -> 39; +opcode(is_ge, 3) -> 40; +opcode(is_eq, 3) -> 41; +opcode(is_ne, 3) -> 42; +opcode(is_eq_exact, 3) -> 43; +opcode(is_ne_exact, 3) -> 44; +opcode(is_integer, 2) -> 45; +opcode(is_float, 2) -> 46; +opcode(is_number, 2) -> 47; +opcode(is_atom, 2) -> 48; +opcode(is_pid, 2) -> 49; +opcode(is_reference, 2) -> 50; +opcode(is_port, 2) -> 51; +opcode(is_nil, 2) -> 52; +opcode(is_binary, 2) -> 53; +opcode(is_constant, 2) -> 54; +opcode(is_list, 2) -> 55; +opcode(is_nonempty_list, 2) -> 56; +opcode(is_tuple, 2) -> 57; +opcode(test_arity, 3) -> 58; +opcode(select_val, 3) -> 59; +opcode(select_tuple_arity, 3) -> 60; +opcode(jump, 1) -> 61; +opcode('catch', 2) -> 62; +opcode(catch_end, 1) -> 63; +opcode(move, 2) -> 64; +opcode(get_list, 3) -> 65; +opcode(get_tuple_element, 3) -> 66; +opcode(set_tuple_element, 3) -> 67; +opcode(put_string, 3) -> 68; +opcode(put_list, 3) -> 69; +opcode(put_tuple, 2) -> 70; +opcode(put, 1) -> 71; +opcode(badmatch, 1) -> 72; +opcode(if_end, 0) -> 73; +opcode(case_end, 1) -> 74; +opcode(call_fun, 1) -> 75; +opcode(make_fun, 3) -> 76; +opcode(is_function, 2) -> 77; +opcode(call_ext_only, 2) -> 78; +opcode(bs_start_match, 2) -> 79; +opcode(bs_get_integer, 5) -> 80; +opcode(bs_get_float, 5) -> 81; +opcode(bs_get_binary, 5) -> 82; +opcode(bs_skip_bits, 4) -> 83; +opcode(bs_test_tail, 2) -> 84; +opcode(bs_save, 1) -> 85; +opcode(bs_restore, 1) -> 86; +opcode(bs_init, 2) -> 87; +opcode(bs_final, 2) -> 88; +opcode(bs_put_integer, 5) -> 89; +opcode(bs_put_binary, 5) -> 90; +opcode(bs_put_float, 5) -> 91; +opcode(bs_put_string, 2) -> 92; +opcode(bs_need_buf, 1) -> 93; +opcode(fclearerror, 0) -> 94; +opcode(fcheckerror, 1) -> 95; +opcode(fmove, 2) -> 96; +opcode(fconv, 2) -> 97; +opcode(fadd, 4) -> 98; +opcode(fsub, 4) -> 99; +opcode(fmul, 4) -> 100; +opcode(fdiv, 4) -> 101; +opcode(fnegate, 3) -> 102; +opcode(make_fun2, 1) -> 103; +opcode('try', 2) -> 104; +opcode(try_end, 1) -> 105; +opcode(try_case, 1) -> 106; +opcode(try_case_end, 1) -> 107; +opcode(raise, 2) -> 108; +opcode(bs_init2, 6) -> 109; +opcode(bs_bits_to_bytes, 3) -> 110; +opcode(bs_add, 5) -> 111; +opcode(apply, 1) -> 112; +opcode(apply_last, 2) -> 113; +opcode(is_boolean, 2) -> 114; +opcode(Name, Arity) -> erlang:error(badarg, [Name,Arity]). + +opname(1) -> {label,1}; +opname(2) -> {func_info,3}; +opname(3) -> {int_code_end,0}; +opname(4) -> {call,2}; +opname(5) -> {call_last,3}; +opname(6) -> {call_only,2}; +opname(7) -> {call_ext,2}; +opname(8) -> {call_ext_last,3}; +opname(9) -> {bif0,2}; +opname(10) -> {bif1,4}; +opname(11) -> {bif2,5}; +opname(12) -> {allocate,2}; +opname(13) -> {allocate_heap,3}; +opname(14) -> {allocate_zero,2}; +opname(15) -> {allocate_heap_zero,3}; +opname(16) -> {test_heap,2}; +opname(17) -> {init,1}; +opname(18) -> {deallocate,1}; +opname(19) -> {return,0}; +opname(20) -> {send,0}; +opname(21) -> {remove_message,0}; +opname(22) -> {timeout,0}; +opname(23) -> {loop_rec,2}; +opname(24) -> {loop_rec_end,1}; +opname(25) -> {wait,1}; +opname(26) -> {wait_timeout,2}; +opname(27) -> {m_plus,4}; +opname(28) -> {m_minus,4}; +opname(29) -> {m_times,4}; +opname(30) -> {m_div,4}; +opname(31) -> {int_div,4}; +opname(32) -> {int_rem,4}; +opname(33) -> {int_band,4}; +opname(34) -> {int_bor,4}; +opname(35) -> {int_bxor,4}; +opname(36) -> {int_bsl,4}; +opname(37) -> {int_bsr,4}; +opname(38) -> {int_bnot,3}; +opname(39) -> {is_lt,3}; +opname(40) -> {is_ge,3}; +opname(41) -> {is_eq,3}; +opname(42) -> {is_ne,3}; +opname(43) -> {is_eq_exact,3}; +opname(44) -> {is_ne_exact,3}; +opname(45) -> {is_integer,2}; +opname(46) -> {is_float,2}; +opname(47) -> {is_number,2}; +opname(48) -> {is_atom,2}; +opname(49) -> {is_pid,2}; +opname(50) -> {is_reference,2}; +opname(51) -> {is_port,2}; +opname(52) -> {is_nil,2}; +opname(53) -> {is_binary,2}; +opname(54) -> {is_constant,2}; +opname(55) -> {is_list,2}; +opname(56) -> {is_nonempty_list,2}; +opname(57) -> {is_tuple,2}; +opname(58) -> {test_arity,3}; +opname(59) -> {select_val,3}; +opname(60) -> {select_tuple_arity,3}; +opname(61) -> {jump,1}; +opname(62) -> {'catch',2}; +opname(63) -> {catch_end,1}; +opname(64) -> {move,2}; +opname(65) -> {get_list,3}; +opname(66) -> {get_tuple_element,3}; +opname(67) -> {set_tuple_element,3}; +opname(68) -> {put_string,3}; +opname(69) -> {put_list,3}; +opname(70) -> {put_tuple,2}; +opname(71) -> {put,1}; +opname(72) -> {badmatch,1}; +opname(73) -> {if_end,0}; +opname(74) -> {case_end,1}; +opname(75) -> {call_fun,1}; +opname(76) -> {make_fun,3}; +opname(77) -> {is_function,2}; +opname(78) -> {call_ext_only,2}; +opname(79) -> {bs_start_match,2}; +opname(80) -> {bs_get_integer,5}; +opname(81) -> {bs_get_float,5}; +opname(82) -> {bs_get_binary,5}; +opname(83) -> {bs_skip_bits,4}; +opname(84) -> {bs_test_tail,2}; +opname(85) -> {bs_save,1}; +opname(86) -> {bs_restore,1}; +opname(87) -> {bs_init,2}; +opname(88) -> {bs_final,2}; +opname(89) -> {bs_put_integer,5}; +opname(90) -> {bs_put_binary,5}; +opname(91) -> {bs_put_float,5}; +opname(92) -> {bs_put_string,2}; +opname(93) -> {bs_need_buf,1}; +opname(94) -> {fclearerror,0}; +opname(95) -> {fcheckerror,1}; +opname(96) -> {fmove,2}; +opname(97) -> {fconv,2}; +opname(98) -> {fadd,4}; +opname(99) -> {fsub,4}; +opname(100) -> {fmul,4}; +opname(101) -> {fdiv,4}; +opname(102) -> {fnegate,3}; +opname(103) -> {make_fun2,1}; +opname(104) -> {'try',2}; +opname(105) -> {try_end,1}; +opname(106) -> {try_case,1}; +opname(107) -> {try_case_end,1}; +opname(108) -> {raise,2}; +opname(109) -> {bs_init2,6}; +opname(110) -> {bs_bits_to_bytes,3}; +opname(111) -> {bs_add,5}; +opname(112) -> {apply,1}; +opname(113) -> {apply_last,2}; +opname(114) -> {is_boolean,2}; +opname(Number) -> erlang:error(badarg, [Number]). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_opcodes.hrl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_opcodes.hrl new file mode 100644 index 0000000000..a330a68f37 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_opcodes.hrl @@ -0,0 +1,11 @@ +%% Warning: Do not edit this file. It was automatically +%% generated by 'beam_makeops' on Wed Nov 24 17:52:43 2004. + +-define(tag_u, 0). +-define(tag_i, 1). +-define(tag_a, 2). +-define(tag_x, 3). +-define(tag_y, 4). +-define(tag_f, 5). +-define(tag_h, 6). +-define(tag_z, 7). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_type.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_type.erl new file mode 100644 index 0000000000..d2ac3fcd99 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_type.erl @@ -0,0 +1,551 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_type.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Purpose : Type-based optimisations. + +-module(beam_type). + +-export([module/2]). + +-import(lists, [map/2,foldl/3,reverse/1,reverse/2,filter/2,member/2]). + +module({Mod,Exp,Attr,Fs0,Lc}, Opt) -> + AllowFloatOpts = not member(no_float_opt, Opt), + Fs = map(fun(F) -> function(F, AllowFloatOpts) end, Fs0), + {ok,{Mod,Exp,Attr,Fs,Lc}}. + +function({function,Name,Arity,CLabel,Asm0}, AllowFloatOpts) -> + Asm = opt(Asm0, AllowFloatOpts, [], tdb_new()), + {function,Name,Arity,CLabel,Asm}. + +%% opt([Instruction], AllowFloatOpts, Accumulator, TypeDb) -> {[Instruction'],TypeDb'} +%% Keep track of type information; try to simplify. + +opt([{block,Body1}|Is], AllowFloatOpts, [{block,Body0}|Acc], Ts0) -> + {Body2,Ts} = simplify(Body1, Ts0, AllowFloatOpts), + Body = beam_block:merge_blocks(Body0, Body2), + opt(Is, AllowFloatOpts, [{block,Body}|Acc], Ts); +opt([{block,Body0}|Is], AllowFloatOpts, Acc, Ts0) -> + {Body,Ts} = simplify(Body0, Ts0, AllowFloatOpts), + opt(Is, AllowFloatOpts, [{block,Body}|Acc], Ts); +opt([I0|Is], AllowFloatOpts, Acc, Ts0) -> + case simplify([I0], Ts0, AllowFloatOpts) of + {[],Ts} -> opt(Is, AllowFloatOpts, Acc, Ts); + {[I],Ts} -> opt(Is, AllowFloatOpts, [I|Acc], Ts) + end; +opt([], _, Acc, _) -> reverse(Acc). + +%% simplify(Instruction, TypeDb, AllowFloatOpts) -> NewInstruction +%% Simplify an instruction using type information (this is +%% technically a "strength reduction"). + +simplify(Is, TypeDb, false) -> + simplify(Is, TypeDb, no_float_opt, []); +simplify(Is, TypeDb, true) -> + case are_live_regs_determinable(Is) of + false -> simplify(Is, TypeDb, no_float_opt, []); + true -> simplify(Is, TypeDb, [], []) + end. + +simplify([{set,[D],[{integer,Index},Reg],{bif,element,_}}=I0|Is]=Is0, Ts0, Rs0, Acc0) -> + I = case max_tuple_size(Reg, Ts0) of + Sz when 0 < Index, Index =< Sz -> + {set,[D],[Reg],{get_tuple_element,Index-1}}; + _Other -> I0 + end, + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is, Ts, Rs, [I|checkerror(Acc)]); +simplify([{set,[D0],[A],{bif,'-',{f,0}}}=I|Is]=Is0, Ts0, Rs0, Acc0) + when Rs0 =/= no_float_opt -> + case tdb_find(A, Ts0) of + float -> + {Rs1,Acc1} = load_reg(A, Ts0, Rs0, Acc0), + {D,Rs} = find_dest(D0, Rs1), + Areg = fetch_reg(A, Rs), + Acc = [{set,[D],[Areg],{bif,fnegate,{f,0}}}|clearerror(Acc1)], + Ts = tdb_update([{D0,float}], Ts0), + simplify(Is, Ts, Rs, Acc); + _Other -> + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is, Ts, Rs, [I|checkerror(Acc)]) + end; +simplify([{set,[_],[_],{bif,_,{f,0}}}=I|Is]=Is0, Ts0, Rs0, Acc0) -> + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is, Ts, Rs, [I|checkerror(Acc)]); +simplify([{set,[D0],[A,B],{bif,Op0,{f,0}}}=I|Is]=Is0, Ts0, Rs0, Acc0) + when Rs0 =/= no_float_opt -> + case float_op(Op0, A, B, Ts0) of + no -> + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is, Ts, Rs, [I|checkerror(Acc)]); + {yes,Op} -> + {Rs1,Acc1} = load_reg(A, Ts0, Rs0, Acc0), + {Rs2,Acc2} = load_reg(B, Ts0, Rs1, Acc1), + {D,Rs} = find_dest(D0, Rs2), + Areg = fetch_reg(A, Rs), + Breg = fetch_reg(B, Rs), + Acc = [{set,[D],[Areg,Breg],{bif,Op,{f,0}}}|clearerror(Acc2)], + Ts = tdb_update([{D0,float}], Ts0), + simplify(Is, Ts, Rs, Acc) + end; +simplify([{set,[D],[TupleReg],{get_tuple_element,0}}=I|Is0], Ts0, Rs0, Acc0) -> + case tdb_find(TupleReg, Ts0) of + {tuple,_,[Contents]} -> + Ts = tdb_update([{D,Contents}], Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is0, Ts, Rs, [{set,[D],[Contents],move}|Acc]); + _ -> + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is0, Ts, Rs, [I|checkerror(Acc)]) + end; +simplify([{set,_,_,{'catch',_}}=I|Is]=Is0, _Ts, Rs0, Acc0) -> + Acc = flush_all(Rs0, Is0, Acc0), + simplify(Is, tdb_new(), Rs0, [I|Acc]); +simplify([{test,is_tuple,_,[R]}=I|Is], Ts, Rs, Acc) -> + case tdb_find(R, Ts) of + {tuple,_,_} -> simplify(Is, Ts, Rs, Acc); + _ -> + simplify(Is, Ts, Rs, [I|Acc]) + end; +simplify([{test,test_arity,_,[R,Arity]}=I|Is], Ts0, Rs, Acc) -> + case tdb_find(R, Ts0) of + {tuple,Arity,_} -> + simplify(Is, Ts0, Rs, Acc); + _Other -> + Ts = update(I, Ts0), + simplify(Is, Ts, Rs, [I|Acc]) + end; +simplify([{test,is_eq_exact,Fail,[R,{atom,_}=Atom]}=I|Is0], Ts0, Rs0, Acc0) -> + Acc1 = case tdb_find(R, Ts0) of + {atom,_}=Atom -> Acc0; + {atom,_} -> [{jump,Fail}|Acc0]; + _ -> [I|Acc0] + end, + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc1), + simplify(Is0, Ts, Rs, Acc); +simplify([I|Is]=Is0, Ts0, Rs0, Acc0) -> + Ts = update(I, Ts0), + {Rs,Acc} = flush(Rs0, Is0, Acc0), + simplify(Is, Ts, Rs, [I|Acc]); +simplify([], Ts, Rs, Acc) -> + Is0 = reverse(flush_all(Rs, [], Acc)), + Is1 = opt_fmoves(Is0, []), + Is = add_ftest_heap(Is1), + {Is,Ts}. + +opt_fmoves([{set,[{x,_}=R],[{fr,_}]=Src,fmove}=I1, + {set,[{y,_}]=Dst,[{x,_}=R],move}=I2|Is], Acc) -> + case beam_block:is_killed(R, Is) of + false -> opt_fmoves(Is, [I2,I1|Acc]); + true -> opt_fmoves(Is, [{set,Dst,Src,fmove}|Acc]) + end; +opt_fmoves([I|Is], Acc) -> + opt_fmoves(Is, [I|Acc]); +opt_fmoves([], Acc) -> reverse(Acc). + +clearerror(Is) -> + clearerror(Is, Is). + +clearerror([{set,[],[],fclearerror}|_], OrigIs) -> OrigIs; +clearerror([{set,[],[],fcheckerror}|_], OrigIs) -> [{set,[],[],fclearerror}|OrigIs]; +clearerror([_|Is], OrigIs) -> clearerror(Is, OrigIs); +clearerror([], OrigIs) -> [{set,[],[],fclearerror}|OrigIs]. + +%% update(Instruction, TypeDb) -> NewTypeDb +%% Update the type database to account for executing an instruction. +%% +%% First the cases for instructions inside basic blocks. +update({set,[D],[S],move}, Ts0) -> + Ops = case tdb_find(S, Ts0) of + error -> [{D,kill}]; + Info -> [{D,Info}] + end, + tdb_update(Ops, Ts0); +update({set,[D],[{integer,I},Reg],{bif,element,_}}, Ts0) -> + tdb_update([{Reg,{tuple,I,[]}},{D,kill}], Ts0); +update({set,[D],[_Index,Reg],{bif,element,_}}, Ts0) -> + tdb_update([{Reg,{tuple,0,[]}},{D,kill}], Ts0); +update({set,[D],[S],{get_tuple_element,0}}, Ts) -> + tdb_update([{D,{tuple_element,S,0}}], Ts); +update({set,[D],[S],{bif,float,{f,0}}}, Ts0) -> + %% Make sure we reject non-numeric literal argument. + case possibly_numeric(S) of + true -> tdb_update([{D,float}], Ts0); + false -> Ts0 + end; +update({set,[D],[S1,S2],{bif,'/',{f,0}}}, Ts0) -> + %% Make sure we reject non-numeric literals. + case possibly_numeric(S1) andalso possibly_numeric(S2) of + true -> tdb_update([{D,float}], Ts0); + false -> Ts0 + end; +update({set,[D],[S1,S2],{bif,Op,{f,0}}}, Ts0) -> + case arith_op(Op) of + no -> + tdb_update([{D,kill}], Ts0); + {yes,_} -> + case {tdb_find(S1, Ts0),tdb_find(S2, Ts0)} of + {float,_} -> tdb_update([{D,float}], Ts0); + {_,float} -> tdb_update([{D,float}], Ts0); + {_,_} -> tdb_update([{D,kill}], Ts0) + end + end; +update({set,[],_Src,_Op}, Ts0) -> Ts0; +update({set,[D],_Src,_Op}, Ts0) -> + tdb_update([{D,kill}], Ts0); +update({set,[D1,D2],_Src,_Op}, Ts0) -> + tdb_update([{D1,kill},{D2,kill}], Ts0); +update({allocate,_,_}, Ts) -> Ts; +update({init,D}, Ts) -> + tdb_update([{D,kill}], Ts); +update({kill,D}, Ts) -> + tdb_update([{D,kill}], Ts); +update({'%live',_}, Ts) -> Ts; + +%% Instructions outside of blocks. +update({test,is_float,_Fail,[Src]}, Ts0) -> + tdb_update([{Src,float}], Ts0); +update({test,test_arity,_Fail,[Src,Arity]}, Ts0) -> + tdb_update([{Src,{tuple,Arity,[]}}], Ts0); +update({test,is_eq_exact,_,[Reg,{atom,_}=Atom]}, Ts) -> + case tdb_find(Reg, Ts) of + error -> + Ts; + {tuple_element,TupleReg,0} -> + tdb_update([{TupleReg,{tuple,1,[Atom]}}], Ts); + _ -> + Ts + end; +update({test,_Test,_Fail,_Other}, Ts) -> Ts; +update({call_ext,1,{extfunc,math,Math,1}}, Ts) -> + case is_math_bif(Math, 1) of + true -> tdb_update([{{x,0},float}], Ts); + false -> tdb_kill_xregs(Ts) + end; +update({call_ext,2,{extfunc,math,Math,2}}, Ts) -> + case is_math_bif(Math, 2) of + true -> tdb_update([{{x,0},float}], Ts); + false -> tdb_kill_xregs(Ts) + end; +update({call_ext,3,{extfunc,erlang,setelement,3}}, Ts0) -> + Op = case tdb_find({x,1}, Ts0) of + error -> kill; + Info -> Info + end, + Ts1 = tdb_kill_xregs(Ts0), + tdb_update([{{x,0},Op}], Ts1); +update({call,_Arity,_Func}, Ts) -> tdb_kill_xregs(Ts); +update({call_ext,_Arity,_Func}, Ts) -> tdb_kill_xregs(Ts); +update({make_fun2,_,_,_,_}, Ts) -> tdb_kill_xregs(Ts); + +%% The instruction is unknown. Kill all information. +update(_I, _Ts) -> tdb_new(). + +is_math_bif(cos, 1) -> true; +is_math_bif(cosh, 1) -> true; +is_math_bif(sin, 1) -> true; +is_math_bif(sinh, 1) -> true; +is_math_bif(tan, 1) -> true; +is_math_bif(tanh, 1) -> true; +is_math_bif(acos, 1) -> true; +is_math_bif(acosh, 1) -> true; +is_math_bif(asin, 1) -> true; +is_math_bif(asinh, 1) -> true; +is_math_bif(atan, 1) -> true; +is_math_bif(atanh, 1) -> true; +is_math_bif(erf, 1) -> true; +is_math_bif(erfc, 1) -> true; +is_math_bif(exp, 1) -> true; +is_math_bif(log, 1) -> true; +is_math_bif(log10, 1) -> true; +is_math_bif(sqrt, 1) -> true; +is_math_bif(atan2, 2) -> true; +is_math_bif(pow, 2) -> true; +is_math_bif(pi, 0) -> true; +is_math_bif(_, _) -> false. + +%% Reject non-numeric literals. +possibly_numeric({x,_}) -> true; +possibly_numeric({y,_}) -> true; +possibly_numeric({integer,_}) -> true; +possibly_numeric({float,_}) -> true; +possibly_numeric(_) -> false. + +max_tuple_size(Reg, Ts) -> + case tdb_find(Reg, Ts) of + {tuple,Sz,_} -> Sz; + _Other -> 0 + end. + +float_op('/', A, B, _) -> + case possibly_numeric(A) andalso possibly_numeric(B) of + true -> {yes,fdiv}; + false -> no + end; +float_op(Op, {float,_}, B, _) -> + case possibly_numeric(B) of + true -> arith_op(Op); + false -> no + end; +float_op(Op, A, {float,_}, _) -> + case possibly_numeric(A) of + true -> arith_op(Op); + false -> no + end; +float_op(Op, A, B, Ts) -> + case {tdb_find(A, Ts),tdb_find(B, Ts)} of + {float,_} -> arith_op(Op); + {_,float} -> arith_op(Op); + {_,_} -> no + end. + +find_dest(V, Rs0) -> + case find_reg(V, Rs0) of + {ok,FR} -> + {FR,mark(V, Rs0, dirty)}; + error -> + Rs = put_reg(V, Rs0, dirty), + {ok,FR} = find_reg(V, Rs), + {FR,Rs} + end. + +load_reg({float,_}=F, _, Rs0, Is0) -> + Rs = put_reg(F, Rs0, clean), + {ok,FR} = find_reg(F, Rs), + Is = [{set,[FR],[F],fmove}|Is0], + {Rs,Is}; +load_reg(V, Ts, Rs0, Is0) -> + case find_reg(V, Rs0) of + {ok,_FR} -> {Rs0,Is0}; + error -> + Rs = put_reg(V, Rs0, clean), + {ok,FR} = find_reg(V, Rs), + Op = case tdb_find(V, Ts) of + float -> fmove; + _ -> fconv + end, + Is = [{set,[FR],[V],Op}|Is0], + {Rs,Is} + end. + +arith_op('+') -> {yes,fadd}; +arith_op('-') -> {yes,fsub}; +arith_op('*') -> {yes,fmul}; +arith_op('/') -> {yes,fdiv}; +arith_op(_) -> no. + +flush(no_float_opt, _, Acc) -> {no_float_opt,Acc}; +flush(Rs, [{set,[_],[],{put_tuple,_}}|_]=Is0, Acc0) -> + Acc = flush_all(Rs, Is0, Acc0), + {[],Acc}; +flush(Rs0, [{set,Ds,Ss,_Op}|_], Acc0) -> + Save = gb_sets:from_list(Ss), + Acc = save_regs(Rs0, Save, Acc0), + Rs1 = foldl(fun(S, A) -> mark(S, A, clean) end, Rs0, Ss), + Kill = gb_sets:from_list(Ds), + Rs = kill_regs(Rs1, Kill), + {Rs,Acc}; +flush(Rs0, Is, Acc0) -> + Acc = flush_all(Rs0, Is, Acc0), + {[],Acc}. + +flush_all(no_float_opt, _, Acc) -> Acc; +flush_all([{_,{float,_},_}|Rs], Is, Acc) -> + flush_all(Rs, Is, Acc); +flush_all([{I,V,dirty}|Rs], Is, Acc0) -> + Acc = checkerror(Acc0), + case beam_block:is_killed(V, Is) of + true -> flush_all(Rs, Is, Acc); + false -> flush_all(Rs, Is, [{set,[V],[{fr,I}],fmove}|Acc]) + end; +flush_all([{_,_,clean}|Rs], Is, Acc) -> flush_all(Rs, Is, Acc); +flush_all([free|Rs], Is, Acc) -> flush_all(Rs, Is, Acc); +flush_all([], _, Acc) -> Acc. + +save_regs(Rs, Save, Acc) -> + foldl(fun(R, A) -> save_reg(R, Save, A) end, Acc, Rs). + +save_reg({I,V,dirty}, Save, Acc) -> + case gb_sets:is_member(V, Save) of + true -> [{set,[V],[{fr,I}],fmove}|checkerror(Acc)]; + false -> Acc + end; +save_reg(_, _, Acc) -> Acc. + +kill_regs(Rs, Kill) -> + map(fun(R) -> kill_reg(R, Kill) end, Rs). + +kill_reg({_,V,_}=R, Kill) -> + case gb_sets:is_member(V, Kill) of + true -> free; + false -> R + end; +kill_reg(R, _) -> R. + +mark(V, [{I,V,_}|Rs], Mark) -> [{I,V,Mark}|Rs]; +mark(V, [R|Rs], Mark) -> [R|mark(V, Rs, Mark)]; +mark(_, [], _) -> []. + +fetch_reg(V, [{I,V,_}|_]) -> {fr,I}; +fetch_reg(V, [_|SRs]) -> fetch_reg(V, SRs). + +find_reg(V, [{I,V,_}|_]) -> {ok,{fr,I}}; +find_reg(V, [_|SRs]) -> find_reg(V, SRs); +find_reg(_, []) -> error. + +put_reg(V, Rs, Dirty) -> put_reg_1(V, Rs, Dirty, 0). + +put_reg_1(V, [free|Rs], Dirty, I) -> [{I,V,Dirty}|Rs]; +put_reg_1(V, [R|Rs], Dirty, I) -> [R|put_reg_1(V, Rs, Dirty, I+1)]; +put_reg_1(V, [], Dirty, I) -> [{I,V,Dirty}]. + +checkerror(Is) -> + checkerror_1(Is, Is). + +checkerror_1([{set,[],[],fcheckerror}|_], OrigIs) -> OrigIs; +checkerror_1([{set,[],[],fclearerror}|_], OrigIs) -> OrigIs; +checkerror_1([{set,_,_,{bif,fadd,_}}|_], OrigIs) -> checkerror_2(OrigIs); +checkerror_1([{set,_,_,{bif,fsub,_}}|_], OrigIs) -> checkerror_2(OrigIs); +checkerror_1([{set,_,_,{bif,fmul,_}}|_], OrigIs) -> checkerror_2(OrigIs); +checkerror_1([{set,_,_,{bif,fdiv,_}}|_], OrigIs) -> checkerror_2(OrigIs); +checkerror_1([{set,_,_,{bif,fnegate,_}}|_], OrigIs) -> checkerror_2(OrigIs); +checkerror_1([_|Is], OrigIs) -> checkerror_1(Is, OrigIs); +checkerror_1([], OrigIs) -> OrigIs. + +checkerror_2(OrigIs) -> [{set,[],[],fcheckerror}|OrigIs]. + +add_ftest_heap(Is) -> + add_ftest_heap_1(reverse(Is), 0, []). + +add_ftest_heap_1([{set,_,[{fr,_}],fmove}=I|Is], Floats, Acc) -> + add_ftest_heap_1(Is, Floats+1, [I|Acc]); +add_ftest_heap_1([{allocate,_,_}=I|Is], 0, Acc) -> + reverse(Is, [I|Acc]); +add_ftest_heap_1([{allocate,Regs,{Z,Stk,Heap,Inits}}|Is], Floats, Acc) -> + reverse(Is, [{allocate,Regs,{Z,Stk,Heap,Floats,Inits}}|Acc]); +add_ftest_heap_1([I|Is], Floats, Acc) -> + add_ftest_heap_1(Is, Floats, [I|Acc]); +add_ftest_heap_1([], 0, Acc) -> + Acc; +add_ftest_heap_1([], Floats, Is) -> + Regs = beam_block:live_at_entry(Is), + [{allocate,Regs,{nozero,nostack,0,Floats,[]}}|Is]. + +are_live_regs_determinable([{allocate,_,_}|_]) -> true; +are_live_regs_determinable([{'%live',_}|_]) -> true; +are_live_regs_determinable([_|Is]) -> are_live_regs_determinable(Is); +are_live_regs_determinable([]) -> false. + + +%%% Routines for maintaining a type database. The type database +%%% associates type information with registers. +%%% +%%% {tuple,Size,First} means that the corresponding register contains a +%%% tuple with *at least* Size elements. An tuple with unknown +%%% size is represented as {tuple,0}. First is either [] (meaning that +%%% the tuple's first element is unknown) or [FirstElement] (the contents +%%% of the first element). +%%% +%%% 'float' means that the register contains a float. + +%% tdb_new() -> EmptyDataBase +%% Creates a new, empty type database. + +tdb_new() -> []. + +%% tdb_find(Register, Db) -> Information|error +%% Returns type information or the atom error if there are no type +%% information available for Register. + +tdb_find(Key, [{K,_}|_]) when Key < K -> error; +tdb_find(Key, [{Key,Info}|_]) -> Info; +tdb_find(Key, [_|Db]) -> tdb_find(Key, Db); +tdb_find(_, []) -> error. + +%% tdb_update([UpdateOp], Db) -> NewDb +%% UpdateOp = {Register,kill}|{Register,NewInfo} +%% Updates a type database. If a 'kill' operation is given, the type +%% information for that register will be removed from the database. +%% A kill operation takes precende over other operations for the same +%% register (i.e. [{{x,0},kill},{{x,0},{tuple,5}}] means that the +%% the existing type information, if any, will be discarded, and the +%% the '{tuple,5}' information ignored. +%% +%% If NewInfo information is given and there exists information about +%% the register, the old and new type information will be merged. +%% For instance, {tuple,5} and {tuple,10} will be merged to produce +%% {tuple,10}. + +tdb_update(Uis0, Ts0) -> + Uis1 = filter(fun ({{x,_},_Op}) -> true; + ({{y,_},_Op}) -> true; + (_) -> false + end, Uis0), + tdb_update1(lists:sort(Uis1), Ts0). + +tdb_update1([{Key,kill}|Ops], [{K,_Old}|_]=Db) when Key < K -> + tdb_update1(remove_key(Key, Ops), Db); +tdb_update1([{Key,_New}=New|Ops], [{K,_Old}|_]=Db) when Key < K -> + [New|tdb_update1(Ops, Db)]; +tdb_update1([{Key,kill}|Ops], [{Key,_}|Db]) -> + tdb_update1(remove_key(Key, Ops), Db); +tdb_update1([{Key,NewInfo}|Ops], [{Key,OldInfo}|Db]) -> + [{Key,merge_type_info(NewInfo, OldInfo)}|tdb_update1(Ops, Db)]; +tdb_update1([{_,_}|_]=Ops, [Old|Db]) -> + [Old|tdb_update1(Ops, Db)]; +tdb_update1([{Key,kill}|Ops], []) -> + tdb_update1(remove_key(Key, Ops), []); +tdb_update1([{_,_}=New|Ops], []) -> + [New|tdb_update1(Ops, [])]; +tdb_update1([], Db) -> Db. + +%% tdb_kill_xregs(Db) -> NewDb +%% Kill all information about x registers. Also kill all tuple_element +%% dependencies from y registers to x registers. + +tdb_kill_xregs([{{x,_},_Type}|Db]) -> tdb_kill_xregs(Db); +tdb_kill_xregs([{{y,_},{tuple_element,{x,_},_}}|Db]) -> tdb_kill_xregs(Db); +tdb_kill_xregs([Any|Db]) -> [Any|tdb_kill_xregs(Db)]; +tdb_kill_xregs([]) -> []. + +remove_key(Key, [{Key,_Op}|Ops]) -> remove_key(Key, Ops); +remove_key(_, Ops) -> Ops. + +merge_type_info(I, I) -> I; +merge_type_info({tuple,Sz1,Same}, {tuple,Sz2,Same}=Max) when Sz1 < Sz2 -> + Max; +merge_type_info({tuple,Sz1,Same}=Max, {tuple,Sz2,Same}) when Sz1 > Sz2 -> + Max; +merge_type_info({tuple,Sz1,[]}, {tuple,Sz2,First}) -> + merge_type_info({tuple,Sz1,First}, {tuple,Sz2,First}); +merge_type_info({tuple,Sz1,First}, {tuple,Sz2,_}) -> + merge_type_info({tuple,Sz1,First}, {tuple,Sz2,First}); +merge_type_info(NewType, _) -> + verify_type(NewType), + NewType. + +verify_type({tuple,Sz,[]}) when is_integer(Sz) -> ok; +verify_type({tuple,Sz,[_]}) when is_integer(Sz) -> ok; +verify_type({tuple_element,_,_}) -> ok; +verify_type(float) -> ok; +verify_type({atom,_}) -> ok. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_validator.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_validator.erl new file mode 100644 index 0000000000..87c1c54d0f --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/beam_validator.erl @@ -0,0 +1,1022 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: beam_validator.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ + +-module(beam_validator). + +-export([file/1,files/1]). + +%% Interface for compiler. +-export([module/2,format_error/1]). + +-import(lists, [reverse/1,foldl/3]). + +-define(MAXREG, 1024). + +-define(DEBUG, 1). +-undef(DEBUG). +-ifdef(DEBUG). +-define(DBG_FORMAT(F, D), (io:format((F), (D)))). +-else. +-define(DBG_FORMAT(F, D), ok). +-endif. + +%%% +%%% API functions. +%%% + +files([F|Fs]) -> + ?DBG_FORMAT("# Verifying: ~p~n", [F]), + case file(F) of + ok -> ok; + {error,Es} -> + io:format("~p:~n~s~n", [F,format_error(Es)]) + end, + files(Fs); +files([]) -> ok. + +file(Name) when is_list(Name) -> + case case filename:extension(Name) of + ".S" -> s_file(Name); + ".beam" -> beam_file(Name) + end of + [] -> ok; + Es -> {error,Es} + end. + +%% To be called by the compiler. +module({Mod,Exp,Attr,Fs,Lc}=Code, _Opts) + when is_atom(Mod), is_list(Exp), is_list(Attr), is_integer(Lc) -> + case validate(Fs) of + [] -> {ok,Code}; + Es0 -> + Es = [{?MODULE,E} || E <- Es0], + {error,[{atom_to_list(Mod),Es}]} + end. + +format_error([]) -> []; +format_error([{{M,F,A},{I,Off,Desc}}|Es]) -> + [io_lib:format(" ~p:~p/~p+~p:~n ~p - ~p~n", + [M,F,A,Off,I,Desc])|format_error(Es)]; +format_error({{_M,F,A},{I,Off,Desc}}) -> + io_lib:format( + "function ~p/~p+~p:~n" + " Internal consistency check failed - please report this bug.~n" + " Instruction: ~p~n" + " Error: ~p:~n", [F,A,Off,I,Desc]). + +%%% +%%% Local functions follow. +%%% + +s_file(Name) -> + {ok,Is} = file:consult(Name), + Fs = find_functions(Is), + validate(Fs). + +find_functions(Fs) -> + find_functions_1(Fs, none, [], []). + +find_functions_1([{function,Name,Arity,Entry}|Is], Func, FuncAcc, Acc0) -> + Acc = add_func(Func, FuncAcc, Acc0), + find_functions_1(Is, {Name,Arity,Entry}, [], Acc); +find_functions_1([I|Is], Func, FuncAcc, Acc) -> + find_functions_1(Is, Func, [I|FuncAcc], Acc); +find_functions_1([], Func, FuncAcc, Acc) -> + reverse(add_func(Func, FuncAcc, Acc)). + +add_func(none, _, Acc) -> Acc; +add_func({Name,Arity,Entry}, Is, Acc) -> + [{function,Name,Arity,Entry,reverse(Is)}|Acc]. + +beam_file(Name) -> + try beam_disasm:file(Name) of + {error,beam_lib,Reason} -> [{beam_lib,Reason}]; + {beam_file,L} -> + {value,{code,Code0}} = lists:keysearch(code, 1, L), + Code = beam_file_1(Code0, []), + validate(Code) + catch _:_ -> [disassembly_failed] + end. + +beam_file_1([F0|Fs], Acc) -> + F = conv_func(F0), + beam_file_1(Fs, [F|Acc]); +beam_file_1([], Acc) -> reverse(Acc). + +%% Convert from the disassembly format to the internal format +%% used by the compiler (as passed to the assembler). + +conv_func(Is) -> + conv_func_1(labels(Is)). + +conv_func_1({Ls,[{func_info,[{atom,M},{atom,F},Ar]}, + {label,Entry}=Le|Is]}) -> + %% The entry label gets maybe not correct here + {function,F,Ar,Entry, + [{label,L}||L<-Ls]++[{func_info,{atom,M},{atom,F},Ar},Le|Is]}. + +%%% +%%% The validator follows. +%%% +%%% The purpose of the validator is find errors in the generated code +%%% that may cause the emulator to crash or behave strangely. +%%% We don't care about type errors in the user's code that will +%%% cause a proper exception at run-time. +%%% + +%%% Things currently not checked. XXX +%%% +%%% - That floating point registers are initialized before used. +%%% - That fclearerror and fcheckerror are used properly. +%%% - Heap allocation for floating point numbers. +%%% - Heap allocation for binaries. +%%% - That a catchtag or trytag is not overwritten by the wrong +%%% type of instruction (such as move/2). +%%% - Make sure that all catchtags and trytags have been removed +%%% from the stack at return/tail call. +%%% - Verify get_list instructions. +%%% + +%% validate([Function]) -> [] | [Error] +%% A list of functions with their code. The code is in the same +%% format as used in the compiler and in .S files. +validate([]) -> []; +validate([{function,Name,Ar,Entry,Code}|Fs]) -> + try validate_1(Code, Name, Ar, Entry) of + _ -> validate(Fs) + catch + Error -> + [Error|validate(Fs)]; + error:Error -> + [validate_error(Error, Name, Ar)|validate(Fs)] + end. + +-ifdef(DEBUG). +validate_error(Error, Name, Ar) -> + exit(validate_error_1(Error, Name, Ar)). +-else. +validate_error(Error, Name, Ar) -> + validate_error_1(Error, Name, Ar). +-endif. +validate_error_1(Error, Name, Ar) -> + {{'_',Name,Ar}, + {internal_error,'_',{Error,erlang:get_stacktrace()}}}. + +-record(st, %Emulation state + {x=init_regs(0, term), %x register info. + y=init_regs(0, initialized), %y register info. + numy=none, %Number of y registers. + h=0, %Available heap size. + ct=[] %List of hot catch/try labels + }). + +-record(vst, %Validator state + {current=none, %Current state + branched=gb_trees:empty() %States at jumps + }). + +-ifdef(DEBUG). +print_st(#st{x=Xs,y=Ys,numy=NumY,h=H,ct=Ct}) -> + io:format(" #st{x=~p~n" + " y=~p~n" + " numy=~p,h=~p,ct=~w~n", + [gb_trees:to_list(Xs),gb_trees:to_list(Ys),NumY,H,Ct]). +-endif. + +validate_1(Is, Name, Arity, Entry) -> + validate_2(labels(Is), Name, Arity, Entry). + +validate_2({Ls1,[{func_info,{atom,Mod},{atom,Name},Arity}=_F|Is]}, + Name, Arity, Entry) -> + lists:foreach(fun (_L) -> ?DBG_FORMAT(" ~p.~n", [_L]) end, Ls1), + ?DBG_FORMAT(" ~p.~n", [_F]), + validate_3(labels(Is), Name, Arity, Entry, Mod, Ls1); +validate_2({Ls1,Is}, Name, Arity, _Entry) -> + error({{'_',Name,Arity},{first(Is),length(Ls1),illegal_instruction}}). + +validate_3({Ls2,Is}, Name, Arity, Entry, Mod, Ls1) -> + lists:foreach(fun (_L) -> ?DBG_FORMAT(" ~p.~n", [_L]) end, Ls2), + Offset = 1 + length(Ls2), + case lists:member(Entry, Ls2) of + true -> + St = init_state(Arity), + Vst = #vst{current=St, + branched=gb_trees_from_list([{L,St} || L <- Ls1])}, + valfun(Is, {Mod,Name,Arity}, Offset, Vst); + false -> + error({{Mod,Name,Arity},{first(Is),Offset,no_entry_label}}) + end. + +first([X|_]) -> X; +first([]) -> []. + +labels(Is) -> + labels_1(Is, []). + +labels_1([{label,L}|Is], R) -> + labels_1(Is, [L|R]); +labels_1(Is, R) -> + {lists:reverse(R),Is}. + +init_state(Arity) -> + Xs = init_regs(Arity, term), + Ys = init_regs(0, initialized), + #st{x=Xs,y=Ys,numy=none,h=0,ct=[]}. + +init_regs(0, _) -> + gb_trees:empty(); +init_regs(N, Type) -> + gb_trees_from_list([{R,Type} || R <- lists:seq(0, N-1)]). + +valfun([], _MFA, _Offset, Vst) -> Vst; +valfun([I|Is], MFA, Offset, Vst) -> + ?DBG_FORMAT(" ~p.\n", [I]), + valfun(Is, MFA, Offset+1, + try valfun_1(I, Vst) + catch Error -> + error({MFA,{I,Offset,Error}}) + end). + +%% Instructions that are allowed in dead code or when failing, +%% that is while the state is undecided in some way. +valfun_1({label,Lbl}, #vst{current=St0,branched=B}=Vst) -> + St = merge_states(Lbl, St0, B), + Vst#vst{current=St,branched=gb_trees:enter(Lbl, St, B)}; +valfun_1(_I, #vst{current=none}=Vst) -> + %% Ignore instructions after erlang:error/1,2, which + %% the original R10B compiler thought would return. + ?DBG_FORMAT("Ignoring ~p\n", [_I]), + Vst; +valfun_1({badmatch,Src}, Vst) -> + assert_term(Src, Vst), + kill_state(Vst); +valfun_1({case_end,Src}, Vst) -> + assert_term(Src, Vst), + kill_state(Vst); +valfun_1(if_end, Vst) -> + kill_state(Vst); +valfun_1({try_case_end,Src}, Vst) -> + assert_term(Src, Vst), + kill_state(Vst); +%% Instructions that can not cause exceptions +valfun_1({move,Src,Dst}, Vst) -> + Type = get_term_type(Src, Vst), + set_type_reg(Type, Dst, Vst); +valfun_1({fmove,Src,{fr,_}}, Vst) -> + assert_type(float, Src, Vst); +valfun_1({fmove,{fr,_},Dst}, Vst) -> + set_type_reg({float,[]}, Dst, Vst); +valfun_1({kill,{y,_}=Reg}, Vst) -> + set_type_y(initialized, Reg, Vst); +valfun_1({test_heap,Heap,Live}, Vst) -> + test_heap(Heap, Live, Vst); +valfun_1({bif,_Op,nofail,Src,Dst}, Vst) -> + validate_src(Src, Vst), + set_type_reg(term, Dst, Vst); +%% Put instructions. +valfun_1({put_list,A,B,Dst}, Vst0) -> + assert_term(A, Vst0), + assert_term(B, Vst0), + Vst = eat_heap(2, Vst0), + set_type_reg(cons, Dst, Vst); +valfun_1({put_tuple,Sz,Dst}, Vst0) when is_integer(Sz) -> + Vst = eat_heap(1, Vst0), + set_type_reg({tuple,Sz}, Dst, Vst); +valfun_1({put,Src}, Vst) -> + assert_term(Src, Vst), + eat_heap(1, Vst); +valfun_1({put_string,Sz,_,Dst}, Vst0) when is_integer(Sz) -> + Vst = eat_heap(2*Sz, Vst0), + set_type_reg(cons, Dst, Vst); +%% Allocate and deallocate, et.al +valfun_1({allocate,Stk,Live}, Vst) -> + allocate(false, Stk, 0, Live, Vst); +valfun_1({allocate_heap,Stk,Heap,Live}, Vst) -> + allocate(false, Stk, Heap, Live, Vst); +valfun_1({allocate_zero,Stk,Live}, Vst) -> + allocate(true, Stk, 0, Live, Vst); +valfun_1({allocate_heap_zero,Stk,Heap,Live}, Vst) -> + allocate(true, Stk, Heap, Live, Vst); +valfun_1({init,{y,_}=Reg}, Vst) -> + set_type_y(initialized, Reg, Vst); +valfun_1({deallocate,StkSize}, #vst{current=#st{numy=StkSize,ct=[]}}=Vst) -> + deallocate(Vst); +valfun_1({deallocate,_}, #vst{current=#st{numy=NumY,ct=[]}}) -> + error({allocated,NumY}); +valfun_1({deallocate,_}, #vst{current=#st{ct=Fails}}) -> + error({catch_try_stack,Fails}); +%% Catch & try. +valfun_1({'catch',Dst,{f,Fail}}, Vst0) when Fail /= none -> + Vst = #vst{current=#st{ct=Fails}=St} = + set_type_y({catchtag,Fail}, Dst, Vst0), + Vst#vst{current=St#st{ct=[Fail|Fails]}}; +valfun_1({'try',Dst,{f,Fail}}, Vst0) -> + Vst = #vst{current=#st{ct=Fails}=St} = + set_type_y({trytag,Fail}, Dst, Vst0), + Vst#vst{current=St#st{ct=[Fail|Fails]}}; +%% Do a postponed state branch if necessary and try next set of instructions +valfun_1(I, #vst{current=#st{ct=[]}}=Vst) -> + valfun_2(I, Vst); +valfun_1(I, #vst{current=#st{ct=Fails}}=Vst0) -> + %% Perform a postponed state branch + Vst = #vst{current=St} = lists:foldl(fun branch_state/2, Vst0, Fails), + valfun_2(I, Vst#vst{current=St#st{ct=[]}}). + +%% Instructions that can cause exceptions. +valfun_2({apply,Live}, Vst) -> + call(Live+2, Vst); +valfun_2({apply_last,Live,_}, Vst) -> + tail_call(Live+2, Vst); +valfun_2({call_fun,Live}, Vst) -> + call(Live, Vst); +valfun_2({call,Live,_}, Vst) -> + call(Live, Vst); +valfun_2({call_ext,Live,Func}, Vst) -> + call(Func, Live, Vst); +valfun_2({call_only,Live,_}, Vst) -> + tail_call(Live, Vst); +valfun_2({call_ext_only,Live,_}, Vst) -> + tail_call(Live, Vst); +valfun_2({call_last,Live,_,_}, Vst) -> + tail_call(Live, Vst); +valfun_2({call_ext_last,Live,_,_}, Vst) -> + tail_call(Live, Vst); +valfun_2({make_fun,_,_,Live}, Vst) -> + call(Live, Vst); +valfun_2({make_fun2,_,_,_,Live}, Vst) -> + call(Live, Vst); +%% Floating point. +valfun_2({fconv,Src,{fr,_}}, Vst) -> + assert_term(Src, Vst); +valfun_2({bif,fadd,_,[{fr,_},{fr,_}],{fr,_}}, Vst) -> + Vst; +valfun_2({bif,fdiv,_,[{fr,_},{fr,_}],{fr,_}}, Vst) -> + Vst; +valfun_2({bif,fmul,_,[{fr,_},{fr,_}],{fr,_}}, Vst) -> + Vst; +valfun_2({bif,fnegate,_,[{fr,_}],{fr,_}}, Vst) -> + Vst; +valfun_2({bif,fsub,_,[{fr,_},{fr,_}],{fr,_}}, Vst) -> + Vst; +valfun_2(fclearerror, Vst) -> + Vst; +valfun_2({fcheckerror,_}, Vst) -> + Vst; +%% Other BIFs +valfun_2({bif,element,{f,Fail},[Pos,Tuple],Dst}, Vst0) -> + TupleType0 = get_term_type(Tuple, Vst0), + PosType = get_term_type(Pos, Vst0), + Vst1 = branch_state(Fail, Vst0), + TupleType = upgrade_type({tuple,[get_tuple_size(PosType)]}, TupleType0), + Vst = set_type(TupleType, Tuple, Vst1), + set_type_reg(term, Dst, Vst); +valfun_2({bif,Op,{f,Fail},Src,Dst}, Vst0) -> + validate_src(Src, Vst0), + Vst = branch_state(Fail, Vst0), + Type = bif_type(Op, Src, Vst), + set_type_reg(Type, Dst, Vst); +valfun_2(return, #vst{current=#st{numy=none}}=Vst) -> + kill_state(Vst); +valfun_2(return, #vst{current=#st{numy=NumY}}) -> + error({stack_frame,NumY}); +valfun_2({jump,{f,_}}, #vst{current=none}=Vst) -> + %% Must be an unreachable jump which was not optimized away. + %% Do nothing. + Vst; +valfun_2({jump,{f,Lbl}}, Vst) -> + kill_state(branch_state(Lbl, Vst)); +valfun_2({loop_rec,{f,Fail},Dst}, Vst0) -> + Vst = branch_state(Fail, Vst0), + set_type_reg(term, Dst, Vst); +valfun_2(remove_message, Vst) -> + Vst; +valfun_2({wait,_}, Vst) -> + kill_state(Vst); +valfun_2({wait_timeout,_,Src}, Vst) -> + assert_term(Src, Vst); +valfun_2({loop_rec_end,_}, Vst) -> + kill_state(Vst); +valfun_2(timeout, #vst{current=St}=Vst) -> + Vst#vst{current=St#st{x=init_regs(0, term)}}; +valfun_2(send, Vst) -> + call(2, Vst); +%% Catch & try. +valfun_2({catch_end,Reg}, Vst0) -> + case get_type(Reg, Vst0) of + {catchtag,_} -> + Vst = #vst{current=St} = set_type_reg(initialized, Reg, Vst0), + Xs = gb_trees_from_list([{0,term}]), + Vst#vst{current=St#st{x=Xs}}; + Type -> + error({bad_type,Type}) + end; +valfun_2({try_end,Reg}, Vst) -> + case get_type(Reg, Vst) of + {trytag,_} -> + set_type_reg(initialized, Reg, Vst); + Type -> + error({bad_type,Type}) + end; +valfun_2({try_case,Reg}, Vst0) -> + case get_type(Reg, Vst0) of + {trytag,_} -> + Vst = #vst{current=St} = set_type_reg(initialized, Reg, Vst0), + Xs = gb_trees_from_list([{0,{atom,[]}},{1,term},{2,term}]), + Vst#vst{current=St#st{x=Xs}}; + Type -> + error({bad_type,Type}) + end; +valfun_2({set_tuple_element,Src,Tuple,I}, Vst) -> + assert_term(Src, Vst), + assert_type({tuple_element,I+1}, Tuple, Vst); +%% Match instructions. +valfun_2({select_val,Src,{f,Fail},{list,Choices}}, Vst) -> + assert_term(Src, Vst), + Lbls = [L || {f,L} <- Choices]++[Fail], + kill_state(foldl(fun(L, S) -> branch_state(L, S) end, Vst, Lbls)); +valfun_2({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) -> + assert_type(tuple, Tuple, Vst), + kill_state(branch_arities(Choices, Tuple, branch_state(Fail, Vst))); +valfun_2({get_list,Src,D1,D2}, Vst0) -> + assert_term(Src, Vst0), + Vst = set_type_reg(term, D1, Vst0), + set_type_reg(term, D2, Vst); +valfun_2({get_tuple_element,Src,I,Dst}, Vst) -> + assert_type({tuple_element,I+1}, Src, Vst), + set_type_reg(term, Dst, Vst); +valfun_2({bs_restore,_}, Vst) -> + Vst; +valfun_2({bs_save,_}, Vst) -> + Vst; +valfun_2({bs_start_match,{f,Fail},Src}, Vst) -> + assert_term(Src, Vst), + branch_state(Fail, Vst); +valfun_2({test,bs_skip_bits,{f,Fail},[Src,_,_]}, Vst) -> + assert_term(Src, Vst), + branch_state(Fail, Vst); +valfun_2({test,_,{f,Fail},[_,_,_,Dst]}, Vst0) -> + Vst = branch_state(Fail, Vst0), + set_type_reg({integer,[]}, Dst, Vst); +valfun_2({test,bs_test_tail,{f,Fail},_}, Vst) -> + branch_state(Fail, Vst); +%% Other test instructions. +valfun_2({test,is_float,{f,Lbl},[Float]}, Vst0) -> + assert_term(Float, Vst0), + Vst = branch_state(Lbl, Vst0), + set_type({float,[]}, Float, Vst); +valfun_2({test,is_tuple,{f,Lbl},[Tuple]}, Vst0) -> + assert_term(Tuple, Vst0), + Vst = branch_state(Lbl, Vst0), + set_type({tuple,[0]}, Tuple, Vst); +valfun_2({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst0) when is_integer(Sz) -> + assert_type(tuple, Tuple, Vst0), + Vst = branch_state(Lbl, Vst0), + set_type_reg({tuple,Sz}, Tuple, Vst); +valfun_2({test,_Op,{f,Lbl},Src}, Vst) -> + validate_src(Src, Vst), + branch_state(Lbl, Vst); +valfun_2({bs_add,{f,Fail},[A,B,_],Dst}, Vst0) -> + assert_term(A, Vst0), + assert_term(B, Vst0), + Vst = branch_state(Fail, Vst0), + set_type_reg({integer,[]}, Dst, Vst); +valfun_2({bs_bits_to_bytes,{f,Fail},Src,Dst}, Vst0) -> + assert_term(Src, Vst0), + Vst = branch_state(Fail, Vst0), + set_type_reg({integer,[]}, Dst, Vst); +valfun_2({bs_init2,{f,Fail},_,Heap,_,_,Dst}, Vst0) -> + Vst1 = heap_alloc(Heap, Vst0), + Vst = branch_state(Fail, Vst1), + set_type_reg(binary, Dst, Vst); +valfun_2({bs_put_string,Sz,_}, Vst) when is_integer(Sz) -> + Vst; +valfun_2({bs_put_binary,{f,Fail},_,_,_,Src}, Vst0) -> + assert_term(Src, Vst0), + branch_state(Fail, Vst0); +valfun_2({bs_put_float,{f,Fail},_,_,_,Src}, Vst0) -> + assert_term(Src, Vst0), + branch_state(Fail, Vst0); +valfun_2({bs_put_integer,{f,Fail},_,_,_,Src}, Vst0) -> + assert_term(Src, Vst0), + branch_state(Fail, Vst0); +%% Old bit syntax construction (before R10B). +valfun_2({bs_init,_,_}, Vst) -> Vst; +valfun_2({bs_need_buf,_}, Vst) -> Vst; +valfun_2({bs_final,{f,Fail},Dst}, Vst0) -> + Vst = branch_state(Fail, Vst0), + set_type_reg(binary, Dst, Vst); +%% Misc. +valfun_2({'%live',Live}, Vst) -> + verify_live(Live, Vst), + Vst; +valfun_2(_, _) -> + error(unknown_instruction). + +kill_state(#vst{current=#st{ct=[]}}=Vst) -> + Vst#vst{current=none}; +kill_state(#vst{current=#st{ct=Fails}}=Vst0) -> + Vst = lists:foldl(fun branch_state/2, Vst0, Fails), + Vst#vst{current=none}. + +%% A "plain" call. +%% The stackframe must have a known size and be initialized. +%% The instruction will return to the instruction following the call. +call(Live, #vst{current=St}=Vst) -> + verify_live(Live, Vst), + verify_y_init(Vst), + Xs = gb_trees_from_list([{0,term}]), + Vst#vst{current=St#st{x=Xs}}. + +%% A "plain" call. +%% The stackframe must have a known size and be initialized. +%% The instruction will return to the instruction following the call. +call(Name, Live, #vst{current=St}=Vst) -> + verify_live(Live, Vst), + case return_type(Name, Vst) of + exception -> + kill_state(Vst); + Type -> + verify_y_init(Vst), + Xs = gb_trees_from_list([{0,Type}]), + Vst#vst{current=St#st{x=Xs}} + end. + +%% Tail call. +%% The stackframe must have a known size and be initialized. +%% Does not return to the instruction following the call. +tail_call(Live, Vst) -> + kill_state(call(Live, Vst)). + +allocate(Zero, Stk, Heap, Live, #vst{current=#st{numy=none}=St}=Vst) -> + verify_live(Live, Vst), + Ys = init_regs(case Zero of + true -> Stk; + false -> 0 + end, initialized), + Vst#vst{current=St#st{y=Ys,numy=Stk,h=heap_alloc_1(Heap)}}; +allocate(_, _, _, _, #vst{current=#st{numy=Numy}}) -> + error({existing_stack_frame,{size,Numy}}). + +deallocate(#vst{current=St}=Vst) -> + Vst#vst{current=St#st{y=init_regs(0, initialized),numy=none}}. + +test_heap(Heap, Live, Vst) -> + verify_live(Live, Vst), + heap_alloc(Heap, Vst). + +heap_alloc(Heap, #vst{current=St}=Vst) -> + Vst#vst{current=St#st{h=heap_alloc_1(Heap)}}. + +heap_alloc_1({alloc,Alloc}) -> + {value,{_,Heap}} = lists:keysearch(words, 1, Alloc), + Heap; +heap_alloc_1(Heap) when is_integer(Heap) -> Heap. + + +set_type(Type, {x,_}=Reg, Vst) -> set_type_reg(Type, Reg, Vst); +set_type(Type, {y,_}=Reg, Vst) -> set_type_y(Type, Reg, Vst); +set_type(_, _, #vst{}=Vst) -> Vst. + +set_type_reg(Type, {x,X}, #vst{current=#st{x=Xs}=St}=Vst) + when 0 =< X, X < ?MAXREG -> + Vst#vst{current=St#st{x=gb_trees:enter(X, Type, Xs)}}; +set_type_reg(Type, Reg, Vst) -> + set_type_y(Type, Reg, Vst). + +set_type_y(Type, {y,Y}=Reg, #vst{current=#st{y=Ys,numy=NumY}=St}=Vst) + when is_integer(Y), 0 =< Y, Y < ?MAXREG -> + case {Y,NumY} of + {_,none} -> + error({no_stack_frame,Reg}); + {_,_} when Y > NumY -> + error({y_reg_out_of_range,Reg,NumY}); + {_,_} -> + Vst#vst{current=St#st{y=gb_trees:enter(Y, Type, Ys)}} + end; +set_type_y(Type, Reg, #vst{}) -> error({invalid_store,Reg,Type}). + +assert_term(Src, Vst) -> + get_term_type(Src, Vst), + Vst. + +%% The possible types. +%% +%% First non-term types: +%% +%% initialized Only for Y registers. Means that the Y register +%% has been initialized with some valid term so that +%% it is safe to pass to the garbage collector. +%% NOT safe to use in any other way (will not crash the +%% emulator, but clearly points to a bug in the compiler). +%% +%% {catchtag,Lbl} A special term used within a catch. Must only be used +%% by the catch instructions; NOT safe to use in other +%% instructions. +%% +%% {trytag,Lbl} A special term used within a try block. Must only be +%% used by the catch instructions; NOT safe to use in other +%% instructions. +%% +%% exception Can only be used as a type returned by return_type/2 +%% (which gives the type of the value returned by a BIF). +%% Thus 'exception' is never stored as type descriptor +%% for a register. +%% +%% Normal terms: +%% +%% term Any valid Erlang (but not of the special types above). +%% +%% bool The atom 'true' or the atom 'false'. +%% +%% cons Cons cell: [_|_] +%% +%% nil Empty list: [] +%% +%% {tuple,[Sz]} Tuple. An element has been accessed using +%% element/2 or setelement/3 so that it is known that +%% the type is a tuple of size at least Sz. +%% +%% {tuple,Sz} Tuple. A test_arity instruction has been seen +%% so that it is known that the size is exactly Sz. +%% +%% {atom,[]} Atom. +%% {atom,Atom} +%% +%% {integer,[]} Integer. +%% {integer,Integer} +%% +%% {float,[]} Float. +%% {float,Float} +%% +%% number Integer or Float of unknown value +%% + +assert_type(WantedType, Term, Vst) -> + assert_type(WantedType, get_type(Term, Vst)), + Vst. + +assert_type(float, {float,_}) -> ok; +assert_type(tuple, {tuple,_}) -> ok; +assert_type({tuple_element,I}, {tuple,[Sz]}) + when 1 =< I, I =< Sz -> + ok; +assert_type({tuple_element,I}, {tuple,Sz}) + when is_integer(Sz), 1 =< I, I =< Sz -> + ok; +assert_type(Needed, Actual) -> + error({bad_type,{needed,Needed},{actual,Actual}}). + +%% upgrade_type/2 is used when linear code finds out more and +%% more information about a type, so the type gets "narrower" +%% or perhaps inconsistent. In the case of inconsistency +%% we mostly widen the type to 'term' to make subsequent +%% code fail if it assumes anything about the type. + +upgrade_type(Same, Same) -> Same; +upgrade_type(term, OldT) -> OldT; +upgrade_type(NewT, term) -> NewT; +upgrade_type({Type,New}=NewT, {Type,Old}=OldT) + when Type == atom; Type == integer; Type == float -> + if New =:= Old -> OldT; + New =:= [] -> OldT; + Old =:= [] -> NewT; + true -> term + end; +upgrade_type({Type,_}=NewT, number) + when Type == integer; Type == float -> + NewT; +upgrade_type(number, {Type,_}=OldT) + when Type == integer; Type == float -> + OldT; +upgrade_type(bool, {atom,A}) -> + upgrade_bool(A); +upgrade_type({atom,A}, bool) -> + upgrade_bool(A); +upgrade_type({tuple,[Sz]}, {tuple,[OldSz]}) + when is_integer(Sz) -> + {tuple,[max(Sz, OldSz)]}; +upgrade_type({tuple,Sz}=T, {tuple,[_]}) + when is_integer(Sz) -> + %% This also takes care of the user error when a tuple element + %% is accesed outside the known exact tuple size; there is + %% no more type information, just a runtime error which is not + %% our problem. + T; +upgrade_type({tuple,[Sz]}, {tuple,_}=T) + when is_integer(Sz) -> + %% Same as the previous clause but mirrored. + T; +upgrade_type(_A, _B) -> + %%io:format("upgrade_type: ~p ~p\n", [_A,_B]), + term. + +upgrade_bool([]) -> bool; +upgrade_bool(true) -> {atom,true}; +upgrade_bool(false) -> {atom,false}; +upgrade_bool(_) -> term. + +get_tuple_size({integer,[]}) -> 0; +get_tuple_size({integer,Sz}) -> Sz; +get_tuple_size(_) -> 0. + +validate_src(Ss, Vst) when is_list(Ss) -> + foldl(fun(S, _) -> get_type(S, Vst) end, ok, Ss). + +get_term_type(Src, Vst) -> + case get_type(Src, Vst) of + initialized -> error({not_assigned,Src}); + exception -> error({exception,Src}); + {catchtag,_} -> error({catchtag,Src}); + {trytag,_} -> error({trytag,Src}); + Type -> Type + end. + +get_type(nil=T, _) -> T; +get_type({atom,A}=T, _) when is_atom(A) -> T; +get_type({float,F}=T, _) when is_float(F) -> T; +get_type({integer,I}=T, _) when is_integer(I) -> T; +get_type({x,X}=Reg, #vst{current=#st{x=Xs}}) when is_integer(X) -> + case gb_trees:lookup(X, Xs) of + {value,Type} -> Type; + none -> error({uninitialized_reg,Reg}) + end; +get_type({y,Y}=Reg, #vst{current=#st{y=Ys}}) when is_integer(Y) -> + case gb_trees:lookup(Y, Ys) of + {value,initialized} -> error({unassigned_reg,Reg}); + {value,Type} -> Type; + none -> error({uninitialized_reg,Reg}) + end; +get_type(Src, _) -> error({bad_source,Src}). + +branch_arities([], _, #vst{}=Vst) -> Vst; +branch_arities([Sz,{f,L}|T], Tuple, #vst{current=St}=Vst0) + when is_integer(Sz) -> + Vst1 = set_type_reg({tuple,Sz}, Tuple, Vst0), + Vst = branch_state(L, Vst1), + branch_arities(T, Tuple, Vst#vst{current=St}). + +branch_state(0, #vst{}=Vst) -> Vst; +branch_state(L, #vst{current=St,branched=B}=Vst) -> + Vst#vst{ + branched=case gb_trees:is_defined(L, B) of + false -> + gb_trees:insert(L, St#st{ct=[]}, B); + true -> + MergedSt = merge_states(L, St, B), + gb_trees:update(L, MergedSt#st{ct=[]}, B) + end}. + +%% merge_states/3 is used when there are more than one way to arrive +%% at this point, and the type states for the different paths has +%% to be merged. The type states are downgraded to the least common +%% subset for the subsequent code. + +merge_states(0, St, _Branched) -> St; +merge_states(L, St, Branched) -> + case gb_trees:lookup(L, Branched) of + none -> St; + {value,OtherSt} when St == none -> OtherSt; + {value,OtherSt} -> + merge_states_1(St, OtherSt) + end. + +merge_states_1(#st{x=Xs0,y=Ys0,numy=NumY0,h=H0}=St, + #st{x=Xs1,y=Ys1,numy=NumY1,h=H1}) -> + NumY = merge_stk(NumY0, NumY1), + Xs = merge_regs(Xs0, Xs1), + Ys = merge_regs(Ys0, Ys1), + St#st{x=Xs,y=Ys,numy=NumY,h=min(H0, H1)}. + +merge_stk(S, S) -> S; +merge_stk(_, _) -> undecided. + +merge_regs(Rs0, Rs1) -> + Rs = merge_regs_1(gb_trees:to_list(Rs0), gb_trees:to_list(Rs1)), + gb_trees_from_list(Rs). + +merge_regs_1([Same|Rs1], [Same|Rs2]) -> + [Same|merge_regs_1(Rs1, Rs2)]; +merge_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 -> + merge_regs_1(Rs1, Rs2); +merge_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 -> + merge_regs_1(Rs1, Rs2); +merge_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) -> + [{R,merge_types(Type1, Type2)}|merge_regs_1(Rs1, Rs2)]; +merge_regs_1([], []) -> []; +merge_regs_1([], [_|_]) -> []; +merge_regs_1([_|_], []) -> []. + +merge_types(T, T) -> T; +merge_types(initialized=I, _) -> I; +merge_types(_, initialized=I) -> I; +merge_types({tuple,Same}=T, {tuple,Same}) -> T; +merge_types({tuple,A}, {tuple,B}) -> + {tuple,[min(tuple_sz(A), tuple_sz(B))]}; +merge_types({Type,A}, {Type,B}) + when Type == atom; Type == integer; Type == float -> + if A =:= B -> {Type,A}; + true -> {Type,[]} + end; +merge_types({Type,_}, number) + when Type == integer; Type == float -> + number; +merge_types(number, {Type,_}) + when Type == integer; Type == float -> + number; +merge_types(bool, {atom,A}) -> + merge_bool(A); +merge_types({atom,A}, bool) -> + merge_bool(A); +merge_types(_, _) -> term. + +tuple_sz([Sz]) -> Sz; +tuple_sz(Sz) -> Sz. + +merge_bool([]) -> {atom,[]}; +merge_bool(true) -> bool; +merge_bool(false) -> bool; +merge_bool(_) -> {atom,[]}. + +verify_y_init(#vst{current=#st{numy=none}}) -> ok; +verify_y_init(#vst{current=#st{numy=undecided}}) -> + error(unknown_size_of_stackframe); +verify_y_init(#vst{current=#st{y=Ys,numy=NumY}}) -> + verify_y_init_1(NumY, Ys). + +verify_y_init_1(0, _) -> ok; +verify_y_init_1(N, Ys) -> + Y = N-1, + case gb_trees:is_defined(Y, Ys) of + false -> error({{y,Y},not_initialized}); + true -> verify_y_init_1(Y, Ys) + end. + +verify_live(0, #vst{}) -> ok; +verify_live(N, #vst{current=#st{x=Xs}}) -> + verify_live_1(N, Xs). + +verify_live_1(0, _) -> ok; +verify_live_1(N, Xs) -> + X = N-1, + case gb_trees:is_defined(X, Xs) of + false -> error({{x,X},not_live}); + true -> verify_live_1(X, Xs) + end. + +eat_heap(N, #vst{current=#st{h=Heap0}=St}=Vst) -> + case Heap0-N of + Neg when Neg < 0 -> + error({heap_overflow,{left,Heap0},{wanted,N}}); + Heap -> + Vst#vst{current=St#st{h=Heap}} + end. + +bif_type('-', Src, Vst) -> + arith_type(Src, Vst); +bif_type('+', Src, Vst) -> + arith_type(Src, Vst); +bif_type('*', Src, Vst) -> + arith_type(Src, Vst); +bif_type(abs, [Num], Vst) -> + case get_type(Num, Vst) of + {float,_}=T -> T; + {integer,_}=T -> T; + _ -> number + end; +bif_type(float, _, _) -> {float,[]}; +bif_type('/', _, _) -> {float,[]}; +%% Integer operations. +bif_type('div', [_,_], _) -> {integer,[]}; +bif_type('rem', [_,_], _) -> {integer,[]}; +bif_type(length, [_], _) -> {integer,[]}; +bif_type(size, [_], _) -> {integer,[]}; +bif_type(trunc, [_], _) -> {integer,[]}; +bif_type(round, [_], _) -> {integer,[]}; +bif_type('band', [_,_], _) -> {integer,[]}; +bif_type('bor', [_,_], _) -> {integer,[]}; +bif_type('bxor', [_,_], _) -> {integer,[]}; +bif_type('bnot', [_], _) -> {integer,[]}; +bif_type('bsl', [_,_], _) -> {integer,[]}; +bif_type('bsr', [_,_], _) -> {integer,[]}; +%% Booleans. +bif_type('==', [_,_], _) -> bool; +bif_type('/=', [_,_], _) -> bool; +bif_type('=<', [_,_], _) -> bool; +bif_type('<', [_,_], _) -> bool; +bif_type('>=', [_,_], _) -> bool; +bif_type('>', [_,_], _) -> bool; +bif_type('=:=', [_,_], _) -> bool; +bif_type('=/=', [_,_], _) -> bool; +bif_type('not', [_], _) -> bool; +bif_type('and', [_,_], _) -> bool; +bif_type('or', [_,_], _) -> bool; +bif_type('xor', [_,_], _) -> bool; +bif_type(is_atom, [_], _) -> bool; +bif_type(is_boolean, [_], _) -> bool; +bif_type(is_binary, [_], _) -> bool; +bif_type(is_constant, [_], _) -> bool; +bif_type(is_float, [_], _) -> bool; +bif_type(is_function, [_], _) -> bool; +bif_type(is_integer, [_], _) -> bool; +bif_type(is_list, [_], _) -> bool; +bif_type(is_number, [_], _) -> bool; +bif_type(is_pid, [_], _) -> bool; +bif_type(is_port, [_], _) -> bool; +bif_type(is_reference, [_], _) -> bool; +bif_type(is_tuple, [_], _) -> bool; +%% Misc. +bif_type(node, [], _) -> {atom,[]}; +bif_type(node, [_], _) -> {atom,[]}; +bif_type(hd, [_], _) -> term; +bif_type(tl, [_], _) -> term; +bif_type(get, [_], _) -> term; +bif_type(raise, [_,_], _) -> exception; +bif_type(_, _, _) -> term. + +arith_type([A,B], Vst) -> + case {get_type(A, Vst),get_type(B, Vst)} of + {{float,_},_} -> {float,[]}; + {_,{float,_}} -> {float,[]}; + {_,_} -> number + end; +arith_type(_, _) -> number. + +return_type({extfunc,M,F,A}, Vst) -> + return_type_1(M, F, A, Vst). + +return_type_1(erlang, setelement, 3, Vst) -> + Tuple = {x,1}, + TupleType = + case get_type(Tuple, Vst) of + {tuple,_}=TT -> TT; + _ -> {tuple,[0]} + end, + case get_type({x,0}, Vst) of + {integer,[]} -> TupleType; + {integer,I} -> upgrade_type({tuple,[I]}, TupleType); + _ -> TupleType + end; +return_type_1(erlang, F, A, _) -> + return_type_erl(F, A); +return_type_1(math, F, A, _) -> + return_type_math(F, A); +return_type_1(_, _, _, _) -> term. + +return_type_erl(exit, 1) -> exception; +return_type_erl(throw, 1) -> exception; +return_type_erl(fault, 1) -> exception; +return_type_erl(fault, 2) -> exception; +return_type_erl(error, 1) -> exception; +return_type_erl(error, 2) -> exception; +return_type_erl(_, _) -> term. + +return_type_math(cos, 1) -> {float,[]}; +return_type_math(cosh, 1) -> {float,[]}; +return_type_math(sin, 1) -> {float,[]}; +return_type_math(sinh, 1) -> {float,[]}; +return_type_math(tan, 1) -> {float,[]}; +return_type_math(tanh, 1) -> {float,[]}; +return_type_math(acos, 1) -> {float,[]}; +return_type_math(acosh, 1) -> {float,[]}; +return_type_math(asin, 1) -> {float,[]}; +return_type_math(asinh, 1) -> {float,[]}; +return_type_math(atan, 1) -> {float,[]}; +return_type_math(atanh, 1) -> {float,[]}; +return_type_math(erf, 1) -> {float,[]}; +return_type_math(erfc, 1) -> {float,[]}; +return_type_math(exp, 1) -> {float,[]}; +return_type_math(log, 1) -> {float,[]}; +return_type_math(log10, 1) -> {float,[]}; +return_type_math(sqrt, 1) -> {float,[]}; +return_type_math(atan2, 2) -> {float,[]}; +return_type_math(pow, 2) -> {float,[]}; +return_type_math(pi, 0) -> {float,[]}; +return_type_math(_, _) -> term. + +min(A, B) when is_integer(A), is_integer(B), A < B -> A; +min(A, B) when is_integer(A), is_integer(B) -> B. + +max(A, B) when is_integer(A), is_integer(B), A > B -> A; +max(A, B) when is_integer(A), is_integer(B) -> B. + +gb_trees_from_list(L) -> gb_trees:from_orddict(orddict:from_list(L)). + +-ifdef(DEBUG). +error(Error) -> exit(Error). +-else. +error(Error) -> throw(Error). +-endif. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl.erl new file mode 100644 index 0000000000..e4bdfc7dbe --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl.erl @@ -0,0 +1,4169 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Richard Carlsson. +%% Copyright (C) 1999-2002 Richard Carlsson. +%% Portions created by Ericsson are Copyright 2001, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: cerl.erl,v 1.3 2010/03/04 13:54:20 maria Exp $ + +%% ===================================================================== +%% @doc Core Erlang abstract syntax trees. +%% +%% <p> This module defines an abstract data type for representing Core +%% Erlang source code as syntax trees.</p> +%% +%% <p>A recommended starting point for the first-time user is the +%% documentation of the function <a +%% href="#type-1"><code>type/1</code></a>.</p> +%% +%% <h3><b>NOTES:</b></h3> +%% +%% <p>This module deals with the composition and decomposition of +%% <em>syntactic</em> entities (as opposed to semantic ones); its +%% purpose is to hide all direct references to the data structures +%% used to represent these entities. With few exceptions, the +%% functions in this module perform no semantic interpretation of +%% their inputs, and in general, the user is assumed to pass +%% type-correct arguments - if this is not done, the effects are not +%% defined.</p> +%% +%% <p>The internal representations of abstract syntax trees are +%% subject to change without notice, and should not be documented +%% outside this module. Furthermore, we do not give any guarantees on +%% how an abstract syntax tree may or may not be represented, <em>with +%% the following exceptions</em>: no syntax tree is represented by a +%% single atom, such as <code>none</code>, by a list constructor +%% <code>[X | Y]</code>, or by the empty list <code>[]</code>. This +%% can be relied on when writing functions that operate on syntax +%% trees.</p> +%% +%% @type cerl(). An abstract Core Erlang syntax tree. +%% +%% <p>Every abstract syntax tree has a <em>type</em>, given by the +%% function <a href="#type-1"><code>type/1</code></a>. In addition, +%% each syntax tree has a list of <em>user annotations</em> (cf. <a +%% href="#get_ann-1"><code>get_ann/1</code></a>), which are included +%% in the Core Erlang syntax.</p> + +-module(cerl). + +-export([abstract/1, add_ann/2, alias_pat/1, alias_var/1, + ann_abstract/2, ann_c_alias/3, ann_c_apply/3, ann_c_atom/2, + ann_c_call/4, ann_c_case/3, ann_c_catch/2, ann_c_char/2, + ann_c_clause/3, ann_c_clause/4, ann_c_cons/3, ann_c_float/2, + ann_c_fname/3, ann_c_fun/3, ann_c_int/2, ann_c_let/4, + ann_c_letrec/3, ann_c_module/4, ann_c_module/5, ann_c_nil/1, + ann_c_cons_skel/3, ann_c_tuple_skel/2, ann_c_primop/3, + ann_c_receive/2, ann_c_receive/4, ann_c_seq/3, ann_c_string/2, + ann_c_try/6, ann_c_tuple/2, ann_c_values/2, ann_c_var/2, + ann_make_data/3, ann_make_list/2, ann_make_list/3, + ann_make_data_skel/3, ann_make_tree/3, apply_args/1, + apply_arity/1, apply_op/1, atom_lit/1, atom_name/1, atom_val/1, + c_alias/2, c_apply/2, c_atom/1, c_call/3, c_case/2, c_catch/1, + c_char/1, c_clause/2, c_clause/3, c_cons/2, c_float/1, + c_fname/2, c_fun/2, c_int/1, c_let/3, c_letrec/2, c_module/3, + c_module/4, c_nil/0, c_cons_skel/2, c_tuple_skel/1, c_primop/2, + c_receive/1, c_receive/3, c_seq/2, c_string/1, c_try/5, + c_tuple/1, c_values/1, c_var/1, call_args/1, call_arity/1, + call_module/1, call_name/1, case_arg/1, case_arity/1, + case_clauses/1, catch_body/1, char_lit/1, char_val/1, + clause_arity/1, clause_body/1, clause_guard/1, clause_pats/1, + clause_vars/1, concrete/1, cons_hd/1, cons_tl/1, copy_ann/2, + data_arity/1, data_es/1, data_type/1, float_lit/1, float_val/1, + fname_arity/1, fname_id/1, fold_literal/1, from_records/1, + fun_arity/1, fun_body/1, fun_vars/1, get_ann/1, int_lit/1, + int_val/1, is_c_alias/1, is_c_apply/1, is_c_atom/1, + is_c_call/1, is_c_case/1, is_c_catch/1, is_c_char/1, + is_c_clause/1, is_c_cons/1, is_c_float/1, is_c_fname/1, + is_c_fun/1, is_c_int/1, is_c_let/1, is_c_letrec/1, is_c_list/1, + is_c_module/1, is_c_nil/1, is_c_primop/1, is_c_receive/1, + is_c_seq/1, is_c_string/1, is_c_try/1, is_c_tuple/1, + is_c_values/1, is_c_var/1, is_data/1, is_leaf/1, is_literal/1, + is_literal_term/1, is_print_char/1, is_print_string/1, + let_arg/1, let_arity/1, let_body/1, let_vars/1, letrec_body/1, + letrec_defs/1, letrec_vars/1, list_elements/1, list_length/1, + make_data/2, make_list/1, make_list/2, make_data_skel/2, + make_tree/2, meta/1, module_attrs/1, module_defs/1, + module_exports/1, module_name/1, module_vars/1, + pat_list_vars/1, pat_vars/1, primop_args/1, primop_arity/1, + primop_name/1, receive_action/1, receive_clauses/1, + receive_timeout/1, seq_arg/1, seq_body/1, set_ann/2, + string_lit/1, string_val/1, subtrees/1, to_records/1, + try_arg/1, try_body/1, try_vars/1, try_evars/1, try_handler/1, + tuple_arity/1, tuple_es/1, type/1, unfold_literal/1, + update_c_alias/3, update_c_apply/3, update_c_call/4, + update_c_case/3, update_c_catch/2, update_c_clause/4, + update_c_cons/3, update_c_cons_skel/3, update_c_fname/2, + update_c_fname/3, update_c_fun/3, update_c_let/4, + update_c_letrec/3, update_c_module/5, update_c_primop/3, + update_c_receive/4, update_c_seq/3, update_c_try/6, + update_c_tuple/2, update_c_tuple_skel/2, update_c_values/2, + update_c_var/2, update_data/3, update_list/2, update_list/3, + update_data_skel/3, update_tree/2, update_tree/3, + values_arity/1, values_es/1, var_name/1, c_binary/1, + update_c_binary/2, ann_c_binary/2, is_c_binary/1, + binary_segments/1, c_bitstr/3, c_bitstr/4, c_bitstr/5, + update_c_bitstr/5, update_c_bitstr/6, ann_c_bitstr/5, + ann_c_bitstr/6, is_c_bitstr/1, bitstr_val/1, bitstr_size/1, + bitstr_bitsize/1, bitstr_unit/1, bitstr_type/1, + bitstr_flags/1]). + +-include("core_parse.hrl"). + + +%% ===================================================================== +%% Representation (general) +%% +%% All nodes are represented by tuples of arity 2 or (generally) +%% greater, whose first element is an atom which uniquely identifies the +%% type of the node, and whose second element is a (proper) list of +%% annotation terms associated with the node - this is by default empty. +%% +%% For most node constructor functions, there are analogous functions +%% named 'ann_...', taking one extra argument 'As' (always the first +%% argument), specifying an annotation list at node creation time. +%% Similarly, there are also functions named 'update_...', taking one +%% extra argument 'Old', specifying a node from which all fields not +%% explicitly given as arguments should be copied (generally, this is +%% the annotation field only). +%% ===================================================================== + +%% This defines the general representation of constant literals: + +-record(literal, {ann = [], val}). + + +%% @spec type(Node::cerl()) -> atom() +%% +%% @doc Returns the type tag of <code>Node</code>. Current node types +%% are: +%% +%% <p><center><table border="1"> +%% <tr> +%% <td>alias</td> +%% <td>apply</td> +%% <td>binary</td> +%% <td>bitstr</td> +%% <td>call</td> +%% <td>case</td> +%% <td>catch</td> +%% </tr><tr> +%% <td>clause</td> +%% <td>cons</td> +%% <td>fun</td> +%% <td>let</td> +%% <td>letrec</td> +%% <td>literal</td> +%% <td>module</td> +%% </tr><tr> +%% <td>primop</td> +%% <td>receive</td> +%% <td>seq</td> +%% <td>try</td> +%% <td>tuple</td> +%% <td>values</td> +%% <td>var</td> +%% </tr> +%% </table></center></p> +%% +%% <p>Note: The name of the primary constructor function for a node +%% type is always the name of the type itself, prefixed by +%% "<code>c_</code>"; recognizer predicates are correspondingly +%% prefixed by "<code>is_c_</code>". Furthermore, to simplify +%% preservation of annotations (cf. <code>get_ann/1</code>), there are +%% analogous constructor functions prefixed by "<code>ann_c_</code>" +%% and "<code>update_c_</code>", for setting the annotation list of +%% the new node to either a specific value or to the annotations of an +%% existing node, respectively.</p> +%% +%% @see abstract/1 +%% @see c_alias/2 +%% @see c_apply/2 +%% @see c_binary/1 +%% @see c_bitstr/5 +%% @see c_call/3 +%% @see c_case/2 +%% @see c_catch/1 +%% @see c_clause/3 +%% @see c_cons/2 +%% @see c_fun/2 +%% @see c_let/3 +%% @see c_letrec/2 +%% @see c_module/3 +%% @see c_primop/2 +%% @see c_receive/1 +%% @see c_seq/2 +%% @see c_try/3 +%% @see c_tuple/1 +%% @see c_values/1 +%% @see c_var/1 +%% @see get_ann/1 +%% @see to_records/1 +%% @see from_records/1 +%% @see data_type/1 +%% @see subtrees/1 +%% @see meta/1 + +type(Node) -> + element(1, Node). + + +%% @spec is_leaf(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is a leaf node, +%% otherwise <code>false</code>. The current leaf node types are +%% <code>literal</code> and <code>var</code>. +%% +%% <p>Note: all literals (cf. <code>is_literal/1</code>) are leaf +%% nodes, even if they represent structured (constant) values such as +%% <code>{foo, [bar, baz]}</code>. Also note that variables are leaf +%% nodes but not literals.</p> +%% +%% @see type/1 +%% @see is_literal/1 + +is_leaf(Node) -> + case type(Node) of + literal -> true; + var -> true; + _ -> false + end. + + +%% @spec get_ann(cerl()) -> [term()] +%% +%% @doc Returns the list of user annotations associated with a syntax +%% tree node. For a newly created node, this is the empty list. The +%% annotations may be any terms. +%% +%% @see set_ann/2 + +get_ann(Node) -> + element(2, Node). + + +%% @spec set_ann(Node::cerl(), Annotations::[term()]) -> cerl() +%% +%% @doc Sets the list of user annotations of <code>Node</code> to +%% <code>Annotations</code>. +%% +%% @see get_ann/1 +%% @see add_ann/2 +%% @see copy_ann/2 + +set_ann(Node, List) -> + setelement(2, Node, List). + + +%% @spec add_ann(Annotations::[term()], Node::cerl()) -> cerl() +%% +%% @doc Appends <code>Annotations</code> to the list of user +%% annotations of <code>Node</code>. +%% +%% <p>Note: this is equivalent to <code>set_ann(Node, Annotations ++ +%% get_ann(Node))</code>, but potentially more efficient.</p> +%% +%% @see get_ann/1 +%% @see set_ann/2 + +add_ann(Terms, Node) -> + set_ann(Node, Terms ++ get_ann(Node)). + + +%% @spec copy_ann(Source::cerl(), Target::cerl()) -> cerl() +%% +%% @doc Copies the list of user annotations from <code>Source</code> +%% to <code>Target</code>. +%% +%% <p>Note: this is equivalent to <code>set_ann(Target, +%% get_ann(Source))</code>, but potentially more efficient.</p> +%% +%% @see get_ann/1 +%% @see set_ann/2 + +copy_ann(Source, Target) -> + set_ann(Target, get_ann(Source)). + + +%% @spec abstract(Term::term()) -> cerl() +%% +%% @doc Creates a syntax tree corresponding to an Erlang term. +%% <code>Term</code> must be a literal term, i.e., one that can be +%% represented as a source code literal. Thus, it may not contain a +%% process identifier, port, reference, binary or function value as a +%% subterm. +%% +%% <p>Note: This is a constant time operation.</p> +%% +%% @see ann_abstract/2 +%% @see concrete/1 +%% @see is_literal/1 +%% @see is_literal_term/1 + +abstract(T) -> + #literal{val = T}. + + +%% @spec ann_abstract(Annotations::[term()], Term::term()) -> cerl() +%% @see abstract/1 + +ann_abstract(As, T) -> + #literal{val = T, ann = As}. + + +%% @spec is_literal_term(Term::term()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Term</code> can be +%% represented as a literal, otherwise <code>false</code>. This +%% function takes time proportional to the size of <code>Term</code>. +%% +%% @see abstract/1 + +is_literal_term(T) when integer(T) -> true; +is_literal_term(T) when float(T) -> true; +is_literal_term(T) when atom(T) -> true; +is_literal_term([]) -> true; +is_literal_term([H | T]) -> + case is_literal_term(H) of + true -> + is_literal_term(T); + false -> + false + end; +is_literal_term(T) when tuple(T) -> + is_literal_term_list(tuple_to_list(T)); +is_literal_term(_) -> + false. + +is_literal_term_list([T | Ts]) -> + case is_literal_term(T) of + true -> + is_literal_term_list(Ts); + false -> + false + end; +is_literal_term_list([]) -> + true. + + +%% @spec concrete(Node::cerl()) -> term() +%% +%% @doc Returns the Erlang term represented by a syntax tree. An +%% exception is thrown if <code>Node</code> does not represent a +%% literal term. +%% +%% <p>Note: This is a constant time operation.</p> +%% +%% @see abstract/1 +%% @see is_literal/1 + +%% Because the normal tuple and list constructor operations always +%% return a literal if the arguments are literals, 'concrete' and +%% 'is_literal' never need to traverse the structure. + +concrete(#literal{val = V}) -> + V. + + +%% @spec is_literal(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> represents a +%% literal term, otherwise <code>false</code>. This function returns +%% <code>true</code> if and only if the value of +%% <code>concrete(Node)</code> is defined. +%% +%% <p>Note: This is a constant time operation.</p> +%% +%% @see abstract/1 +%% @see concrete/1 +%% @see fold_literal/1 + +is_literal(#literal{}) -> + true; +is_literal(_) -> + false. + + +%% @spec fold_literal(Node::cerl()) -> cerl() +%% +%% @doc Assures that literals have a compact representation. This is +%% occasionally useful if <code>c_cons_skel/2</code>, +%% <code>c_tuple_skel/1</code> or <code>unfold_literal/1</code> were +%% used in the construction of <code>Node</code>, and you want to revert +%% to the normal "folded" representation of literals. If +%% <code>Node</code> represents a tuple or list constructor, its +%% elements are rewritten recursively, and the node is reconstructed +%% using <code>c_cons/2</code> or <code>c_tuple/1</code>, respectively; +%% otherwise, <code>Node</code> is not changed. +%% +%% @see is_literal/1 +%% @see c_cons_skel/2 +%% @see c_tuple_skel/1 +%% @see c_cons/2 +%% @see c_tuple/1 +%% @see unfold_literal/1 + +fold_literal(Node) -> + case type(Node) of + tuple -> + update_c_tuple(Node, fold_literal_list(tuple_es(Node))); + cons -> + update_c_cons(Node, fold_literal(cons_hd(Node)), + fold_literal(cons_tl(Node))); + _ -> + Node + end. + +fold_literal_list([E | Es]) -> + [fold_literal(E) | fold_literal_list(Es)]; +fold_literal_list([]) -> + []. + + +%% @spec unfold_literal(Node::cerl()) -> cerl() +%% +%% @doc Assures that literals have a fully expanded representation. If +%% <code>Node</code> represents a literal tuple or list constructor, its +%% elements are rewritten recursively, and the node is reconstructed +%% using <code>c_cons_skel/2</code> or <code>c_tuple_skel/1</code>, +%% respectively; otherwise, <code>Node</code> is not changed. The {@link +%% fold_literal/1} can be used to revert to the normal compact +%% representation. +%% +%% @see is_literal/1 +%% @see c_cons_skel/2 +%% @see c_tuple_skel/1 +%% @see c_cons/2 +%% @see c_tuple/1 +%% @see fold_literal/1 + +unfold_literal(Node) -> + case type(Node) of + literal -> + copy_ann(Node, unfold_concrete(concrete(Node))); + _ -> + Node + end. + +unfold_concrete(Val) -> + case Val of + _ when tuple(Val) -> + c_tuple_skel(unfold_concrete_list(tuple_to_list(Val))); + [H|T] -> + c_cons_skel(unfold_concrete(H), unfold_concrete(T)); + _ -> + abstract(Val) + end. + +unfold_concrete_list([E | Es]) -> + [unfold_concrete(E) | unfold_concrete_list(Es)]; +unfold_concrete_list([]) -> + []. + + +%% --------------------------------------------------------------------- + +-record(module, {ann = [], name, exports, attrs, defs}). + + +%% @spec c_module(Name::cerl(), Exports, Definitions) -> cerl() +%% +%% Exports = [cerl()] +%% Definitions = [{cerl(), cerl()}] +%% +%% @equiv c_module(Name, Exports, [], Definitions) + +c_module(Name, Exports, Es) -> + #module{name = Name, exports = Exports, attrs = [], defs = Es}. + + +%% @spec c_module(Name::cerl(), Exports, Attributes, Definitions) -> +%% cerl() +%% +%% Exports = [cerl()] +%% Attributes = [{cerl(), cerl()}] +%% Definitions = [{cerl(), cerl()}] +%% +%% @doc Creates an abstract module definition. The result represents +%% <pre> +%% module <em>Name</em> [<em>E1</em>, ..., <em>Ek</em>] +%% attributes [<em>K1</em> = <em>T1</em>, ..., +%% <em>Km</em> = <em>Tm</em>] +%% <em>V1</em> = <em>F1</em> +%% ... +%% <em>Vn</em> = <em>Fn</em> +%% end</pre> +%% +%% if <code>Exports</code> = <code>[E1, ..., Ek]</code>, +%% <code>Attributes</code> = <code>[{K1, T1}, ..., {Km, Tm}]</code>, +%% and <code>Definitions</code> = <code>[{V1, F1}, ..., {Vn, +%% Fn}]</code>. +%% +%% <p><code>Name</code> and all the <code>Ki</code> must be atom +%% literals, and all the <code>Ti</code> must be constant literals. All +%% the <code>Vi</code> and <code>Ei</code> must have type +%% <code>var</code> and represent function names. All the +%% <code>Fi</code> must have type <code>'fun'</code>.</p> +%% +%% @see c_module/3 +%% @see module_name/1 +%% @see module_exports/1 +%% @see module_attrs/1 +%% @see module_defs/1 +%% @see module_vars/1 +%% @see ann_c_module/4 +%% @see ann_c_module/5 +%% @see update_c_module/5 +%% @see c_atom/1 +%% @see c_var/1 +%% @see c_fun/2 +%% @see is_literal/1 + +c_module(Name, Exports, Attrs, Es) -> + #module{name = Name, exports = Exports, attrs = Attrs, defs = Es}. + + +%% @spec ann_c_module(As::[term()], Name::cerl(), Exports, +%% Definitions) -> cerl() +%% +%% Exports = [cerl()] +%% Definitions = [{cerl(), cerl()}] +%% +%% @see c_module/3 +%% @see ann_c_module/5 + +ann_c_module(As, Name, Exports, Es) -> + #module{name = Name, exports = Exports, attrs = [], defs = Es, + ann = As}. + + +%% @spec ann_c_module(As::[term()], Name::cerl(), Exports, +%% Attributes, Definitions) -> cerl() +%% +%% Exports = [cerl()] +%% Attributes = [{cerl(), cerl()}] +%% Definitions = [{cerl(), cerl()}] +%% +%% @see c_module/4 +%% @see ann_c_module/4 + +ann_c_module(As, Name, Exports, Attrs, Es) -> + #module{name = Name, exports = Exports, attrs = Attrs, defs = Es, + ann = As}. + + +%% @spec update_c_module(Old::cerl(), Name::cerl(), Exports, +%% Attributes, Definitions) -> cerl() +%% +%% Exports = [cerl()] +%% Attributes = [{cerl(), cerl()}] +%% Definitions = [{cerl(), cerl()}] +%% +%% @see c_module/4 + +update_c_module(Node, Name, Exports, Attrs, Es) -> + #module{name = Name, exports = Exports, attrs = Attrs, defs = Es, + ann = get_ann(Node)}. + + +%% @spec is_c_module(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% module definition, otherwise <code>false</code>. +%% +%% @see type/1 + +is_c_module(#module{}) -> + true; +is_c_module(_) -> + false. + + +%% @spec module_name(Node::cerl()) -> cerl() +%% +%% @doc Returns the name subtree of an abstract module definition. +%% +%% @see c_module/4 + +module_name(Node) -> + Node#module.name. + + +%% @spec module_exports(Node::cerl()) -> [cerl()] +%% +%% @doc Returns the list of exports subtrees of an abstract module +%% definition. +%% +%% @see c_module/4 + +module_exports(Node) -> + Node#module.exports. + + +%% @spec module_attrs(Node::cerl()) -> [{cerl(), cerl()}] +%% +%% @doc Returns the list of pairs of attribute key/value subtrees of +%% an abstract module definition. +%% +%% @see c_module/4 + +module_attrs(Node) -> + Node#module.attrs. + + +%% @spec module_defs(Node::cerl()) -> [{cerl(), cerl()}] +%% +%% @doc Returns the list of function definitions of an abstract module +%% definition. +%% +%% @see c_module/4 + +module_defs(Node) -> + Node#module.defs. + + +%% @spec module_vars(Node::cerl()) -> [cerl()] +%% +%% @doc Returns the list of left-hand side function variable subtrees +%% of an abstract module definition. +%% +%% @see c_module/4 + +module_vars(Node) -> + [F || {F, _} <- module_defs(Node)]. + + +%% --------------------------------------------------------------------- + +%% @spec c_int(Value::integer()) -> cerl() +%% +%% +%% @doc Creates an abstract integer literal. The lexical +%% representation is the canonical decimal numeral of +%% <code>Value</code>. +%% +%% @see ann_c_int/2 +%% @see is_c_int/1 +%% @see int_val/1 +%% @see int_lit/1 +%% @see c_char/1 + +c_int(Value) -> + #literal{val = Value}. + + +%% @spec ann_c_int(As::[term()], Value::integer()) -> cerl() +%% @see c_int/1 + +ann_c_int(As, Value) -> + #literal{val = Value, ann = As}. + + +%% @spec is_c_int(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> represents an +%% integer literal, otherwise <code>false</code>. +%% @see c_int/1 + +is_c_int(#literal{val = V}) when integer(V) -> + true; +is_c_int(_) -> + false. + + +%% @spec int_val(cerl()) -> integer() +%% +%% @doc Returns the value represented by an integer literal node. +%% @see c_int/1 + +int_val(Node) -> + Node#literal.val. + + +%% @spec int_lit(cerl()) -> string() +%% +%% @doc Returns the numeral string represented by an integer literal +%% node. +%% @see c_int/1 + +int_lit(Node) -> + integer_to_list(int_val(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_float(Value::float()) -> cerl() +%% +%% @doc Creates an abstract floating-point literal. The lexical +%% representation is the decimal floating-point numeral of +%% <code>Value</code>. +%% +%% @see ann_c_float/2 +%% @see is_c_float/1 +%% @see float_val/1 +%% @see float_lit/1 + +%% Note that not all floating-point numerals can be represented with +%% full precision. + +c_float(Value) -> + #literal{val = Value}. + + +%% @spec ann_c_float(As::[term()], Value::float()) -> cerl() +%% @see c_float/1 + +ann_c_float(As, Value) -> + #literal{val = Value, ann = As}. + + +%% @spec is_c_float(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> represents a +%% floating-point literal, otherwise <code>false</code>. +%% @see c_float/1 + +is_c_float(#literal{val = V}) when float(V) -> + true; +is_c_float(_) -> + false. + + +%% @spec float_val(cerl()) -> float() +%% +%% @doc Returns the value represented by a floating-point literal +%% node. +%% @see c_float/1 + +float_val(Node) -> + Node#literal.val. + + +%% @spec float_lit(cerl()) -> string() +%% +%% @doc Returns the numeral string represented by a floating-point +%% literal node. +%% @see c_float/1 + +float_lit(Node) -> + float_to_list(float_val(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_atom(Name) -> cerl() +%% Name = atom() | string() +%% +%% @doc Creates an abstract atom literal. The print name of the atom +%% is the character sequence represented by <code>Name</code>. +%% +%% <p>Note: passing a string as argument to this function causes a +%% corresponding atom to be created for the internal representation.</p> +%% +%% @see ann_c_atom/2 +%% @see is_c_atom/1 +%% @see atom_val/1 +%% @see atom_name/1 +%% @see atom_lit/1 + +c_atom(Name) when atom(Name) -> + #literal{val = Name}; +c_atom(Name) -> + #literal{val = list_to_atom(Name)}. + + +%% @spec ann_c_atom(As::[term()], Name) -> cerl() +%% Name = atom() | string() +%% @see c_atom/1 + +ann_c_atom(As, Name) when atom(Name) -> + #literal{val = Name, ann = As}; +ann_c_atom(As, Name) -> + #literal{val = list_to_atom(Name), ann = As}. + + +%% @spec is_c_atom(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> represents an +%% atom literal, otherwise <code>false</code>. +%% +%% @see c_atom/1 + +is_c_atom(#literal{val = V}) when atom(V) -> + true; +is_c_atom(_) -> + false. + +%% @spec atom_val(cerl())-> atom() +%% +%% @doc Returns the value represented by an abstract atom. +%% +%% @see c_atom/1 + +atom_val(Node) -> + Node#literal.val. + + +%% @spec atom_name(cerl()) -> string() +%% +%% @doc Returns the printname of an abstract atom. +%% +%% @see c_atom/1 + +atom_name(Node) -> + atom_to_list(atom_val(Node)). + + +%% @spec atom_lit(cerl()) -> string() +%% +%% @doc Returns the literal string represented by an abstract +%% atom. This always includes surrounding single-quote characters. +%% +%% <p>Note that an abstract atom may have several literal +%% representations, and that the representation yielded by this +%% function is not fixed; e.g., +%% <code>atom_lit(c_atom("a\012b"))</code> could yield the string +%% <code>"\'a\\nb\'"</code>.</p> +%% +%% @see c_atom/1 + +%% TODO: replace the use of the unofficial 'write_string/2'. + +atom_lit(Node) -> + io_lib:write_string(atom_name(Node), $'). %' stupid Emacs. + + +%% --------------------------------------------------------------------- + +%% @spec c_char(Value) -> cerl() +%% +%% Value = char() | integer() +%% +%% @doc Creates an abstract character literal. If the local +%% implementation of Erlang defines <code>char()</code> as a subset of +%% <code>integer()</code>, this function is equivalent to +%% <code>c_int/1</code>. Otherwise, if the given value is an integer, +%% it will be converted to the character with the corresponding +%% code. The lexical representation of a character is +%% "<code>$<em>Char</em></code>", where <code>Char</code> is a single +%% printing character or an escape sequence. +%% +%% @see c_int/1 +%% @see c_string/1 +%% @see ann_c_char/2 +%% @see is_c_char/1 +%% @see char_val/1 +%% @see char_lit/1 +%% @see is_print_char/1 + +c_char(Value) when integer(Value), Value >= 0 -> + #literal{val = Value}. + + +%% @spec ann_c_char(As::[term()], Value::char()) -> cerl() +%% @see c_char/1 + +ann_c_char(As, Value) -> + #literal{val = Value, ann = As}. + + +%% @spec is_c_char(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> may represent a +%% character literal, otherwise <code>false</code>. +%% +%% <p>If the local implementation of Erlang defines +%% <code>char()</code> as a subset of <code>integer()</code>, then +%% <code>is_c_int(<em>Node</em>)</code> will also yield +%% <code>true</code>.</p> +%% +%% @see c_char/1 +%% @see is_print_char/1 + +is_c_char(#literal{val = V}) when integer(V), V >= 0 -> + is_char_value(V); +is_c_char(_) -> + false. + + +%% @spec is_print_char(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> may represent a +%% "printing" character, otherwise <code>false</code>. (Cf. +%% <code>is_c_char/1</code>.) A "printing" character has either a +%% given graphical representation, or a "named" escape sequence such +%% as "<code>\n</code>". Currently, only ISO 8859-1 (Latin-1) +%% character values are recognized. +%% +%% @see c_char/1 +%% @see is_c_char/1 + +is_print_char(#literal{val = V}) when integer(V), V >= 0 -> + is_print_char_value(V); +is_print_char(_) -> + false. + + +%% @spec char_val(cerl()) -> char() +%% +%% @doc Returns the value represented by an abstract character literal. +%% +%% @see c_char/1 + +char_val(Node) -> + Node#literal.val. + + +%% @spec char_lit(cerl()) -> string() +%% +%% @doc Returns the literal string represented by an abstract +%% character. This includes a leading <code>$</code> +%% character. Currently, all characters that are not in the set of ISO +%% 8859-1 (Latin-1) "printing" characters will be escaped. +%% +%% @see c_char/1 + +char_lit(Node) -> + io_lib:write_char(char_val(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_string(Value::string()) -> cerl() +%% +%% @doc Creates an abstract string literal. Equivalent to creating an +%% abstract list of the corresponding character literals +%% (cf. <code>is_c_string/1</code>), but is typically more +%% efficient. The lexical representation of a string is +%% "<code>"<em>Chars</em>"</code>", where <code>Chars</code> is a +%% sequence of printing characters or spaces. +%% +%% @see c_char/1 +%% @see ann_c_string/2 +%% @see is_c_string/1 +%% @see string_val/1 +%% @see string_lit/1 +%% @see is_print_string/1 + +c_string(Value) -> + #literal{val = Value}. + + +%% @spec ann_c_string(As::[term()], Value::string()) -> cerl() +%% @see c_string/1 + +ann_c_string(As, Value) -> + #literal{val = Value, ann = As}. + + +%% @spec is_c_string(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> may represent a +%% string literal, otherwise <code>false</code>. Strings are defined +%% as lists of characters; see <code>is_c_char/1</code> for details. +%% +%% @see c_string/1 +%% @see is_c_char/1 +%% @see is_print_string/1 + +is_c_string(#literal{val = V}) -> + is_char_list(V); +is_c_string(_) -> + false. + + +%% @spec is_print_string(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> may represent a +%% string literal containing only "printing" characters, otherwise +%% <code>false</code>. See <code>is_c_string/1</code> and +%% <code>is_print_char/1</code> for details. Currently, only ISO +%% 8859-1 (Latin-1) character values are recognized. +%% +%% @see c_string/1 +%% @see is_c_string/1 +%% @see is_print_char/1 + +is_print_string(#literal{val = V}) -> + is_print_char_list(V); +is_print_string(_) -> + false. + + +%% @spec string_val(cerl()) -> string() +%% +%% @doc Returns the value represented by an abstract string literal. +%% +%% @see c_string/1 + +string_val(Node) -> + Node#literal.val. + + +%% @spec string_lit(cerl()) -> string() +%% +%% @doc Returns the literal string represented by an abstract string. +%% This includes surrounding double-quote characters +%% <code>"..."</code>. Currently, characters that are not in the set +%% of ISO 8859-1 (Latin-1) "printing" characters will be escaped, +%% except for spaces. +%% +%% @see c_string/1 + +string_lit(Node) -> + io_lib:write_string(string_val(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_nil() -> cerl() +%% +%% @doc Creates an abstract empty list. The result represents +%% "<code>[]</code>". The empty list is traditionally called "nil". +%% +%% @see ann_c_nil/1 +%% @see is_c_list/1 +%% @see c_cons/2 + +c_nil() -> + #literal{val = []}. + + +%% @spec ann_c_nil(As::[term()]) -> cerl() +%% @see c_nil/0 + +ann_c_nil(As) -> + #literal{val = [], ann = As}. + + +%% @spec is_c_nil(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% empty list, otherwise <code>false</code>. + +is_c_nil(#literal{val = []}) -> + true; +is_c_nil(_) -> + false. + + +%% --------------------------------------------------------------------- + +%% @spec c_cons(Head::cerl(), Tail::cerl()) -> cerl() +%% +%% @doc Creates an abstract list constructor. The result represents +%% "<code>[<em>Head</em> | <em>Tail</em>]</code>". Note that if both +%% <code>Head</code> and <code>Tail</code> have type +%% <code>literal</code>, then the result will also have type +%% <code>literal</code>, and annotations on <code>Head</code> and +%% <code>Tail</code> are lost. +%% +%% <p>Recall that in Erlang, the tail element of a list constructor is +%% not necessarily a list.</p> +%% +%% @see ann_c_cons/3 +%% @see update_c_cons/3 +%% @see c_cons_skel/2 +%% @see is_c_cons/1 +%% @see cons_hd/1 +%% @see cons_tl/1 +%% @see is_c_list/1 +%% @see c_nil/0 +%% @see list_elements/1 +%% @see list_length/1 +%% @see make_list/2 + +-record(cons, {ann = [], hd, tl}). + +%% *Always* collapse literals. + +c_cons(#literal{val = Head}, #literal{val = Tail}) -> + #literal{val = [Head | Tail]}; +c_cons(Head, Tail) -> + #cons{hd = Head, tl = Tail}. + + +%% @spec ann_c_cons(As::[term()], Head::cerl(), Tail::cerl()) -> cerl() +%% @see c_cons/2 + +ann_c_cons(As, #literal{val = Head}, #literal{val = Tail}) -> + #literal{val = [Head | Tail], ann = As}; +ann_c_cons(As, Head, Tail) -> + #cons{hd = Head, tl = Tail, ann = As}. + + +%% @spec update_c_cons(Old::cerl(), Head::cerl(), Tail::cerl()) -> +%% cerl() +%% @see c_cons/2 + +update_c_cons(Node, #literal{val = Head}, #literal{val = Tail}) -> + #literal{val = [Head | Tail], ann = get_ann(Node)}; +update_c_cons(Node, Head, Tail) -> + #cons{hd = Head, tl = Tail, ann = get_ann(Node)}. + + +%% @spec c_cons_skel(Head::cerl(), Tail::cerl()) -> cerl() +%% +%% @doc Creates an abstract list constructor skeleton. Does not fold +%% constant literals, i.e., the result always has type +%% <code>cons</code>, representing "<code>[<em>Head</em> | +%% <em>Tail</em>]</code>". +%% +%% <p>This function is occasionally useful when it is necessary to have +%% annotations on the subnodes of a list constructor node, even when the +%% subnodes are constant literals. Note however that +%% <code>is_literal/1</code> will yield <code>false</code> and +%% <code>concrete/1</code> will fail if passed the result from this +%% function.</p> +%% +%% <p><code>fold_literal/1</code> can be used to revert a node to the +%% normal-form representation.</p> +%% +%% @see ann_c_cons_skel/3 +%% @see update_c_cons_skel/3 +%% @see c_cons/2 +%% @see is_c_cons/1 +%% @see is_c_list/1 +%% @see c_nil/0 +%% @see is_literal/1 +%% @see fold_literal/1 +%% @see concrete/1 + +%% *Never* collapse literals. + +c_cons_skel(Head, Tail) -> + #cons{hd = Head, tl = Tail}. + + +%% @spec ann_c_cons_skel(As::[term()], Head::cerl(), Tail::cerl()) -> +%% cerl() +%% @see c_cons_skel/2 + +ann_c_cons_skel(As, Head, Tail) -> + #cons{hd = Head, tl = Tail, ann = As}. + + +%% @spec update_c_cons_skel(Old::cerl(), Head::cerl(), Tail::cerl()) -> +%% cerl() +%% @see c_cons_skel/2 + +update_c_cons_skel(Node, Head, Tail) -> + #cons{hd = Head, tl = Tail, ann = get_ann(Node)}. + + +%% @spec is_c_cons(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% list constructor, otherwise <code>false</code>. + +is_c_cons(#cons{}) -> + true; +is_c_cons(#literal{val = [_ | _]}) -> + true; +is_c_cons(_) -> + false. + + +%% @spec cons_hd(cerl()) -> cerl() +%% +%% @doc Returns the head subtree of an abstract list constructor. +%% +%% @see c_cons/2 + +cons_hd(#cons{hd = Head}) -> + Head; +cons_hd(#literal{val = [Head | _]}) -> + #literal{val = Head}. + + +%% @spec cons_tl(cerl()) -> cerl() +%% +%% @doc Returns the tail subtree of an abstract list constructor. +%% +%% <p>Recall that the tail does not necessarily represent a proper +%% list.</p> +%% +%% @see c_cons/2 + +cons_tl(#cons{tl = Tail}) -> + Tail; +cons_tl(#literal{val = [_ | Tail]}) -> + #literal{val = Tail}. + + +%% @spec is_c_list(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> represents a +%% proper list, otherwise <code>false</code>. A proper list is either +%% the empty list <code>[]</code>, or a cons cell <code>[<em>Head</em> | +%% <em>Tail</em>]</code>, where recursively <code>Tail</code> is a +%% proper list. +%% +%% <p>Note: Because <code>Node</code> is a syntax tree, the actual +%% run-time values corresponding to its subtrees may often be partially +%% or completely unknown. Thus, if <code>Node</code> represents e.g. +%% "<code>[... | Ns]</code>" (where <code>Ns</code> is a variable), then +%% the function will return <code>false</code>, because it is not known +%% whether <code>Ns</code> will be bound to a list at run-time. If +%% <code>Node</code> instead represents e.g. "<code>[1, 2, 3]</code>" or +%% "<code>[A | []]</code>", then the function will return +%% <code>true</code>.</p> +%% +%% @see c_cons/2 +%% @see c_nil/0 +%% @see list_elements/1 +%% @see list_length/1 + +is_c_list(#cons{tl = Tail}) -> + is_c_list(Tail); +is_c_list(#literal{val = V}) -> + is_proper_list(V); +is_c_list(_) -> + false. + +is_proper_list([_ | Tail]) -> + is_proper_list(Tail); +is_proper_list([]) -> + true; +is_proper_list(_) -> + false. + +%% @spec list_elements(cerl()) -> [cerl()] +%% +%% @doc Returns the list of element subtrees of an abstract list. +%% <code>Node</code> must represent a proper list. E.g., if +%% <code>Node</code> represents "<code>[<em>X1</em>, <em>X2</em> | +%% [<em>X3</em>, <em>X4</em> | []]</code>", then +%% <code>list_elements(Node)</code> yields the list <code>[X1, X2, X3, +%% X4]</code>. +%% +%% @see c_cons/2 +%% @see c_nil/1 +%% @see is_c_list/1 +%% @see list_length/1 +%% @see make_list/2 + +list_elements(#cons{hd = Head, tl = Tail}) -> + [Head | list_elements(Tail)]; +list_elements(#literal{val = V}) -> + abstract_list(V). + +abstract_list([X | Xs]) -> + [abstract(X) | abstract_list(Xs)]; +abstract_list([]) -> + []. + + +%% @spec list_length(Node::cerl()) -> integer() +%% +%% @doc Returns the number of element subtrees of an abstract list. +%% <code>Node</code> must represent a proper list. E.g., if +%% <code>Node</code> represents "<code>[X1 | [X2, X3 | [X4, X5, +%% X6]]]</code>", then <code>list_length(Node)</code> returns the +%% integer 6. +%% +%% <p>Note: this is equivalent to +%% <code>length(list_elements(Node))</code>, but potentially more +%% efficient.</p> +%% +%% @see c_cons/2 +%% @see c_nil/1 +%% @see is_c_list/1 +%% @see list_elements/1 + +list_length(L) -> + list_length(L, 0). + +list_length(#cons{tl = Tail}, A) -> + list_length(Tail, A + 1); +list_length(#literal{val = V}, A) -> + A + length(V). + + +%% @spec make_list(List) -> Node +%% @equiv make_list(List, none) + +make_list(List) -> + ann_make_list([], List). + + +%% @spec make_list(List::[cerl()], Tail) -> cerl() +%% +%% Tail = cerl() | none +%% +%% @doc Creates an abstract list from the elements in <code>List</code> +%% and the optional <code>Tail</code>. If <code>Tail</code> is +%% <code>none</code>, the result will represent a nil-terminated list, +%% otherwise it represents "<code>[... | <em>Tail</em>]</code>". +%% +%% @see c_cons/2 +%% @see c_nil/0 +%% @see ann_make_list/3 +%% @see update_list/3 +%% @see list_elements/1 + +make_list(List, Tail) -> + ann_make_list([], List, Tail). + + +%% @spec update_list(Old::cerl(), List::[cerl()]) -> cerl() +%% @equiv update_list(Old, List, none) + +update_list(Node, List) -> + ann_make_list(get_ann(Node), List). + + +%% @spec update_list(Old::cerl(), List::[cerl()], Tail) -> cerl() +%% +%% Tail = cerl() | none +%% +%% @see make_list/2 +%% @see update_list/2 + +update_list(Node, List, Tail) -> + ann_make_list(get_ann(Node), List, Tail). + + +%% @spec ann_make_list(As::[term()], List::[cerl()]) -> cerl() +%% @equiv ann_make_list(As, List, none) + +ann_make_list(As, List) -> + ann_make_list(As, List, none). + + +%% @spec ann_make_list(As::[term()], List::[cerl()], Tail) -> cerl() +%% +%% Tail = cerl() | none +%% +%% @see make_list/2 +%% @see ann_make_list/2 + +ann_make_list(As, [H | T], Tail) -> + ann_c_cons(As, H, make_list(T, Tail)); % `c_cons' folds literals +ann_make_list(As, [], none) -> + ann_c_nil(As); +ann_make_list(_, [], Node) -> + Node. + + +%% --------------------------------------------------------------------- + +%% @spec c_tuple(Elements::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract tuple. If <code>Elements</code> is +%% <code>[E1, ..., En]</code>, the result represents +%% "<code>{<em>E1</em>, ..., <em>En</em>}</code>". Note that if all +%% nodes in <code>Elements</code> have type <code>literal</code>, or if +%% <code>Elements</code> is empty, then the result will also have type +%% <code>literal</code> and annotations on nodes in +%% <code>Elements</code> are lost. +%% +%% <p>Recall that Erlang has distinct 1-tuples, i.e., <code>{X}</code> +%% is always distinct from <code>X</code> itself.</p> +%% +%% @see ann_c_tuple/2 +%% @see update_c_tuple/2 +%% @see is_c_tuple/1 +%% @see tuple_es/1 +%% @see tuple_arity/1 +%% @see c_tuple_skel/1 + +-record(tuple, {ann = [], es}). + +%% *Always* collapse literals. + +c_tuple(Es) -> + case is_lit_list(Es) of + false -> + #tuple{es = Es}; + true -> + #literal{val = list_to_tuple(lit_list_vals(Es))} + end. + + +%% @spec ann_c_tuple(As::[term()], Elements::[cerl()]) -> cerl() +%% @see c_tuple/1 + +ann_c_tuple(As, Es) -> + case is_lit_list(Es) of + false -> + #tuple{es = Es, ann = As}; + true -> + #literal{val = list_to_tuple(lit_list_vals(Es)), ann = As} + end. + + +%% @spec update_c_tuple(Old::cerl(), Elements::[cerl()]) -> cerl() +%% @see c_tuple/1 + +update_c_tuple(Node, Es) -> + case is_lit_list(Es) of + false -> + #tuple{es = Es, ann = get_ann(Node)}; + true -> + #literal{val = list_to_tuple(lit_list_vals(Es)), + ann = get_ann(Node)} + end. + + +%% @spec c_tuple_skel(Elements::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract tuple skeleton. Does not fold constant +%% literals, i.e., the result always has type <code>tuple</code>, +%% representing "<code>{<em>E1</em>, ..., <em>En</em>}</code>", if +%% <code>Elements</code> is <code>[E1, ..., En]</code>. +%% +%% <p>This function is occasionally useful when it is necessary to have +%% annotations on the subnodes of a tuple node, even when all the +%% subnodes are constant literals. Note however that +%% <code>is_literal/1</code> will yield <code>false</code> and +%% <code>concrete/1</code> will fail if passed the result from this +%% function.</p> +%% +%% <p><code>fold_literal/1</code> can be used to revert a node to the +%% normal-form representation.</p> +%% +%% @see ann_c_tuple_skel/2 +%% @see update_c_tuple_skel/2 +%% @see c_tuple/1 +%% @see tuple_es/1 +%% @see is_c_tuple/1 +%% @see is_literal/1 +%% @see fold_literal/1 +%% @see concrete/1 + +%% *Never* collapse literals. + +c_tuple_skel(Es) -> + #tuple{es = Es}. + + +%% @spec ann_c_tuple_skel(As::[term()], Elements::[cerl()]) -> cerl() +%% @see c_tuple_skel/1 + +ann_c_tuple_skel(As, Es) -> + #tuple{es = Es, ann = As}. + + +%% @spec update_c_tuple_skel(Old::cerl(), Elements::[cerl()]) -> cerl() +%% @see c_tuple_skel/1 + +update_c_tuple_skel(Old, Es) -> + #tuple{es = Es, ann = get_ann(Old)}. + + +%% @spec is_c_tuple(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% tuple, otherwise <code>false</code>. +%% +%% @see c_tuple/1 + +is_c_tuple(#tuple{}) -> + true; +is_c_tuple(#literal{val = V}) when tuple(V) -> + true; +is_c_tuple(_) -> + false. + + +%% @spec tuple_es(cerl()) -> [cerl()] +%% +%% @doc Returns the list of element subtrees of an abstract tuple. +%% +%% @see c_tuple/1 + +tuple_es(#tuple{es = Es}) -> + Es; +tuple_es(#literal{val = V}) -> + make_lit_list(tuple_to_list(V)). + + +%% @spec tuple_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of element subtrees of an abstract tuple. +%% +%% <p>Note: this is equivalent to <code>length(tuple_es(Node))</code>, +%% but potentially more efficient.</p> +%% +%% @see tuple_es/1 +%% @see c_tuple/1 + +tuple_arity(#tuple{es = Es}) -> + length(Es); +tuple_arity(#literal{val = V}) when tuple(V) -> + size(V). + + +%% --------------------------------------------------------------------- + +%% @spec c_var(Name::var_name()) -> cerl() +%% +%% var_name() = integer() | atom() | {atom(), integer()} +%% +%% @doc Creates an abstract variable. A variable is identified by its +%% name, given by the <code>Name</code> parameter. +%% +%% <p>If a name is given by a single atom, it should either be a +%% "simple" atom which does not need to be single-quoted in Erlang, or +%% otherwise its print name should correspond to a proper Erlang +%% variable, i.e., begin with an uppercase character or an +%% underscore. Names on the form <code>{A, N}</code> represent +%% function name variables "<code><em>A</em>/<em>N</em></code>"; these +%% are special variables which may be bound only in the function +%% definitions of a module or a <code>letrec</code>. They may not be +%% bound in <code>let</code> expressions and cannot occur in clause +%% patterns. The atom <code>A</code> in a function name may be any +%% atom; the integer <code>N</code> must be nonnegative. The functions +%% <code>c_fname/2</code> etc. are utilities for handling function +%% name variables.</p> +%% +%% <p>When printing variable names, they must have the form of proper +%% Core Erlang variables and function names. E.g., a name represented +%% by an integer such as <code>42</code> could be formatted as +%% "<code>_42</code>", an atom <code>'Xxx'</code> simply as +%% "<code>Xxx</code>", and an atom <code>foo</code> as +%% "<code>_foo</code>". However, one must assure that any two valid +%% distinct names are never mapped to the same strings. Tuples such +%% as <code>{foo, 2}</code> representing function names can simply by +%% formatted as "<code>'foo'/2</code>", with no risk of conflicts.</p> +%% +%% @see ann_c_var/2 +%% @see update_c_var/2 +%% @see is_c_var/1 +%% @see var_name/1 +%% @see c_fname/2 +%% @see c_module/4 +%% @see c_letrec/2 + +-record(var, {ann = [], name}). + +c_var(Name) -> + #var{name = Name}. + + +%% @spec ann_c_var(As::[term()], Name::var_name()) -> cerl() +%% +%% @see c_var/1 + +ann_c_var(As, Name) -> + #var{name = Name, ann = As}. + +%% @spec update_c_var(Old::cerl(), Name::var_name()) -> cerl() +%% +%% @see c_var/1 + +update_c_var(Node, Name) -> + #var{name = Name, ann = get_ann(Node)}. + + +%% @spec is_c_var(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% variable, otherwise <code>false</code>. +%% +%% @see c_var/1 + +is_c_var(#var{}) -> + true; +is_c_var(_) -> + false. + + +%% @spec c_fname(Name::atom(), Arity::integer()) -> cerl() +%% @equiv c_var({Name, Arity}) +%% @see fname_id/1 +%% @see fname_arity/1 +%% @see is_c_fname/1 +%% @see ann_c_fname/3 +%% @see update_c_fname/3 + +c_fname(Atom, Arity) -> + c_var({Atom, Arity}). + + +%% @spec ann_c_fname(As::[term()], Name::atom(), Arity::integer()) -> +%% cerl() +%% @equiv ann_c_var(As, {Atom, Arity}) +%% @see c_fname/2 + +ann_c_fname(As, Atom, Arity) -> + ann_c_var(As, {Atom, Arity}). + + +%% @spec update_c_fname(Old::cerl(), Name::atom()) -> cerl() +%% @doc Like <code>update_c_fname/3</code>, but takes the arity from +%% <code>Node</code>. +%% @see update_c_fname/3 +%% @see c_fname/2 + +update_c_fname(#var{name = {_, Arity}, ann = As}, Atom) -> + #var{name = {Atom, Arity}, ann = As}. + + +%% @spec update_c_fname(Old::cerl(), Name::atom(), Arity::integer()) -> +%% cerl() +%% @equiv update_c_var(Old, {Atom, Arity}) +%% @see update_c_fname/2 +%% @see c_fname/2 + +update_c_fname(Node, Atom, Arity) -> + update_c_var(Node, {Atom, Arity}). + + +%% @spec is_c_fname(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% function name variable, otherwise <code>false</code>. +%% +%% @see c_fname/2 +%% @see c_var/1 +%% @see c_var_name/1 + +is_c_fname(#var{name = {A, N}}) when atom(A), integer(N), N >= 0 -> + true; +is_c_fname(_) -> + false. + + +%% @spec var_name(cerl()) -> var_name() +%% +%% @doc Returns the name of an abstract variable. +%% +%% @see c_var/1 + +var_name(Node) -> + Node#var.name. + + +%% @spec fname_id(cerl()) -> atom() +%% +%% @doc Returns the identifier part of an abstract function name +%% variable. +%% +%% @see fname_arity/1 +%% @see c_fname/2 + +fname_id(#var{name={A,_}}) -> + A. + + +%% @spec fname_arity(cerl()) -> integer() +%% +%% @doc Returns the arity part of an abstract function name variable. +%% +%% @see fname_id/1 +%% @see c_fname/2 + +fname_arity(#var{name={_,N}}) -> + N. + + +%% --------------------------------------------------------------------- + +%% @spec c_values(Elements::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract value list. If <code>Elements</code> is +%% <code>[E1, ..., En]</code>, the result represents +%% "<code><<em>E1</em>, ..., <em>En</em>></code>". +%% +%% @see ann_c_values/2 +%% @see update_c_values/2 +%% @see is_c_values/1 +%% @see values_es/1 +%% @see values_arity/1 + +-record(values, {ann = [], es}). + +c_values(Es) -> + #values{es = Es}. + + +%% @spec ann_c_values(As::[term()], Elements::[cerl()]) -> cerl() +%% @see c_values/1 + +ann_c_values(As, Es) -> + #values{es = Es, ann = As}. + + +%% @spec update_c_values(Old::cerl(), Elements::[cerl()]) -> cerl() +%% @see c_values/1 + +update_c_values(Node, Es) -> + #values{es = Es, ann = get_ann(Node)}. + + +%% @spec is_c_values(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% value list; otherwise <code>false</code>. +%% +%% @see c_values/1 + +is_c_values(#values{}) -> + true; +is_c_values(_) -> + false. + + +%% @spec values_es(cerl()) -> [cerl()] +%% +%% @doc Returns the list of element subtrees of an abstract value +%% list. +%% +%% @see c_values/1 +%% @see values_arity/1 + +values_es(Node) -> + Node#values.es. + + +%% @spec values_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of element subtrees of an abstract value +%% list. +%% +%% <p>Note: This is equivalent to +%% <code>length(values_es(Node))</code>, but potentially more +%% efficient.</p> +%% +%% @see c_values/1 +%% @see values_es/1 + +values_arity(Node) -> + length(values_es(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_binary(Segments::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract binary-template. A binary object is a +%% sequence of 8-bit bytes. It is specified by zero or more bit-string +%% template <em>segments</em> of arbitrary lengths (in number of bits), +%% such that the sum of the lengths is evenly divisible by 8. If +%% <code>Segments</code> is <code>[S1, ..., Sn]</code>, the result +%% represents "<code>#{<em>S1</em>, ..., <em>Sn</em>}#</code>". All the +%% <code>Si</code> must have type <code>bitstr</code>. +%% +%% @see ann_c_binary/2 +%% @see update_c_binary/2 +%% @see is_c_binary/1 +%% @see binary_segments/1 +%% @see c_bitstr/5 + +-record(binary, {ann = [], segments}). + +c_binary(Segments) -> + #binary{segments = Segments}. + + +%% @spec ann_c_binary(As::[term()], Segments::[cerl()]) -> cerl() +%% @see c_binary/1 + +ann_c_binary(As, Segments) -> + #binary{segments = Segments, ann = As}. + + +%% @spec update_c_binary(Old::cerl(), Segments::[cerl()]) -> cerl() +%% @see c_binary/1 + +update_c_binary(Node, Segments) -> + #binary{segments = Segments, ann = get_ann(Node)}. + + +%% @spec is_c_binary(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% binary-template; otherwise <code>false</code>. +%% +%% @see c_binary/1 + +is_c_binary(#binary{}) -> + true; +is_c_binary(_) -> + false. + + +%% @spec binary_segments(cerl()) -> [cerl()] +%% +%% @doc Returns the list of segment subtrees of an abstract +%% binary-template. +%% +%% @see c_binary/1 +%% @see c_bitstr/5 + +binary_segments(Node) -> + Node#binary.segments. + + +%% @spec c_bitstr(Value::cerl(), Size::cerl(), Unit::cerl(), +%% Type::cerl(), Flags::cerl()) -> cerl() +%% +%% @doc Creates an abstract bit-string template. These can only occur as +%% components of an abstract binary-template (see {@link c_binary/1}). +%% The result represents "<code>#<<em>Value</em>>(<em>Size</em>, +%% <em>Unit</em>, <em>Type</em>, <em>Flags</em>)</code>", where +%% <code>Unit</code> must represent a positive integer constant, +%% <code>Type</code> must represent a constant atom (one of +%% <code>'integer'</code>, <code>'float'</code>, or +%% <code>'binary'</code>), and <code>Flags</code> must represent a +%% constant list <code>"[<em>F1</em>, ..., <em>Fn</em>]"</code> where +%% all the <code>Fi</code> are atoms. +%% +%% @see c_binary/1 +%% @see ann_c_bitstr/6 +%% @see update_c_bitstr/6 +%% @see is_c_bitstr/1 +%% @see bitstr_val/1 +%% @see bitstr_size/1 +%% @see bitstr_unit/1 +%% @see bitstr_type/1 +%% @see bitstr_flags/1 + +-record(bitstr, {ann = [], val, size, unit, type, flags}). + +c_bitstr(Val, Size, Unit, Type, Flags) -> + #bitstr{val = Val, size = Size, unit = Unit, type = Type, + flags = Flags}. + + +%% @spec c_bitstr(Value::cerl(), Size::cerl(), Type::cerl(), +%% Flags::cerl()) -> cerl() +%% @equiv c_bitstr(Value, Size, abstract(1), Type, Flags) + +c_bitstr(Val, Size, Type, Flags) -> + c_bitstr(Val, Size, abstract(1), Type, Flags). + + +%% @spec c_bitstr(Value::cerl(), Type::cerl(), +%% Flags::cerl()) -> cerl() +%% @equiv c_bitstr(Value, abstract(all), abstract(1), Type, Flags) + +c_bitstr(Val, Type, Flags) -> + c_bitstr(Val, abstract(all), abstract(1), Type, Flags). + + +%% @spec ann_c_bitstr(As::[term()], Value::cerl(), Size::cerl(), +%% Unit::cerl(), Type::cerl(), Flags::cerl()) -> cerl() +%% @see c_bitstr/5 +%% @see ann_c_bitstr/5 + +ann_c_bitstr(As, Val, Size, Unit, Type, Flags) -> + #bitstr{val = Val, size = Size, unit = Unit, type = Type, + flags = Flags, ann = As}. + +%% @spec ann_c_bitstr(As::[term()], Value::cerl(), Size::cerl(), +%% Type::cerl(), Flags::cerl()) -> cerl() +%% @equiv ann_c_bitstr(As, Value, Size, abstract(1), Type, Flags) + +ann_c_bitstr(As, Value, Size, Type, Flags) -> + ann_c_bitstr(As, Value, Size, abstract(1), Type, Flags). + + +%% @spec update_c_bitstr(Old::cerl(), Value::cerl(), Size::cerl(), +%% Unit::cerl(), Type::cerl(), Flags::cerl()) -> cerl() +%% @see c_bitstr/5 +%% @see update_c_bitstr/5 + +update_c_bitstr(Node, Val, Size, Unit, Type, Flags) -> + #bitstr{val = Val, size = Size, unit = Unit, type = Type, + flags = Flags, ann = get_ann(Node)}. + + +%% @spec update_c_bitstr(Old::cerl(), Value::cerl(), Size::cerl(), +%% Type::cerl(), Flags::cerl()) -> cerl() +%% @equiv update_c_bitstr(Node, Value, Size, abstract(1), Type, Flags) + +update_c_bitstr(Node, Value, Size, Type, Flags) -> + update_c_bitstr(Node, Value, Size, abstract(1), Type, Flags). + +%% @spec is_c_bitstr(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% bit-string template; otherwise <code>false</code>. +%% +%% @see c_bitstr/5 + +is_c_bitstr(#bitstr{}) -> + true; +is_c_bitstr(_) -> + false. + + +%% @spec bitstr_val(cerl()) -> cerl() +%% +%% @doc Returns the value subtree of an abstract bit-string template. +%% +%% @see c_bitstr/5 + +bitstr_val(Node) -> + Node#bitstr.val. + + +%% @spec bitstr_size(cerl()) -> cerl() +%% +%% @doc Returns the size subtree of an abstract bit-string template. +%% +%% @see c_bitstr/5 + +bitstr_size(Node) -> + Node#bitstr.size. + + +%% @spec bitstr_bitsize(cerl()) -> integer() | any | all +%% +%% @doc Returns the total size in bits of an abstract bit-string +%% template. If the size field is an integer literal, the result is the +%% product of the size and unit values; if the size field is the atom +%% literal <code>all</code>, the atom <code>all</code> is returned; in +%% all other cases, the atom <code>any</code> is returned. +%% +%% @see c_bitstr/5 + +bitstr_bitsize(Node) -> + Size = Node#bitstr.size, + case is_literal(Size) of + true -> + case concrete(Size) of + all -> + all; + S when integer(S) -> + S*concrete(Node#bitstr.unit); + true -> + any + end; + false -> + any + end. + + +%% @spec bitstr_unit(cerl()) -> cerl() +%% +%% @doc Returns the unit subtree of an abstract bit-string template. +%% +%% @see c_bitstr/5 + +bitstr_unit(Node) -> + Node#bitstr.unit. + + +%% @spec bitstr_type(cerl()) -> cerl() +%% +%% @doc Returns the type subtree of an abstract bit-string template. +%% +%% @see c_bitstr/5 + +bitstr_type(Node) -> + Node#bitstr.type. + + +%% @spec bitstr_flags(cerl()) -> cerl() +%% +%% @doc Returns the flags subtree of an abstract bit-string template. +%% +%% @see c_bitstr/5 + +bitstr_flags(Node) -> + Node#bitstr.flags. + + +%% --------------------------------------------------------------------- + +%% @spec c_fun(Variables::[cerl()], Body::cerl()) -> cerl() +%% +%% @doc Creates an abstract fun-expression. If <code>Variables</code> +%% is <code>[V1, ..., Vn]</code>, the result represents "<code>fun +%% (<em>V1</em>, ..., <em>Vn</em>) -> <em>Body</em></code>". All the +%% <code>Vi</code> must have type <code>var</code>. +%% +%% @see ann_c_fun/3 +%% @see update_c_fun/3 +%% @see is_c_fun/1 +%% @see fun_vars/1 +%% @see fun_body/1 +%% @see fun_arity/1 + +-record('fun', {ann = [], vars, body}). + +c_fun(Variables, Body) -> + #'fun'{vars = Variables, body = Body}. + + +%% @spec ann_c_fun(As::[term()], Variables::[cerl()], Body::cerl()) -> +%% cerl() +%% @see c_fun/2 + +ann_c_fun(As, Variables, Body) -> + #'fun'{vars = Variables, body = Body, ann = As}. + + +%% @spec update_c_fun(Old::cerl(), Variables::[cerl()], +%% Body::cerl()) -> cerl() +%% @see c_fun/2 + +update_c_fun(Node, Variables, Body) -> + #'fun'{vars = Variables, body = Body, ann = get_ann(Node)}. + + +%% @spec is_c_fun(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% fun-expression, otherwise <code>false</code>. +%% +%% @see c_fun/2 + +is_c_fun(#'fun'{}) -> + true; % Now this is fun! +is_c_fun(_) -> + false. + + +%% @spec fun_vars(cerl()) -> [cerl()] +%% +%% @doc Returns the list of parameter subtrees of an abstract +%% fun-expression. +%% +%% @see c_fun/2 +%% @see fun_arity/1 + +fun_vars(Node) -> + Node#'fun'.vars. + + +%% @spec fun_body(cerl()) -> cerl() +%% +%% @doc Returns the body subtree of an abstract fun-expression. +%% +%% @see c_fun/2 + +fun_body(Node) -> + Node#'fun'.body. + + +%% @spec fun_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of parameter subtrees of an abstract +%% fun-expression. +%% +%% <p>Note: this is equivalent to <code>length(fun_vars(Node))</code>, +%% but potentially more efficient.</p> +%% +%% @see c_fun/2 +%% @see fun_vars/1 + +fun_arity(Node) -> + length(fun_vars(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_seq(Argument::cerl(), Body::cerl()) -> cerl() +%% +%% @doc Creates an abstract sequencing expression. The result +%% represents "<code>do <em>Argument</em> <em>Body</em></code>". +%% +%% @see ann_c_seq/3 +%% @see update_c_seq/3 +%% @see is_c_seq/1 +%% @see seq_arg/1 +%% @see seq_body/1 + +-record(seq, {ann = [], arg, body}). + +c_seq(Argument, Body) -> + #seq{arg = Argument, body = Body}. + + +%% @spec ann_c_seq(As::[term()], Argument::cerl(), Body::cerl()) -> +%% cerl() +%% @see c_seq/2 + +ann_c_seq(As, Argument, Body) -> + #seq{arg = Argument, body = Body, ann = As}. + + +%% @spec update_c_seq(Old::cerl(), Argument::cerl(), Body::cerl()) -> +%% cerl() +%% @see c_seq/2 + +update_c_seq(Node, Argument, Body) -> + #seq{arg = Argument, body = Body, ann = get_ann(Node)}. + + +%% @spec is_c_seq(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% sequencing expression, otherwise <code>false</code>. +%% +%% @see c_seq/2 + +is_c_seq(#seq{}) -> + true; +is_c_seq(_) -> + false. + + +%% @spec seq_arg(cerl()) -> cerl() +%% +%% @doc Returns the argument subtree of an abstract sequencing +%% expression. +%% +%% @see c_seq/2 + +seq_arg(Node) -> + Node#seq.arg. + + +%% @spec seq_body(cerl()) -> cerl() +%% +%% @doc Returns the body subtree of an abstract sequencing expression. +%% +%% @see c_seq/2 + +seq_body(Node) -> + Node#seq.body. + + +%% --------------------------------------------------------------------- + +%% @spec c_let(Variables::[cerl()], Argument::cerl(), Body::cerl()) -> +%% cerl() +%% +%% @doc Creates an abstract let-expression. If <code>Variables</code> +%% is <code>[V1, ..., Vn]</code>, the result represents "<code>let +%% <<em>V1</em>, ..., <em>Vn</em>> = <em>Argument</em> in +%% <em>Body</em></code>". All the <code>Vi</code> must have type +%% <code>var</code>. +%% +%% @see ann_c_let/4 +%% @see update_c_let/4 +%% @see is_c_let/1 +%% @see let_vars/1 +%% @see let_arg/1 +%% @see let_body/1 +%% @see let_arity/1 + +-record('let', {ann = [], vars, arg, body}). + +c_let(Variables, Argument, Body) -> + #'let'{vars = Variables, arg = Argument, body = Body}. + + +%% ann_c_let(As, Variables, Argument, Body) -> Node +%% @see c_let/3 + +ann_c_let(As, Variables, Argument, Body) -> + #'let'{vars = Variables, arg = Argument, body = Body, ann = As}. + + +%% update_c_let(Old, Variables, Argument, Body) -> Node +%% @see c_let/3 + +update_c_let(Node, Variables, Argument, Body) -> + #'let'{vars = Variables, arg = Argument, body = Body, + ann = get_ann(Node)}. + + +%% @spec is_c_let(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% let-expression, otherwise <code>false</code>. +%% +%% @see c_let/3 + +is_c_let(#'let'{}) -> + true; +is_c_let(_) -> + false. + + +%% @spec let_vars(cerl()) -> [cerl()] +%% +%% @doc Returns the list of left-hand side variables of an abstract +%% let-expression. +%% +%% @see c_let/3 +%% @see let_arity/1 + +let_vars(Node) -> + Node#'let'.vars. + + +%% @spec let_arg(cerl()) -> cerl() +%% +%% @doc Returns the argument subtree of an abstract let-expression. +%% +%% @see c_let/3 + +let_arg(Node) -> + Node#'let'.arg. + + +%% @spec let_body(cerl()) -> cerl() +%% +%% @doc Returns the body subtree of an abstract let-expression. +%% +%% @see c_let/3 + +let_body(Node) -> + Node#'let'.body. + + +%% @spec let_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of left-hand side variables of an abstract +%% let-expression. +%% +%% <p>Note: this is equivalent to <code>length(let_vars(Node))</code>, +%% but potentially more efficient.</p> +%% +%% @see c_let/3 +%% @see let_vars/1 + +let_arity(Node) -> + length(let_vars(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_letrec(Definitions::[{cerl(), cerl()}], Body::cerl()) -> +%% cerl() +%% +%% @doc Creates an abstract letrec-expression. If +%% <code>Definitions</code> is <code>[{V1, F1}, ..., {Vn, Fn}]</code>, +%% the result represents "<code>letrec <em>V1</em> = <em>F1</em> +%% ... <em>Vn</em> = <em>Fn</em> in <em>Body</em></code>. All the +%% <code>Vi</code> must have type <code>var</code> and represent +%% function names. All the <code>Fi</code> must have type +%% <code>'fun'</code>. +%% +%% @see ann_c_letrec/3 +%% @see update_c_letrec/3 +%% @see is_c_letrec/1 +%% @see letrec_defs/1 +%% @see letrec_body/1 +%% @see letrec_vars/1 + +-record(letrec, {ann = [], defs, body}). + +c_letrec(Defs, Body) -> + #letrec{defs = Defs, body = Body}. + + +%% @spec ann_c_letrec(As::[term()], Definitions::[{cerl(), cerl()}], +%% Body::cerl()) -> cerl() +%% @see c_letrec/2 + +ann_c_letrec(As, Defs, Body) -> + #letrec{defs = Defs, body = Body, ann = As}. + + +%% @spec update_c_letrec(Old::cerl(), +%% Definitions::[{cerl(), cerl()}], +%% Body::cerl()) -> cerl() +%% @see c_letrec/2 + +update_c_letrec(Node, Defs, Body) -> + #letrec{defs = Defs, body = Body, ann = get_ann(Node)}. + + +%% @spec is_c_letrec(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% letrec-expression, otherwise <code>false</code>. +%% +%% @see c_letrec/2 + +is_c_letrec(#letrec{}) -> + true; +is_c_letrec(_) -> + false. + + +%% @spec letrec_defs(Node::cerl()) -> [{cerl(), cerl()}] +%% +%% @doc Returns the list of definitions of an abstract +%% letrec-expression. If <code>Node</code> represents "<code>letrec +%% <em>V1</em> = <em>F1</em> ... <em>Vn</em> = <em>Fn</em> in +%% <em>Body</em></code>", the returned value is <code>[{V1, F1}, ..., +%% {Vn, Fn}]</code>. +%% +%% @see c_letrec/2 + +letrec_defs(Node) -> + Node#letrec.defs. + + +%% @spec letrec_body(cerl()) -> cerl() +%% +%% @doc Returns the body subtree of an abstract letrec-expression. +%% +%% @see c_letrec/2 + +letrec_body(Node) -> + Node#letrec.body. + + +%% @spec letrec_vars(cerl()) -> [cerl()] +%% +%% @doc Returns the list of left-hand side function variable subtrees +%% of a letrec-expression. If <code>Node</code> represents +%% "<code>letrec <em>V1</em> = <em>F1</em> ... <em>Vn</em> = +%% <em>Fn</em> in <em>Body</em></code>", the returned value is +%% <code>[V1, ..., Vn]</code>. +%% +%% @see c_letrec/2 + +letrec_vars(Node) -> + [F || {F, _} <- letrec_defs(Node)]. + + +%% --------------------------------------------------------------------- + +%% @spec c_case(Argument::cerl(), Clauses::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract case-expression. If <code>Clauses</code> +%% is <code>[C1, ..., Cn]</code>, the result represents "<code>case +%% <em>Argument</em> of <em>C1</em> ... <em>Cn</em> +%% end</code>". <code>Clauses</code> must not be empty. +%% +%% @see ann_c_case/3 +%% @see update_c_case/3 +%% @see is_c_case/1 +%% @see c_clause/3 +%% @see case_arg/1 +%% @see case_clauses/1 +%% @see case_arity/1 + +-record('case', {ann = [], arg, clauses}). + +c_case(Expr, Clauses) -> + #'case'{arg = Expr, clauses = Clauses}. + + +%% @spec ann_c_case(As::[term()], Argument::cerl(), +%% Clauses::[cerl()]) -> cerl() +%% @see c_case/2 + +ann_c_case(As, Expr, Clauses) -> + #'case'{arg = Expr, clauses = Clauses, ann = As}. + + +%% @spec update_c_case(Old::cerl(), Argument::cerl(), +%% Clauses::[cerl()]) -> cerl() +%% @see c_case/2 + +update_c_case(Node, Expr, Clauses) -> + #'case'{arg = Expr, clauses = Clauses, ann = get_ann(Node)}. + + +%% is_c_case(Node) -> boolean() +%% +%% Node = cerl() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% case-expression; otherwise <code>false</code>. +%% +%% @see c_case/2 + +is_c_case(#'case'{}) -> + true; +is_c_case(_) -> + false. + + +%% @spec case_arg(cerl()) -> cerl() +%% +%% @doc Returns the argument subtree of an abstract case-expression. +%% +%% @see c_case/2 + +case_arg(Node) -> + Node#'case'.arg. + + +%% @spec case_clauses(cerl()) -> [cerl()] +%% +%% @doc Returns the list of clause subtrees of an abstract +%% case-expression. +%% +%% @see c_case/2 +%% @see case_arity/1 + +case_clauses(Node) -> + Node#'case'.clauses. + + +%% @spec case_arity(Node::cerl()) -> integer() +%% +%% @doc Equivalent to +%% <code>clause_arity(hd(case_clauses(Node)))</code>, but potentially +%% more efficient. +%% +%% @see c_case/2 +%% @see case_clauses/1 +%% @see clause_arity/1 + +case_arity(Node) -> + clause_arity(hd(case_clauses(Node))). + + +%% --------------------------------------------------------------------- + +%% @spec c_clause(Patterns::[cerl()], Body::cerl()) -> cerl() +%% @equiv c_clause(Patterns, c_atom(true), Body) +%% @see c_atom/1 + +c_clause(Patterns, Body) -> + c_clause(Patterns, c_atom(true), Body). + + +%% @spec c_clause(Patterns::[cerl()], Guard::cerl(), Body::cerl()) -> +%% cerl() +%% +%% @doc Creates an an abstract clause. If <code>Patterns</code> is +%% <code>[P1, ..., Pn]</code>, the result represents +%% "<code><<em>P1</em>, ..., <em>Pn</em>> when <em>Guard</em> -> +%% <em>Body</em></code>". +%% +%% @see c_clause/2 +%% @see ann_c_clause/4 +%% @see update_c_clause/4 +%% @see is_c_clause/1 +%% @see c_case/2 +%% @see c_receive/3 +%% @see clause_pats/1 +%% @see clause_guard/1 +%% @see clause_body/1 +%% @see clause_arity/1 +%% @see clause_vars/1 + +-record(clause, {ann = [], pats, guard, body}). + +c_clause(Patterns, Guard, Body) -> + #clause{pats = Patterns, guard = Guard, body = Body}. + + +%% @spec ann_c_clause(As::[term()], Patterns::[cerl()], +%% Body::cerl()) -> cerl() +%% @equiv ann_c_clause(As, Patterns, c_atom(true), Body) +%% @see c_clause/3 +ann_c_clause(As, Patterns, Body) -> + ann_c_clause(As, Patterns, c_atom(true), Body). + + +%% @spec ann_c_clause(As::[term()], Patterns::[cerl()], Guard::cerl(), +%% Body::cerl()) -> cerl() +%% @see ann_c_clause/3 +%% @see c_clause/3 + +ann_c_clause(As, Patterns, Guard, Body) -> + #clause{pats = Patterns, guard = Guard, body = Body, ann = As}. + + +%% @spec update_c_clause(Old::cerl(), Patterns::[cerl()], +%% Guard::cerl(), Body::cerl()) -> cerl() +%% @see c_clause/3 + +update_c_clause(Node, Patterns, Guard, Body) -> + #clause{pats = Patterns, guard = Guard, body = Body, + ann = get_ann(Node)}. + + +%% @spec is_c_clause(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% clause, otherwise <code>false</code>. +%% +%% @see c_clause/3 + +is_c_clause(#clause{}) -> + true; +is_c_clause(_) -> + false. + + +%% @spec clause_pats(cerl()) -> [cerl()] +%% +%% @doc Returns the list of pattern subtrees of an abstract clause. +%% +%% @see c_clause/3 +%% @see clause_arity/1 + +clause_pats(Node) -> + Node#clause.pats. + + +%% @spec clause_guard(cerl()) -> cerl() +%% +%% @doc Returns the guard subtree of an abstract clause. +%% +%% @see c_clause/3 + +clause_guard(Node) -> + Node#clause.guard. + + +%% @spec clause_body(cerl()) -> cerl() +%% +%% @doc Returns the body subtree of an abstract clause. +%% +%% @see c_clause/3 + +clause_body(Node) -> + Node#clause.body. + + +%% @spec clause_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of pattern subtrees of an abstract clause. +%% +%% <p>Note: this is equivalent to +%% <code>length(clause_pats(Node))</code>, but potentially more +%% efficient.</p> +%% +%% @see c_clause/3 +%% @see clause_pats/1 + +clause_arity(Node) -> + length(clause_pats(Node)). + + +%% @spec clause_vars(cerl()) -> [cerl()] +%% +%% @doc Returns the list of all abstract variables in the patterns of +%% an abstract clause. The order of listing is not defined. +%% +%% @see c_clause/3 +%% @see pat_list_vars/1 + +clause_vars(Clause) -> + pat_list_vars(clause_pats(Clause)). + + +%% @spec pat_vars(Pattern::cerl()) -> [cerl()] +%% +%% @doc Returns the list of all abstract variables in a pattern. An +%% exception is thrown if <code>Node</code> does not represent a +%% well-formed Core Erlang clause pattern. The order of listing is not +%% defined. +%% +%% @see pat_list_vars/1 +%% @see clause_vars/1 + +pat_vars(Node) -> + pat_vars(Node, []). + +pat_vars(Node, Vs) -> + case type(Node) of + var -> + [Node | Vs]; + literal -> + Vs; + cons -> + pat_vars(cons_hd(Node), pat_vars(cons_tl(Node), Vs)); + tuple -> + pat_list_vars(tuple_es(Node), Vs); + binary -> + pat_list_vars(binary_segments(Node), Vs); + bitstr -> + pat_vars(bitstr_val(Node), Vs); + alias -> + pat_vars(alias_pat(Node), [alias_var(Node) | Vs]) + end. + + +%% @spec pat_list_vars(Patterns::[cerl()]) -> [cerl()] +%% +%% @doc Returns the list of all abstract variables in the given +%% patterns. An exception is thrown if some element in +%% <code>Patterns</code> does not represent a well-formed Core Erlang +%% clause pattern. The order of listing is not defined. +%% +%% @see pat_vars/1 +%% @see clause_vars/1 + +pat_list_vars(Ps) -> + pat_list_vars(Ps, []). + +pat_list_vars([P | Ps], Vs) -> + pat_list_vars(Ps, pat_vars(P, Vs)); +pat_list_vars([], Vs) -> + Vs. + + +%% --------------------------------------------------------------------- + +%% @spec c_alias(Variable::cerl(), Pattern::cerl()) -> cerl() +%% +%% @doc Creates an abstract pattern alias. The result represents +%% "<code><em>Variable</em> = <em>Pattern</em></code>". +%% +%% @see ann_c_alias/3 +%% @see update_c_alias/3 +%% @see is_c_alias/1 +%% @see alias_var/1 +%% @see alias_pat/1 +%% @see c_clause/3 + +-record(alias, {ann = [], var, pat}). + +c_alias(Var, Pattern) -> + #alias{var = Var, pat = Pattern}. + + +%% @spec ann_c_alias(As::[term()], Variable::cerl(), +%% Pattern::cerl()) -> cerl() +%% @see c_alias/2 + +ann_c_alias(As, Var, Pattern) -> + #alias{var = Var, pat = Pattern, ann = As}. + + +%% @spec update_c_alias(Old::cerl(), Variable::cerl(), +%% Pattern::cerl()) -> cerl() +%% @see c_alias/2 + +update_c_alias(Node, Var, Pattern) -> + #alias{var = Var, pat = Pattern, ann = get_ann(Node)}. + + +%% @spec is_c_alias(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% pattern alias, otherwise <code>false</code>. +%% +%% @see c_alias/2 + +is_c_alias(#alias{}) -> + true; +is_c_alias(_) -> + false. + + +%% @spec alias_var(cerl()) -> cerl() +%% +%% @doc Returns the variable subtree of an abstract pattern alias. +%% +%% @see c_alias/2 + +alias_var(Node) -> + Node#alias.var. + + +%% @spec alias_pat(cerl()) -> cerl() +%% +%% @doc Returns the pattern subtree of an abstract pattern alias. +%% +%% @see c_alias/2 + +alias_pat(Node) -> + Node#alias.pat. + + +%% --------------------------------------------------------------------- + +%% @spec c_receive(Clauses::[cerl()]) -> cerl() +%% @equiv c_receive(Clauses, c_atom(infinity), c_atom(true)) +%% @see c_atom/1 + +c_receive(Clauses) -> + c_receive(Clauses, c_atom(infinity), c_atom(true)). + + +%% @spec c_receive(Clauses::[cerl()], Timeout::cerl(), +%% Action::cerl()) -> cerl() +%% +%% @doc Creates an abstract receive-expression. If +%% <code>Clauses</code> is <code>[C1, ..., Cn]</code>, the result +%% represents "<code>receive <em>C1</em> ... <em>Cn</em> after +%% <em>Timeout</em> -> <em>Action</em> end</code>". +%% +%% @see c_receive/1 +%% @see ann_c_receive/4 +%% @see update_c_receive/4 +%% @see is_c_receive/1 +%% @see receive_clauses/1 +%% @see receive_timeout/1 +%% @see receive_action/1 + +-record('receive', {ann = [], clauses, timeout, action}). + +c_receive(Clauses, Timeout, Action) -> + #'receive'{clauses = Clauses, timeout = Timeout, action = Action}. + + +%% @spec ann_c_receive(As::[term()], Clauses::[cerl()]) -> cerl() +%% @equiv ann_c_receive(As, Clauses, c_atom(infinity), c_atom(true)) +%% @see c_receive/3 +%% @see c_atom/1 + +ann_c_receive(As, Clauses) -> + ann_c_receive(As, Clauses, c_atom(infinity), c_atom(true)). + + +%% @spec ann_c_receive(As::[term()], Clauses::[cerl()], +%% Timeout::cerl(), Action::cerl()) -> cerl() +%% @see ann_c_receive/2 +%% @see c_receive/3 + +ann_c_receive(As, Clauses, Timeout, Action) -> + #'receive'{clauses = Clauses, timeout = Timeout, action = Action, + ann = As}. + + +%% @spec update_c_receive(Old::cerl(), Clauses::[cerl()], +%% Timeout::cerl(), Action::cerl()) -> cerl() +%% @see c_receive/3 + +update_c_receive(Node, Clauses, Timeout, Action) -> + #'receive'{clauses = Clauses, timeout = Timeout, action = Action, + ann = get_ann(Node)}. + + +%% @spec is_c_receive(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% receive-expression, otherwise <code>false</code>. +%% +%% @see c_receive/3 + +is_c_receive(#'receive'{}) -> + true; +is_c_receive(_) -> + false. + + +%% @spec receive_clauses(cerl()) -> [cerl()] +%% +%% @doc Returns the list of clause subtrees of an abstract +%% receive-expression. +%% +%% @see c_receive/3 + +receive_clauses(Node) -> + Node#'receive'.clauses. + + +%% @spec receive_timeout(cerl()) -> cerl() +%% +%% @doc Returns the timeout subtree of an abstract receive-expression. +%% +%% @see c_receive/3 + +receive_timeout(Node) -> + Node#'receive'.timeout. + + +%% @spec receive_action(cerl()) -> cerl() +%% +%% @doc Returns the action subtree of an abstract receive-expression. +%% +%% @see c_receive/3 + +receive_action(Node) -> + Node#'receive'.action. + + +%% --------------------------------------------------------------------- + +%% @spec c_apply(Operator::cerl(), Arguments::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract function application. If +%% <code>Arguments</code> is <code>[A1, ..., An]</code>, the result +%% represents "<code>apply <em>Operator</em>(<em>A1</em>, ..., +%% <em>An</em>)</code>". +%% +%% @see ann_c_apply/3 +%% @see update_c_apply/3 +%% @see is_c_apply/1 +%% @see apply_op/1 +%% @see apply_args/1 +%% @see apply_arity/1 +%% @see c_call/3 +%% @see c_primop/2 + +-record(apply, {ann = [], op, args}). + +c_apply(Operator, Arguments) -> + #apply{op = Operator, args = Arguments}. + + +%% @spec ann_c_apply(As::[term()], Operator::cerl(), +%% Arguments::[cerl()]) -> cerl() +%% @see c_apply/2 + +ann_c_apply(As, Operator, Arguments) -> + #apply{op = Operator, args = Arguments, ann = As}. + + +%% @spec update_c_apply(Old::cerl(), Operator::cerl(), +%% Arguments::[cerl()]) -> cerl() +%% @see c_apply/2 + +update_c_apply(Node, Operator, Arguments) -> + #apply{op = Operator, args = Arguments, ann = get_ann(Node)}. + + +%% @spec is_c_apply(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% function application, otherwise <code>false</code>. +%% +%% @see c_apply/2 + +is_c_apply(#apply{}) -> + true; +is_c_apply(_) -> + false. + + +%% @spec apply_op(cerl()) -> cerl() +%% +%% @doc Returns the operator subtree of an abstract function +%% application. +%% +%% @see c_apply/2 + +apply_op(Node) -> + Node#apply.op. + + +%% @spec apply_args(cerl()) -> [cerl()] +%% +%% @doc Returns the list of argument subtrees of an abstract function +%% application. +%% +%% @see c_apply/2 +%% @see apply_arity/1 + +apply_args(Node) -> + Node#apply.args. + + +%% @spec apply_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of argument subtrees of an abstract +%% function application. +%% +%% <p>Note: this is equivalent to +%% <code>length(apply_args(Node))</code>, but potentially more +%% efficient.</p> +%% +%% @see c_apply/2 +%% @see apply_args/1 + +apply_arity(Node) -> + length(apply_args(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_call(Module::cerl(), Name::cerl(), Arguments::[cerl()]) -> +%% cerl() +%% +%% @doc Creates an abstract inter-module call. If +%% <code>Arguments</code> is <code>[A1, ..., An]</code>, the result +%% represents "<code>call <em>Module</em>:<em>Name</em>(<em>A1</em>, +%% ..., <em>An</em>)</code>". +%% +%% @see ann_c_call/4 +%% @see update_c_call/4 +%% @see is_c_call/1 +%% @see call_module/1 +%% @see call_name/1 +%% @see call_args/1 +%% @see call_arity/1 +%% @see c_apply/2 +%% @see c_primop/2 + +-record(call, {ann = [], module, name, args}). + +c_call(Module, Name, Arguments) -> + #call{module = Module, name = Name, args = Arguments}. + + +%% @spec ann_c_call(As::[term()], Module::cerl(), Name::cerl(), +%% Arguments::[cerl()]) -> cerl() +%% @see c_call/3 + +ann_c_call(As, Module, Name, Arguments) -> + #call{module = Module, name = Name, args = Arguments, ann = As}. + + +%% @spec update_c_call(Old::cerl(), Module::cerl(), Name::cerl(), +%% Arguments::[cerl()]) -> cerl() +%% @see c_call/3 + +update_c_call(Node, Module, Name, Arguments) -> + #call{module = Module, name = Name, args = Arguments, + ann = get_ann(Node)}. + + +%% @spec is_c_call(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% inter-module call expression; otherwise <code>false</code>. +%% +%% @see c_call/3 + +is_c_call(#call{}) -> + true; +is_c_call(_) -> + false. + + +%% @spec call_module(cerl()) -> cerl() +%% +%% @doc Returns the module subtree of an abstract inter-module call. +%% +%% @see c_call/3 + +call_module(Node) -> + Node#call.module. + + +%% @spec call_name(cerl()) -> cerl() +%% +%% @doc Returns the name subtree of an abstract inter-module call. +%% +%% @see c_call/3 + +call_name(Node) -> + Node#call.name. + + +%% @spec call_args(cerl()) -> [cerl()] +%% +%% @doc Returns the list of argument subtrees of an abstract +%% inter-module call. +%% +%% @see c_call/3 +%% @see call_arity/1 + +call_args(Node) -> + Node#call.args. + + +%% @spec call_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of argument subtrees of an abstract +%% inter-module call. +%% +%% <p>Note: this is equivalent to +%% <code>length(call_args(Node))</code>, but potentially more +%% efficient.</p> +%% +%% @see c_call/3 +%% @see call_args/1 + +call_arity(Node) -> + length(call_args(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_primop(Name::cerl(), Arguments::[cerl()]) -> cerl() +%% +%% @doc Creates an abstract primitive operation call. If +%% <code>Arguments</code> is <code>[A1, ..., An]</code>, the result +%% represents "<code>primop <em>Name</em>(<em>A1</em>, ..., +%% <em>An</em>)</code>". <code>Name</code> must be an atom literal. +%% +%% @see ann_c_primop/3 +%% @see update_c_primop/3 +%% @see is_c_primop/1 +%% @see primop_name/1 +%% @see primop_args/1 +%% @see primop_arity/1 +%% @see c_apply/2 +%% @see c_call/3 + +-record(primop, {ann = [], name, args}). + +c_primop(Name, Arguments) -> + #primop{name = Name, args = Arguments}. + + +%% @spec ann_c_primop(As::[term()], Name::cerl(), +%% Arguments::[cerl()]) -> cerl() +%% @see c_primop/2 + +ann_c_primop(As, Name, Arguments) -> + #primop{name = Name, args = Arguments, ann = As}. + + +%% @spec update_c_primop(Old::cerl(), Name::cerl(), +%% Arguments::[cerl()]) -> cerl() +%% @see c_primop/2 + +update_c_primop(Node, Name, Arguments) -> + #primop{name = Name, args = Arguments, ann = get_ann(Node)}. + + +%% @spec is_c_primop(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% primitive operation call, otherwise <code>false</code>. +%% +%% @see c_primop/2 + +is_c_primop(#primop{}) -> + true; +is_c_primop(_) -> + false. + + +%% @spec primop_name(cerl()) -> cerl() +%% +%% @doc Returns the name subtree of an abstract primitive operation +%% call. +%% +%% @see c_primop/2 + +primop_name(Node) -> + Node#primop.name. + + +%% @spec primop_args(cerl()) -> [cerl()] +%% +%% @doc Returns the list of argument subtrees of an abstract primitive +%% operation call. +%% +%% @see c_primop/2 +%% @see primop_arity/1 + +primop_args(Node) -> + Node#primop.args. + + +%% @spec primop_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of argument subtrees of an abstract +%% primitive operation call. +%% +%% <p>Note: this is equivalent to +%% <code>length(primop_args(Node))</code>, but potentially more +%% efficient.</p> +%% +%% @see c_primop/2 +%% @see primop_args/1 + +primop_arity(Node) -> + length(primop_args(Node)). + + +%% --------------------------------------------------------------------- + +%% @spec c_try(Argument::cerl(), Variables::[cerl()], Body::cerl(), +%% ExceptionVars::[cerl()], Handler::cerl()) -> cerl() +%% +%% @doc Creates an abstract try-expression. If <code>Variables</code> is +%% <code>[V1, ..., Vn]</code> and <code>ExceptionVars</code> is +%% <code>[X1, ..., Xm]</code>, the result represents "<code>try +%% <em>Argument</em> of <<em>V1</em>, ..., <em>Vn</em>> -> +%% <em>Body</em> catch <<em>X1</em>, ..., <em>Xm</em>> -> +%% <em>Handler</em></code>". All the <code>Vi</code> and <code>Xi</code> +%% must have type <code>var</code>. +%% +%% @see ann_c_try/6 +%% @see update_c_try/6 +%% @see is_c_try/1 +%% @see try_arg/1 +%% @see try_vars/1 +%% @see try_body/1 +%% @see c_catch/1 + +-record('try', {ann = [], arg, vars, body, evars, handler}). + +c_try(Expr, Vs, Body, Evs, Handler) -> + #'try'{arg = Expr, vars = Vs, body = Body, + evars = Evs, handler = Handler}. + + +%% @spec ann_c_try(As::[term()], Expression::cerl(), +%% Variables::[cerl()], Body::cerl(), +%% EVars::[cerl()], EBody::[cerl()]) -> cerl() +%% @see c_try/3 + +ann_c_try(As, Expr, Vs, Body, Evs, Handler) -> + #'try'{arg = Expr, vars = Vs, body = Body, + evars = Evs, handler = Handler, ann = As}. + + +%% @spec update_c_try(Old::cerl(), Expression::cerl(), +%% Variables::[cerl()], Body::cerl(), +%% EVars::[cerl()], EBody::[cerl()]) -> cerl() +%% @see c_try/3 + +update_c_try(Node, Expr, Vs, Body, Evs, Handler) -> + #'try'{arg = Expr, vars = Vs, body = Body, + evars = Evs, handler = Handler, ann = get_ann(Node)}. + + +%% @spec is_c_try(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% try-expression, otherwise <code>false</code>. +%% +%% @see c_try/3 + +is_c_try(#'try'{}) -> + true; +is_c_try(_) -> + false. + + +%% @spec try_arg(cerl()) -> cerl() +%% +%% @doc Returns the expression subtree of an abstract try-expression. +%% +%% @see c_try/3 + +try_arg(Node) -> + Node#'try'.arg. + + +%% @spec try_vars(cerl()) -> [cerl()] +%% +%% @doc Returns the list of success variable subtrees of an abstract +%% try-expression. +%% +%% @see c_try/3 + +try_vars(Node) -> + Node#'try'.vars. + + +%% @spec try_body(cerl()) -> cerl() +%% +%% @doc Returns the success body subtree of an abstract try-expression. +%% +%% @see c_try/3 + +try_body(Node) -> + Node#'try'.body. + + +%% @spec try_evars(cerl()) -> [cerl()] +%% +%% @doc Returns the list of exception variable subtrees of an abstract +%% try-expression. +%% +%% @see c_try/3 + +try_evars(Node) -> + Node#'try'.evars. + + +%% @spec try_handler(cerl()) -> cerl() +%% +%% @doc Returns the exception body subtree of an abstract +%% try-expression. +%% +%% @see c_try/3 + +try_handler(Node) -> + Node#'try'.handler. + + +%% --------------------------------------------------------------------- + +%% @spec c_catch(Body::cerl()) -> cerl() +%% +%% @doc Creates an abstract catch-expression. The result represents +%% "<code>catch <em>Body</em></code>". +%% +%% <p>Note: catch-expressions can be rewritten as try-expressions, and +%% will eventually be removed from Core Erlang.</p> +%% +%% @see ann_c_catch/2 +%% @see update_c_catch/2 +%% @see is_c_catch/1 +%% @see catch_body/1 +%% @see c_try/3 + +-record('catch', {ann = [], body}). + +c_catch(Body) -> + #'catch'{body = Body}. + + +%% @spec ann_c_catch(As::[term()], Body::cerl()) -> cerl() +%% @see c_catch/1 + +ann_c_catch(As, Body) -> + #'catch'{body = Body, ann = As}. + + +%% @spec update_c_catch(Old::cerl(), Body::cerl()) -> cerl() +%% @see c_catch/1 + +update_c_catch(Node, Body) -> + #'catch'{body = Body, ann = get_ann(Node)}. + + +%% @spec is_c_catch(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> is an abstract +%% catch-expression, otherwise <code>false</code>. +%% +%% @see c_catch/1 + +is_c_catch(#'catch'{}) -> + true; +is_c_catch(_) -> + false. + + +%% @spec catch_body(Node::cerl()) -> cerl() +%% +%% @doc Returns the body subtree of an abstract catch-expression. +%% +%% @see c_catch/1 + +catch_body(Node) -> + Node#'catch'.body. + + +%% --------------------------------------------------------------------- + +%% @spec to_records(Tree::cerl()) -> record(record_types()) +%% +%% @doc Translates an abstract syntax tree to a corresponding explicit +%% record representation. The records are defined in the file +%% "<code>cerl.hrl</code>". +%% +%% <p>Note: Compound constant literals are always unfolded in the +%% record representation.</p> +%% +%% @see type/1 +%% @see from_records/1 + +to_records(Node) -> + A = get_ann(Node), + case type(Node) of + literal -> + lit_to_records(concrete(Node), A); + binary -> + #c_binary{anno = A, + segments = + list_to_records(binary_segments(Node))}; + bitstr -> + #c_bitstr{anno = A, + val = to_records(bitstr_val(Node)), + size = to_records(bitstr_size(Node)), + unit = to_records(bitstr_unit(Node)), + type = to_records(bitstr_type(Node)), + flags = to_records(bitstr_flags(Node))}; + cons -> + #c_cons{anno = A, + hd = to_records(cons_hd(Node)), + tl = to_records(cons_tl(Node))}; + tuple -> + #c_tuple{anno = A, + es = list_to_records(tuple_es(Node))}; + var -> + case is_c_fname(Node) of + true -> + #c_fname{anno = A, + id = fname_id(Node), + arity = fname_arity(Node)}; + false -> + #c_var{anno = A, name = var_name(Node)} + end; + values -> + #c_values{anno = A, + es = list_to_records(values_es(Node))}; + 'fun' -> + #c_fun{anno = A, + vars = list_to_records(fun_vars(Node)), + body = to_records(fun_body(Node))}; + seq -> + #c_seq{anno = A, + arg = to_records(seq_arg(Node)), + body = to_records(seq_body(Node))}; + 'let' -> + #c_let{anno = A, + vars = list_to_records(let_vars(Node)), + arg = to_records(let_arg(Node)), + body = to_records(let_body(Node))}; + letrec -> + #c_letrec{anno = A, + defs = [#c_def{name = to_records(N), + val = to_records(F)} + || {N, F} <- letrec_defs(Node)], + body = to_records(letrec_body(Node))}; + 'case' -> + #c_case{anno = A, + arg = to_records(case_arg(Node)), + clauses = + list_to_records(case_clauses(Node))}; + clause -> + #c_clause{anno = A, + pats = list_to_records(clause_pats(Node)), + guard = to_records(clause_guard(Node)), + body = to_records(clause_body(Node))}; + alias -> + #c_alias{anno = A, + var = to_records(alias_var(Node)), + pat = to_records(alias_pat(Node))}; + 'receive' -> + #c_receive{anno = A, + clauses = + list_to_records(receive_clauses(Node)), + timeout = + to_records(receive_timeout(Node)), + action = + to_records(receive_action(Node))}; + apply -> + #c_apply{anno = A, + op = to_records(apply_op(Node)), + args = list_to_records(apply_args(Node))}; + call -> + #c_call{anno = A, + module = to_records(call_module(Node)), + name = to_records(call_name(Node)), + args = list_to_records(call_args(Node))}; + primop -> + #c_primop{anno = A, + name = to_records(primop_name(Node)), + args = list_to_records(primop_args(Node))}; + 'try' -> + #c_try{anno = A, + arg = to_records(try_arg(Node)), + vars = list_to_records(try_vars(Node)), + body = to_records(try_body(Node)), + evars = list_to_records(try_evars(Node)), + handler = to_records(try_handler(Node))}; + 'catch' -> + #c_catch{anno = A, + body = to_records(catch_body(Node))}; + module -> + #c_module{anno = A, + name = to_records(module_name(Node)), + exports = list_to_records( + module_exports(Node)), + attrs = [#c_def{name = to_records(K), + val = to_records(V)} + || {K, V} <- module_attrs(Node)], + defs = [#c_def{name = to_records(N), + val = to_records(F)} + || {N, F} <- module_defs(Node)]} + end. + +list_to_records([T | Ts]) -> + [to_records(T) | list_to_records(Ts)]; +list_to_records([]) -> + []. + +lit_to_records(V, A) when integer(V) -> + #c_int{anno = A, val = V}; +lit_to_records(V, A) when float(V) -> + #c_float{anno = A, val = V}; +lit_to_records(V, A) when atom(V) -> + #c_atom{anno = A, val = V}; +lit_to_records([H | T] = V, A) -> + case is_print_char_list(V) of + true -> + #c_string{anno = A, val = V}; + false -> + #c_cons{anno = A, + hd = lit_to_records(H, []), + tl = lit_to_records(T, [])} + end; +lit_to_records([], A) -> + #c_nil{anno = A}; +lit_to_records(V, A) when tuple(V) -> + #c_tuple{anno = A, es = lit_list_to_records(tuple_to_list(V))}. + +lit_list_to_records([T | Ts]) -> + [lit_to_records(T, []) | lit_list_to_records(Ts)]; +lit_list_to_records([]) -> + []. + + +%% @spec from_records(Tree::record(record_types())) -> cerl() +%% +%% record_types() = c_alias | c_apply | c_call | c_case | c_catch | +%% c_clause | c_cons | c_def| c_fun | c_let | +%% c_letrec |c_lit | c_module | c_primop | +%% c_receive | c_seq | c_try | c_tuple | +%% c_values | c_var +%% +%% @doc Translates an explicit record representation to a +%% corresponding abstract syntax tree. The records are defined in the +%% file "<code>cerl.hrl</code>". +%% +%% <p>Note: Compound constant literals are folded, discarding +%% annotations on subtrees. There are no <code>c_def</code> nodes in +%% the abstract representation; annotations on <code>c_def</code> +%% records are discarded.</p> +%% +%% @see type/1 +%% @see to_records/1 + +from_records(#c_int{val = V, anno = As}) -> + ann_c_int(As, V); +from_records(#c_float{val = V, anno = As}) -> + ann_c_float(As, V); +from_records(#c_atom{val = V, anno = As}) -> + ann_c_atom(As, V); +from_records(#c_char{val = V, anno = As}) -> + ann_c_char(As, V); +from_records(#c_string{val = V, anno = As}) -> + ann_c_string(As, V); +from_records(#c_nil{anno = As}) -> + ann_c_nil(As); +from_records(#c_binary{segments = Ss, anno = As}) -> + ann_c_binary(As, from_records_list(Ss)); +from_records(#c_bitstr{val = V, size = S, unit = U, type = T, + flags = Fs, anno = As}) -> + ann_c_bitstr(As, from_records(V), from_records(S), from_records(U), + from_records(T), from_records(Fs)); +from_records(#c_cons{hd = H, tl = T, anno = As}) -> + ann_c_cons(As, from_records(H), from_records(T)); +from_records(#c_tuple{es = Es, anno = As}) -> + ann_c_tuple(As, from_records_list(Es)); +from_records(#c_var{name = Name, anno = As}) -> + ann_c_var(As, Name); +from_records(#c_fname{id = Id, arity = Arity, anno = As}) -> + ann_c_fname(As, Id, Arity); +from_records(#c_values{es = Es, anno = As}) -> + ann_c_values(As, from_records_list(Es)); +from_records(#c_fun{vars = Vs, body = B, anno = As}) -> + ann_c_fun(As, from_records_list(Vs), from_records(B)); +from_records(#c_seq{arg = A, body = B, anno = As}) -> + ann_c_seq(As, from_records(A), from_records(B)); +from_records(#c_let{vars = Vs, arg = A, body = B, anno = As}) -> + ann_c_let(As, from_records_list(Vs), from_records(A), + from_records(B)); +from_records(#c_letrec{defs = Fs, body = B, anno = As}) -> + ann_c_letrec(As, [{from_records(N), from_records(F)} + || #c_def{name = N, val = F} <- Fs], + from_records(B)); +from_records(#c_case{arg = A, clauses = Cs, anno = As}) -> + ann_c_case(As, from_records(A), from_records_list(Cs)); +from_records(#c_clause{pats = Ps, guard = G, body = B, anno = As}) -> + ann_c_clause(As, from_records_list(Ps), from_records(G), + from_records(B)); +from_records(#c_alias{var = V, pat = P, anno = As}) -> + ann_c_alias(As, from_records(V), from_records(P)); +from_records(#c_receive{clauses = Cs, timeout = T, action = A, + anno = As}) -> + ann_c_receive(As, from_records_list(Cs), from_records(T), + from_records(A)); +from_records(#c_apply{op = Op, args = Es, anno = As}) -> + ann_c_apply(As, from_records(Op), from_records_list(Es)); +from_records(#c_call{module = M, name = N, args = Es, anno = As}) -> + ann_c_call(As, from_records(M), from_records(N), + from_records_list(Es)); +from_records(#c_primop{name = N, args = Es, anno = As}) -> + ann_c_primop(As, from_records(N), from_records_list(Es)); +from_records(#c_try{arg = E, vars = Vs, body = B, + evars = Evs, handler = H, anno = As}) -> + ann_c_try(As, from_records(E), from_records_list(Vs), + from_records(B), from_records_list(Evs), from_records(H)); +from_records(#c_catch{body = B, anno = As}) -> + ann_c_catch(As, from_records(B)); +from_records(#c_module{name = N, exports = Es, attrs = Ds, defs = Fs, + anno = As}) -> + ann_c_module(As, from_records(N), + from_records_list(Es), + [{from_records(K), from_records(V)} + || #c_def{name = K, val = V} <- Ds], + [{from_records(V), from_records(F)} + || #c_def{name = V, val = F} <- Fs]). + +from_records_list([T | Ts]) -> + [from_records(T) | from_records_list(Ts)]; +from_records_list([]) -> + []. + + +%% --------------------------------------------------------------------- + +%% @spec is_data(Node::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if <code>Node</code> represents a +%% data constructor, otherwise <code>false</code>. Data constructors +%% are cons cells, tuples, and atomic literals. +%% +%% @see data_type/1 +%% @see data_es/1 +%% @see data_arity/1 + +is_data(#literal{}) -> + true; +is_data(#cons{}) -> + true; +is_data(#tuple{}) -> + true; +is_data(_) -> + false. + + +%% @spec data_type(Node::cerl()) -> dtype() +%% +%% dtype() = cons | tuple | {'atomic', Value} +%% Value = integer() | float() | atom() | [] +%% +%% @doc Returns a type descriptor for a data constructor +%% node. (Cf. <code>is_data/1</code>.) This is mainly useful for +%% comparing types and for constructing new nodes of the same type +%% (cf. <code>make_data/2</code>). If <code>Node</code> represents an +%% integer, floating-point number, atom or empty list, the result is +%% <code>{'atomic', Value}</code>, where <code>Value</code> is the value +%% of <code>concrete(Node)</code>, otherwise the result is either +%% <code>cons</code> or <code>tuple</code>. +%% +%% <p>Type descriptors can be compared for equality or order (in the +%% Erlang term order), but remember that floating-point values should +%% in general never be tested for equality.</p> +%% +%% @see is_data/1 +%% @see make_data/2 +%% @see type/1 +%% @see concrete/1 + +data_type(#literal{val = V}) -> + case V of + [_ | _] -> + cons; + _ when tuple(V) -> + tuple; + _ -> + {'atomic', V} + end; +data_type(#cons{}) -> + cons; +data_type(#tuple{}) -> + tuple. + + +%% @spec data_es(Node::cerl()) -> [cerl()] +%% +%% @doc Returns the list of subtrees of a data constructor node. If +%% the arity of the constructor is zero, the result is the empty list. +%% +%% <p>Note: if <code>data_type(Node)</code> is <code>cons</code>, the +%% number of subtrees is exactly two. If <code>data_type(Node)</code> +%% is <code>{'atomic', Value}</code>, the number of subtrees is +%% zero.</p> +%% +%% @see is_data/1 +%% @see data_type/1 +%% @see data_arity/1 +%% @see make_data/2 + +data_es(#literal{val = V}) -> + case V of + [Head | Tail] -> + [#literal{val = Head}, #literal{val = Tail}]; + _ when tuple(V) -> + make_lit_list(tuple_to_list(V)); + _ -> + [] + end; +data_es(#cons{hd = H, tl = T}) -> + [H, T]; +data_es(#tuple{es = Es}) -> + Es. + + +%% @spec data_arity(Node::cerl()) -> integer() +%% +%% @doc Returns the number of subtrees of a data constructor +%% node. This is equivalent to <code>length(data_es(Node))</code>, but +%% potentially more efficient. +%% +%% @see is_data/1 +%% @see data_es/1 + +data_arity(#literal{val = V}) -> + case V of + [_ | _] -> + 2; + _ when tuple(V) -> + size(V); + _ -> + 0 + end; +data_arity(#cons{}) -> + 2; +data_arity(#tuple{es = Es}) -> + length(Es). + + +%% @spec make_data(Type::dtype(), Elements::[cerl()]) -> cerl() +%% +%% @doc Creates a data constructor node with the specified type and +%% subtrees. (Cf. <code>data_type/1</code>.) An exception is thrown +%% if the length of <code>Elements</code> is invalid for the given +%% <code>Type</code>; see <code>data_es/1</code> for arity constraints +%% on constructor types. +%% +%% @see data_type/1 +%% @see data_es/1 +%% @see ann_make_data/3 +%% @see update_data/3 +%% @see make_data_skel/2 + +make_data(CType, Es) -> + ann_make_data([], CType, Es). + + +%% @spec ann_make_data(As::[term()], Type::dtype(), +%% Elements::[cerl()]) -> cerl() +%% @see make_data/2 + +ann_make_data(As, {'atomic', V}, []) -> #literal{val = V, ann = As}; +ann_make_data(As, cons, [H, T]) -> ann_c_cons(As, H, T); +ann_make_data(As, tuple, Es) -> ann_c_tuple(As, Es). + + +%% @spec update_data(Old::cerl(), Type::dtype(), +%% Elements::[cerl()]) -> cerl() +%% @see make_data/2 + +update_data(Node, CType, Es) -> + ann_make_data(get_ann(Node), CType, Es). + + +%% @spec make_data_skel(Type::dtype(), Elements::[cerl()]) -> cerl() +%% +%% @doc Like <code>make_data/2</code>, but analogous to +%% <code>c_tuple_skel/1</code> and <code>c_cons_skel/2</code>. +%% +%% @see ann_make_data_skel/3 +%% @see update_data_skel/3 +%% @see make_data/2 +%% @see c_tuple_skel/1 +%% @see c_cons_skel/2 + +make_data_skel(CType, Es) -> + ann_make_data_skel([], CType, Es). + + +%% @spec ann_make_data_skel(As::[term()], Type::dtype(), +%% Elements::[cerl()]) -> cerl() +%% @see make_data_skel/2 + +ann_make_data_skel(As, {'atomic', V}, []) -> #literal{val = V, ann = As}; +ann_make_data_skel(As, cons, [H, T]) -> ann_c_cons_skel(As, H, T); +ann_make_data_skel(As, tuple, Es) -> ann_c_tuple_skel(As, Es). + + +%% @spec update_data_skel(Old::cerl(), Type::dtype(), +%% Elements::[cerl()]) -> cerl() +%% @see make_data_skel/2 + +update_data_skel(Node, CType, Es) -> + ann_make_data_skel(get_ann(Node), CType, Es). + + +%% --------------------------------------------------------------------- + +%% @spec subtrees(Node::cerl()) -> [[cerl()]] +%% +%% @doc Returns the grouped list of all subtrees of a node. If +%% <code>Node</code> is a leaf node (cf. <code>is_leaf/1</code>), this +%% is the empty list, otherwise the result is always a nonempty list, +%% containing the lists of subtrees of <code>Node</code>, in +%% left-to-right order as they occur in the printed program text, and +%% grouped by category. Often, each group contains only a single +%% subtree. +%% +%% <p>Depending on the type of <code>Node</code>, the size of some +%% groups may be variable (e.g., the group consisting of all the +%% elements of a tuple), while others always contain the same number +%% of elements - usually exactly one (e.g., the group containing the +%% argument expression of a case-expression). Note, however, that the +%% exact structure of the returned list (for a given node type) should +%% in general not be depended upon, since it might be subject to +%% change without notice.</p> +%% +%% <p>The function <code>subtrees/1</code> and the constructor functions +%% <code>make_tree/2</code> and <code>update_tree/2</code> can be a +%% great help if one wants to traverse a syntax tree, visiting all its +%% subtrees, but treat nodes of the tree in a uniform way in most or all +%% cases. Using these functions makes this simple, and also assures that +%% your code is not overly sensitive to extensions of the syntax tree +%% data type, because any node types not explicitly handled by your code +%% can be left to a default case.</p> +%% +%% <p>For example: +%% <pre> +%% postorder(F, Tree) -> +%% F(case subtrees(Tree) of +%% [] -> Tree; +%% List -> update_tree(Tree, +%% [[postorder(F, Subtree) +%% || Subtree <- Group] +%% || Group <- List]) +%% end). +%% </pre> +%% maps the function <code>F</code> on <code>Tree</code> and all its +%% subtrees, doing a post-order traversal of the syntax tree. (Note +%% the use of <code>update_tree/2</code> to preserve annotations.) For +%% a simple function like: +%% <pre> +%% f(Node) -> +%% case type(Node) of +%% atom -> atom("a_" ++ atom_name(Node)); +%% _ -> Node +%% end. +%% </pre> +%% the call <code>postorder(fun f/1, Tree)</code> will yield a new +%% representation of <code>Tree</code> in which all atom names have +%% been extended with the prefix "a_", but nothing else (including +%% annotations) has been changed.</p> +%% +%% @see is_leaf/1 +%% @see make_tree/2 +%% @see update_tree/2 + +subtrees(T) -> + case is_leaf(T) of + true -> + []; + false -> + case type(T) of + values -> + [values_es(T)]; + binary -> + [binary_segments(T)]; + bitstr -> + [[bitstr_val(T)], [bitstr_size(T)], + [bitstr_unit(T)], [bitstr_type(T)], + [bitstr_flags(T)]]; + cons -> + [[cons_hd(T)], [cons_tl(T)]]; + tuple -> + [tuple_es(T)]; + 'let' -> + [let_vars(T), [let_arg(T)], [let_body(T)]]; + seq -> + [[seq_arg(T)], [seq_body(T)]]; + apply -> + [[apply_op(T)], apply_args(T)]; + call -> + [[call_module(T)], [call_name(T)], + call_args(T)]; + primop -> + [[primop_name(T)], primop_args(T)]; + 'case' -> + [[case_arg(T)], case_clauses(T)]; + clause -> + [clause_pats(T), [clause_guard(T)], + [clause_body(T)]]; + alias -> + [[alias_var(T)], [alias_pat(T)]]; + 'fun' -> + [fun_vars(T), [fun_body(T)]]; + 'receive' -> + [receive_clauses(T), [receive_timeout(T)], + [receive_action(T)]]; + 'try' -> + [[try_arg(T)], try_vars(T), [try_body(T)], + try_evars(T), [try_handler(T)]]; + 'catch' -> + [[catch_body(T)]]; + letrec -> + Es = unfold_tuples(letrec_defs(T)), + [Es, [letrec_body(T)]]; + module -> + As = unfold_tuples(module_attrs(T)), + Es = unfold_tuples(module_defs(T)), + [[module_name(T)], module_exports(T), As, Es] + end + end. + + +%% @spec update_tree(Old::cerl(), Groups::[[cerl()]]) -> cerl() +%% +%% @doc Creates a syntax tree with the given subtrees, and the same +%% type and annotations as the <code>Old</code> node. This is +%% equivalent to <code>ann_make_tree(get_ann(Node), type(Node), +%% Groups)</code>, but potentially more efficient. +%% +%% @see update_tree/3 +%% @see ann_make_tree/3 +%% @see get_ann/1 +%% @see type/1 + +update_tree(Node, Gs) -> + ann_make_tree(get_ann(Node), type(Node), Gs). + + +%% @spec update_tree(Old::cerl(), Type::atom(), Groups::[[cerl()]]) -> +%% cerl() +%% +%% @doc Creates a syntax tree with the given type and subtrees, and +%% the same annotations as the <code>Old</code> node. This is +%% equivalent to <code>ann_make_tree(get_ann(Node), Type, +%% Groups)</code>, but potentially more efficient. +%% +%% @see update_tree/2 +%% @see ann_make_tree/3 +%% @see get_ann/1 + +update_tree(Node, Type, Gs) -> + ann_make_tree(get_ann(Node), Type, Gs). + + +%% @spec make_tree(Type::atom(), Groups::[[cerl()]]) -> cerl() +%% +%% @doc Creates a syntax tree with the given type and subtrees. +%% <code>Type</code> must be a node type name +%% (cf. <code>type/1</code>) that does not denote a leaf node type +%% (cf. <code>is_leaf/1</code>). <code>Groups</code> must be a +%% <em>nonempty</em> list of groups of syntax trees, representing the +%% subtrees of a node of the given type, in left-to-right order as +%% they would occur in the printed program text, grouped by category +%% as done by <code>subtrees/1</code>. +%% +%% <p>The result of <code>ann_make_tree(get_ann(Node), type(Node), +%% subtrees(Node))</code> (cf. <code>update_tree/2</code>) represents +%% the same source code text as the original <code>Node</code>, +%% assuming that <code>subtrees(Node)</code> yields a nonempty +%% list. However, it does not necessarily have the exact same data +%% representation as <code>Node</code>.</p> +%% +%% @see ann_make_tree/3 +%% @see type/1 +%% @see is_leaf/1 +%% @see subtrees/1 +%% @see update_tree/2 + +make_tree(Type, Gs) -> + ann_make_tree([], Type, Gs). + + +%% @spec ann_make_tree(As::[term()], Type::atom(), +%% Groups::[[cerl()]]) -> cerl() +%% +%% @doc Creates a syntax tree with the given annotations, type and +%% subtrees. See <code>make_tree/2</code> for details. +%% +%% @see make_tree/2 + +ann_make_tree(As, values, [Es]) -> ann_c_values(As, Es); +ann_make_tree(As, binary, [Ss]) -> ann_c_binary(As, Ss); +ann_make_tree(As, bitstr, [[V],[S],[U],[T],[Fs]]) -> + ann_c_bitstr(As, V, S, U, T, Fs); +ann_make_tree(As, cons, [[H], [T]]) -> ann_c_cons(As, H, T); +ann_make_tree(As, tuple, [Es]) -> ann_c_tuple(As, Es); +ann_make_tree(As, 'let', [Vs, [A], [B]]) -> ann_c_let(As, Vs, A, B); +ann_make_tree(As, seq, [[A], [B]]) -> ann_c_seq(As, A, B); +ann_make_tree(As, apply, [[Op], Es]) -> ann_c_apply(As, Op, Es); +ann_make_tree(As, call, [[M], [N], Es]) -> ann_c_call(As, M, N, Es); +ann_make_tree(As, primop, [[N], Es]) -> ann_c_primop(As, N, Es); +ann_make_tree(As, 'case', [[A], Cs]) -> ann_c_case(As, A, Cs); +ann_make_tree(As, clause, [Ps, [G], [B]]) -> ann_c_clause(As, Ps, G, B); +ann_make_tree(As, alias, [[V], [P]]) -> ann_c_alias(As, V, P); +ann_make_tree(As, 'fun', [Vs, [B]]) -> ann_c_fun(As, Vs, B); +ann_make_tree(As, 'receive', [Cs, [T], [A]]) -> + ann_c_receive(As, Cs, T, A); +ann_make_tree(As, 'try', [[E], Vs, [B], Evs, [H]]) -> + ann_c_try(As, E, Vs, B, Evs, H); +ann_make_tree(As, 'catch', [[B]]) -> ann_c_catch(As, B); +ann_make_tree(As, letrec, [Es, [B]]) -> + ann_c_letrec(As, fold_tuples(Es), B); +ann_make_tree(As, module, [[N], Xs, Es, Ds]) -> + ann_c_module(As, N, Xs, fold_tuples(Es), fold_tuples(Ds)). + + +%% --------------------------------------------------------------------- + +%% @spec meta(Tree::cerl()) -> cerl() +%% +%% @doc Creates a meta-representation of a syntax tree. The result +%% represents an Erlang expression "<code><em>MetaTree</em></code>" +%% which, if evaluated, will yield a new syntax tree representing the +%% same source code text as <code>Tree</code> (although the actual +%% data representation may be different). The expression represented +%% by <code>MetaTree</code> is <em>implementation independent</em> +%% with regard to the data structures used by the abstract syntax tree +%% implementation. +%% +%% <p>Any node in <code>Tree</code> whose node type is +%% <code>var</code> (cf. <code>type/1</code>), and whose list of +%% annotations (cf. <code>get_ann/1</code>) contains the atom +%% <code>meta_var</code>, will remain unchanged in the resulting tree, +%% except that exactly one occurrence of <code>meta_var</code> is +%% removed from its annotation list.</p> +%% +%% <p>The main use of the function <code>meta/1</code> is to transform +%% a data structure <code>Tree</code>, which represents a piece of +%% program code, into a form that is <em>representation independent +%% when printed</em>. E.g., suppose <code>Tree</code> represents a +%% variable named "V". Then (assuming a function <code>print/1</code> +%% for printing syntax trees), evaluating +%% <code>print(abstract(Tree))</code> - simply using +%% <code>abstract/1</code> to map the actual data structure onto a +%% syntax tree representation - would output a string that might look +%% something like "<code>{var, ..., 'V'}</code>", which is obviously +%% dependent on the implementation of the abstract syntax trees. This +%% could e.g. be useful for caching a syntax tree in a file. However, +%% in some situations like in a program generator generator (with two +%% "generator"), it may be unacceptable. Using +%% <code>print(meta(Tree))</code> instead would output a +%% <em>representation independent</em> syntax tree generating +%% expression; in the above case, something like +%% "<code>cerl:c_var('V')</code>".</p> +%% +%% <p>The implementation tries to generate compact code with respect +%% to literals and lists.</p> +%% +%% @see abstract/1 +%% @see type/1 +%% @see get_ann/1 + +meta(Node) -> + %% First of all we check for metavariables: + case type(Node) of + var -> + case lists:member(meta_var, get_ann(Node)) of + false -> + meta_0(var, Node); + true -> + %% A meta-variable: remove the first found + %% 'meta_var' annotation, but otherwise leave + %% the node unchanged. + set_ann(Node, lists:delete(meta_var, get_ann(Node))) + end; + Type -> + meta_0(Type, Node) + end. + +meta_0(Type, Node) -> + case get_ann(Node) of + [] -> + meta_1(Type, Node); + As -> + meta_call(set_ann, [meta_1(Type, Node), abstract(As)]) + end. + +meta_1(literal, Node) -> + %% We handle atomic literals separately, to get a bit + %% more compact code. For the rest, we use 'abstract'. + case concrete(Node) of + V when atom(V) -> + meta_call(c_atom, [Node]); + V when integer(V) -> + meta_call(c_int, [Node]); + V when float(V) -> + meta_call(c_float, [Node]); + [] -> + meta_call(c_nil, []); + _ -> + meta_call(abstract, [Node]) + end; +meta_1(var, Node) -> + %% A normal variable or function name. + meta_call(c_var, [abstract(var_name(Node))]); +meta_1(values, Node) -> + meta_call(c_values, + [make_list(meta_list(values_es(Node)))]); +meta_1(binary, Node) -> + meta_call(c_binary, + [make_list(meta_list(binary_segments(Node)))]); +meta_1(bitstr, Node) -> + meta_call(c_bitstr, + [meta(bitstr_val(Node)), + meta(bitstr_size(Node)), + meta(bitstr_unit(Node)), + meta(bitstr_type(Node)), + meta(bitstr_flags(Node))]); +meta_1(cons, Node) -> + %% The list is split up if some sublist has annotatations. If + %% we get exactly one element, we generate a 'c_cons' call + %% instead of 'make_list' to reconstruct the node. + case split_list(Node) of + {[H], none} -> + meta_call(c_cons, [meta(H), meta(c_nil())]); + {[H], Node1} -> + meta_call(c_cons, [meta(H), meta(Node1)]); + {L, none} -> + meta_call(make_list, [make_list(meta_list(L))]); + {L, Node1} -> + meta_call(make_list, + [make_list(meta_list(L)), meta(Node1)]) + end; +meta_1(tuple, Node) -> + meta_call(c_tuple, + [make_list(meta_list(tuple_es(Node)))]); +meta_1('let', Node) -> + meta_call(c_let, + [make_list(meta_list(let_vars(Node))), + meta(let_arg(Node)), meta(let_body(Node))]); +meta_1(seq, Node) -> + meta_call(c_seq, + [meta(seq_arg(Node)), meta(seq_body(Node))]); +meta_1(apply, Node) -> + meta_call(c_apply, + [meta(apply_op(Node)), + make_list(meta_list(apply_args(Node)))]); +meta_1(call, Node) -> + meta_call(c_call, + [meta(call_module(Node)), meta(call_name(Node)), + make_list(meta_list(call_args(Node)))]); +meta_1(primop, Node) -> + meta_call(c_primop, + [meta(primop_name(Node)), + make_list(meta_list(primop_args(Node)))]); +meta_1('case', Node) -> + meta_call(c_case, + [meta(case_arg(Node)), + make_list(meta_list(case_clauses(Node)))]); +meta_1(clause, Node) -> + meta_call(c_clause, + [make_list(meta_list(clause_pats(Node))), + meta(clause_guard(Node)), + meta(clause_body(Node))]); +meta_1(alias, Node) -> + meta_call(c_alias, + [meta(alias_var(Node)), meta(alias_pat(Node))]); +meta_1('fun', Node) -> + meta_call(c_fun, + [make_list(meta_list(fun_vars(Node))), + meta(fun_body(Node))]); +meta_1('receive', Node) -> + meta_call(c_receive, + [make_list(meta_list(receive_clauses(Node))), + meta(receive_timeout(Node)), + meta(receive_action(Node))]); +meta_1('try', Node) -> + meta_call(c_try, + [meta(try_arg(Node)), + make_list(meta_list(try_vars(Node))), + meta(try_body(Node)), + make_list(meta_list(try_evars(Node))), + meta(try_handler(Node))]); +meta_1('catch', Node) -> + meta_call(c_catch, [meta(catch_body(Node))]); +meta_1(letrec, Node) -> + meta_call(c_letrec, + [make_list([c_tuple([meta(N), meta(F)]) + || {N, F} <- letrec_defs(Node)]), + meta(letrec_body(Node))]); +meta_1(module, Node) -> + meta_call(c_module, + [meta(module_name(Node)), + make_list(meta_list(module_exports(Node))), + make_list([c_tuple([meta(A), meta(V)]) + || {A, V} <- module_attrs(Node)]), + make_list([c_tuple([meta(N), meta(F)]) + || {N, F} <- module_defs(Node)])]). + +meta_call(F, As) -> + c_call(c_atom(?MODULE), c_atom(F), As). + +meta_list([T | Ts]) -> + [meta(T) | meta_list(Ts)]; +meta_list([]) -> + []. + +split_list(Node) -> + split_list(set_ann(Node, []), []). + +split_list(Node, L) -> + A = get_ann(Node), + case type(Node) of + cons when A == [] -> + split_list(cons_tl(Node), [cons_hd(Node) | L]); + nil when A == [] -> + {lists:reverse(L), none}; + _ -> + {lists:reverse(L), Node} + end. + + +%% --------------------------------------------------------------------- + +%% General utilities + +is_lit_list([#literal{} | Es]) -> + is_lit_list(Es); +is_lit_list([_ | _]) -> + false; +is_lit_list([]) -> + true. + +lit_list_vals([#literal{val = V} | Es]) -> + [V | lit_list_vals(Es)]; +lit_list_vals([]) -> + []. + +make_lit_list([V | Vs]) -> + [#literal{val = V} | make_lit_list(Vs)]; +make_lit_list([]) -> + []. + +%% The following tests are the same as done by 'io_lib:char_list' and +%% 'io_lib:printable_list', respectively, but for a single character. + +is_char_value(V) when V >= $\000, V =< $\377 -> true; +is_char_value(_) -> false. + +is_print_char_value(V) when V >= $\040, V =< $\176 -> true; +is_print_char_value(V) when V >= $\240, V =< $\377 -> true; +is_print_char_value(V) when V =:= $\b -> true; +is_print_char_value(V) when V =:= $\d -> true; +is_print_char_value(V) when V =:= $\e -> true; +is_print_char_value(V) when V =:= $\f -> true; +is_print_char_value(V) when V =:= $\n -> true; +is_print_char_value(V) when V =:= $\r -> true; +is_print_char_value(V) when V =:= $\s -> true; +is_print_char_value(V) when V =:= $\t -> true; +is_print_char_value(V) when V =:= $\v -> true; +is_print_char_value(V) when V =:= $\" -> true; +is_print_char_value(V) when V =:= $\' -> true; +is_print_char_value(V) when V =:= $\\ -> true; +is_print_char_value(_) -> false. + +is_char_list([V | Vs]) when integer(V) -> + case is_char_value(V) of + true -> + is_char_list(Vs); + false -> + false + end; +is_char_list([]) -> + true; +is_char_list(_) -> + false. + +is_print_char_list([V | Vs]) when integer(V) -> + case is_print_char_value(V) of + true -> + is_print_char_list(Vs); + false -> + false + end; +is_print_char_list([]) -> + true; +is_print_char_list(_) -> + false. + +unfold_tuples([{X, Y} | Ps]) -> + [X, Y | unfold_tuples(Ps)]; +unfold_tuples([]) -> + []. + +fold_tuples([X, Y | Es]) -> + [{X, Y} | fold_tuples(Es)]; +fold_tuples([]) -> + []. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_clauses.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_clauses.erl new file mode 100644 index 0000000000..16e4b37a10 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_clauses.erl @@ -0,0 +1,409 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Richard Carlsson. +%% Copyright (C) 1999-2002 Richard Carlsson. +%% Portions created by Ericsson are Copyright 2001, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: cerl_clauses.erl,v 1.2 2009/09/17 09:46:19 kostis Exp $ + +%% @doc Utility functions for Core Erlang case/receive clauses. +%% +%% <p>Syntax trees are defined in the module <a +%% href=""><code>cerl</code></a>.</p> +%% +%% @type cerl() = cerl:cerl() + +-module(cerl_clauses). + +-export([any_catchall/1, eval_guard/1, is_catchall/1, match/2, + match_list/2, reduce/1, reduce/2]). + +-import(cerl, [alias_pat/1, alias_var/1, data_arity/1, data_es/1, + data_type/1, clause_guard/1, clause_pats/1, concrete/1, + is_data/1, is_c_var/1, let_body/1, letrec_body/1, + seq_body/1, try_arg/1, type/1, values_es/1]). + +-import(lists, [reverse/1]). + + +%% --------------------------------------------------------------------- + +%% @spec is_catchall(Clause::cerl()) -> boolean() +%% +%% @doc Returns <code>true</code> if an abstract clause is a +%% catch-all, otherwise <code>false</code>. A clause is a catch-all if +%% all its patterns are variables, and its guard expression always +%% evaluates to <code>true</code>; cf. <code>eval_guard/1</code>. +%% +%% <p>Note: <code>Clause</code> must have type +%% <code>clause</code>.</p> +%% +%% @see eval_guard/1 +%% @see any_catchall/1 + +is_catchall(C) -> + case all_vars(clause_pats(C)) of + true -> + case eval_guard(clause_guard(C)) of + {value, true} -> + true; + _ -> + false + end; + false -> + false + end. + +all_vars([C | Cs]) -> + case is_c_var(C) of + true -> + all_vars(Cs); + false -> + false + end; +all_vars([]) -> + true. + + +%% @spec any_catchall(Clauses::[cerl()]) -> boolean() +%% +%% @doc Returns <code>true</code> if any of the abstract clauses in +%% the list is a catch-all, otherwise <code>false</code>. See +%% <code>is_catchall/1</code> for details. +%% +%% <p>Note: each node in <code>Clauses</code> must have type +%% <code>clause</code>.</p> +%% +%% @see is_catchall/1 + +any_catchall([C | Cs]) -> + case is_catchall(C) of + true -> + true; + false -> + any_catchall(Cs) + end; +any_catchall([]) -> + false. + + +%% @spec eval_guard(Expr::cerl()) -> none | {value, term()} +%% +%% @doc Tries to reduce a guard expression to a single constant value, +%% if possible. The returned value is <code>{value, Term}</code> if the +%% guard expression <code>Expr</code> always yields the constant value +%% <code>Term</code>, and is otherwise <code>none</code>. +%% +%% <p>Note that although guard expressions should only yield boolean +%% values, this function does not guarantee that <code>Term</code> is +%% either <code>true</code> or <code>false</code>. Also note that only +%% simple constructs like let-expressions are examined recursively; +%% general constant folding is not performed.</p> +%% +%% @see is_catchall/1 + +%% This function could possibly be improved further, but constant +%% folding should in general be performed elsewhere. + +eval_guard(E) -> + case type(E) of + literal -> + {value, concrete(E)}; + values -> + case values_es(E) of + [E1] -> + eval_guard(E1); + _ -> + none + end; + 'try' -> + eval_guard(try_arg(E)); + seq -> + eval_guard(seq_body(E)); + 'let' -> + eval_guard(let_body(E)); + 'letrec' -> + eval_guard(letrec_body(E)); + _ -> + none + end. + + +%% --------------------------------------------------------------------- + +%% @spec reduce(Clauses) -> {true, {Clauses, Bindings}} +%% | {false, Clauses} +%% +%% @equiv reduce(Cs, []) + +reduce(Cs) -> + reduce(Cs, []). + +%% @spec reduce(Clauses::[Clause], Exprs::[Expr]) -> +%% {true, {Clause, Bindings}} +%% | {false, [Clause]} +%% +%% Clause = cerl() +%% Expr = any | cerl() +%% Bindings = [{cerl(), cerl()}] +%% +%% @doc Selects a single clause, if possible, or otherwise reduces the +%% list of selectable clauses. The input is a list <code>Clauses</code> +%% of abstract clauses (i.e., syntax trees of type <code>clause</code>), +%% and a list of switch expressions <code>Exprs</code>. The function +%% tries to uniquely select a single clause or discard unselectable +%% clauses, with respect to the switch expressions. All abstract clauses +%% in the list must have the same number of patterns. If +%% <code>Exprs</code> is not the empty list, it must have the same +%% length as the number of patterns in each clause; see +%% <code>match_list/2</code> for details. +%% +%% <p>A clause can only be selected if its guard expression always +%% yields the atom <code>true</code>, and a clause whose guard +%% expression always yields the atom <code>false</code> can never be +%% selected. Other guard expressions are considered to have unknown +%% value; cf. <code>eval_guard/1</code>.</p> +%% +%% <p>If a particular clause can be selected, the function returns +%% <code>{true, {Clause, Bindings}}</code>, where <code>Clause</code> is +%% the selected clause and <code>Bindings</code> is a list of pairs +%% <code>{Var, SubExpr}</code> associating the variables occurring in +%% the patterns of <code>Clause</code> with the corresponding +%% subexpressions in <code>Exprs</code>. The list of bindings is given +%% in innermost-first order; see the <code>match/2</code> function for +%% details.</p> +%% +%% <p>If no clause could be definitely selected, the function returns +%% <code>{false, NewClauses}</code>, where <code>NewClauses</code> is +%% the list of entries in <code>Clauses</code> that remain after +%% eliminating unselectable clauses, preserving the relative order.</p> +%% +%% @see eval_guard/1 +%% @see match/2 +%% @see match_list/2 + +reduce(Cs, Es) -> + reduce(Cs, Es, []). + +reduce([C | Cs], Es, Cs1) -> + Ps = clause_pats(C), + case match_list(Ps, Es) of + none -> + %% Here, we know that the current clause cannot possibly be + %% selected, so we drop it and visit the rest. + reduce(Cs, Es, Cs1); + {false, _} -> + %% We are not sure if this clause might be selected, so we + %% save it and visit the rest. + reduce(Cs, Es, [C | Cs1]); + {true, Bs} -> + case eval_guard(clause_guard(C)) of + {value, true} when Cs1 == [] -> + %% We have a definite match - we return the residual + %% expression and signal that a selection has been + %% made. All other clauses are dropped. + {true, {C, Bs}}; + {value, true} -> + %% Unless one of the previous clauses is selected, + %% this clause will definitely be, so we can drop + %% the rest. + {false, reverse([C | Cs1])}; + {value, false} -> + %% This clause can never be selected, since its + %% guard is never 'true', so we drop it. + reduce(Cs, Es, Cs1); + _ -> + %% We are not sure if this clause might be selected + %% (or might even cause a crash), so we save it and + %% visit the rest. + reduce(Cs, Es, [C | Cs1]) + end + end; +reduce([], _, Cs) -> + %% All clauses visited, without a complete match. Signal "not + %% reduced" and return the saved clauses, in the correct order. + {false, reverse(Cs)}. + + +%% --------------------------------------------------------------------- + +%% @spec match(Pattern::cerl(), Expr) -> +%% none | {true, Bindings} | {false, Bindings} +%% +%% Expr = any | cerl() +%% Bindings = [{cerl(), Expr}] +%% +%% @doc Matches a pattern against an expression. The returned value is +%% <code>none</code> if a match is impossible, <code>{true, +%% Bindings}</code> if <code>Pattern</code> definitely matches +%% <code>Expr</code>, and <code>{false, Bindings}</code> if a match is +%% not definite, but cannot be excluded. <code>Bindings</code> is then +%% a list of pairs <code>{Var, SubExpr}</code>, associating each +%% variable in the pattern with either the corresponding subexpression +%% of <code>Expr</code>, or with the atom <code>any</code> if no +%% matching subexpression exists. (Recall that variables may not be +%% repeated in a Core Erlang pattern.) The list of bindings is given +%% in innermost-first order; this should only be of interest if +%% <code>Pattern</code> contains one or more alias patterns. If the +%% returned value is <code>{true, []}</code>, it implies that the +%% pattern and the expression are syntactically identical. +%% +%% <p>Instead of a syntax tree, the atom <code>any</code> can be +%% passed for <code>Expr</code> (or, more generally, be used for any +%% subtree of <code>Expr</code>, in as much the abstract syntax tree +%% implementation allows it); this means that it cannot be decided +%% whether the pattern will match or not, and the corresponding +%% variable bindings will all map to <code>any</code>. The typical use +%% is for producing bindings for <code>receive</code> clauses.</p> +%% +%% <p>Note: Binary-syntax patterns are never structurally matched +%% against binary-syntax expressions by this function.</p> +%% +%% <p>Examples: +%% <ul> +%% <li>Matching a pattern "<code>{X, Y}</code>" against the +%% expression "<code>{foo, f(Z)}</code>" yields <code>{true, +%% Bindings}</code> where <code>Bindings</code> associates +%% "<code>X</code>" with the subtree "<code>foo</code>" and +%% "<code>Y</code>" with the subtree "<code>f(Z)</code>".</li> +%% +%% <li>Matching pattern "<code>{X, {bar, Y}}</code>" against +%% expression "<code>{foo, f(Z)}</code>" yields <code>{false, +%% Bindings}</code> where <code>Bindings</code> associates +%% "<code>X</code>" with the subtree "<code>foo</code>" and +%% "<code>Y</code>" with <code>any</code> (because it is not known +%% if "<code>{foo, Y}</code>" might match the run-time value of +%% "<code>f(Z)</code>" or not).</li> +%% +%% <li>Matching pattern "<code>{foo, bar}</code>" against expression +%% "<code>{foo, f()}</code>" yields <code>{false, []}</code>, +%% telling us that there might be a match, but we cannot deduce any +%% bindings.</li> +%% +%% <li>Matching <code>{foo, X = {bar, Y}}</code> against expression +%% "<code>{foo, {bar, baz}}</code>" yields <code>{true, +%% Bindings}</code> where <code>Bindings</code> associates +%% "<code>Y</code>" with "<code>baz</code>", and "<code>X</code>" +%% with "<code>{bar, baz}</code>".</li> +%% +%% <li>Matching a pattern "<code>{X, Y}</code>" against +%% <code>any</code> yields <code>{false, Bindings}</code> where +%% <code>Bindings</code> associates both "<code>X</code>" and +%% "<code>Y</code>" with <code>any</code>.</li> +%% </ul></p> + +match(P, E) -> + match(P, E, []). + +match(P, E, Bs) -> + case type(P) of + var -> + %% Variables always match, since they cannot have repeated + %% occurrences in a pattern. + {true, [{P, E} | Bs]}; + alias -> + %% All variables in P1 will be listed before the alias + %% variable in the result. + match(alias_pat(P), E, [{alias_var(P), E} | Bs]); + binary -> + %% The most we can do is to say "definitely no match" if a + %% binary pattern is matched against non-binary data. + if E == any -> + {false, Bs}; + true -> + case is_data(E) of + true -> + none; + false -> + {false, Bs} + end + end; + _ -> + match_1(P, E, Bs) + end. + +match_1(P, E, Bs) -> + case is_data(P) of + true when E == any -> + %% If we don't know the structure of the value of E at this + %% point, we just match the subpatterns against 'any', and + %% make sure the result is a "maybe". + Ps = data_es(P), + Es = lists:duplicate(length(Ps), any), + case match_list(Ps, Es, Bs) of + {_, Bs1} -> + {false, Bs1}; + none -> + none + end; + true -> + %% Test if the expression represents a constructor + case is_data(E) of + true -> + T1 = {data_type(E), data_arity(E)}, + T2 = {data_type(P), data_arity(P)}, + %% Note that we must test for exact equality. + if T1 =:= T2 -> + match_list(data_es(P), data_es(E), Bs); + true -> + none + end; + false -> + %% We don't know the run-time structure of E, and P + %% is not a variable or an alias pattern, so we + %% match against 'any' instead. + match_1(P, any, Bs) + end; + false -> + %% Strange pattern - give up, but don't say "no match". + {false, Bs} + end. + + +%% @spec match_list(Patterns::[cerl()], Exprs::[Expr]) -> +%% none | {true, Bindings} | {false, Bindings} +%% +%% Expr = any | cerl() +%% Bindings = [{cerl(), cerl()}] +%% +%% @doc Like <code>match/2</code>, but matching a sequence of patterns +%% against a sequence of expressions. Passing an empty list for +%% <code>Exprs</code> is equivalent to passing a list of +%% <code>any</code> atoms of the same length as <code>Patterns</code>. +%% +%% @see match/2 + +match_list([], []) -> + {true, []}; % no patterns always match +match_list(Ps, []) -> + match_list(Ps, lists:duplicate(length(Ps), any), []); +match_list(Ps, Es) -> + match_list(Ps, Es, []). + +match_list([P | Ps], [E | Es], Bs) -> + case match(P, E, Bs) of + {true, Bs1} -> + match_list(Ps, Es, Bs1); + {false, Bs1} -> + %% Make sure "maybe" is preserved + case match_list(Ps, Es, Bs1) of + {_, Bs2} -> + {false, Bs2}; + none -> + none + end; + none -> + none + end; +match_list([], [], Bs) -> + {true, Bs}. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_inline.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_inline.erl new file mode 100644 index 0000000000..cd332279d1 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_inline.erl @@ -0,0 +1,2762 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Richard Carlsson. +%% Copyright (C) 1999-2002 Richard Carlsson. +%% Portions created by Ericsson are Copyright 2001, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: cerl_inline.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $ +%% +%% Core Erlang inliner. + +%% ===================================================================== +%% +%% This is an implementation of the algorithm by Waddell and Dybvig +%% ("Fast and Effective Procedure Inlining", International Static +%% Analysis Symposium 1997), adapted to the Core Erlang language. +%% +%% Instead of always renaming variables and function variables, this +%% implementation uses the "no-shadowing strategy" of Peyton Jones and +%% Marlow ("Secrets of the Glasgow Haskell Compiler Inliner", 1999). +%% +%% ===================================================================== + +%% TODO: inline single-source-reference operands without size limit. + +-module(cerl_inline). + +-export([core_transform/2, transform/1, transform/2]). + +-import(cerl, [abstract/1, alias_pat/1, alias_var/1, apply_args/1, + apply_op/1, atom_name/1, atom_val/1, bitstr_val/1, + bitstr_size/1, bitstr_unit/1, bitstr_type/1, + bitstr_flags/1, binary_segments/1, update_c_alias/3, + update_c_apply/3, update_c_binary/2, update_c_bitstr/6, + update_c_call/4, update_c_case/3, update_c_catch/2, + update_c_clause/4, c_fun/2, c_int/1, c_let/3, + update_c_let/4, update_c_letrec/3, update_c_module/5, + update_c_primop/3, update_c_receive/4, update_c_seq/3, + c_seq/2, update_c_try/6, c_tuple/1, update_c_values/2, + c_values/1, c_var/1, call_args/1, call_module/1, + call_name/1, case_arity/1, case_arg/1, case_clauses/1, + catch_body/1, clause_body/1, clause_guard/1, + clause_pats/1, clause_vars/1, concrete/1, cons_hd/1, + cons_tl/1, data_arity/1, data_es/1, data_type/1, + fun_body/1, fun_vars/1, get_ann/1, int_val/1, + is_c_atom/1, is_c_cons/1, is_c_fun/1, is_c_int/1, + is_c_list/1, is_c_seq/1, is_c_tuple/1, is_c_var/1, + is_data/1, is_literal/1, is_literal_term/1, let_arg/1, + let_body/1, let_vars/1, letrec_body/1, letrec_defs/1, + list_length/1, list_elements/1, update_data/3, + make_list/1, make_data_skel/2, module_attrs/1, + module_defs/1, module_exports/1, module_name/1, + primop_args/1, primop_name/1, receive_action/1, + receive_clauses/1, receive_timeout/1, seq_arg/1, + seq_body/1, set_ann/2, try_arg/1, try_body/1, try_vars/1, + try_evars/1, try_handler/1, tuple_es/1, tuple_arity/1, + type/1, values_es/1, var_name/1]). + +-import(lists, [foldl/3, foldr/3, mapfoldl/3, reverse/1]). + +%% +%% Constants +%% + +debug_runtime() -> false. +debug_counters() -> false. + +%% Normal execution times for inlining are between 0.1 and 0.3 seconds +%% (on the author's current equipment). The default effort limit of 150 +%% is high enough that most normal programs never hit the limit even +%% once, and for difficult programs, it generally keeps the execution +%% times below 2-5 seconds. Using an effort counter of 1000 will thus +%% have no further effect on most programs, but some programs may take +%% as much as 10 seconds or more. Effort counts larger than 2500 have +%% never been observed even on very ill-conditioned programs. +%% +%% Size limits between 6 and 18 tend to actually shrink the code, +%% because of the simplifications made possible by inlining. A limit of +%% 16 seems to be optimal for this purpose, often shrinking the +%% executable code by up to 10%. Size limits between 18 and 30 generally +%% give the same code size as if no inlining was done (i.e., code +%% duplication balances out the simplifications at these levels). A size +%% limit between 1 and 5 tends to inline small functions and propagate +%% constants, but does not cause much simplifications do be done, so the +%% net effect will be a slight increase in code size. For size limits +%% above 30, the executable code size tends to increase with about 10% +%% per 100 units, with some variations depending on the sizes of +%% functions in the source code. +%% +%% Typically, about 90% of the maximum speedup achievable is already +%% reached using a size limit of 30, and 98% is reached at limits around +%% 100-150; there is rarely any point in letting the code size increase +%% by more than 10-15%. If too large functions are inlined, cache +%% effects will slow the program down. + +default_effort() -> 150. +default_size() -> 24. + +%% Base costs/weights for different kinds of expressions. If these are +%% modified, the size limits above may have to be adjusted. + +weight(var) -> 0; % We count no cost for variable accesses. +weight(values) -> 0; % Value aggregates have no cost in themselves. +weight(literal) -> 1; % We assume efficient handling of constants. +weight(data) -> 1; % Base cost; add 1 per element. +weight(element) -> 1; % Cost of storing/fetching an element. +weight(argument) -> 1; % Cost of passing a function argument. +weight('fun') -> 6; % Base cost + average number of free vars. +weight('let') -> 0; % Count no cost for let-bindings. +weight(letrec) -> 0; % Like a let-binding. +weight('case') -> 0; % Case switches have no base cost. +weight(clause) -> 1; % Count one jump at the end of each clause body. +weight('receive') -> 9; % Initialization/cleanup cost. +weight('try') -> 1; % Assume efficient implementation. +weight('catch') -> 1; % See `try'. +weight(apply) -> 3; % Average base cost: call/return. +weight(call) -> 3; % Assume remote-calls as efficient as `apply'. +weight(primop) -> 2; % Assume more efficient than `apply'. +weight(binary) -> 4; % Initialisation base cost. +weight(bitstr) -> 3; % Coding/decoding a value; like a primop. +weight(module) -> 1. % Like a letrec with a constant body + +%% These "reference" structures are used for variables and function +%% variables. They keep track of the variable name, any bound operand, +%% and the associated store location. + +-record(ref, {name, opnd, loc}). + +%% Operand structures contain the operand expression, the renaming and +%% environment, the state location, and the effort counter at the call +%% site (cf. `visit'). + +-record(opnd, {expr, ren, env, loc, effort}). + +%% Since expressions are only visited in `effect' context when they are +%% not bound to a referenced variable, only expressions visited in +%% 'value' context are cached. + +-record(cache, {expr, size}). + +%% The context flags for an application structure are kept separate from +%% the structure itself. Note that the original algorithm had exactly +%% one operand in each application context structure, while we can have +%% several, or none. + +-record(app, {opnds, ctxt, loc}). + + +%% +%% Interface functions +%% + +%% Use compile option `{core_transform, inline}' to insert this as a +%% compilation pass. + +core_transform(Code, Opts) -> + cerl:to_records(transform(cerl:from_records(Code), Opts)). + +transform(Tree) -> + transform(Tree, []). + +transform(Tree, Opts) -> + main(Tree, value, Opts). + +main(Tree, Ctxt, Opts) -> + %% We spawn a new process to do the work, so we don't have to worry + %% about cluttering the process dictionary with debugging info, or + %% proper deallocation of ets-tables. + Opts1 = Opts ++ [{inline_size, default_size()}, + {inline_effort, default_effort()}], + Reply = self(), + Pid = spawn_link(fun () -> start(Reply, Tree, Ctxt, Opts1) end), + receive + {Pid1, Tree1} when Pid1 == Pid -> + Tree1 + end. + +start(Reply, Tree, Ctxt, Opts) -> + init_debug(), + case debug_runtime() of + true -> + put(inline_start_time, + element(1, erlang:statistics(runtime))); + _ -> + ok + end, + Size = max(1, proplists:get_value(inline_size, Opts)), + Effort = max(1, proplists:get_value(inline_effort, Opts)), + case proplists:get_bool(verbose, Opts) of + true -> + io:fwrite("Inlining: inline_size=~w inline_effort=~w\n", + [Size, Effort]); + false -> + ok + end, + + %% Note that the counters of the new state are passive. + S = st__new(Effort, Size), + +%%% Initialization is not needed at present. Note that the code in +%%% `inline_init' is not up-to-date with this module. +%%% {Tree1, S1} = inline_init:init(Tree, S), +%%% {Tree2, _S2} = i(Tree1, Ctxt, S1), + {Tree2, _S2} = i(Tree, Ctxt, S), + report_debug(), + Reply ! {self(), Tree2}. + +init_debug() -> + case debug_counters() of + true -> + put(counter_effort_triggers, 0), + put(counter_effort_max, 0), + put(counter_size_triggers, 0), + put(counter_size_max, 0); + _ -> + ok + end. + +report_debug() -> + case debug_runtime() of + true -> + {Time, _} = erlang:statistics(runtime), + report("Total run time for inlining: ~.2.0f s.\n", + [(Time - get(inline_start_time))/1000]); + _ -> + ok + end, + case debug_counters() of + true -> + counter_stats(); + _ -> + ok + end. + +counter_stats() -> + T1 = get(counter_effort_triggers), + T2 = get(counter_size_triggers), + E = get(counter_effort_max), + S = get(counter_size_max), + M1 = io_lib:fwrite("\tNumber of triggered " + "effort counters: ~p.\n", [T1]), + M2 = io_lib:fwrite("\tNumber of triggered " + "size counters: ~p.\n", [T2]), + M3 = io_lib:fwrite("\tLargest active effort counter: ~p.\n", + [E]), + M4 = io_lib:fwrite("\tLargest active size counter: ~p.\n", + [S]), + report("Counter statistics:\n~s", [[M1, M2, M3, M4]]). + + +%% ===================================================================== +%% The main inlining function +%% +%% i(E :: coreErlang(), +%% Ctxt :: value | effect | #app{} +%% Ren :: renaming(), +%% Env :: environment(), +%% S :: state()) +%% -> {E', S'} +%% +%% Note: It is expected that the input source code ('E') does not +%% contain free variables. If it does, there is a risk of accidental +%% name capture, in case a generated "new" variable name happens to be +%% the same as the name of a variable that is free further below in the +%% tree; the algorithm only consults the current environment to check if +%% a name already exists. +%% +%% The renaming maps names of source-code variable and function +%% variables to new names as necessary to avoid clashes, according to +%% the "no-shadowing" strategy. The environment maps *residual-code* +%% variables and function variables to operands and global information. +%% Separating the renaming from the environment, and using the +%% residual-code variables instead of the source-code variables as its +%% domain, improves the behaviour of the algorithm when code needs to be +%% traversed more than once. +%% +%% Note that there is no such thing as a `test' context for expressions +%% in (Core) Erlang (see `i_case' below for details). + +i(E, Ctxt, S) -> + i(E, Ctxt, ren__identity(), env__empty(), S). + +i(E, Ctxt, Ren, Env, S0) -> + %% Count one unit of effort on each pass. + S = count_effort(1, S0), + case is_data(E) of + true -> + i_data(E, Ctxt, Ren, Env, S); + false -> + case type(E) of + var -> + i_var(E, Ctxt, Ren, Env, S); + values -> + i_values(E, Ctxt, Ren, Env, S); + 'fun' -> + i_fun(E, Ctxt, Ren, Env, S); + seq -> + i_seq(E, Ctxt, Ren, Env, S); + 'let' -> + i_let(E, Ctxt, Ren, Env, S); + letrec -> + i_letrec(E, Ctxt, Ren, Env, S); + 'case' -> + i_case(E, Ctxt, Ren, Env, S); + 'receive' -> + i_receive(E, Ctxt, Ren, Env, S); + apply -> + i_apply(E, Ctxt, Ren, Env, S); + call -> + i_call(E, Ctxt, Ren, Env, S); + primop -> + i_primop(E, Ren, Env, S); + 'try' -> + i_try(E, Ctxt, Ren, Env, S); + 'catch' -> + i_catch(E, Ctxt, Ren, Env, S); + binary -> + i_binary(E, Ren, Env, S); + module -> + i_module(E, Ctxt, Ren, Env, S) + end + end. + +i_data(E, Ctxt, Ren, Env, S) -> + case is_literal(E) of + true -> + %% This is the `(const c)' case of the original algorithm: + %% literal terms which (regardless of size) do not need to + %% be constructed dynamically at runtime - boldly assuming + %% that the compiler/runtime system can handle this. + case Ctxt of + effect -> + %% Reduce useless constants to a simple value. + {void(), count_size(weight(literal), S)}; + _ -> + %% (In Erlang, we cannot set all non-`false' + %% constants to `true' in a `test' context, like we + %% could do in Lisp or C, so the above is the only + %% special case to be handled here.) + {E, count_size(weight(literal), S)} + end; + false -> + %% Data constructors are like to calls to safe built-in + %% functions, for which we can "decide to inline" + %% immediately; there is no need to create operand + %% structures. In `effect' context, we can simply make a + %% sequence of the argument expressions, also visited in + %% `effect' context. In all other cases, the arguments are + %% visited for value. + case Ctxt of + effect -> + %% Note that this will count the sizes of the + %% subexpressions, even though some or all of them + %% might be discarded by the sequencing afterwards. + {Es1, S1} = mapfoldl(fun (E, S) -> + i(E, effect, Ren, Env, + S) + end, + S, data_es(E)), + E1 = foldl(fun (E1, E2) -> make_seq(E1, E2) end, + void(), Es1), + {E1, S1}; + _ -> + {Es1, S1} = mapfoldl(fun (E, S) -> + i(E, value, Ren, Env, + S) + end, + S, data_es(E)), + %% The total size/cost is the base cost for a data + %% constructor plus the cost for storing each + %% element. + N = weight(data) + length(Es1) * weight(element), + S2 = count_size(N, S1), + {update_data(E, data_type(E), Es1), S2} + end + end. + +%% This is the `(ref x)' (variable use) case of the original algorithm. +%% Note that binding occurrences are always handled in the respective +%% cases of the binding constructs. + +i_var(E, Ctxt, Ren, Env, S) -> + case Ctxt of + effect -> + %% Reduce useless variable references to a simple constant. + %% This also avoids useless visiting of bound operands. + {void(), count_size(weight(literal), S)}; + _ -> + Name = var_name(E), + case env__lookup(ren__map(Name, Ren), Env) of + {ok, R} -> + case R#ref.opnd of + undefined -> + %% The variable is not associated with an + %% argument expression; just residualize it. + residualize_var(R, S); + Opnd -> + i_var_1(R, Opnd, Ctxt, Env, S) + end; + error -> + %% The variable is unbound. (It has not been + %% accidentally captured, however, or it would have + %% been in the environment.) We leave it as it is, + %% without any warning. + {E, count_size(weight(var), S)} + end + end. + +%% This first visits the bound operand and then does copy propagation. +%% Note that we must first set the "inner-pending" flag, and clear the +%% flag afterwards. + +i_var_1(R, Opnd, Ctxt, Env, S) -> + %% If the operand is already "inner-pending", it is residualised. + %% (In Lisp/C, if the variable might be assigned to, it should also + %% be residualised.) + L = Opnd#opnd.loc, + case st__test_inner_pending(L, S) of + true -> + residualize_var(R, S); + false -> + S1 = st__mark_inner_pending(L, S), + case catch {ok, visit(Opnd, S1)} of + {ok, {E, S2}} -> + %% Note that we pass the current environment and + %% context to `copy', but not the current renaming. + S3 = st__clear_inner_pending(L, S2), + copy(R, Opnd, E, Ctxt, Env, S3); + {'EXIT', X} -> + exit(X); + X -> + %% If we use destructive update for the + %% `inner-pending' flag, we must make sure to clear + %% it also if we make a nonlocal return. + st__clear_inner_pending(Opnd#opnd.loc, S1), + throw(X) + end + end. + +%% A multiple-value aggregate `<e1, ..., en>'. This is very much like a +%% tuple data constructor `{e1, ..., en}'; cf. `i_data' for details. + +i_values(E, Ctxt, Ren, Env, S) -> + case values_es(E) of + [E1] -> + %% Single-value aggregates can be dropped; they are simply + %% notation. + i(E1, Ctxt, Ren, Env, S); + Es -> + %% In `effect' context, we can simply make a sequence of the + %% argument expressions, also visited in `effect' context. + %% In all other cases, the arguments are visited for value. + case Ctxt of + effect -> + {Es1, S1} = + mapfoldl(fun (E, S) -> + i(E, effect, Ren, Env, S) + end, + S, Es), + E1 = foldl(fun (E1, E2) -> + make_seq(E1, E2) + end, + void(), Es1), + {E1, S1}; % drop annotations on E + _ -> + {Es1, S1} = mapfoldl(fun (E, S) -> + i(E, value, Ren, Env, + S) + end, + S, Es), + %% Aggregating values does not write them to memory, + %% so we count no extra cost per element. + S2 = count_size(weight(values), S1), + {update_c_values(E, Es1), S2} + end + end. + +%% A let-expression `let <v1,...,vn> = e0 in e1' is semantically +%% equivalent to a case-expression `case e0 of <v1,...,vn> when 'true' +%% -> e1 end'. As a special case, `let <v> = e0 in e1' is also +%% equivalent to `apply fun (v) -> e0 (e1)'. However, for efficiency, +%% and in order to allow the handling of `case' clauses to introduce new +%% let-expressions without entering an infinite rewrite loop, we handle +%% these directly. + +%%% %% Rewriting a `let' to an equivalent expression. +%%% i_let(E, Ctxt, Ren, Env, S) -> +%%% case let_vars(E) of +%%% [V] -> +%%% E1 = update_c_apply(E, c_fun([V], let_body(E)), [let_arg(E)]), +%%% i(E1, Ctxt, Ren, Env, S); +%%% Vs -> +%%% C = c_clause(Vs, abstract(true), let_body(E)), +%%% E1 = update_c_case(E, let_arg(E), [C]), +%%% i(E1, Ctxt, Ren, Env, S) +%%% end. + +i_let(E, Ctxt, Ren, Env, S) -> + case let_vars(E) of + [V] -> + i_let_1(V, E, Ctxt, Ren, Env, S); + Vs -> + %% Visit the argument expression in `value' context, to + %% simplify it as far as possible. + {A, S1} = i(let_arg(E), value, Ren, Env, S), + case get_components(length(Vs), result(A)) of + {true, As} -> + %% Note that only the components of the result of + %% `A' are passed on; any effects are hoisted. + {E1, S2} = i_let_2(Vs, As, E, Ctxt, Ren, Env, S1), + {hoist_effects(A, E1), S2}; + false -> + %% We cannot do anything with this `let', since the + %% variables cannot be matched against the argument + %% components. Just visit the variables for renaming + %% and visit the body for value (cf. `i_fun'). + {_, Ren1, Env1, S2} = bind_locals(Vs, Ren, Env, S1), + Vs1 = i_params(Vs, Ren1, Env1), + %% The body is always visited for value here. + {B, S3} = i(let_body(E), value, Ren1, Env1, S2), + S4 = count_size(weight('let'), S3), + {update_c_let(E, Vs1, A, B), S4} + end + end. + +%% Single-variable `let' binding. + +i_let_1(V, E, Ctxt, Ren, Env, S) -> + %% Make an operand structure for the argument expression, create a + %% local binding from the parameter to the operand structure, and + %% visit the body. Finally create necessary bindings and/or set + %% flags. + {Opnd, S1} = make_opnd(let_arg(E), Ren, Env, S), + {[R], Ren1, Env1, S2} = bind_locals([V], [Opnd], Ren, Env, S1), + {E1, S3} = i(let_body(E), Ctxt, Ren1, Env1, S2), + i_let_3([R], [Opnd], E1, S3). + +%% Multi-variable `let' binding. + +i_let_2(Vs, As, E, Ctxt, Ren, Env, S) -> + %% Make operand structures for the argument components. Note that + %% since the argument has already been visited at this point, we use + %% the identity renaming for the operands. + {Opnds, S1} = mapfoldl(fun (E, S) -> + make_opnd(E, ren__identity(), Env, S) + end, + S, As), + %% Create local bindings from the parameters to their respective + %% operand structures, and visit the body. + {Rs, Ren1, Env1, S2} = bind_locals(Vs, Opnds, Ren, Env, S1), + {E1, S3} = i(let_body(E), Ctxt, Ren1, Env1, S2), + i_let_3(Rs, Opnds, E1, S3). + +i_let_3(Rs, Opnds, E, S) -> + %% Create necessary bindings and/or set flags. + {E1, S1} = make_let_bindings(Rs, E, S), + + %% We must also create evaluation for effect, for any unused + %% operands, as after an application expression. + residualize_operands(Opnds, E1, S1). + +%% A sequence `do e1 e2', written `(seq e1 e2)' in the original +%% algorithm, where `e1' is evaluated for effect only (since its value +%% is not used), and `e2' yields the final value. Note that we use +%% `make_seq' to recompose the sequence after visiting the parts. + +i_seq(E, Ctxt, Ren, Env, S) -> + {E1, S1} = i(seq_arg(E), effect, Ren, Env, S), + {E2, S2} = i(seq_body(E), Ctxt, Ren, Env, S1), + %% A sequence has no cost in itself. + {make_seq(E1, E2), S2}. + + +%% The `case' switch of Core Erlang is rather different from the boolean +%% `(if e1 e2 e3)' case of the original algorithm, but the central idea +%% is the same: if, given the simplified switch expression (which is +%% visited in `value' context - a boolean `test' context would not be +%% generally useful), there is a clause which could definitely be +%% selected, such that no clause before it can possibly be selected, +%% then we can eliminate all other clauses. (And even if this is not the +%% case, some clauses can often be eliminated.) Furthermore, if a clause +%% can be selected, we can replace the case-expression (including the +%% switch expression) with the body of the clause and a set of zero or +%% more let-bindings of subexpressions of the switch expression. (In the +%% simplest case, the switch expression is evaluated only for effect.) + +i_case(E, Ctxt, Ren, Env, S) -> + %% First visit the switch expression in `value' context, to simplify + %% it as far as possible. Note that only the result part is passed + %% on to the clause matching below; any effects are hoisted. + {A, S1} = i(case_arg(E), value, Ren, Env, S), + A1 = result(A), + + %% Propagating an application context into the branches could cause + %% the arguments of the application to be evaluated *after* the + %% switch expression, but *before* the body of the selected clause. + %% Such interleaving is not allowed in general, and it does not seem + %% worthwile to make a more powerful transformation here. Therefore, + %% the clause bodies are conservatively visited for value if the + %% context is `application'. + Ctxt1 = safe_context(Ctxt), + {E1, S2} = case get_components(case_arity(E), A1) of + {true, As} -> + i_case_1(As, E, Ctxt1, Ren, Env, S1); + false -> + i_case_1([], E, Ctxt1, Ren, Env, S1) + end, + {hoist_effects(A, E1), S2}. + +i_case_1(As, E, Ctxt, Ren, Env, S) -> + case i_clauses(As, case_clauses(E), Ctxt, Ren, Env, S) of + {false, {As1, Vs, Env1, Cs}, S1} -> + %% We still have a list of clauses. Sanity check: + if Cs == [] -> + report_warning("empty list of clauses " + "in residual program!.\n"); + true -> + ok + end, + {A, S2} = i(c_values(As1), value, ren__identity(), Env1, + S1), + {E1, S3} = i_case_2(Cs, A, E, S2), + i_case_3(Vs, Env1, E1, S3); + {true, {_, Vs, Env1, [C]}, S1} -> + %% A single clause was selected; we just take the body. + i_case_3(Vs, Env1, clause_body(C), S1) + end. + +%% Check if all clause bodies are actually equivalent expressions that +%% do not depent on pattern variables (this sometimes occurs as a +%% consequence of inlining, e.g., all branches might yield 'true'), and +%% if so, replace the `case' with a sequence, first evaluating the +%% clause selection for effect, then evaluating one of the clause bodies +%% for its value. (Unless the switch contains a catch-all clause, the +%% clause selection must be evaluated for effect, since there is no +%% guarantee that any of the clauses will actually match. Assuming that +%% some clause always matches could make an undefined program produce a +%% value.) This makes the final size less than what was accounted for +%% when visiting the clauses, but currently we don't try to adjust for +%% this. + +i_case_2(Cs, A, E, S) -> + case equivalent_clauses(Cs) of + false -> + %% Count the base sizes for the remaining clauses; pattern + %% and guard sizes are already counted. + N = weight('case') + weight(clause) * length(Cs), + S1 = count_size(N, S), + {update_c_case(E, A, Cs), S1}; + true -> + case cerl_clauses:any_catchall(Cs) of + true -> + %% We know that some clause must be selected, so we + %% can drop all the testing as well. + E1 = make_seq(A, clause_body(hd(Cs))), + {E1, S}; + false -> + %% The clause selection must be performed for + %% effect. + E1 = update_c_case(E, A, + set_clause_bodies(Cs, void())), + {make_seq(E1, clause_body(hd(Cs))), S} + end + end. + +i_case_3(Vs, Env, E, S) -> + %% For the variables bound to the switch expression subexpressions, + %% make let bindings or create evaluation for effect. + Rs = [env__get(var_name(V), Env) || V <- Vs], + {E1, S1} = make_let_bindings(Rs, E, S), + Opnds = [R#ref.opnd || R <- Rs], + residualize_operands(Opnds, E1, S1). + +%% This function takes a sequence of switch expressions `Es' (which can +%% be the empty list if these are unknown) and a list `Cs' of clauses, +%% and returns `{Match, {As, Vs, Env1, Cs1}, S1}' where `As' is a list +%% of residual switch expressions, `Vs' the list of variables used in +%% the templates, `Env1' the environment for the templates, and `Cs1' +%% the list of residual clauses. `Match' is `true' if some clause could +%% be shown to definitely match (in this case, `Cs1' contains exactly +%% one element), and `false' otherwise. `S1' is the new state. The given +%% `Ctxt' is the context to be used for visiting the body of clauses. +%% +%% Visiting a clause basically amounts to extending the environment for +%% all variables in the pattern, as for a `fun' (cf. `i_fun'), +%% propagating match information if possible, and visiting the guard and +%% body in the new environment. +%% +%% To make it cheaper to do handle a set of clauses, and to avoid +%% unnecessarily exceeding the size limit, we avoid visiting the bodies +%% of clauses which are subsequently removed, by dividing the visiting +%% of a clause into two stages: first construct the environment(s) and +%% visit the pattern (for renaming) and the guard (for value), then +%% reduce the switch as much as possible, and lastly visit the body. + +i_clauses(Cs, Ctxt, Ren, Env, S) -> + i_clauses([], Cs, Ctxt, Ren, Env, S). + +i_clauses(Es, Cs, Ctxt, Ren, Env, S) -> + %% Create templates for the switch expressions. + {Ts, {Vs, Env0}} = mapfoldl(fun (E, {Vs, Env}) -> + {T, Vs1, Env1} = + make_template(E, Env), + {T, {Vs1 ++ Vs, Env1}} + end, + {[], Env}, Es), + + %% Make operand structures for the switch subexpression templates + %% (found in `Env0') and add proper ref-structure bindings to the + %% environment. Since the subexpressions in general can be + %% interdependent (Vs is in reverse-dependency order), the + %% environment (and renaming) must be created incrementally. Note + %% that since the switch expressions have been visited already, the + %% identity renaming is used for the operands. + Vs1 = lists:reverse(Vs), + {Ren1, Env1, S1} = + foldl(fun (V, {Ren, Env, S}) -> + E = env__get(var_name(V), Env0), + {Opnd, S_1} = make_opnd(E, ren__identity(), Env, + S), + {_, Ren1, Env1, S_2} = bind_locals([V], [Opnd], + Ren, Env, S_1), + {Ren1, Env1, S_2} + end, + {Ren, Env, S}, Vs1), + + %% First we visit the head of each individual clause, renaming + %% pattern variables, inserting let-bindings in the guard and body, + %% and visiting the guard. The information used for visiting the + %% clause body will be prefixed to the clause annotations. + {Cs1, S2} = mapfoldl(fun (C, S) -> + i_clause_head(C, Ts, Ren1, Env1, S) + end, + S1, Cs), + + %% Now that the clause guards have been reduced as far as possible, + %% we can attempt to reduce the clauses. + As = [hd(get_ann(T)) || T <- Ts], + case cerl_clauses:reduce(Cs1, Ts) of + {false, Cs2} -> + %% We still have one or more clauses (with associated + %% extended environments). Their bodies have not yet been + %% visited, so we do that (in the respective safe + %% environments, adding the sizes of the visited heads to + %% the current size counter) and return the final list of + %% clauses. + {Cs3, S3} = mapfoldl( + fun (C, S) -> + i_clause_body(C, Ctxt, S) + end, + S2, Cs2), + {false, {As, Vs1, Env1, Cs3}, S3}; + {true, {C, _}} -> + %% A clause C could be selected (the bindings have already + %% been added to the guard/body). Note that since the clause + %% head will probably be discarded, its size is not counted. + {C1, Ren2, Env2, _} = get_clause_extras(C), + {B, S3} = i(clause_body(C), Ctxt, Ren2, Env2, S2), + C2 = update_c_clause(C1, clause_pats(C1), clause_guard(C1), B), + {true, {As, Vs1, Env1, [C2]}, S3} + end. + +%% This visits the head of a clause, renames pattern variables, inserts +%% let-bindings in the guard and body, and does inlining on the guard +%% expression. Returns a list of pairs `{NewClause, Data}', where `Data' +%% is `{Renaming, Environment, Size}' used for visiting the body of the +%% new clause. + +i_clause_head(C, Ts, Ren, Env, S) -> + %% Match the templates against the (non-renamed) patterns to get the + %% available information about matching subexpressions. We don't + %% care at this point whether an exact match/nomatch is detected. + Ps = clause_pats(C), + Bs = case cerl_clauses:match_list(Ps, Ts) of + {_, Bs1} -> Bs1; + none -> [] + end, + + %% The patterns must be visited for renaming; cf. `i_pattern'. We + %% use a passive size counter for visiting the patterns and the + %% guard (cf. `visit'), because we do not know at this stage whether + %% the clause will be kept or not; the final value of the counter is + %% included in the returned value below. + {_, Ren1, Env1, S1} = bind_locals(clause_vars(C), Ren, Env, S), + S2 = new_passive_size(get_size_limit(S1), S1), + {Ps1, S3} = mapfoldl(fun (P, S) -> + i_pattern(P, Ren1, Env1, Ren, Env, S) + end, + S2, Ps), + + %% Rewrite guard and body and visit the guard for value. Discard the + %% latter size count if the guard turns out to be a constant. + G = add_match_bindings(Bs, clause_guard(C)), + B = add_match_bindings(Bs, clause_body(C)), + {G1, S4} = i(G, value, Ren1, Env1, S3), + S5 = case is_literal(G1) of + true -> + revert_size(S3, S4); + false -> + S4 + end, + + %% Revert to the size counter we had on entry to this function. The + %% environment and renaming, together with the size of the clause + %% head, are prefixed to the annotations for later use. + Size = get_size_value(S5), + C1 = update_c_clause(C, Ps1, G1, B), + {set_clause_extras(C1, Ren1, Env1, Size), revert_size(S, S5)}. + +add_match_bindings(Bs, E) -> + %% Don't waste time if the variables definitely cannot be used. + %% (Most guards are simply `true'.) + case is_literal(E) of + true -> + E; + false -> + Vs = [V || {V, E} <- Bs, E /= any], + Es = [hd(get_ann(E)) || {_V, E} <- Bs, E /= any], + c_let(Vs, c_values(Es), E) + end. + +i_clause_body(C0, Ctxt, S) -> + {C, Ren, Env, Size} = get_clause_extras(C0), + S1 = count_size(Size, S), + {B, S2} = i(clause_body(C), Ctxt, Ren, Env, S1), + C1 = update_c_clause(C, clause_pats(C), clause_guard(C), B), + {C1, S2}. + +get_clause_extras(C) -> + [{Ren, Env, Size} | As] = get_ann(C), + {set_ann(C, As), Ren, Env, Size}. + +set_clause_extras(C, Ren, Env, Size) -> + As = [{Ren, Env, Size} | get_ann(C)], + set_ann(C, As). + +%% This is the `(lambda x e)' case of the original algorithm. A +%% `fun' is like a lambda expression, but with a varying number of +%% parameters; possibly zero. + +i_fun(E, Ctxt, Ren, Env, S) -> + case Ctxt of + effect -> + %% Reduce useless `fun' expressions to a simple constant; + %% visiting the body would be a waste of time, and could + %% needlessly mark variables as referenced. + {void(), count_size(weight(literal), S)}; + value -> + %% Note that the variables are visited as patterns. + Vs = fun_vars(E), + {_, Ren1, Env1, S1} = bind_locals(Vs, Ren, Env, S), + Vs1 = i_params(Vs, Ren1, Env1), + + %% The body is always visited for value. + {B, S2} = i(fun_body(E), value, Ren1, Env1, S1), + + %% We don't bother to include the exact number of free + %% variables in the cost for creating a fun-value. + S3 = count_size(weight('fun'), S2), + + %% Inlining might have duplicated code, so we must remove + %% any 'id'-annotations from the original fun-expression. + %% (This forces a later stage to invent new id:s.) This is + %% necessary as long as fun:s may still need to be + %% identified the old way. Function variables that are not + %% in application context also have such annotations, but + %% the inlining will currently lose all annotations on + %% variable references (I think), so that's not a problem. + {set_ann(c_fun(Vs1, B), kill_id_anns(get_ann(E))), S3}; + #app{} -> + %% An application of a fun-expression (in the source code) + %% is handled by going directly to `inline'; this is never + %% residualised, and we don't set up new counters here. Note + %% that inlining of copy-propagated fun-expressions is done + %% in `copy'; not here. + inline(E, Ctxt, Ren, Env, S) + end. + +%% A `letrec' requires a circular environment, but is otherwise like a +%% `let', i.e. like a direct lambda application. Note that only +%% fun-expressions (lambda abstractions) may occur in the right-hand +%% side of each definition. + +i_letrec(E, Ctxt, Ren, Env, S) -> + %% Note that we pass an empty list for the auto-referenced + %% (exported) functions here. + {Es, B, _, S1} = i_letrec(letrec_defs(E), letrec_body(E), [], Ctxt, + Ren, Env, S), + + %% If no bindings remain, only the body is returned. + case Es of + [] -> + {B, S1}; % drop annotations on E + _ -> + S2 = count_size(weight(letrec), S1), + {update_c_letrec(E, Es, B), S2} + end. + +%% The major part of this is shared by letrec-expressions and module +%% definitions alike. + +i_letrec(Es, B, Xs, Ctxt, Ren, Env, S) -> + %% First, we create operands with dummy renamings and environments, + %% and with fresh store locations for cached expressions and operand + %% info. + {Opnds, S1} = mapfoldl(fun ({_, E}, S) -> + make_opnd(E, undefined, undefined, S) + end, + S, Es), + + %% Then we make recursive bindings for the definitions. + {Rs, Ren1, Env1, S2} = bind_recursive([F || {F, _} <- Es], + Opnds, Ren, Env, S1), + + %% For the function variables listed in Xs (none for a + %% letrec-expression), we must make sure that the corresponding + %% operand expressions are visited and that the definitions are + %% marked as referenced; we also need to return the possibly renamed + %% function variables. + {Xs1, S3} = + mapfoldl( + fun (X, S) -> + Name = ren__map(var_name(X), Ren1), + case env__lookup(Name, Env1) of + {ok, R} -> + S_1 = i_letrec_export(R, S), + {ref_to_var(R), S_1}; + error -> + %% We just skip any exports that are not + %% actually defined here, and generate a + %% warning message. + {N, A} = var_name(X), + report_warning("export `~w'/~w " + "not defined.\n", [N, A]), + {X, S} + end + end, + S2, Xs), + + %% At last, we can then visit the body. + {B1, S4} = i(B, Ctxt, Ren1, Env1, S3), + + %% Finally, we create new letrec-bindings for any and all + %% residualised definitions. All referenced functions should have + %% been visited; the call to `visit' below is expected to retreive a + %% cached expression. + Rs1 = keep_referenced(Rs, S4), + {Es1, S5} = mapfoldl(fun (R, S) -> + {E_1, S_1} = visit(R#ref.opnd, S), + {{ref_to_var(R), E_1}, S_1} + end, + S4, Rs1), + {Es1, B1, Xs1, S5}. + +%% This visits the operand for a function definition exported by a +%% `letrec' (which is really a `module' module definition, since normal +%% letrecs have no export declarations). Only the updated state is +%% returned. We must handle the "inner-pending" flag when doing this; +%% cf. `i_var'. + +i_letrec_export(R, S) -> + Opnd = R#ref.opnd, + S1 = st__mark_inner_pending(Opnd#opnd.loc, S), + {_, S2} = visit(Opnd, S1), + {_, S3} = residualize_var(R, st__clear_inner_pending(Opnd#opnd.loc, + S2)), + S3. + +%% This is the `(call e1 e2)' case of the original algorithm. The only +%% difference is that we must handle multiple (or no) operand +%% expressions. + +i_apply(E, Ctxt, Ren, Env, S) -> + {Opnds, S1} = mapfoldl(fun (E, S) -> + make_opnd(E, Ren, Env, S) + end, + S, apply_args(E)), + + %% Allocate a new app-context location and set up an application + %% context structure containing the surrounding context. + {L, S2} = st__new_app_loc(S1), + Ctxt1 = #app{opnds = Opnds, ctxt = Ctxt, loc = L}, + + %% Visit the operator expression in the new call context. + {E1, S3} = i(apply_op(E), Ctxt1, Ren, Env, S2), + + %% Check the "inlined" flag to find out what to do next. (The store + %% location could be recycled after the flag has been tested, but + %% there is no real advantage to that, because in practice, only + %% 4-5% of all created store locations will ever be reused, while + %% there will be a noticable overhead for managing the free list.) + case st__get_app_inlined(L, S3) of + true -> + %% The application was inlined, so we have the final + %% expression in `E1'. We just have to handle any operands + %% that need to be residualized for effect only (i.e., those + %% the values of which are not used). + residualize_operands(Opnds, E1, S3); + false -> + %% Otherwise, `E1' is the residual operator expression. We + %% make sure all operands are visited, and rebuild the + %% application. + {Es, S4} = mapfoldl(fun (Opnd, S) -> + visit_and_count_size(Opnd, S) + end, + S3, Opnds), + N = apply_size(length(Es)), + {update_c_apply(E, E1, Es), count_size(N, S4)} + end. + +apply_size(A) -> + weight(apply) + weight(argument) * A. + +%% Since it is not the task of this transformation to handle +%% cross-module inlining, all inter-module calls are handled by visiting +%% the components (the module and function name, and the arguments of +%% the call) for value. In `effect' context, if the function itself is +%% known to be completely effect free, the call can be discarded and the +%% arguments evaluated for effect. Otherwise, if all the visited +%% arguments are to constants, and the function is known to be safe to +%% execute at compile time, then we try to evaluate the call. If +%% evaluation completes normally, the call is replaced by the result; +%% otherwise the call is residualised. + +i_call(E, Ctxt, Ren, Env, S) -> + {M, S1} = i(call_module(E), value, Ren, Env, S), + {F, S2} = i(call_name(E), value, Ren, Env, S1), + As = call_args(E), + Arity = length(As), + + %% Check if the name of the called function is static. If so, + %% discard the size counts performed above, since the values will + %% not cause any runtime cost. + Static = is_c_atom(M) and is_c_atom(F), + S3 = case Static of + true -> + revert_size(S, S2); + false -> + S2 + end, + case Ctxt of + effect when Static == true -> + case is_safe_call(atom_val(M), atom_val(F), Arity) of + true -> + %% The result will not be used, and the call is + %% effect free, so we create a multiple-value + %% aggregate containing the (not yet visited) + %% arguments and process that instead. + i(c_values(As), effect, Ren, Env, S3); + false -> + %% We are not allowed to simply discard the call, + %% but we can try to evaluate it. + i_call_1(Static, M, F, Arity, As, E, Ctxt, Ren, Env, + S3) + end; + _ -> + i_call_1(Static, M, F, Arity, As, E, Ctxt, Ren, Env, S3) + end. + +i_call_1(Static, M, F, Arity, As, E, Ctxt, Ren, Env, S) -> + %% Visit the arguments for value. + {As1, S1} = mapfoldl(fun (X, A) -> i(X, value, Ren, Env, A) end, + S, As), + case Static of + true -> + case erl_bifs:is_pure(atom_val(M), atom_val(F), Arity) of + true -> + %% It is allowed to evaluate this at compile time. + case all_static(As1) of + true -> + i_call_3(M, F, As1, E, Ctxt, Env, S1); + false -> + %% See if the call can be rewritten instead. + i_call_4(M, F, As1, E, Ctxt, Env, S1) + end; + false -> + i_call_2(M, F, As1, E, S1) + end; + false -> + i_call_2(M, F, As1, E, S1) + end. + +%% Residualise the call. + +i_call_2(M, F, As, E, S) -> + N = weight(call) + weight(argument) * length(As), + {update_c_call(E, M, F, As), count_size(N, S)}. + +%% Attempt to evaluate the call to yield a literal; if that fails, try +%% to rewrite the expression. + +i_call_3(M, F, As, E, Ctxt, Env, S) -> + %% Note that we extract the results of argument expessions here; the + %% expressions could still be sequences with side effects. + Vs = [concrete(result(A)) || A <- As], + case catch {ok, apply(atom_val(M), atom_val(F), Vs)} of + {ok, V} -> + %% Evaluation completed normally - try to turn the result + %% back into a syntax tree (representing a literal). + case is_literal_term(V) of + true -> + %% Make a sequence of the arguments (as a + %% multiple-value aggregate) and the final value. + S1 = count_size(weight(values), S), + S2 = count_size(weight(literal), S1), + {make_seq(c_values(As), abstract(V)), S2}; + false -> + %% The result could not be represented as a literal. + i_call_4(M, F, As, E, Ctxt, Env, S) + end; + _ -> + %% The evaluation attempt did not complete normally. + i_call_4(M, F, As, E, Ctxt, Env, S) + end. + +%% Rewrite the expression, if possible, otherwise residualise it. + +i_call_4(M, F, As, E, Ctxt, Env, S) -> + case reduce_bif_call(atom_val(M), atom_val(F), As, Env) of + false -> + %% Nothing more to be done - residualise the call. + i_call_2(M, F, As, E, S); + {true, E1} -> + %% We revisit the result, because the rewriting might have + %% opened possibilities for further inlining. Since the + %% parts have already been visited once, we use the identity + %% renaming here. + i(E1, Ctxt, ren__identity(), Env, S) + end. + +%% For now, we assume that primops cannot be evaluated at compile time, +%% probably being too special. Also, we have no knowledge about their +%% side effects. + +i_primop(E, Ren, Env, S) -> + %% Visit the arguments for value. + {As, S1} = mapfoldl(fun (E, S) -> + i(E, value, Ren, Env, S) + end, + S, primop_args(E)), + N = weight(primop) + weight(argument) * length(As), + {update_c_primop(E, primop_name(E), As), count_size(N, S1)}. + +%% This is like having an expression with an extra fun-expression +%% attached for "exceptional cases"; actually, there are exactly two +%% parameter variables for the body, but they are easiest handled as if +%% their number might vary, just as for a `fun'. + +i_try(E, Ctxt, Ren, Env, S) -> + %% The argument expression is evaluated in `value' context, and the + %% surrounding context is propagated into both branches. We do not + %% try to recognize cases when the protected expression will + %% actually raise an exception. Note that the variables are visited + %% as patterns. + {A, S1} = i(try_arg(E), value, Ren, Env, S), + Vs = try_vars(E), + {_, Ren1, Env1, S2} = bind_locals(Vs, Ren, Env, S1), + Vs1 = i_params(Vs, Ren1, Env1), + {B, S3} = i(try_body(E), Ctxt, Ren1, Env1, S2), + case is_safe(A) of + true -> + %% The `try' wrapper can be dropped in this case. Since the + %% expressions have been visited already, the identity + %% renaming is used when we revisit the new let-expression. + i(c_let(Vs1, A, B), Ctxt, ren__identity(), Env, S3); + false -> + Evs = try_evars(E), + {_, Ren2, Env2, S4} = bind_locals(Evs, Ren, Env, S3), + Evs1 = i_params(Evs, Ren2, Env2), + {H, S5} = i(try_handler(E), Ctxt, Ren2, Env2, S4), + S6 = count_size(weight('try'), S5), + {update_c_try(E, A, Vs1, B, Evs1, H), S6} + end. + +%% A special case of try-expressions: + +i_catch(E, Ctxt, Ren, Env, S) -> + %% We cannot propagate application contexts into the catch. + {E1, S1} = i(catch_body(E), safe_context(Ctxt), Ren, Env, S), + case is_safe(E1) of + true -> + %% The `catch' wrapper can be dropped in this case. + {E1, S1}; + false -> + S2 = count_size(weight('catch'), S1), + {update_c_catch(E, E1), S2} + end. + +%% A receive-expression is very much like a case-expression, with the +%% difference that we do not have access to a switch expression, since +%% the value being switched on is taken from the mailbox. The fact that +%% the receive-expression may iterate over an arbitrary number of +%% messages is not of interest to us. All we can do here is to visit its +%% subexpressions, and possibly eliminate definitely unselectable +%% clauses. + +i_receive(E, Ctxt, Ren, Env, S) -> + %% We first visit the expiry expression (for value) and the expiry + %% body (in the surrounding context). + {T, S1} = i(receive_timeout(E), value, Ren, Env, S), + {B, S2} = i(receive_action(E), Ctxt, Ren, Env, S1), + + %% Then we visit the clauses. Note that application contexts may not + %% in general be propagated into the branches (and the expiry body), + %% because the execution of the `receive' may remove a message from + %% the mailbox as a side effect; the situation is thus analogous to + %% that in a `case' expression. + Ctxt1 = safe_context(Ctxt), + case i_clauses(receive_clauses(E), Ctxt1, Ren, Env, S2) of + {false, {[], _, _, Cs}, S3} -> + %% We still have a list of clauses. If the list is empty, + %% and the expiry expression is the integer zero, the + %% expression reduces to the expiry body. + if Cs == [] -> + case is_c_int(T) andalso (int_val(T) == 0) of + true -> + {B, S3}; + false -> + i_receive_1(E, Cs, T, B, S3) + end; + true -> + i_receive_1(E, Cs, T, B, S3) + end; + {true, {_, _, _, Cs}, S3} -> + %% Cs is a single clause that will always be matched (if a + %% message exists), but we must keep the `receive' statement + %% in order to fetch the message from the mailbox. + i_receive_1(E, Cs, T, B, S3) + end. + +i_receive_1(E, Cs, T, B, S) -> + %% Here, we just add the base sizes for the receive-expression + %% itself and for each remaining clause; cf. `case'. + N = weight('receive') + weight(clause) * length(Cs), + {update_c_receive(E, Cs, T, B), count_size(N, S)}. + +%% A module definition is like a `letrec', with some add-ons (export and +%% attribute declarations) but without an explicit body. Actually, the +%% exporting of function names has the same effect as if there was a +%% body consisting of the list of references to the exported functions. +%% Thus, the exported functions are exactly those which can be +%% referenced from outside the module. + +i_module(E, Ctxt, Ren, Env, S) -> + %% Cf. `i_letrec'. Note that we pass a dummy constant value for the + %% "body" parameter. + {Es, _, Xs1, S1} = i_letrec(module_defs(E), void(), + module_exports(E), Ctxt, Ren, Env, S), + %% Sanity check: + case Es of + [] -> + report_warning("no function definitions remaining " + "in module `~s'.\n", + [atom_name(module_name(E))]); + _ -> + ok + end, + E1 = update_c_module(E, module_name(E), Xs1, module_attrs(E), Es), + {E1, count_size(weight(module), S1)}. + +%% Binary-syntax expressions are too complicated to do anything +%% interesting with here - that is beyond the scope of this program; +%% also, their construction could have side effects, so even in effect +%% context we can't remove them. (We don't bother to identify cases of +%% "safe" unused binaries which could be removed.) + +i_binary(E, Ren, Env, S) -> + %% Visit the segments for value. + {Es, S1} = mapfoldl(fun (E, S) -> + i_bitstr(E, Ren, Env, S) + end, + S, binary_segments(E)), + S2 = count_size(weight(binary), S1), + {update_c_binary(E, Es), S2}. + +i_bitstr(E, Ren, Env, S) -> + %% It is not necessary to visit the Unit, Type and Flags fields, + %% since these are always literals. + {Val, S1} = i(bitstr_val(E), value, Ren, Env, S), + {Size, S2} = i(bitstr_size(E), value, Ren, Env, S1), + Unit = bitstr_unit(E), + Type = bitstr_type(E), + Flags = bitstr_flags(E), + S3 = count_size(weight(bitstr), S2), + {update_c_bitstr(E, Val, Size, Unit, Type, Flags), S3}. + +%% This is a simplified version of `i_pattern', for lists of parameter +%% variables only. It does not modify the state. + +i_params([V | Vs], Ren, Env) -> + Name = ren__map(var_name(V), Ren), + case env__lookup(Name, Env) of + {ok, R} -> + [ref_to_var(R) | i_params(Vs, Ren, Env)]; + error -> + report_internal_error("variable `~w' not bound " + "in pattern.\n", [Name]), + exit(error) + end; +i_params([], _, _) -> + []. + +%% For ordinary patterns, we just visit to rename variables and count +%% the size/cost. All occurring binding instances of variables should +%% already have been added to the renaming and environment; however, to +%% handle the size expressions of binary-syntax patterns, we must pass +%% the renaming and environment of the containing expression + +i_pattern(E, Ren, Env, Ren0, Env0, S) -> + case type(E) of + var -> + %% Count no size. + Name = ren__map(var_name(E), Ren), + case env__lookup(Name, Env) of + {ok, R} -> + {ref_to_var(R), S}; + error -> + report_internal_error("variable `~w' not bound " + "in pattern.\n", [Name]), + exit(error) + end; + alias -> + %% Count no size. + V = alias_var(E), + Name = ren__map(var_name(V), Ren), + case env__lookup(Name, Env) of + {ok, R} -> + %% Visit the subpattern and recompose. + V1 = ref_to_var(R), + {P, S1} = i_pattern(alias_pat(E), Ren, Env, Ren0, + Env0, S), + {update_c_alias(E, V1, P), S1}; + error -> + report_internal_error("variable `~w' not bound " + "in pattern.\n", [Name]), + exit(error) + end; + binary -> + {Es, S1} = mapfoldl(fun (E, S) -> + i_bitstr_pattern(E, Ren, Env, + Ren0, Env0, S) + end, + S, binary_segments(E)), + S2 = count_size(weight(binary), S1), + {update_c_binary(E, Es), S2}; + _ -> + case is_literal(E) of + true -> + {E, count_size(weight(literal), S)}; + false -> + {Es1, S1} = mapfoldl(fun (E, S) -> + i_pattern(E, Ren, Env, + Ren0, Env0, + S) + end, + S, data_es(E)), + %% We assume that in general, the elements of the + %% constructor will all be fetched. + N = weight(data) + length(Es1) * weight(element), + S2 = count_size(N, S1), + {update_data(E, data_type(E), Es1), S2} + end + end. + +i_bitstr_pattern(E, Ren, Env, Ren0, Env0, S) -> + %% It is not necessary to visit the Unit, Type and Flags fields, + %% since these are always literals. The Value field is a limited + %% pattern - either a literal or an unbound variable. The Size field + %% is a limited expression - either a literal or a variable bound in + %% the environment of the containing expression. + {Val, S1} = i_pattern(bitstr_val(E), Ren, Env, Ren0, Env0, S), + {Size, S2} = i(bitstr_size(E), value, Ren0, Env0, S1), + Unit = bitstr_unit(E), + Type = bitstr_type(E), + Flags = bitstr_flags(E), + S3 = count_size(weight(bitstr), S2), + {update_c_bitstr(E, Val, Size, Unit, Type, Flags), S3}. + + +%% --------------------------------------------------------------------- +%% Other central inlining functions + +%% It is assumed here that `E' is a fun-expression and the context is an +%% app-structure. If the inlining might be aborted for some reason, a +%% corresponding catch should have been set up before entering `inline'. +%% +%% Note: if the inlined body is a lambda abstraction, and the +%% surrounding context of the app-context is also an app-context, the +%% `inlined' flag of the outermost context will be set before that of +%% the inner context is set. E.g.: `let F = fun (X) -> fun (Y) -> E in +%% apply apply F(A)(B)' will propagate the body of F, which is a lambda +%% abstraction, into the outer application context, which will be +%% inlined to produce expression `E', and the flag of the outer context +%% will be set. Upon return, the flag of the inner context will also be +%% set. However, the flags are then tested in innermost-first order. +%% Thus, if some inlining attempt is aborted, the `inlined' flags of any +%% nested app-contexts must be cleared. +%% +%% This implementation does nothing to handle inlining of calls to +%% recursive functions in a smart way. This means that as long as the +%% size and effort counters do not prevent it, the function body will be +%% inlined (i.e., the first iteration will be unrolled), and the +%% recursive calls will be residualized. + +inline(E, #app{opnds = Opnds, ctxt = Ctxt, loc = L}, Ren, Env, S) -> + %% Check that the arities match: + Vs = fun_vars(E), + if length(Opnds) /= length(Vs) -> + report_error("function called with wrong number " + "of arguments!\n"), + %% TODO: should really just residualise the call... + exit(error); + true -> + ok + end, + %% Create local bindings for the parameters to their respective + %% operand structures from the app-structure, and visit the body in + %% the context saved in the structure. + {Rs, Ren1, Env1, S1} = bind_locals(Vs, Opnds, Ren, Env, S), + {E1, S2} = i(fun_body(E), Ctxt, Ren1, Env1, S1), + + %% Create necessary bindings and/or set flags. + {E2, S3} = make_let_bindings(Rs, E1, S2), + + %% Lastly, flag the application as inlined, since the inlining + %% attempt was not aborted before we reached this point. + {E2, st__set_app_inlined(L, S3)}. + +%% For the (possibly renamed) argument variables to an inlined call, +%% either create `let' bindings for them, if they are still referenced +%% in the residual expression (in C/Lisp, also if they are assigned to), +%% or otherwise (if they are not referenced or assigned) mark them for +%% evaluation for side effects. + +make_let_bindings([R | Rs], E, S) -> + {E1, S1} = make_let_bindings(Rs, E, S), + make_let_binding(R, E1, S1); +make_let_bindings([], E, S) -> + {E, S}. + +make_let_binding(R, E, S) -> + %% The `referenced' flag is conservatively computed. We therefore + %% first check some simple cases where parameter R is definitely not + %% referenced in the resulting body E. + case is_literal(E) of + true -> + %% A constant contains no variable references. + make_let_binding_1(R, E, S); + false -> + case is_c_var(E) of + true -> + case var_name(E) =:= R#ref.name of + true -> + %% The body is simply the parameter variable + %% itself. Visit the operand for value and + %% substitute the result for the body. + visit_and_count_size(R#ref.opnd, S); + false -> + %% Not the same variable, so the parameter + %% is not referenced at all. + make_let_binding_1(R, E, S) + end; + false -> + %% Proceed to check the `referenced' flag. + case st__get_var_referenced(R#ref.loc, S) of + true -> + %% The parameter is probably referenced in + %% the residual code (although it might not + %% be). Visit the operand for value and + %% create a let-binding. + {E1, S1} = visit_and_count_size(R#ref.opnd, + S), + S2 = count_size(weight('let'), S1), + {c_let([ref_to_var(R)], E1, E), S2}; + false -> + %% The parameter is definitely not + %% referenced. + make_let_binding_1(R, E, S) + end + end + end. + +%% This marks the operand for evaluation for effect. + +make_let_binding_1(R, E, S) -> + Opnd = R#ref.opnd, + {E, st__set_opnd_effect(Opnd#opnd.loc, S)}. + +%% Here, `R' is the ref-structure which is the target of the copy +%% propagation, and `Opnd' is a visited operand structure, to be +%% propagated through `R' if possible - if not, `R' is residualised. +%% `Opnd' is normally the operand that `R' is bound to, and `E' is the +%% result of visiting `Opnd' for value; we pass this as an argument so +%% we don't have to fetch it multiple times (because we don't have +%% constant time access). +%% +%% We also pass the environment of the site of the variable reference, +%% for use when inlining a propagated fun-expression. In the original +%% algorithm by Waddell, the environment used for inlining such cases is +%% the identity mapping, because the fun-expression body has already +%% been visited for value, and their algorithm combines renaming of +%% source-code variables with the looking up of information about +%% residual-code variables. We, however, need to check the environment +%% of the call site when creating new non-shadowed variables, but we +%% must avoid repeated renaming. We therefore separate the renaming and +%% the environment (as in the renaming algorithm of Peyton-Jones and +%% Marlow). This also makes our implementation more general, compared to +%% the original algorithm, because we do not give up on propagating +%% variables that were free in the fun-body. +%% +%% Example: +%% +%% let F = fun (X) -> {'foo', X} in +%% let G = fun (H) -> apply H(F) % F is free in the fun G +%% in apply G(fun (F) -> apply F(42)) +%% => +%% let F = fun (X) -> {'foo', X} in +%% apply (fun (H) -> apply H(F))(fun (F) -> apply F(42)) +%% => +%% let F = fun (X) -> {'foo', X} in +%% apply (fun (F) -> apply F(42))(F) +%% => +%% let F = fun (X) -> {'foo', X} in +%% apply F(42) +%% => +%% apply (fun (X) -> {'foo', X})(2) +%% => +%% {'foo', 42} +%% +%% The original algorithm would give up at stage 4, because F was free +%% in the propagated fun-expression. Our version inlines this example +%% completely. + +copy(R, Opnd, E, Ctxt, Env, S) -> + case is_c_var(E) of + true -> + %% The operand reduces to another variable - get its + %% ref-structure and attempt to propagate further. + copy_var(env__get(var_name(E), Opnd#opnd.env), Ctxt, Env, + S); + false -> + %% Apart from variables and functional values (the latter + %% are handled by `copy_1' below), only constant literals + %% are copyable in general; other things, including e.g. + %% tuples `{foo, X}', could cause duplication of work, and + %% are not copy propagated. + case is_literal(E) of + true -> + {E, count_size(weight(literal), S)}; + false -> + copy_1(R, Opnd, E, Ctxt, Env, S) + end + end. + +copy_var(R, Ctxt, Env, S) -> + %% (In Lisp or C, if this other variable might be assigned to, we + %% should residualize the "parent" instead, so we don't bypass any + %% destructive updates.) + case R#ref.opnd of + undefined -> + %% This variable is not bound to an expression, so just + %% residualize it. + residualize_var(R, S); + Opnd -> + %% Note that because operands are always visited before + %% copied, all copyable operand expressions will be + %% propagated through any number of bindings. If `R' was + %% bound to a constant literal, we would never have reached + %% this point. + case st__lookup_opnd_cache(Opnd#opnd.loc, S) of + error -> + %% The result for this operand is not yet ready + %% (which should mean that it is a recursive + %% reference). Thus, we must residualise the + %% variable. + residualize_var(R, S); + {ok, #cache{expr = E1}} -> + %% The result for the operand is ready, so we can + %% proceed to propagate it. + copy_1(R, Opnd, E1, Ctxt, Env, S) + end + end. + +copy_1(R, Opnd, E, Ctxt, Env, S) -> + %% Fun-expression (lambdas) are a bit special; they are copyable, + %% but should preferably not be duplicated, so they should not be + %% copy propagated except into application contexts, where they can + %% be inlined. + case is_c_fun(E) of + true -> + case Ctxt of + #app{} -> + %% First test if the operand is "outer-pending"; if + %% so, don't inline. + case st__test_outer_pending(Opnd#opnd.loc, S) of + false -> + copy_inline(R, Opnd, E, Ctxt, Env, S); + true -> + %% Cyclic reference forced inlining to stop + %% (avoiding infinite unfolding). + residualize_var(R, S) + end; + _ -> + residualize_var(R, S) + end; + false -> + %% We have no other cases to handle here + residualize_var(R, S) + end. + +%% This inlines a function value that was propagated to an application +%% context. The inlining is done with an identity renaming (since the +%% expression is already visited) but in the environment of the call +%% site (which is OK because of the no-shadowing strategy for renaming, +%% and because the domain of our environments are the residual-program +%% variables instead of the source-program variables). Note that we must +%% first set the "outer-pending" flag, and clear it afterwards. + +copy_inline(R, Opnd, E, Ctxt, Env, S) -> + S1 = st__mark_outer_pending(Opnd#opnd.loc, S), + case catch {ok, copy_inline_1(R, E, Ctxt, Env, S1)} of + {ok, {E1, S2}} -> + {E1, st__clear_outer_pending(Opnd#opnd.loc, S2)}; + {'EXIT', X} -> + exit(X); + X -> + %% If we use destructive update for the `outer-pending' + %% flag, we must make sure to clear it upon a nonlocal + %% return. + st__clear_outer_pending(Opnd#opnd.loc, S1), + throw(X) + end. + +%% If the current effort counter was passive, we use a new active effort +%% counter with the inherited limit for this particular inlining. + +copy_inline_1(R, E, Ctxt, Env, S) -> + case effort_is_active(S) of + true -> + copy_inline_2(R, E, Ctxt, Env, S); + false -> + S1 = new_active_effort(get_effort_limit(S), S), + case catch {ok, copy_inline_2(R, E, Ctxt, Env, S1)} of + {ok, {E1, S2}} -> + %% Revert to the old effort counter. + {E1, revert_effort(S, S2)}; + {counter_exceeded, effort, _} -> + %% Aborted this inlining attempt because too much + %% effort was spent. Residualize the variable and + %% revert to the previous state. + residualize_var(R, S); + {'EXIT', X} -> + exit(X); + X -> + throw(X) + end + end. + +%% Regardless of whether the current size counter is active or not, we +%% use a new active size counter for each inlining. If the current +%% counter was passive, the new counter gets the inherited size limit; +%% if it was active, the size limit of the new counter will be equal to +%% the remaining budget of the current counter (which itself is not +%% affected by the inlining). This distributes the size budget more +%% evenly over "inlinings within inlinings", so that the whole size +%% budget is not spent on the first few call sites (in an inlined +%% function body) forcing the remaining call sites to be residualised. + +copy_inline_2(R, E, Ctxt, Env, S) -> + Limit = case size_is_active(S) of + true -> + get_size_limit(S) - get_size_value(S); + false -> + get_size_limit(S) + end, + %% Add the cost of the application to the new size limit, so we + %% always inline functions that are small enough, even if `Limit' is + %% close to zero at this point. (This is an extension to the + %% original algorithm.) + S1 = new_active_size(Limit + apply_size(length(Ctxt#app.opnds)), S), + case catch {ok, inline(E, Ctxt, ren__identity(), Env, S1)} of + {ok, {E1, S2}} -> + %% Revert to the old size counter. + {E1, revert_size(S, S2)}; + {counter_exceeded, size, S2} -> + %% Aborted this inlining attempt because it got too big. + %% Residualize the variable and revert to the old size + %% counter. (It is important that we do not also revert the + %% effort counter here. Because the effort and size counters + %% are always set up together, we know that the effort + %% counter returned in S2 is the same that was passed to + %% `inline'.) + S3 = revert_size(S, S2), + %% If we use destructive update for the `inlined' flag, we + %% must make sure to clear the flags of any nested + %% app-contexts upon aborting; see `inline' for details. + reset_nested_apps(Ctxt, S3), % for effect + residualize_var(R, S3); + {'EXIT', X} -> + exit(X); + X -> + throw(X) + end. + +reset_nested_apps(#app{ctxt = Ctxt, loc = L}, S) -> + reset_nested_apps(Ctxt, st__clear_app_inlined(L, S)); +reset_nested_apps(_, S) -> + S. + + +%% --------------------------------------------------------------------- +%% Support functions + +new_var(Env) -> + Name = env__new_vname(Env), + c_var(Name). + +residualize_var(R, S) -> + S1 = count_size(weight(var), S), + {ref_to_var(R), st__set_var_referenced(R#ref.loc, S1)}. + +%% This function returns the value-producing subexpression of any +%% expression. (Except for sequencing expressions, this is the +%% expression itself.) + +result(E) -> + case is_c_seq(E) of + true -> + %% Also see `make_seq', which is used in all places to build + %% sequences so that they are always nested in the first + %% position. + seq_body(E); + false -> + E + end. + +%% This function rewrites E to `do A1 E' if A is `do A1 A2', and +%% otherwise returns E unchanged. + +hoist_effects(A, E) -> + case type(A) of + seq -> make_seq(seq_arg(A), E); + _ -> E + end. + +%% This "build sequencing expression" operation assures that sequences +%% are always nested in the first position, which makes it easy to find +%% the actual value-producing expression of a sequence (cf. `result'). + +make_seq(E1, E2) -> + case is_safe(E1) of + true -> + %% The first expression can safely be dropped. + E2; + false -> + %% If `E1' is a sequence whose final expression has no side + %% effects, then we can lose *that* expression when we + %% compose the new sequence, since its value will not be + %% used. + E3 = case is_c_seq(E1) of + true -> + case is_safe(seq_body(E1)) of + true -> + %% Drop the final expression. + seq_arg(E1); + false -> + E1 + end; + false -> + E1 + end, + case is_c_seq(E2) of + true -> + %% `E2' is a sequence (E2' E2''), so we must + %% rearrange the nesting to ((E1, E2') E2''), to + %% preserve the invariant. Annotations on `E2' are + %% lost. + c_seq(c_seq(E3, seq_arg(E2)), seq_body(E2)); + false -> + c_seq(E3, E2) + end + end. + +%% Currently, safe expressions include variables, lambda expressions, +%% constructors with safe subexpressions (this includes atoms, integers, +%% empty lists, etc.), seq-, let- and letrec-expressions with safe +%% subexpressions, try- and catch-expressions with safe subexpressions +%% and calls to safe functions with safe argument subexpressions. +%% Binaries seem too tricky to be considered. + +is_safe(E) -> + case is_data(E) of + true -> + is_safe_list(data_es(E)); + false -> + case type(E) of + var -> + true; + 'fun' -> + true; + values -> + is_safe_list(values_es(E)); + 'seq' -> + case is_safe(seq_arg(E)) of + true -> + is_safe(seq_body(E)); + false -> + false + end; + 'let' -> + case is_safe(let_arg(E)) of + true -> + is_safe(let_body(E)); + false -> + false + end; + letrec -> + is_safe(letrec_body(E)); + 'try' -> + %% If the argument expression is not safe, it could + %% be modifying the state; thus, even if the body is + %% safe, the try-expression as a whole would not be. + %% If the argument is safe, the handler is not used. + case is_safe(try_arg(E)) of + true -> + is_safe(try_body(E)); + false -> + false + end; + 'catch' -> + is_safe(catch_body(E)); + call -> + M = call_module(E), + F = call_name(E), + case is_c_atom(M) and is_c_atom(F) of + true -> + As = call_args(E), + case is_safe_list(As) of + true -> + is_safe_call(atom_val(M), + atom_val(F), + length(As)); + false -> + false + end; + false -> + false + end; + _ -> + false + end + end. + +is_safe_list([E | Es]) -> + case is_safe(E) of + true -> + is_safe_list(Es); + false -> + false + end; +is_safe_list([]) -> + true. + +is_safe_call(M, F, A) -> + erl_bifs:is_safe(M, F, A). + +%% When setting up local variables, we only create new names if we have +%% to, according to the "no-shadowing" strategy. + +make_locals(Vs, Ren, Env) -> + make_locals(Vs, [], Ren, Env). + +make_locals([V | Vs], As, Ren, Env) -> + Name = var_name(V), + case env__is_defined(Name, Env) of + false -> + %% The variable need not be renamed. Just make sure that the + %% renaming will map it to itself. + Name1 = Name, + Ren1 = ren__add_identity(Name, Ren); + true -> + %% The variable must be renamed to maintain the no-shadowing + %% invariant. Do the right thing for function variables. + Name1 = case Name of + {A, N} -> + env__new_fname(A, N, Env); + _ -> + env__new_vname(Env) + end, + Ren1 = ren__add(Name, Name1, Ren) + end, + %% This temporary binding is added for correct new-key generation. + Env1 = env__bind(Name1, dummy, Env), + make_locals(Vs, [Name1 | As], Ren1, Env1); +make_locals([], As, Ren, Env) -> + {reverse(As), Ren, Env}. + +%% This adds let-bindings for the source code variables in `Es' to the +%% environment `Env'. +%% +%% Note that we always assign a new state location for the +%% residual-program variable, since we cannot know when a location for a +%% particular variable in the source code can be reused. + +bind_locals(Vs, Ren, Env, S) -> + Opnds = lists:duplicate(length(Vs), undefined), + bind_locals(Vs, Opnds, Ren, Env, S). + +bind_locals(Vs, Opnds, Ren, Env, S) -> + {Ns, Ren1, Env1} = make_locals(Vs, Ren, Env), + {Rs, Env2, S1} = bind_locals_1(Ns, Opnds, [], Env1, S), + {Rs, Ren1, Env2, S1}. + +%% Note that the `Vs' are currently not used for anything except the +%% number of variables. If we were maintaining "source-referenced" +%% flags, then the flag in the new variable should be initialized to the +%% current value of the (residual-) referenced-flag of the "parent". + +bind_locals_1([N | Ns], [Opnd | Opnds], Rs, Env, S) -> + {R, S1} = new_ref(N, Opnd, S), + Env1 = env__bind(N, R, Env), + bind_locals_1(Ns, Opnds, [R | Rs], Env1, S1); +bind_locals_1([], [], Rs, Env, S) -> + {lists:reverse(Rs), Env, S}. + +new_refs(Ns, Opnds, S) -> + new_refs(Ns, Opnds, [], S). + +new_refs([N | Ns], [Opnd | Opnds], Rs, S) -> + {R, S1} = new_ref(N, Opnd, S), + new_refs(Ns, Opnds, [R | Rs], S1); +new_refs([], [], Rs, S) -> + {lists:reverse(Rs), S}. + +new_ref(N, Opnd, S) -> + {L, S1} = st__new_ref_loc(S), + {#ref{name = N, opnd = Opnd, loc = L}, S1}. + +%% This adds recursive bindings for the source code variables in `Es' to +%% the environment `Env'. Note that recursive binding of a set of +%% variables is an atomic operation on the environment - they cannot be +%% added one at a time. + +bind_recursive(Vs, Opnds, Ren, Env, S) -> + {Ns, Ren1, Env1} = make_locals(Vs, Ren, Env), + {Rs, S1} = new_refs(Ns, Opnds, S), + + %% When this fun-expression is evaluated, it updates the operand + %% structure in the ref-structure to contain the recursively defined + %% environment and the correct renaming. + Fun = fun (R, Env) -> + Opnd = R#ref.opnd, + R#ref{opnd = Opnd#opnd{ren = Ren1, env = Env}} + end, + {Rs, Ren1, env__bind_recursive(Ns, Rs, Fun, Env1), S1}. + +safe_context(Ctxt) -> + case Ctxt of + #app{} -> + value; + _ -> + Ctxt + end. + +%% Note that the name of a variable encodes its type: a "plain" variable +%% or a function variable. The latter kind also contains an arity number +%% which should be preserved upon renaming. + +ref_to_var(#ref{name = Name}) -> + %% If we were maintaining "source-referenced" flags, the annotation + %% `add_ann([#source_ref{loc = L}], E)' should also be done here, to + %% make the algorithm reapplicable. This is however not necessary + %% since there are no destructive variable assignments in Erlang. + c_var(Name). + +%% Including the effort counter of the call site assures that the cost +%% of processing an operand via `visit' is charged to the correct +%% counter. In particular, if the effort counter of the call site was +%% passive, the operands will also be processed with a passive counter. + +make_opnd(E, Ren, Env, S) -> + {L, S1} = st__new_opnd_loc(S), + C = st__get_effort(S1), + Opnd = #opnd{expr = E, ren = Ren, env = Env, loc = L, effort = C}, + {Opnd, S1}. + +keep_referenced(Rs, S) -> + [R || R <- Rs, st__get_var_referenced(R#ref.loc, S)]. + +residualize_operands(Opnds, E, S) -> + foldr(fun (Opnd, {E, S}) -> residualize_operand(Opnd, E, S) end, + {E, S}, Opnds). + +%% This is the only case where an operand expression can be visited in +%% `effect' context instead of `value' context. + +residualize_operand(Opnd, E, S) -> + case st__get_opnd_effect(Opnd#opnd.loc, S) of + true -> + %% The operand has not been visited, so we do that now, but + %% in `effect' context. (Waddell's algoritm does some stuff + %% here to account specially for the operand size, which + %% appears unnecessary.) + {E1, S1} = i(Opnd#opnd.expr, effect, Opnd#opnd.ren, + Opnd#opnd.env, S), + {make_seq(E1, E), S1}; + false -> + {E, S} + end. + +%% The `visit' function always visits the operand expression in `value' +%% context (`residualize_operand' visits an unreferenced operand +%% expression in `effect' context when necessary). A new passive size +%% counter is used for visiting the operand, the final value of which is +%% then cached along with the resulting expression. +%% +%% Note that the effort counter of the call site, included in the +%% operand structure, is not a shared object. Thus, the effort budget is +%% actually reused over all occurrences of the operands of a single +%% application. This does not appear to be a problem; just a +%% modification of the algorithm. + +visit(Opnd, S) -> + {C, S1} = visit_1(Opnd, S), + {C#cache.expr, S1}. + +visit_and_count_size(Opnd, S) -> + {C, S1} = visit_1(Opnd, S), + {C#cache.expr, count_size(C#cache.size, S1)}. + +visit_1(Opnd, S) -> + case st__lookup_opnd_cache(Opnd#opnd.loc, S) of + error -> + %% Use a new, passive, size counter for visiting operands, + %% and use the effort counter of the context of the operand. + %% It turns out that if the latter is active, it must be the + %% same object as the one currently used, and if it is + %% passive, it does not matter if it is the same object as + %% any other counter. + Effort = Opnd#opnd.effort, + Active = counter__is_active(Effort), + S1 = case Active of + true -> + S; % don't change effort counter + false -> + st__set_effort(Effort, S) + end, + S2 = new_passive_size(get_size_limit(S1), S1), + + %% Visit the expression and cache the result, along with the + %% final value of the size counter. + {E, S3} = i(Opnd#opnd.expr, value, Opnd#opnd.ren, + Opnd#opnd.env, S2), + Size = get_size_value(S3), + C = #cache{expr = E, size = Size}, + S4 = revert_size(S, st__set_opnd_cache(Opnd#opnd.loc, C, + S3)), + case Active of + true -> + {C, S4}; % keep using the same effort counter + false -> + {C, revert_effort(S, S4)} + end; + {ok, C} -> + {C, S} + end. + +%% Create a pattern matching template for an expression. A template +%% contains only data constructors (including atomic ones) and +%% variables, and compound literals are not folded into a single node. +%% Each node in the template is annotated with the variable which holds +%% the corresponding subexpression; these are new, unique variables not +%% existing in the given `Env'. Returns `{Template, Variables, NewEnv}', +%% where `Variables' is the list of all variables corresponding to nodes +%% in the template *listed in reverse dependency order*, and `NewEnv' is +%% `Env' augmented with mappings from the variable names to +%% subexpressions of `E' (not #ref{} structures!) rewritten so that no +%% computations are duplicated. `Variables' is guaranteed to be nonempty +%% - at least the root node will always be bound to a new variable. + +make_template(E, Env) -> + make_template(E, [], Env). + +make_template(E, Vs0, Env0) -> + case is_data(E) of + true -> + {Ts, {Vs1, Env1}} = mapfoldl( + fun (E, {Vs0, Env0}) -> + {T, Vs1, Env1} = + make_template(E, Vs0, + Env0), + {T, {Vs1, Env1}} + end, + {Vs0, Env0}, data_es(E)), + T = make_data_skel(data_type(E), Ts), + E1 = update_data(E, data_type(E), + [hd(get_ann(T)) || T <- Ts]), + V = new_var(Env1), + Env2 = env__bind(var_name(V), E1, Env1), + {set_ann(T, [V]), [V | Vs1], Env2}; + false -> + case type(E) of + seq -> + %% For a sequencing, we can rebind the variable used + %% for the body, and pass on the template as it is. + {T, Vs1, Env1} = make_template(seq_body(E), Vs0, + Env0), + V = var_name(hd(get_ann(T))), + E1 = update_c_seq(E, seq_arg(E), env__get(V, Env1)), + Env2 = env__bind(V, E1, Env1), + {T, Vs1, Env2}; + _ -> + V = new_var(Env0), + Env1 = env__bind(var_name(V), E, Env0), + {set_ann(V, [V]), [V | Vs0], Env1} + end + end. + +%% Two clauses are equivalent if their bodies are equivalent expressions +%% given that the respective pattern variables are local. + +equivalent_clauses([]) -> + true; +equivalent_clauses([C | Cs]) -> + Env = cerl_trees:variables(c_values(clause_pats(C))), + equivalent_clauses_1(clause_body(C), Cs, Env). + +equivalent_clauses_1(E, [C | Cs], Env) -> + Env1 = cerl_trees:variables(c_values(clause_pats(C))), + case equivalent(E, clause_body(C), ordsets:union(Env, Env1)) of + true -> + equivalent_clauses_1(E, Cs, Env); + false -> + false + end; +equivalent_clauses_1(_, [], _Env) -> + true. + +%% Two expressions are equivalent if and only if they yield the same +%% value and has the same side effects in the same order. Currently, we +%% only accept equality between constructors (constants) and nonlocal +%% variables, since this should cover most cases of interest. If a +%% variable is locally bound in one expression, it cannot be equivalent +%% to one with the same name in the other expression, so we need not +%% keep track of two environments. + +equivalent(E1, E2, Env) -> + case is_data(E1) of + true -> + case is_data(E2) of + true -> + T1 = {data_type(E1), data_arity(E1)}, + T2 = {data_type(E2), data_arity(E2)}, + %% Note that we must test for exact equality. + if T1 =:= T2 -> + equivalent_lists(data_es(E1), data_es(E2), + Env); + true -> + false + end; + false -> + false + end; + false -> + case type(E1) of + var -> + case is_c_var(E2) of + true -> + N1 = var_name(E1), + N2 = var_name(E2), + if N1 =:= N2 -> + not ordsets:is_element(N1, Env); + true -> + false + end; + false -> + false + end; + _ -> + %% Other constructs are not being considered. + false + end + end. + +equivalent_lists([E1 | Es1], [E2 | Es2], Env) -> + equivalent(E1, E2, Env) and equivalent_lists(Es1, Es2, Env); +equivalent_lists([], [], _) -> + true; +equivalent_lists(_, _, _) -> + false. + +%% Return `false' or `{true, EffectExpr, ValueExpr}'. The environment is +%% passed for new-variable generation. + +reduce_bif_call(M, F, As, Env) -> + reduce_bif_call_1(M, F, length(As), As, Env). + +reduce_bif_call_1(erlang, element, 2, [X, Y], _Env) -> + case is_c_int(X) and is_c_tuple(Y) of + true -> + %% We are free to change the relative evaluation order of + %% the elements, so lifting out a particular element is OK. + T = list_to_tuple(tuple_es(Y)), + N = int_val(X), + if integer(N), N > 0, N =< size(T) -> + E = element(N, T), + Es = tuple_to_list(setelement(N, T, void())), + {true, make_seq(c_tuple(Es), E)}; + true -> + false + end; + false -> + false + end; +reduce_bif_call_1(erlang, hd, 1, [X], _Env) -> + case is_c_cons(X) of + true -> + %% Cf. `element/2' above. + {true, make_seq(cons_tl(X), cons_hd(X))}; + false -> + false + end; +reduce_bif_call_1(erlang, length, 1, [X], _Env) -> + case is_c_list(X) of + true -> + %% Cf. `erlang:size/1' below. + {true, make_seq(X, c_int(list_length(X)))}; + false -> + false + end; +reduce_bif_call_1(erlang, list_to_tuple, 1, [X], _Env) -> + case is_c_list(X) of + true -> + %% This does not actually preserve all the evaluation order + %% constraints of the list, but I don't imagine that it will + %% be a problem. + {true, c_tuple(list_elements(X))}; + false -> + false + end; +reduce_bif_call_1(erlang, setelement, 3, [X, Y, Z], Env) -> + case is_c_int(X) and is_c_tuple(Y) of + true -> + %% Here, unless `Z' is a simple expression, we must bind it + %% to a new variable, because in that case, `Z' must be + %% evaluated before any part of `Y'. + T = list_to_tuple(tuple_es(Y)), + N = int_val(X), + if integer(N), N > 0, N =< size(T) -> + E = element(N, T), + case is_simple(Z) of + true -> + Es = tuple_to_list(setelement(N, T, Z)), + {true, make_seq(E, c_tuple(Es))}; + false -> + V = new_var(Env), + Es = tuple_to_list(setelement(N, T, V)), + E1 = make_seq(E, c_tuple(Es)), + {true, c_let([V], Z, E1)} + end; + true -> + false + end; + false -> + false + end; +reduce_bif_call_1(erlang, size, 1, [X], _Env) -> + case is_c_tuple(X) of + true -> + %% Just evaluate the tuple for effect and use the size (the + %% arity) as the result. + {true, make_seq(X, c_int(tuple_arity(X)))}; + false -> + false + end; +reduce_bif_call_1(erlang, tl, 1, [X], _Env) -> + case is_c_cons(X) of + true -> + %% Cf. `element/2' above. + {true, make_seq(cons_hd(X), cons_tl(X))}; + false -> + false + end; +reduce_bif_call_1(erlang, tuple_to_list, 1, [X], _Env) -> + case is_c_tuple(X) of + true -> + %% This actually introduces slightly stronger constraints on + %% the evaluation order of the subexpressions. + {true, make_list(tuple_es(X))}; + false -> + false + end; +reduce_bif_call_1(_M, _F, _A, _As, _Env) -> + false. + +effort_is_active(S) -> + counter__is_active(st__get_effort(S)). + +size_is_active(S) -> + counter__is_active(st__get_size(S)). + +get_effort_limit(S) -> + counter__limit(st__get_effort(S)). + +new_active_effort(Limit, S) -> + st__set_effort(counter__new_active(Limit), S). + +revert_effort(S1, S2) -> + st__set_effort(st__get_effort(S1), S2). + +new_active_size(Limit, S) -> + st__set_size(counter__new_active(Limit), S). + +new_passive_size(Limit, S) -> + st__set_size(counter__new_passive(Limit), S). + +revert_size(S1, S2) -> + st__set_size(st__get_size(S1), S2). + +count_effort(N, S) -> + C = st__get_effort(S), + C1 = counter__add(N, C, effort, S), + case debug_counters() of + true -> + case counter__is_active(C1) of + true -> + V = counter__value(C1), + case V > get(counter_effort_max) of + true -> + put(counter_effort_max, V); + false -> + ok + end; + false -> + ok + end; + _ -> + ok + end, + st__set_effort(C1, S). + +count_size(N, S) -> + C = st__get_size(S), + C1 = counter__add(N, C, size, S), + case debug_counters() of + true -> + case counter__is_active(C1) of + true -> + V = counter__value(C1), + case V > get(counter_size_max) of + true -> + put(counter_size_max, V); + false -> + ok + end; + false -> + ok + end; + _ -> + ok + end, + st__set_size(C1, S). + +get_size_value(S) -> + counter__value(st__get_size(S)). + +get_size_limit(S) -> + counter__limit(st__get_size(S)). + +kill_id_anns([{'id',_} | As]) -> + kill_id_anns(As); +kill_id_anns([A | As]) -> + [A | kill_id_anns(As)]; +kill_id_anns([]) -> + []. + + +%% ===================================================================== +%% General utilities + +max(X, Y) when X > Y -> X; +max(_, Y) -> Y. + +%% The atom `ok', is widely used in Erlang for "void" values. + +void() -> abstract(ok). + +is_simple(E) -> + case type(E) of + literal -> true; + var -> true; + 'fun' -> true; + _ -> false + end. + +get_components(N, E) -> + case type(E) of + values -> + Es = values_es(E), + if length(Es) == N -> + {true, Es}; + true -> + false + end; + _ when N == 1 -> + {true, [E]}; + _ -> + false + end. + +all_static([E | Es]) -> + case is_literal(result(E)) of + true -> + all_static(Es); + false -> + false + end; +all_static([]) -> + true. + +set_clause_bodies([C | Cs], B) -> + [update_c_clause(C, clause_pats(C), clause_guard(C), B) + | set_clause_bodies(Cs, B)]; +set_clause_bodies([], _) -> + []. + +filename([C | T]) when integer(C), C > 0, C =< 255 -> + [C | filename(T)]; +filename([H|T]) -> + filename(H) ++ filename(T); +filename([]) -> + []; +filename(N) when atom(N) -> + atom_to_list(N); +filename(N) -> + report_error("bad filename: `~P'.", [N, 25]), + exit(error). + + +%% ===================================================================== +%% Abstract datatype: renaming() + +ren__identity() -> + dict:new(). + +ren__add(X, Y, Ren) -> + dict:store(X, Y, Ren). + +ren__map(X, Ren) -> + case dict:find(X, Ren) of + {ok, Y} -> + Y; + error -> + X + end. + +ren__add_identity(X, Ren) -> + dict:erase(X, Ren). + + +%% ===================================================================== +%% Abstract datatype: environment() + +env__empty() -> + rec_env:empty(). + +env__bind(Key, Val, Env) -> + rec_env:bind(Key, Val, Env). + +%% `Es' should have type `[{Key, Val}]', and `Fun' should have type +%% `(Val, Env) -> T', mapping a value together with the recursive +%% environment itself to some term `T' to be returned when the entry is +%% looked up. + +env__bind_recursive(Ks, Vs, F, Env) -> + rec_env:bind_recursive(Ks, Vs, F, Env). + +env__lookup(Key, Env) -> + rec_env:lookup(Key, Env). + +env__get(Key, Env) -> + rec_env:get(Key, Env). + +env__is_defined(Key, Env) -> + rec_env:is_defined(Key, Env). + +env__new_vname(Env) -> + rec_env:new_key(Env). + +env__new_fname(A, N, Env) -> + rec_env:new_key(fun (X) -> + S = integer_to_list(X), + {list_to_atom(atom_to_list(A) ++ "_" ++ S), + N} + end, Env). + + +%% ===================================================================== +%% Abstract datatype: state() + +-record(state, {free, % next free location + size, % size counter + effort, % effort counter + cache, % operand expression cache + var_flags, % flags for variables (#ref-structures) + opnd_flags, % flags for operands + app_flags}). % flags for #app-structures + +%% Note that we do not have a `var_assigned' flag, since there is no +%% destructive assignment in Erlang. In the original algorithm, the +%% "residual-referenced"-flags of the previous inlining pass (or +%% initialization pass) are used as the "source-referenced"-flags for +%% the subsequent pass. The latter may then be used as a safe +%% approximation whenever we need to base a decision on whether or not a +%% particular variable or function variable could be referenced in the +%% program being generated, and computation of the new +%% "residual-referenced" flag for that variable is not yet finished. In +%% the present algorithm, this can only happen in the presence of +%% variable assignments, which do not exist in Erlang. Therefore, we do +%% not keep "source-referenced" flags for residual-code references in +%% our implementation. +%% +%% The "inner-pending" flag tells us whether we are already in the +%% process of visiting a particular operand, and the "outer-pending" +%% flag whether we are in the process of inlining a propagated +%% functional value. The "pending flags" are really counters limiting +%% the number of times an operand may be inlined recursively, causing +%% loop unrolling; however, unrolling more than one iteration does not +%% work offhand in the present implementation. (TODO: find out why.) +%% Note that the initial value must be greater than zero in order for +%% any inlining at all to be done. + +%% Flags are stored in ETS-tables, one table for each class. The second +%% element in each stored tuple is the key (the "label"). + +-record(var_flags, {lab, referenced = false}). +-record(opnd_flags, {lab, inner_pending = 1, outer_pending = 1, + effect = false}). +-record(app_flags, {lab, inlined = false}). + +st__new(Effort, Size) -> + #state{free = 0, + size = counter__new_passive(Size), + effort = counter__new_passive(Effort), + cache = dict:new(), + var_flags = ets:new(var, [set, private, {keypos, 2}]), + opnd_flags = ets:new(opnd, [set, private, {keypos, 2}]), + app_flags = ets:new(app, [set, private, {keypos, 2}])}. + +st__new_loc(S) -> + N = S#state.free, + {N, S#state{free = N + 1}}. + +st__get_effort(S) -> + S#state.effort. + +st__set_effort(C, S) -> + S#state{effort = C}. + +st__get_size(S) -> + S#state.size. + +st__set_size(C, S) -> + S#state{size = C}. + +st__set_var_referenced(L, S) -> + T = S#state.var_flags, + [F] = ets:lookup(T, L), + ets:insert(T, F#var_flags{referenced = true}), + S. + +st__get_var_referenced(L, S) -> + ets:lookup_element(S#state.var_flags, L, #var_flags.referenced). + +st__lookup_opnd_cache(L, S) -> + dict:find(L, S#state.cache). + +%% Note that setting the cache should only be done once. + +st__set_opnd_cache(L, C, S) -> + S#state{cache = dict:store(L, C, S#state.cache)}. + +st__set_opnd_effect(L, S) -> + T = S#state.opnd_flags, + [F] = ets:lookup(T, L), + ets:insert(T, F#opnd_flags{effect = true}), + S. + +st__get_opnd_effect(L, S) -> + ets:lookup_element(S#state.opnd_flags, L, #opnd_flags.effect). + +st__set_app_inlined(L, S) -> + T = S#state.app_flags, + [F] = ets:lookup(T, L), + ets:insert(T, F#app_flags{inlined = true}), + S. + +st__clear_app_inlined(L, S) -> + T = S#state.app_flags, + [F] = ets:lookup(T, L), + ets:insert(T, F#app_flags{inlined = false}), + S. + +st__get_app_inlined(L, S) -> + ets:lookup_element(S#state.app_flags, L, #app_flags.inlined). + +%% The pending-flags are initialized by `st__new_opnd_loc' below. + +st__test_inner_pending(L, S) -> + T = S#state.opnd_flags, + P = ets:lookup_element(T, L, #opnd_flags.inner_pending), + P =< 0. + +st__mark_inner_pending(L, S) -> + ets:update_counter(S#state.opnd_flags, L, + {#opnd_flags.inner_pending, -1}), + S. + +st__clear_inner_pending(L, S) -> + ets:update_counter(S#state.opnd_flags, L, + {#opnd_flags.inner_pending, 1}), + S. + +st__test_outer_pending(L, S) -> + T = S#state.opnd_flags, + P = ets:lookup_element(T, L, #opnd_flags.outer_pending), + P =< 0. + +st__mark_outer_pending(L, S) -> + ets:update_counter(S#state.opnd_flags, L, + {#opnd_flags.outer_pending, -1}), + S. + +st__clear_outer_pending(L, S) -> + ets:update_counter(S#state.opnd_flags, L, + {#opnd_flags.outer_pending, 1}), + S. + +st__new_app_loc(S) -> + V = {L, _S1} = st__new_loc(S), + ets:insert(S#state.app_flags, #app_flags{lab = L}), + V. + +st__new_ref_loc(S) -> + V = {L, _S1} = st__new_loc(S), + ets:insert(S#state.var_flags, #var_flags{lab = L}), + V. + +st__new_opnd_loc(S) -> + V = {L, _S1} = st__new_loc(S), + ets:insert(S#state.opnd_flags, #opnd_flags{lab = L}), + V. + + +%% ===================================================================== +%% Abstract datatype: counter() +%% +%% `counter__add' throws `{counter_exceeded, Type, Data}' if the +%% resulting counter value would exceed the limit for the counter in +%% question (`Type' and `Data' are given by the user). + +-record(counter, {active, value, limit}). + +counter__new_passive(Limit) when Limit > 0 -> + {0, Limit}. + +counter__new_active(Limit) when Limit > 0 -> + {Limit, Limit}. + +%% Active counters have values > 0 internally; passive counters start at +%% zero. The 'limit' field is only accessed by the 'counter__limit' +%% function. + +counter__is_active({C, _}) -> + C > 0. + +counter__limit({_, L}) -> + L. + +counter__value({N, L}) -> + if N > 0 -> + L - N; + true -> + -N + end. + +counter__add(N, {V, L}, Type, Data) -> + N1 = V - N, + if V > 0, N1 =< 0 -> + case debug_counters() of + true -> + case Type of + effort -> + put(counter_effort_triggers, + get(counter_effort_triggers) + 1); + size -> + put(counter_size_triggers, + get(counter_size_triggers) + 1) + end; + _ -> + ok + end, + throw({counter_exceeded, Type, Data}); + true -> + {N1, L} + end. + + +%% ===================================================================== +%% Reporting + +% report_internal_error(S) -> +% report_internal_error(S, []). + +report_internal_error(S, Vs) -> + report_error("internal error: " ++ S, Vs). + +report_error(D) -> + report_error(D, []). + +report_error({F, L, D}, Vs) -> + report({F, L, {error, D}}, Vs); +report_error(D, Vs) -> + report({error, D}, Vs). + +report_warning(D) -> + report_warning(D, []). + +report_warning({F, L, D}, Vs) -> + report({F, L, {warning, D}}, Vs); +report_warning(D, Vs) -> + report({warning, D}, Vs). + +report(D, Vs) -> + io:put_chars(format(D, Vs)). + +format({error, D}, Vs) -> + ["error: ", format(D, Vs)]; +format({warning, D}, Vs) -> + ["warning: ", format(D, Vs)]; +format({"", L, D}, Vs) when integer(L), L > 0 -> + [io_lib:fwrite("~w: ", [L]), format(D, Vs)]; +format({"", _L, D}, Vs) -> + format(D, Vs); +format({F, L, D}, Vs) when integer(L), L > 0 -> + [io_lib:fwrite("~s:~w: ", [filename(F), L]), format(D, Vs)]; +format({F, _L, D}, Vs) -> + [io_lib:fwrite("~s: ", [filename(F)]), format(D, Vs)]; +format(S, Vs) when list(S) -> + [io_lib:fwrite(S, Vs), $\n]. + + +%% ===================================================================== diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_trees.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_trees.erl new file mode 100644 index 0000000000..afe7c8708b --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/cerl_trees.erl @@ -0,0 +1,801 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Richard Carlsson. +%% Copyright (C) 1999-2002 Richard Carlsson. +%% Portions created by Ericsson are Copyright 2001, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: cerl_trees.erl,v 1.2 2010/06/07 06:32:39 kostis Exp $ + +%% @doc Basic functions on Core Erlang abstract syntax trees. +%% +%% <p>Syntax trees are defined in the module <a +%% href=""><code>cerl</code></a>.</p> +%% +%% @type cerl() = cerl:cerl() + +-module(cerl_trees). + +-export([depth/1, fold/3, free_variables/1, label/1, label/2, map/2, + mapfold/3, size/1, variables/1]). + +-import(cerl, [alias_pat/1, alias_var/1, ann_c_alias/3, ann_c_apply/3, + ann_c_binary/2, ann_c_bitstr/6, ann_c_call/4, + ann_c_case/3, ann_c_catch/2, ann_c_clause/4, + ann_c_cons_skel/3, ann_c_fun/3, ann_c_let/4, + ann_c_letrec/3, ann_c_module/5, ann_c_primop/3, + ann_c_receive/4, ann_c_seq/3, ann_c_try/6, + ann_c_tuple_skel/2, ann_c_values/2, apply_args/1, + apply_op/1, binary_segments/1, bitstr_val/1, + bitstr_size/1, bitstr_unit/1, bitstr_type/1, + bitstr_flags/1, call_args/1, call_module/1, call_name/1, + case_arg/1, case_clauses/1, catch_body/1, clause_body/1, + clause_guard/1, clause_pats/1, clause_vars/1, concrete/1, + cons_hd/1, cons_tl/1, fun_body/1, fun_vars/1, get_ann/1, + let_arg/1, let_body/1, let_vars/1, letrec_body/1, + letrec_defs/1, letrec_vars/1, module_attrs/1, + module_defs/1, module_exports/1, module_name/1, + module_vars/1, primop_args/1, primop_name/1, + receive_action/1, receive_clauses/1, receive_timeout/1, + seq_arg/1, seq_body/1, set_ann/2, subtrees/1, try_arg/1, + try_body/1, try_vars/1, try_evars/1, try_handler/1, + tuple_es/1, type/1, update_c_alias/3, update_c_apply/3, + update_c_binary/2, update_c_bitstr/6, update_c_call/4, + update_c_case/3, update_c_catch/2, update_c_clause/4, + update_c_cons/3, update_c_cons_skel/3, update_c_fun/3, + update_c_let/4, update_c_letrec/3, update_c_module/5, + update_c_primop/3, update_c_receive/4, update_c_seq/3, + update_c_try/6, update_c_tuple/2, update_c_tuple_skel/2, + update_c_values/2, values_es/1, var_name/1]). + + +%% --------------------------------------------------------------------- + +%% @spec depth(Tree::cerl) -> integer() +%% +%% @doc Returns the length of the longest path in the tree. A leaf +%% node has depth zero, the tree representing "<code>{foo, +%% bar}</code>" has depth one, etc. + +depth(T) -> + case subtrees(T) of + [] -> + 0; + Gs -> + 1 + lists:foldl(fun (G, A) -> erlang:max(depth_1(G), A) end, 0, Gs) + end. + +depth_1(Ts) -> + lists:foldl(fun (T, A) -> erlang:max(depth(T), A) end, 0, Ts). + +%% max(X, Y) when X > Y -> X; +%% max(_, Y) -> Y. + + +%% @spec size(Tree::cerl()) -> integer() +%% +%% @doc Returns the number of nodes in <code>Tree</code>. + +size(T) -> + fold(fun (_, S) -> S + 1 end, 0, T). + + +%% --------------------------------------------------------------------- + +%% @spec map(Function, Tree::cerl()) -> cerl() +%% +%% Function = (cerl()) -> cerl() +%% +%% @doc Maps a function onto the nodes of a tree. This replaces each +%% node in the tree by the result of applying the given function on +%% the original node, bottom-up. +%% +%% @see mapfold/3 + +map(F, T) -> + F(map_1(F, T)). + +map_1(F, T) -> + case type(T) of + literal -> + case concrete(T) of + [_ | _] -> + update_c_cons(T, map(F, cons_hd(T)), + map(F, cons_tl(T))); + V when tuple_size(V) > 0 -> + update_c_tuple(T, map_list(F, tuple_es(T))); + _ -> + T + end; + var -> + T; + values -> + update_c_values(T, map_list(F, values_es(T))); + cons -> + update_c_cons_skel(T, map(F, cons_hd(T)), + map(F, cons_tl(T))); + tuple -> + update_c_tuple_skel(T, map_list(F, tuple_es(T))); + 'let' -> + update_c_let(T, map_list(F, let_vars(T)), + map(F, let_arg(T)), + map(F, let_body(T))); + seq -> + update_c_seq(T, map(F, seq_arg(T)), + map(F, seq_body(T))); + apply -> + update_c_apply(T, map(F, apply_op(T)), + map_list(F, apply_args(T))); + call -> + update_c_call(T, map(F, call_module(T)), + map(F, call_name(T)), + map_list(F, call_args(T))); + primop -> + update_c_primop(T, map(F, primop_name(T)), + map_list(F, primop_args(T))); + 'case' -> + update_c_case(T, map(F, case_arg(T)), + map_list(F, case_clauses(T))); + clause -> + update_c_clause(T, map_list(F, clause_pats(T)), + map(F, clause_guard(T)), + map(F, clause_body(T))); + alias -> + update_c_alias(T, map(F, alias_var(T)), + map(F, alias_pat(T))); + 'fun' -> + update_c_fun(T, map_list(F, fun_vars(T)), + map(F, fun_body(T))); + 'receive' -> + update_c_receive(T, map_list(F, receive_clauses(T)), + map(F, receive_timeout(T)), + map(F, receive_action(T))); + 'try' -> + update_c_try(T, map(F, try_arg(T)), + map_list(F, try_vars(T)), + map(F, try_body(T)), + map_list(F, try_evars(T)), + map(F, try_handler(T))); + 'catch' -> + update_c_catch(T, map(F, catch_body(T))); + binary -> + update_c_binary(T, map_list(F, binary_segments(T))); + bitstr -> + update_c_bitstr(T, map(F, bitstr_val(T)), + map(F, bitstr_size(T)), + map(F, bitstr_unit(T)), + map(F, bitstr_type(T)), + map(F, bitstr_flags(T))); + letrec -> + update_c_letrec(T, map_pairs(F, letrec_defs(T)), + map(F, letrec_body(T))); + module -> + update_c_module(T, map(F, module_name(T)), + map_list(F, module_exports(T)), + map_pairs(F, module_attrs(T)), + map_pairs(F, module_defs(T))) + end. + +map_list(F, [T | Ts]) -> + [map(F, T) | map_list(F, Ts)]; +map_list(_, []) -> + []. + +map_pairs(F, [{T1, T2} | Ps]) -> + [{map(F, T1), map(F, T2)} | map_pairs(F, Ps)]; +map_pairs(_, []) -> + []. + + +%% @spec fold(Function, Unit::term(), Tree::cerl()) -> term() +%% +%% Function = (cerl(), term()) -> term() +%% +%% @doc Does a fold operation over the nodes of the tree. The result +%% is the value of <code>Function(X1, Function(X2, ... Function(Xn, +%% Unit) ... ))</code>, where <code>X1, ..., Xn</code> are the nodes +%% of <code>Tree</code> in a post-order traversal. +%% +%% @see mapfold/3 + +fold(F, S, T) -> + F(T, fold_1(F, S, T)). + +fold_1(F, S, T) -> + case type(T) of + literal -> + case concrete(T) of + [_ | _] -> + fold(F, fold(F, S, cons_hd(T)), cons_tl(T)); + V when tuple_size(V) > 0 -> + fold_list(F, S, tuple_es(T)); + _ -> + S + end; + var -> + S; + values -> + fold_list(F, S, values_es(T)); + cons -> + fold(F, fold(F, S, cons_hd(T)), cons_tl(T)); + tuple -> + fold_list(F, S, tuple_es(T)); + 'let' -> + fold(F, fold(F, fold_list(F, S, let_vars(T)), + let_arg(T)), + let_body(T)); + seq -> + fold(F, fold(F, S, seq_arg(T)), seq_body(T)); + apply -> + fold_list(F, fold(F, S, apply_op(T)), apply_args(T)); + call -> + fold_list(F, fold(F, fold(F, S, call_module(T)), + call_name(T)), + call_args(T)); + primop -> + fold_list(F, fold(F, S, primop_name(T)), primop_args(T)); + 'case' -> + fold_list(F, fold(F, S, case_arg(T)), case_clauses(T)); + clause -> + fold(F, fold(F, fold_list(F, S, clause_pats(T)), + clause_guard(T)), + clause_body(T)); + alias -> + fold(F, fold(F, S, alias_var(T)), alias_pat(T)); + 'fun' -> + fold(F, fold_list(F, S, fun_vars(T)), fun_body(T)); + 'receive' -> + fold(F, fold(F, fold_list(F, S, receive_clauses(T)), + receive_timeout(T)), + receive_action(T)); + 'try' -> + fold(F, fold_list(F, fold(F, fold_list(F, fold(F, S, try_arg(T)), + try_vars(T)), + try_body(T)), + try_evars(T)), + try_handler(T)); + 'catch' -> + fold(F, S, catch_body(T)); + binary -> + fold_list(F, S, binary_segments(T)); + bitstr -> + fold(F, + fold(F, + fold(F, + fold(F, + fold(F, S, bitstr_val(T)), + bitstr_size(T)), + bitstr_unit(T)), + bitstr_type(T)), + bitstr_flags(T)); + letrec -> + fold(F, fold_pairs(F, S, letrec_defs(T)), letrec_body(T)); + module -> + fold_pairs(F, + fold_pairs(F, + fold_list(F, + fold(F, S, module_name(T)), + module_exports(T)), + module_attrs(T)), + module_defs(T)) + end. + +fold_list(F, S, [T | Ts]) -> + fold_list(F, fold(F, S, T), Ts); +fold_list(_, S, []) -> + S. + +fold_pairs(F, S, [{T1, T2} | Ps]) -> + fold_pairs(F, fold(F, fold(F, S, T1), T2), Ps); +fold_pairs(_, S, []) -> + S. + + +%% @spec mapfold(Function, Initial::term(), Tree::cerl()) -> +%% {cerl(), term()} +%% +%% Function = (cerl(), term()) -> {cerl(), term()} +%% +%% @doc Does a combined map/fold operation on the nodes of the +%% tree. This is similar to <code>map/2</code>, but also propagates a +%% value from each application of <code>Function</code> to the next, +%% starting with the given value <code>Initial</code>, while doing a +%% post-order traversal of the tree, much like <code>fold/3</code>. +%% +%% @see map/2 +%% @see fold/3 + +mapfold(F, S0, T) -> + case type(T) of + literal -> + case concrete(T) of + [_ | _] -> + {T1, S1} = mapfold(F, S0, cons_hd(T)), + {T2, S2} = mapfold(F, S1, cons_tl(T)), + F(update_c_cons(T, T1, T2), S2); + V when tuple_size(V) > 0 -> + {Ts, S1} = mapfold_list(F, S0, tuple_es(T)), + F(update_c_tuple(T, Ts), S1); + _ -> + F(T, S0) + end; + var -> + F(T, S0); + values -> + {Ts, S1} = mapfold_list(F, S0, values_es(T)), + F(update_c_values(T, Ts), S1); + cons -> + {T1, S1} = mapfold(F, S0, cons_hd(T)), + {T2, S2} = mapfold(F, S1, cons_tl(T)), + F(update_c_cons_skel(T, T1, T2), S2); + tuple -> + {Ts, S1} = mapfold_list(F, S0, tuple_es(T)), + F(update_c_tuple_skel(T, Ts), S1); + 'let' -> + {Vs, S1} = mapfold_list(F, S0, let_vars(T)), + {A, S2} = mapfold(F, S1, let_arg(T)), + {B, S3} = mapfold(F, S2, let_body(T)), + F(update_c_let(T, Vs, A, B), S3); + seq -> + {A, S1} = mapfold(F, S0, seq_arg(T)), + {B, S2} = mapfold(F, S1, seq_body(T)), + F(update_c_seq(T, A, B), S2); + apply -> + {E, S1} = mapfold(F, S0, apply_op(T)), + {As, S2} = mapfold_list(F, S1, apply_args(T)), + F(update_c_apply(T, E, As), S2); + call -> + {M, S1} = mapfold(F, S0, call_module(T)), + {N, S2} = mapfold(F, S1, call_name(T)), + {As, S3} = mapfold_list(F, S2, call_args(T)), + F(update_c_call(T, M, N, As), S3); + primop -> + {N, S1} = mapfold(F, S0, primop_name(T)), + {As, S2} = mapfold_list(F, S1, primop_args(T)), + F(update_c_primop(T, N, As), S2); + 'case' -> + {A, S1} = mapfold(F, S0, case_arg(T)), + {Cs, S2} = mapfold_list(F, S1, case_clauses(T)), + F(update_c_case(T, A, Cs), S2); + clause -> + {Ps, S1} = mapfold_list(F, S0, clause_pats(T)), + {G, S2} = mapfold(F, S1, clause_guard(T)), + {B, S3} = mapfold(F, S2, clause_body(T)), + F(update_c_clause(T, Ps, G, B), S3); + alias -> + {V, S1} = mapfold(F, S0, alias_var(T)), + {P, S2} = mapfold(F, S1, alias_pat(T)), + F(update_c_alias(T, V, P), S2); + 'fun' -> + {Vs, S1} = mapfold_list(F, S0, fun_vars(T)), + {B, S2} = mapfold(F, S1, fun_body(T)), + F(update_c_fun(T, Vs, B), S2); + 'receive' -> + {Cs, S1} = mapfold_list(F, S0, receive_clauses(T)), + {E, S2} = mapfold(F, S1, receive_timeout(T)), + {A, S3} = mapfold(F, S2, receive_action(T)), + F(update_c_receive(T, Cs, E, A), S3); + 'try' -> + {E, S1} = mapfold(F, S0, try_arg(T)), + {Vs, S2} = mapfold_list(F, S1, try_vars(T)), + {B, S3} = mapfold(F, S2, try_body(T)), + {Evs, S4} = mapfold_list(F, S3, try_evars(T)), + {H, S5} = mapfold(F, S4, try_handler(T)), + F(update_c_try(T, E, Vs, B, Evs, H), S5); + 'catch' -> + {B, S1} = mapfold(F, S0, catch_body(T)), + F(update_c_catch(T, B), S1); + binary -> + {Ds, S1} = mapfold_list(F, S0, binary_segments(T)), + F(update_c_binary(T, Ds), S1); + bitstr -> + {Val, S1} = mapfold(F, S0, bitstr_val(T)), + {Size, S2} = mapfold(F, S1, bitstr_size(T)), + {Unit, S3} = mapfold(F, S2, bitstr_unit(T)), + {Type, S4} = mapfold(F, S3, bitstr_type(T)), + {Flags, S5} = mapfold(F, S4, bitstr_flags(T)), + F(update_c_bitstr(T, Val, Size, Unit, Type, Flags), S5); + letrec -> + {Ds, S1} = mapfold_pairs(F, S0, letrec_defs(T)), + {B, S2} = mapfold(F, S1, letrec_body(T)), + F(update_c_letrec(T, Ds, B), S2); + module -> + {N, S1} = mapfold(F, S0, module_name(T)), + {Es, S2} = mapfold_list(F, S1, module_exports(T)), + {As, S3} = mapfold_pairs(F, S2, module_attrs(T)), + {Ds, S4} = mapfold_pairs(F, S3, module_defs(T)), + F(update_c_module(T, N, Es, As, Ds), S4) + end. + +mapfold_list(F, S0, [T | Ts]) -> + {T1, S1} = mapfold(F, S0, T), + {Ts1, S2} = mapfold_list(F, S1, Ts), + {[T1 | Ts1], S2}; +mapfold_list(_, S, []) -> + {[], S}. + +mapfold_pairs(F, S0, [{T1, T2} | Ps]) -> + {T3, S1} = mapfold(F, S0, T1), + {T4, S2} = mapfold(F, S1, T2), + {Ps1, S3} = mapfold_pairs(F, S2, Ps), + {[{T3, T4} | Ps1], S3}; +mapfold_pairs(_, S, []) -> + {[], S}. + + +%% --------------------------------------------------------------------- + +%% @spec variables(Tree::cerl()) -> [var_name()] +%% +%% var_name() = integer() | atom() | {atom(), integer()} +%% +%% @doc Returns an ordered-set list of the names of all variables in +%% the syntax tree. (This includes function name variables.) An +%% exception is thrown if <code>Tree</code> does not represent a +%% well-formed Core Erlang syntax tree. +%% +%% @see free_variables/1 + +variables(T) -> + variables(T, false). + + +%% @spec free_variables(Tree::cerl()) -> [var_name()] +%% +%% @doc Like <code>variables/1</code>, but only includes variables +%% that are free in the tree. +%% +%% @see variables/1 + +free_variables(T) -> + variables(T, true). + + +%% This is not exported + +variables(T, S) -> + case type(T) of + literal -> + []; + var -> + [var_name(T)]; + values -> + vars_in_list(values_es(T), S); + cons -> + ordsets:union(variables(cons_hd(T), S), + variables(cons_tl(T), S)); + tuple -> + vars_in_list(tuple_es(T), S); + 'let' -> + Vs = variables(let_body(T), S), + Vs1 = var_list_names(let_vars(T)), + Vs2 = case S of + true -> + ordsets:subtract(Vs, Vs1); + false -> + ordsets:union(Vs, Vs1) + end, + ordsets:union(variables(let_arg(T), S), Vs2); + seq -> + ordsets:union(variables(seq_arg(T), S), + variables(seq_body(T), S)); + apply -> + ordsets:union( + variables(apply_op(T), S), + vars_in_list(apply_args(T), S)); + call -> + ordsets:union(variables(call_module(T), S), + ordsets:union( + variables(call_name(T), S), + vars_in_list(call_args(T), S))); + primop -> + vars_in_list(primop_args(T), S); + 'case' -> + ordsets:union(variables(case_arg(T), S), + vars_in_list(case_clauses(T), S)); + clause -> + Vs = ordsets:union(variables(clause_guard(T), S), + variables(clause_body(T), S)), + Vs1 = vars_in_list(clause_pats(T), S), + case S of + true -> + ordsets:subtract(Vs, Vs1); + false -> + ordsets:union(Vs, Vs1) + end; + alias -> + ordsets:add_element(var_name(alias_var(T)), + variables(alias_pat(T))); + 'fun' -> + Vs = variables(fun_body(T), S), + Vs1 = var_list_names(fun_vars(T)), + case S of + true -> + ordsets:subtract(Vs, Vs1); + false -> + ordsets:union(Vs, Vs1) + end; + 'receive' -> + ordsets:union( + vars_in_list(receive_clauses(T), S), + ordsets:union(variables(receive_timeout(T), S), + variables(receive_action(T), S))); + 'try' -> + Vs = variables(try_body(T), S), + Vs1 = var_list_names(try_vars(T)), + Vs2 = case S of + true -> + ordsets:subtract(Vs, Vs1); + false -> + ordsets:union(Vs, Vs1) + end, + Vs3 = variables(try_handler(T), S), + Vs4 = var_list_names(try_evars(T)), + Vs5 = case S of + true -> + ordsets:subtract(Vs3, Vs4); + false -> + ordsets:union(Vs3, Vs4) + end, + ordsets:union(variables(try_arg(T), S), + ordsets:union(Vs2, Vs5)); + 'catch' -> + variables(catch_body(T), S); + binary -> + vars_in_list(binary_segments(T), S); + bitstr -> + ordsets:union(variables(bitstr_val(T), S), + variables(bitstr_size(T), S)); + letrec -> + Vs = vars_in_defs(letrec_defs(T), S), + Vs1 = ordsets:union(variables(letrec_body(T), S), Vs), + Vs2 = var_list_names(letrec_vars(T)), + case S of + true -> + ordsets:subtract(Vs1, Vs2); + false -> + ordsets:union(Vs1, Vs2) + end; + module -> + Vs = vars_in_defs(module_defs(T), S), + Vs1 = ordsets:union(vars_in_list(module_exports(T), S), Vs), + Vs2 = var_list_names(module_vars(T)), + case S of + true -> + ordsets:subtract(Vs1, Vs2); + false -> + ordsets:union(Vs1, Vs2) + end + end. + +vars_in_list(Ts, S) -> + vars_in_list(Ts, S, []). + +vars_in_list([T | Ts], S, A) -> + vars_in_list(Ts, S, ordsets:union(variables(T, S), A)); +vars_in_list([], _, A) -> + A. + +%% Note that this function only visits the right-hand side of function +%% definitions. + +vars_in_defs(Ds, S) -> + vars_in_defs(Ds, S, []). + +vars_in_defs([{_, F} | Ds], S, A) -> + vars_in_defs(Ds, S, ordsets:union(variables(F, S), A)); +vars_in_defs([], _, A) -> + A. + +%% This amounts to insertion sort. Since the lists are generally short, +%% it is hardly worthwhile to use an asymptotically better sort. + +var_list_names(Vs) -> + var_list_names(Vs, []). + +var_list_names([V | Vs], A) -> + var_list_names(Vs, ordsets:add_element(var_name(V), A)); +var_list_names([], A) -> + A. + + +%% --------------------------------------------------------------------- + +%% label(Tree::cerl()) -> {cerl(), integer()} +%% +%% @equiv label(Tree, 0) + +label(T) -> + label(T, 0). + +%% @spec label(Tree::cerl(), N::integer()) -> {cerl(), integer()} +%% +%% @doc Labels each expression in the tree. A term <code>{label, +%% L}</code> is prefixed to the annotation list of each expression node, +%% where L is a unique number for every node, except for variables (and +%% function name variables) which get the same label if they represent +%% the same variable. Constant literal nodes are not labeled. +%% +%% <p>The returned value is a tuple <code>{NewTree, Max}</code>, where +%% <code>NewTree</code> is the labeled tree and <code>Max</code> is 1 +%% plus the largest label value used. All previous annotation terms on +%% the form <code>{label, X}</code> are deleted.</p> +%% +%% <p>The values of L used in the tree is a dense range from +%% <code>N</code> to <code>Max - 1</code>, where <code>N =< Max +%% =< N + size(Tree)</code>. Note that it is possible that no +%% labels are used at all, i.e., <code>N = Max</code>.</p> +%% +%% <p>Note: All instances of free variables will be given distinct +%% labels.</p> +%% +%% @see label/1 +%% @see size/1 + +label(T, N) -> + label(T, N, dict:new()). + +label(T, N, Env) -> + case type(T) of + literal -> + %% Constant literals are not labeled. + {T, N}; + var -> + case dict:find(var_name(T), Env) of + {ok, L} -> + {As, _} = label_ann(T, L), + N1 = N; + error -> + {As, N1} = label_ann(T, N) + end, + {set_ann(T, As), N1}; + values -> + {Ts, N1} = label_list(values_es(T), N, Env), + {As, N2} = label_ann(T, N1), + {ann_c_values(As, Ts), N2}; + cons -> + {T1, N1} = label(cons_hd(T), N, Env), + {T2, N2} = label(cons_tl(T), N1, Env), + {As, N3} = label_ann(T, N2), + {ann_c_cons_skel(As, T1, T2), N3}; + tuple -> + {Ts, N1} = label_list(tuple_es(T), N, Env), + {As, N2} = label_ann(T, N1), + {ann_c_tuple_skel(As, Ts), N2}; + 'let' -> + {A, N1} = label(let_arg(T), N, Env), + {Vs, N2, Env1} = label_vars(let_vars(T), N1, Env), + {B, N3} = label(let_body(T), N2, Env1), + {As, N4} = label_ann(T, N3), + {ann_c_let(As, Vs, A, B), N4}; + seq -> + {A, N1} = label(seq_arg(T), N, Env), + {B, N2} = label(seq_body(T), N1, Env), + {As, N3} = label_ann(T, N2), + {ann_c_seq(As, A, B), N3}; + apply -> + {E, N1} = label(apply_op(T), N, Env), + {Es, N2} = label_list(apply_args(T), N1, Env), + {As, N3} = label_ann(T, N2), + {ann_c_apply(As, E, Es), N3}; + call -> + {M, N1} = label(call_module(T), N, Env), + {F, N2} = label(call_name(T), N1, Env), + {Es, N3} = label_list(call_args(T), N2, Env), + {As, N4} = label_ann(T, N3), + {ann_c_call(As, M, F, Es), N4}; + primop -> + {F, N1} = label(primop_name(T), N, Env), + {Es, N2} = label_list(primop_args(T), N1, Env), + {As, N3} = label_ann(T, N2), + {ann_c_primop(As, F, Es), N3}; + 'case' -> + {A, N1} = label(case_arg(T), N, Env), + {Cs, N2} = label_list(case_clauses(T), N1, Env), + {As, N3} = label_ann(T, N2), + {ann_c_case(As, A, Cs), N3}; + clause -> + {_, N1, Env1} = label_vars(clause_vars(T), N, Env), + {Ps, N2} = label_list(clause_pats(T), N1, Env1), + {G, N3} = label(clause_guard(T), N2, Env1), + {B, N4} = label(clause_body(T), N3, Env1), + {As, N5} = label_ann(T, N4), + {ann_c_clause(As, Ps, G, B), N5}; + alias -> + {V, N1} = label(alias_var(T), N, Env), + {P, N2} = label(alias_pat(T), N1, Env), + {As, N3} = label_ann(T, N2), + {ann_c_alias(As, V, P), N3}; + 'fun' -> + {Vs, N1, Env1} = label_vars(fun_vars(T), N, Env), + {B, N2} = label(fun_body(T), N1, Env1), + {As, N3} = label_ann(T, N2), + {ann_c_fun(As, Vs, B), N3}; + 'receive' -> + {Cs, N1} = label_list(receive_clauses(T), N, Env), + {E, N2} = label(receive_timeout(T), N1, Env), + {A, N3} = label(receive_action(T), N2, Env), + {As, N4} = label_ann(T, N3), + {ann_c_receive(As, Cs, E, A), N4}; + 'try' -> + {E, N1} = label(try_arg(T), N, Env), + {Vs, N2, Env1} = label_vars(try_vars(T), N1, Env), + {B, N3} = label(try_body(T), N2, Env1), + {Evs, N4, Env2} = label_vars(try_evars(T), N3, Env), + {H, N5} = label(try_handler(T), N4, Env2), + {As, N6} = label_ann(T, N5), + {ann_c_try(As, E, Vs, B, Evs, H), N6}; + 'catch' -> + {B, N1} = label(catch_body(T), N, Env), + {As, N2} = label_ann(T, N1), + {ann_c_catch(As, B), N2}; + binary -> + {Ds, N1} = label_list(binary_segments(T), N, Env), + {As, N2} = label_ann(T, N1), + {ann_c_binary(As, Ds), N2}; + bitstr -> + {Val, N1} = label(bitstr_val(T), N, Env), + {Size, N2} = label(bitstr_size(T), N1, Env), + {Unit, N3} = label(bitstr_unit(T), N2, Env), + {Type, N4} = label(bitstr_type(T), N3, Env), + {Flags, N5} = label(bitstr_flags(T), N4, Env), + {As, N6} = label_ann(T, N5), + {ann_c_bitstr(As, Val, Size, Unit, Type, Flags), N6}; + letrec -> + {_, N1, Env1} = label_vars(letrec_vars(T), N, Env), + {Ds, N2} = label_defs(letrec_defs(T), N1, Env1), + {B, N3} = label(letrec_body(T), N2, Env1), + {As, N4} = label_ann(T, N3), + {ann_c_letrec(As, Ds, B), N4}; + module -> + %% The module name is not labeled. + {_, N1, Env1} = label_vars(module_vars(T), N, Env), + {Ts, N2} = label_defs(module_attrs(T), N1, Env1), + {Ds, N3} = label_defs(module_defs(T), N2, Env1), + {Es, N4} = label_list(module_exports(T), N3, Env1), + {As, N5} = label_ann(T, N4), + {ann_c_module(As, module_name(T), Es, Ts, Ds), N5} + end. + +label_list([T | Ts], N, Env) -> + {T1, N1} = label(T, N, Env), + {Ts1, N2} = label_list(Ts, N1, Env), + {[T1 | Ts1], N2}; +label_list([], N, _Env) -> + {[], N}. + +label_vars([T | Ts], N, Env) -> + Env1 = dict:store(var_name(T), N, Env), + {As, N1} = label_ann(T, N), + T1 = set_ann(T, As), + {Ts1, N2, Env2} = label_vars(Ts, N1, Env1), + {[T1 | Ts1], N2, Env2}; +label_vars([], N, Env) -> + {[], N, Env}. + +label_defs([{F, T} | Ds], N, Env) -> + {F1, N1} = label(F, N, Env), + {T1, N2} = label(T, N1, Env), + {Ds1, N3} = label_defs(Ds, N2, Env), + {[{F1, T1} | Ds1], N3}; +label_defs([], N, _Env) -> + {[], N}. + +label_ann(T, N) -> + {[{label, N} | filter_labels(get_ann(T))], N + 1}. + +filter_labels([{label, _} | As]) -> + filter_labels(As); +filter_labels([A | As]) -> + [A | filter_labels(As)]; +filter_labels([]) -> + []. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/compile.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/compile.erl new file mode 100644 index 0000000000..2b6d14e300 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/compile.erl @@ -0,0 +1,1109 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: compile.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose: Run the Erlang compiler. + +-module(compile). +-include("erl_compile.hrl"). +-include("core_parse.hrl"). + +%% High-level interface. +-export([file/1,file/2,format_error/1,iofile/1]). +-export([forms/1,forms/2]). +-export([output_generated/1]). +-export([options/0]). + +%% Erlc interface. +-export([compile/3,compile_beam/3,compile_asm/3,compile_core/3]). + + +-import(lists, [member/2,reverse/1,keysearch/3,last/1, + map/2,flatmap/2,foreach/2,foldr/3,any/2,filter/2]). + +%% file(FileName) +%% file(FileName, Options) +%% Compile the module in file FileName. + +-define(DEFAULT_OPTIONS, [verbose,report_errors,report_warnings]). + +-define(pass(P), {P,fun P/1}). + +file(File) -> file(File, ?DEFAULT_OPTIONS). + +file(File, Opts) when list(Opts) -> + do_compile({file,File}, Opts++env_default_opts()); +file(File, Opt) -> + file(File, [Opt|?DEFAULT_OPTIONS]). + +forms(File) -> forms(File, ?DEFAULT_OPTIONS). + +forms(Forms, Opts) when list(Opts) -> + do_compile({forms,Forms}, [binary|Opts++env_default_opts()]); +forms(Forms, Opts) when atom(Opts) -> + forms(Forms, [Opts|?DEFAULT_OPTIONS]). + +env_default_opts() -> + Key = "ERL_COMPILER_OPTIONS", + case os:getenv(Key) of + false -> []; + Str when list(Str) -> + case erl_scan:string(Str) of + {ok,Tokens,_} -> + case erl_parse:parse_term(Tokens ++ [{dot, 1}]) of + {ok,List} when list(List) -> List; + {ok,Term} -> [Term]; + {error,_Reason} -> + io:format("Ignoring bad term in ~s\n", [Key]), + [] + end; + {error, {_,_,_Reason}, _} -> + io:format("Ignoring bad term in ~s\n", [Key]), + [] + end + end. + +do_compile(Input, Opts0) -> + Opts = expand_opts(Opts0), + Self = self(), + Serv = spawn_link(fun() -> internal(Self, Input, Opts) end), + receive + {Serv,Rep} -> Rep + end. + +%% Given a list of compilation options, returns true if compile:file/2 +%% would have generated a Beam file, false otherwise (if only a binary or a +%% listing file would have been generated). + +output_generated(Opts) -> + any(fun ({save_binary,_F}) -> true; + (_Other) -> false + end, passes(file, expand_opts(Opts))). + +expand_opts(Opts) -> + foldr(fun expand_opt/2, [], Opts). + +expand_opt(basic_validation, Os) -> + [no_code_generation,to_pp,binary|Os]; +expand_opt(strong_validation, Os) -> + [no_code_generation,to_kernel,binary|Os]; +expand_opt(report, Os) -> + [report_errors,report_warnings|Os]; +expand_opt(return, Os) -> + [return_errors,return_warnings|Os]; +expand_opt(r7, Os) -> + [no_float_opt,no_new_funs,no_new_binaries,no_new_apply|Os]; +expand_opt(O, Os) -> [O|Os]. + +filter_opts(Opts0) -> + %% Native code generation is not supported if no_new_funs is given. + case member(no_new_funs, Opts0) of + false -> Opts0; + true -> Opts0 -- [native] + end. + +%% format_error(ErrorDescriptor) -> string() + +format_error(no_native_support) -> + "this system is not configured for native-code compilation."; +format_error({native, E}) -> + io_lib:fwrite("native-code compilation failed with reason: ~P.", + [E, 25]); +format_error({native_crash, E}) -> + io_lib:fwrite("native-code compilation crashed with reason: ~P.", + [E, 25]); +format_error({open,E}) -> + io_lib:format("open error '~s'", [file:format_error(E)]); +format_error({epp,E}) -> + epp:format_error(E); +format_error(write_error) -> + "error writing file"; +format_error({rename,S}) -> + io_lib:format("error renaming ~s", [S]); +format_error({parse_transform,M,R}) -> + io_lib:format("error in parse transform '~s': ~p", [M, R]); +format_error({core_transform,M,R}) -> + io_lib:format("error in core transform '~s': ~p", [M, R]); +format_error({crash,Pass,Reason}) -> + io_lib:format("internal error in ~p;\ncrash reason: ~p", [Pass,Reason]); +format_error({bad_return,Pass,Reason}) -> + io_lib:format("internal error in ~p;\nbad return value: ~p", [Pass,Reason]). + +%% The compile state record. +-record(compile, {filename="", + dir="", + base="", + ifile="", + ofile="", + module=[], + code=[], + core_code=[], + abstract_code=[], %Abstract code for debugger. + options=[], + errors=[], + warnings=[]}). + +internal(Master, Input, Opts) -> + Master ! {self(), + case catch internal(Input, Opts) of + {'EXIT', Reason} -> + {error, Reason}; + Other -> + Other + end}. + +internal({forms,Forms}, Opts) -> + Ps = passes(forms, Opts), + internal_comp(Ps, "", "", #compile{code=Forms,options=Opts}); +internal({file,File}, Opts) -> + Ps = passes(file, Opts), + Compile = #compile{options=Opts}, + case member(from_core, Opts) of + true -> internal_comp(Ps, File, ".core", Compile); + false -> + case member(from_beam, Opts) of + true -> + internal_comp(Ps, File, ".beam", Compile); + false -> + case member(from_asm, Opts) orelse member(asm, Opts) of + true -> + internal_comp(Ps, File, ".S", Compile); + false -> + internal_comp(Ps, File, ".erl", Compile) + end + end + end. + +internal_comp(Passes, File, Suffix, St0) -> + Dir = filename:dirname(File), + Base = filename:basename(File, Suffix), + St1 = St0#compile{filename=File, dir=Dir, base=Base, + ifile=erlfile(Dir, Base, Suffix), + ofile=objfile(Base, St0)}, + Run = case member(time, St1#compile.options) of + true -> + io:format("Compiling ~p\n", [File]), + fun run_tc/2; + false -> fun({_Name,Fun}, St) -> catch Fun(St) end + end, + case fold_comp(Passes, Run, St1) of + {ok,St2} -> comp_ret_ok(St2); + {error,St2} -> comp_ret_err(St2) + end. + +fold_comp([{Name,Test,Pass}|Ps], Run, St) -> + case Test(St) of + false -> %Pass is not needed. + fold_comp(Ps, Run, St); + true -> %Run pass in the usual way. + fold_comp([{Name,Pass}|Ps], Run, St) + end; +fold_comp([{Name,Pass}|Ps], Run, St0) -> + case Run({Name,Pass}, St0) of + {ok,St1} -> fold_comp(Ps, Run, St1); + {error,St1} -> {error,St1}; + {'EXIT',Reason} -> + Es = [{St0#compile.ifile,[{none,?MODULE,{crash,Name,Reason}}]}], + {error,St0#compile{errors=St0#compile.errors ++ Es}}; + Other -> + Es = [{St0#compile.ifile,[{none,?MODULE,{bad_return,Name,Other}}]}], + {error,St0#compile{errors=St0#compile.errors ++ Es}} + end; +fold_comp([], _Run, St) -> {ok,St}. + +os_process_size() -> + case os:type() of + {unix, sunos} -> + Size = os:cmd("ps -o vsz -p " ++ os:getpid() ++ " | tail -1"), + list_to_integer(lib:nonl(Size)); + _ -> + 0 + end. + +run_tc({Name,Fun}, St) -> + Before0 = statistics(runtime), + Val = (catch Fun(St)), + After0 = statistics(runtime), + {Before_c, _} = Before0, + {After_c, _} = After0, + io:format(" ~-30s: ~10.3f s (~w k)\n", + [Name, (After_c-Before_c) / 1000, os_process_size()]), + Val. + +comp_ret_ok(#compile{code=Code,warnings=Warn,module=Mod,options=Opts}=St) -> + report_warnings(St), + Ret1 = case member(binary, Opts) andalso not member(no_code_generation, Opts) of + true -> [Code]; + false -> [] + end, + Ret2 = case member(return_warnings, Opts) of + true -> Ret1 ++ [Warn]; + false -> Ret1 + end, + list_to_tuple([ok,Mod|Ret2]). + +comp_ret_err(St) -> + report_errors(St), + report_warnings(St), + case member(return_errors, St#compile.options) of + true -> {error,St#compile.errors,St#compile.warnings}; + false -> error + end. + +%% passes(form|file, [Option]) -> [{Name,PassFun}] +%% Figure out which passes that need to be run. + +passes(forms, Opts) -> + select_passes(standard_passes(), Opts); +passes(file, Opts) -> + case member(from_beam, Opts) of + true -> + Ps = [?pass(read_beam_file)|binary_passes()], + select_passes(Ps, Opts); + false -> + Ps = case member(from_asm, Opts) orelse member(asm, Opts) of + true -> + [?pass(beam_consult_asm)|asm_passes()]; + false -> + case member(from_core, Opts) of + true -> + [?pass(parse_core)|core_passes()]; + false -> + [?pass(parse_module)|standard_passes()] + end + end, + Fs = select_passes(Ps, Opts), + + %% If the last pass saves the resulting binary to a file, + %% insert a first pass to remove the file. + case last(Fs) of + {save_binary,_Fun} -> [?pass(remove_file)|Fs]; + _Other -> Fs + end + end. + +%% select_passes([Command], Opts) -> [{Name,Function}] +%% Interpret the lists of commands to return a pure list of passes. +%% +%% Command can be one of: +%% +%% {pass,Mod} Will be expanded to a call to the external +%% function Mod:module(Code, Options). This +%% function must transform the code and return +%% {ok,NewCode} or {error,Term}. +%% Example: {pass,beam_codegen} +%% +%% {Name,Fun} Name is an atom giving the name of the pass. +%% Fun is an 'fun' taking one argument: a compile record. +%% The fun should return {ok,NewCompileRecord} or +%% {error,NewCompileRecord}. +%% Note: ?pass(Name) is equvivalent to {Name,fun Name/1}. +%% Example: ?pass(parse_module) +%% +%% {Name,Test,Fun} Like {Name,Fun} above, but the pass will be run +%% (and listed by the `time' option) only if Test(St) +%% returns true. +%% +%% {src_listing,Ext} Produces an Erlang source listing with the +%% the file extension Ext. (Ext should not contain +%% a period.) No more passes will be run. +%% +%% {listing,Ext} Produce an listing of the terms in the internal +%% representation. The extension of the listing +%% file will be Ext. (Ext should not contain +%% a period.) No more passes will be run. +%% +%% {done,Ext} End compilation at this point. Produce a listing +%% as with {listing,Ext}, unless 'binary' is +%% specified, in which case the current +%% representation of the code is returned without +%% creating an output file. +%% +%% {iff,Flag,Cmd} If the given Flag is given in the option list, +%% Cmd will be interpreted as a command. +%% Otherwise, Cmd will be ignored. +%% Example: {iff,dcg,{listing,"codegen}} +%% +%% {unless,Flag,Cmd} If the given Flag is NOT given in the option list, +%% Cmd will be interpreted as a command. +%% Otherwise, Cmd will be ignored. +%% Example: {unless,no_kernopt,{pass,sys_kernopt}} +%% + +select_passes([{pass,Mod}|Ps], Opts) -> + F = fun(St) -> + case catch Mod:module(St#compile.code, St#compile.options) of + {ok,Code} -> + {ok,St#compile{code=Code}}; + {error,Es} -> + {error,St#compile{errors=St#compile.errors ++ Es}} + end + end, + [{Mod,F}|select_passes(Ps, Opts)]; +select_passes([{src_listing,Ext}|_], _Opts) -> + [{listing,fun (St) -> src_listing(Ext, St) end}]; +select_passes([{listing,Ext}|_], _Opts) -> + [{listing,fun (St) -> listing(Ext, St) end}]; +select_passes([{done,Ext}|_], Opts) -> + select_passes([{unless,binary,{listing,Ext}}], Opts); +select_passes([{iff,Flag,Pass}|Ps], Opts) -> + select_cond(Flag, true, Pass, Ps, Opts); +select_passes([{unless,Flag,Pass}|Ps], Opts) -> + select_cond(Flag, false, Pass, Ps, Opts); +select_passes([{_,Fun}=P|Ps], Opts) when is_function(Fun) -> + [P|select_passes(Ps, Opts)]; +select_passes([{_,Test,Fun}=P|Ps], Opts) when is_function(Test), + is_function(Fun) -> + [P|select_passes(Ps, Opts)]; +select_passes([], _Opts) -> + []; +select_passes([List|Ps], Opts) when is_list(List) -> + case select_passes(List, Opts) of + [] -> select_passes(Ps, Opts); + Nested -> + case last(Nested) of + {listing,_Fun} -> Nested; + _Other -> Nested ++ select_passes(Ps, Opts) + end + end. + +select_cond(Flag, ShouldBe, Pass, Ps, Opts) -> + ShouldNotBe = not ShouldBe, + case member(Flag, Opts) of + ShouldBe -> select_passes([Pass|Ps], Opts); + ShouldNotBe -> select_passes(Ps, Opts) + end. + +%% The standard passes (almost) always run. + +standard_passes() -> + [?pass(transform_module), + {iff,'dpp',{listing,"pp"}}, + ?pass(lint_module), + {iff,'P',{src_listing,"P"}}, + {iff,'to_pp',{done,"P"}}, + + {iff,'dabstr',{listing,"abstr"}}, + {iff,debug_info,?pass(save_abstract_code)}, + + ?pass(expand_module), + {iff,'dexp',{listing,"expand"}}, + {iff,'E',{src_listing,"E"}}, + {iff,'to_exp',{done,"E"}}, + + %% Conversion to Core Erlang. + ?pass(core_module), + {iff,'dcore',{listing,"core"}}, + {iff,'to_core0',{done,"core"}} + | core_passes()]. + +core_passes() -> + %% Optimization and transforms of Core Erlang code. + [{unless,no_copt, + [{core_old_inliner,fun test_old_inliner/1,fun core_old_inliner/1}, + ?pass(core_fold_module), + {core_inline_module,fun test_core_inliner/1,fun core_inline_module/1}, + {core_fold_after_inline,fun test_core_inliner/1,fun core_fold_module/1}, + ?pass(core_transforms)]}, + {iff,dcopt,{listing,"copt"}}, + {iff,'to_core',{done,"core"}} + | kernel_passes()]. + +kernel_passes() -> + %% Destructive setelement/3 optimization and core lint. + [?pass(core_dsetel_module), + {iff,clint,?pass(core_lint_module)}, + {iff,core,?pass(save_core_code)}, + + %% Kernel Erlang and code generation. + ?pass(kernel_module), + {iff,dkern,{listing,"kernel"}}, + {iff,'to_kernel',{done,"kernel"}}, + {pass,v3_life}, + {iff,dlife,{listing,"life"}}, + {pass,v3_codegen}, + {iff,dcg,{listing,"codegen"}} + | asm_passes()]. + +asm_passes() -> + %% Assembly level optimisations. + [{unless,no_postopt, + [{pass,beam_block}, + {iff,dblk,{listing,"block"}}, + {unless,no_bopt,{pass,beam_bool}}, + {iff,dbool,{listing,"bool"}}, + {unless,no_topt,{pass,beam_type}}, + {iff,dtype,{listing,"type"}}, + {pass,beam_dead}, %Must always run since it splits blocks. + {iff,ddead,{listing,"dead"}}, + {unless,no_jopt,{pass,beam_jump}}, + {iff,djmp,{listing,"jump"}}, + {pass,beam_clean}, + {iff,dclean,{listing,"clean"}}, + {pass,beam_flatten}]}, + + %% If post optimizations are turned off, we still coalesce + %% adjacent labels and remove unused labels to keep the + %% HiPE compiler happy. + {iff,no_postopt, + [?pass(beam_unused_labels), + {pass,beam_clean}]}, + + {iff,dopt,{listing,"optimize"}}, + {iff,'S',{listing,"S"}}, + {iff,'to_asm',{done,"S"}}, + + {pass,beam_validator}, + ?pass(beam_asm) + | binary_passes()]. + +binary_passes() -> + [{native_compile,fun test_native/1,fun native_compile/1}, + {unless,binary,?pass(save_binary)}]. + +%%% +%%% Compiler passes. +%%% + +%% Remove the target file so we don't have an old one if the compilation fail. +remove_file(St) -> + file:delete(St#compile.ofile), + {ok,St}. + +-record(asm_module, {module, + exports, + labels, + functions=[], + cfun, + code, + attributes=[]}). + +preprocess_asm_forms(Forms) -> + R = #asm_module{}, + R1 = collect_asm(Forms, R), + {R1#asm_module.module, + {R1#asm_module.module, + R1#asm_module.exports, + R1#asm_module.attributes, + R1#asm_module.functions, + R1#asm_module.labels}}. + +collect_asm([], R) -> + case R#asm_module.cfun of + undefined -> + R; + {A,B,C} -> + R#asm_module{functions=R#asm_module.functions++ + [{function,A,B,C,R#asm_module.code}]} + end; +collect_asm([{module,M} | Rest], R) -> + collect_asm(Rest, R#asm_module{module=M}); +collect_asm([{exports,M} | Rest], R) -> + collect_asm(Rest, R#asm_module{exports=M}); +collect_asm([{labels,M} | Rest], R) -> + collect_asm(Rest, R#asm_module{labels=M}); +collect_asm([{function,A,B,C} | Rest], R) -> + R1 = case R#asm_module.cfun of + undefined -> + R; + {A0,B0,C0} -> + R#asm_module{functions=R#asm_module.functions++ + [{function,A0,B0,C0,R#asm_module.code}]} + end, + collect_asm(Rest, R1#asm_module{cfun={A,B,C}, code=[]}); +collect_asm([{attributes, Attr} | Rest], R) -> + collect_asm(Rest, R#asm_module{attributes=Attr}); +collect_asm([X | Rest], R) -> + collect_asm(Rest, R#asm_module{code=R#asm_module.code++[X]}). + +beam_consult_asm(St) -> + case file:consult(St#compile.ifile) of + {ok, Forms0} -> + {Module, Forms} = preprocess_asm_forms(Forms0), + {ok,St#compile{module=Module, code=Forms}}; + {error,E} -> + Es = [{St#compile.ifile,[{none,?MODULE,{open,E}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +read_beam_file(St) -> + case file:read_file(St#compile.ifile) of + {ok,Beam} -> + Infile = St#compile.ifile, + case is_too_old(Infile) of + true -> + {ok,St#compile{module=none,code=none}}; + false -> + Mod0 = filename:rootname(filename:basename(Infile)), + Mod = list_to_atom(Mod0), + {ok,St#compile{module=Mod,code=Beam,ofile=Infile}} + end; + {error,E} -> + Es = [{St#compile.ifile,[{none,?MODULE,{open,E}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +is_too_old(BeamFile) -> + case beam_lib:chunks(BeamFile, ["CInf"]) of + {ok,{_,[{"CInf",Term0}]}} -> + Term = binary_to_term(Term0), + Opts = proplists:get_value(options, Term, []), + lists:member(no_new_funs, Opts); + _ -> false + end. + +parse_module(St) -> + Opts = St#compile.options, + Cwd = ".", + IncludePath = [Cwd, St#compile.dir|inc_paths(Opts)], + Tab = ets:new(compiler__tab, [protected,named_table]), + ets:insert(Tab, {compiler_options,Opts}), + R = epp:parse_file(St#compile.ifile, IncludePath, pre_defs(Opts)), + ets:delete(Tab), + case R of + {ok,Forms} -> + {ok,St#compile{code=Forms}}; + {error,E} -> + Es = [{St#compile.ifile,[{none,?MODULE,{epp,E}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +parse_core(St) -> + case file:read_file(St#compile.ifile) of + {ok,Bin} -> + case core_scan:string(binary_to_list(Bin)) of + {ok,Toks,_} -> + case core_parse:parse(Toks) of + {ok,Mod} -> + Name = (Mod#c_module.name)#c_atom.val, + {ok,St#compile{module=Name,code=Mod}}; + {error,E} -> + Es = [{St#compile.ifile,[E]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end; + {error,E,_} -> + Es = [{St#compile.ifile,[E]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end; + {error,E} -> + Es = [{St#compile.ifile,[{none,compile,{open,E}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +compile_options([{attribute,_L,compile,C}|Fs]) when is_list(C) -> + C ++ compile_options(Fs); +compile_options([{attribute,_L,compile,C}|Fs]) -> + [C|compile_options(Fs)]; +compile_options([_F|Fs]) -> compile_options(Fs); +compile_options([]) -> []. + +transforms(Os) -> [ M || {parse_transform,M} <- Os ]. + +transform_module(St) -> + %% Extract compile options from code into options field. + Ts = transforms(St#compile.options ++ compile_options(St#compile.code)), + foldl_transform(St, Ts). + +foldl_transform(St, [T|Ts]) -> + Name = "transform " ++ atom_to_list(T), + Fun = fun(S) -> T:parse_transform(S#compile.code, S#compile.options) end, + Run = case member(time, St#compile.options) of + true -> fun run_tc/2; + false -> fun({_Name,F}, S) -> catch F(S) end + end, + case Run({Name, Fun}, St) of + {error,Es,Ws} -> + {error,St#compile{warnings=St#compile.warnings ++ Ws, + errors=St#compile.errors ++ Es}}; + {'EXIT',R} -> + Es = [{St#compile.ifile,[{none,compile,{parse_transform,T,R}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}}; + Forms -> + foldl_transform(St#compile{code=Forms}, Ts) + end; +foldl_transform(St, []) -> {ok,St}. + +get_core_transforms(Opts) -> [M || {core_transform,M} <- Opts]. + +core_transforms(St) -> + %% The options field holds the complete list of options at this + + Ts = get_core_transforms(St#compile.options), + foldl_core_transforms(St, Ts). + +foldl_core_transforms(St, [T|Ts]) -> + Name = "core transform " ++ atom_to_list(T), + Fun = fun(S) -> T:core_transform(S#compile.code, S#compile.options) end, + Run = case member(time, St#compile.options) of + true -> fun run_tc/2; + false -> fun({_Name,F}, S) -> catch F(S) end + end, + case Run({Name, Fun}, St) of + {'EXIT',R} -> + Es = [{St#compile.ifile,[{none,compile,{core_transform,T,R}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}}; + Forms -> + foldl_core_transforms(St#compile{code=Forms}, Ts) + end; +foldl_core_transforms(St, []) -> {ok,St}. + +%%% Fetches the module name from a list of forms. The module attribute must +%%% be present. +get_module([{attribute,_,module,{M,_As}} | _]) -> M; +get_module([{attribute,_,module,M} | _]) -> M; +get_module([_ | Rest]) -> + get_module(Rest). + +%%% A #compile state is returned, where St.base has been filled in +%%% with the module name from Forms, as a string, in case it wasn't +%%% set in St (i.e., it was ""). +add_default_base(St, Forms) -> + F = St#compile.filename, + case F of + "" -> + M = get_module(Forms), + St#compile{base = atom_to_list(M)}; + _ -> + St + end. + +lint_module(St) -> + case erl_lint:module(St#compile.code, + St#compile.ifile, St#compile.options) of + {ok,Ws} -> + %% Insert name of module as base name, if needed. This is + %% for compile:forms to work with listing files. + St1 = add_default_base(St, St#compile.code), + {ok,St1#compile{warnings=St1#compile.warnings ++ Ws}}; + {error,Es,Ws} -> + {error,St#compile{warnings=St#compile.warnings ++ Ws, + errors=St#compile.errors ++ Es}} + end. + +core_lint_module(St) -> + case core_lint:module(St#compile.code, St#compile.options) of + {ok,Ws} -> + {ok,St#compile{warnings=St#compile.warnings ++ Ws}}; + {error,Es,Ws} -> + {error,St#compile{warnings=St#compile.warnings ++ Ws, + errors=St#compile.errors ++ Es}} + end. + +%% expand_module(State) -> State' +%% Do the common preprocessing of the input forms. + +expand_module(#compile{code=Code,options=Opts0}=St0) -> + {Mod,Exp,Forms,Opts1} = sys_pre_expand:module(Code, Opts0), + Opts2 = expand_opts(Opts1), + Opts = filter_opts(Opts2), + {ok,St0#compile{module=Mod,options=Opts,code={Mod,Exp,Forms}}}. + +core_module(#compile{code=Code0,options=Opts,ifile=File}=St) -> + {ok,Code,Ws} = v3_core:module(Code0, Opts), + {ok,St#compile{code=Code,warnings=St#compile.warnings ++ [{File,Ws}]}}. + +core_fold_module(#compile{code=Code0,options=Opts,ifile=File}=St) -> + {ok,Code,Ws} = sys_core_fold:module(Code0, Opts), + {ok,St#compile{code=Code,warnings=St#compile.warnings ++ [{File,Ws}]}}. + +test_old_inliner(#compile{options=Opts}) -> + %% The point of this test is to avoid loading the old inliner + %% if we know that it will not be used. + case any(fun(no_inline) -> true; + (_) -> false + end, Opts) of + true -> false; + false -> + any(fun({inline,_}) -> true; + (_) -> false + end, Opts) + end. + +test_core_inliner(#compile{options=Opts}) -> + case any(fun(no_inline) -> true; + (_) -> false + end, Opts) of + true -> false; + false -> + any(fun(inline) -> true; + (_) -> false + end, Opts) + end. + +core_old_inliner(#compile{code=Code0,options=Opts}=St) -> + case catch sys_core_inline:module(Code0, Opts) of + {ok,Code} -> + {ok,St#compile{code=Code}}; + {error,Es} -> + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +core_inline_module(#compile{code=Code0,options=Opts}=St) -> + Code = cerl_inline:core_transform(Code0, Opts), + {ok,St#compile{code=Code}}. + +core_dsetel_module(#compile{code=Code0,options=Opts}=St) -> + {ok,Code} = sys_core_dsetel:module(Code0, Opts), + {ok,St#compile{code=Code}}. + +kernel_module(#compile{code=Code0,options=Opts,ifile=File}=St) -> + {ok,Code,Ws} = v3_kernel:module(Code0, Opts), + {ok,St#compile{code=Code,warnings=St#compile.warnings ++ [{File,Ws}]}}. + +save_abstract_code(St) -> + {ok,St#compile{abstract_code=abstract_code(St)}}. + +abstract_code(#compile{code=Code}) -> + Abstr = {raw_abstract_v1,Code}, + case catch erlang:term_to_binary(Abstr, [compressed]) of + {'EXIT',_} -> term_to_binary(Abstr); + Other -> Other + end. + +save_core_code(St) -> + {ok,St#compile{core_code=cerl:from_records(St#compile.code)}}. + +beam_unused_labels(#compile{code=Code0}=St) -> + Code = beam_jump:module_labels(Code0), + {ok,St#compile{code=Code}}. + +beam_asm(#compile{ifile=File,code=Code0,abstract_code=Abst,options=Opts0}=St) -> + Source = filename:absname(File), + Opts = filter(fun is_informative_option/1, Opts0), + case beam_asm:module(Code0, Abst, Source, Opts) of + {ok,Code} -> {ok,St#compile{code=Code,abstract_code=[]}}; + {error,Es} -> {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +test_native(#compile{options=Opts}) -> + %% This test must be made late, because the r7 or no_new_funs options + %% will turn off the native option. + member(native, Opts). + +native_compile(#compile{code=none}=St) -> {ok,St}; +native_compile(St) -> + case erlang:system_info(hipe_architecture) of + undefined -> + Ws = [{St#compile.ifile,[{none,compile,no_native_support}]}], + {ok,St#compile{warnings=St#compile.warnings ++ Ws}}; + _ -> + native_compile_1(St) + end. + +native_compile_1(St) -> + Opts0 = [no_new_binaries|St#compile.options], + IgnoreErrors = member(ignore_native_errors, Opts0), + Opts = case keysearch(hipe, 1, Opts0) of + {value,{hipe,L}} when list(L) -> L; + {value,{hipe,X}} -> [X]; + _ -> [] + end, + case catch hipe:compile(St#compile.module, + St#compile.core_code, + St#compile.code, + Opts) of + {ok, {Type,Bin}} when binary(Bin) -> + {ok, embed_native_code(St, {Type,Bin})}; + {error, R} -> + case IgnoreErrors of + true -> + Ws = [{St#compile.ifile,[{none,?MODULE,{native,R}}]}], + {ok,St#compile{warnings=St#compile.warnings ++ Ws}}; + false -> + Es = [{St#compile.ifile,[{none,?MODULE,{native,R}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end; + {'EXIT',R} -> + case IgnoreErrors of + true -> + Ws = [{St#compile.ifile,[{none,?MODULE,{native_crash,R}}]}], + {ok,St#compile{warnings=St#compile.warnings ++ Ws}}; + false -> + exit(R) + end + end. + +embed_native_code(St, {Architecture,NativeCode}) -> + {ok, _, Chunks0} = beam_lib:all_chunks(St#compile.code), + ChunkName = hipe_unified_loader:chunk_name(Architecture), + Chunks1 = lists:keydelete(ChunkName, 1, Chunks0), + Chunks = Chunks1 ++ [{ChunkName,NativeCode}], + {ok, BeamPlusNative} = beam_lib:build_module(Chunks), + St#compile{code=BeamPlusNative}. + +%% Returns true if the option is informative and therefore should be included +%% in the option list of the compiled module. + +is_informative_option(beam) -> false; +is_informative_option(report_warnings) -> false; +is_informative_option(report_errors) -> false; +is_informative_option(binary) -> false; +is_informative_option(verbose) -> false; +is_informative_option(_) -> true. + +save_binary(#compile{code=none}=St) -> {ok,St}; +save_binary(St) -> + Tfile = tmpfile(St#compile.ofile), %Temp working file + case write_binary(Tfile, St#compile.code, St) of + ok -> + case file:rename(Tfile, St#compile.ofile) of + ok -> + {ok,St}; + {error,_Error} -> + file:delete(Tfile), + Es = [{St#compile.ofile,[{none,?MODULE,{rename,Tfile}}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end; + {error,_Error} -> + Es = [{Tfile,[{compile,write_error}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +write_binary(Name, Bin, St) -> + Opts = case member(compressed, St#compile.options) of + true -> [compressed]; + false -> [] + end, + case file:write_file(Name, Bin, Opts) of + ok -> ok; + {error,_}=Error -> Error + end. + +%% report_errors(State) -> ok +%% report_warnings(State) -> ok + +report_errors(St) -> + case member(report_errors, St#compile.options) of + true -> + foreach(fun ({{F,_L},Eds}) -> list_errors(F, Eds); + ({F,Eds}) -> list_errors(F, Eds) end, + St#compile.errors); + false -> ok + end. + +report_warnings(#compile{options=Opts,warnings=Ws0}) -> + case member(report_warnings, Opts) of + true -> + Ws1 = flatmap(fun({{F,_L},Eds}) -> format_message(F, Eds); + ({F,Eds}) -> format_message(F, Eds) end, + Ws0), + Ws = ordsets:from_list(Ws1), + foreach(fun({_,Str}) -> io:put_chars(Str) end, Ws); + false -> ok + end. + +format_message(F, [{Line,Mod,E}|Es]) -> + M = {Line,io_lib:format("~s:~w: Warning: ~s\n", [F,Line,Mod:format_error(E)])}, + [M|format_message(F, Es)]; +format_message(F, [{Mod,E}|Es]) -> + M = {none,io_lib:format("~s: Warning: ~s\n", [F,Mod:format_error(E)])}, + [M|format_message(F, Es)]; +format_message(_, []) -> []. + +%% list_errors(File, ErrorDescriptors) -> ok + +list_errors(F, [{Line,Mod,E}|Es]) -> + io:fwrite("~s:~w: ~s\n", [F,Line,Mod:format_error(E)]), + list_errors(F, Es); +list_errors(F, [{Mod,E}|Es]) -> + io:fwrite("~s: ~s\n", [F,Mod:format_error(E)]), + list_errors(F, Es); +list_errors(_F, []) -> ok. + +%% erlfile(Dir, Base) -> ErlFile +%% outfile(Base, Extension, Options) -> OutputFile +%% objfile(Base, Target, Options) -> ObjFile +%% tmpfile(ObjFile) -> TmpFile +%% Work out the correct input and output file names. + +iofile(File) when atom(File) -> + iofile(atom_to_list(File)); +iofile(File) -> + {filename:dirname(File), filename:basename(File, ".erl")}. + +erlfile(Dir, Base, Suffix) -> + filename:join(Dir, Base++Suffix). + +outfile(Base, Ext, Opts) when atom(Ext) -> + outfile(Base, atom_to_list(Ext), Opts); +outfile(Base, Ext, Opts) -> + Obase = case keysearch(outdir, 1, Opts) of + {value, {outdir, Odir}} -> filename:join(Odir, Base); + _Other -> Base % Not found or bad format + end, + Obase++"."++Ext. + +objfile(Base, St) -> + outfile(Base, "beam", St#compile.options). + +tmpfile(Ofile) -> + reverse([$#|tl(reverse(Ofile))]). + +%% pre_defs(Options) +%% inc_paths(Options) +%% Extract the predefined macros and include paths from the option list. + +pre_defs([{d,M,V}|Opts]) -> + [{M,V}|pre_defs(Opts)]; +pre_defs([{d,M}|Opts]) -> + [M|pre_defs(Opts)]; +pre_defs([_|Opts]) -> + pre_defs(Opts); +pre_defs([]) -> []. + +inc_paths(Opts) -> + [ P || {i,P} <- Opts, list(P) ]. + +src_listing(Ext, St) -> + listing(fun (Lf, {_Mod,_Exp,Fs}) -> do_src_listing(Lf, Fs); + (Lf, Fs) -> do_src_listing(Lf, Fs) end, + Ext, St). + +do_src_listing(Lf, Fs) -> + foreach(fun (F) -> io:put_chars(Lf, [erl_pp:form(F),"\n"]) end, + Fs). + +listing(Ext, St) -> + listing(fun(Lf, Fs) -> beam_listing:module(Lf, Fs) end, Ext, St). + +listing(LFun, Ext, St) -> + Lfile = outfile(St#compile.base, Ext, St#compile.options), + case file:open(Lfile, [write,delayed_write]) of + {ok,Lf} -> + LFun(Lf, St#compile.code), + ok = file:close(Lf), + {ok,St}; + {error,_Error} -> + Es = [{Lfile,[{none,compile,write_error}]}], + {error,St#compile{errors=St#compile.errors ++ Es}} + end. + +options() -> + help(standard_passes()). + +help([{iff,Flag,{src_listing,Ext}}|T]) -> + io:fwrite("~p - Generate .~s source listing file\n", [Flag,Ext]), + help(T); +help([{iff,Flag,{listing,Ext}}|T]) -> + io:fwrite("~p - Generate .~s file\n", [Flag,Ext]), + help(T); +help([{iff,Flag,{Name,Fun}}|T]) when function(Fun) -> + io:fwrite("~p - Run ~s\n", [Flag,Name]), + help(T); +help([{iff,_Flag,Action}|T]) -> + help(Action), + help(T); +help([{unless,Flag,{pass,Pass}}|T]) -> + io:fwrite("~p - Skip the ~s pass\n", [Flag,Pass]), + help(T); +help([{unless,no_postopt=Flag,List}|T]) when list(List) -> + %% Hard-coded knowledgde here. + io:fwrite("~p - Skip all post optimisation\n", [Flag]), + help(List), + help(T); +help([{unless,_Flag,Action}|T]) -> + help(Action), + help(T); +help([_|T]) -> + help(T); +help(_) -> + ok. + + +%% compile(AbsFileName, Outfilename, Options) +%% Compile entry point for erl_compile. + +compile(File0, _OutFile, Options) -> + File = shorten_filename(File0), + case file(File, make_erl_options(Options)) of + {ok,_Mod} -> ok; + Other -> Other + end. + +compile_beam(File0, _OutFile, Opts) -> + File = shorten_filename(File0), + case file(File, [from_beam|make_erl_options(Opts)]) of + {ok,_Mod} -> ok; + Other -> Other + end. + +compile_asm(File0, _OutFile, Opts) -> + File = shorten_filename(File0), + case file(File, [asm|make_erl_options(Opts)]) of + {ok,_Mod} -> ok; + Other -> Other + end. + +compile_core(File0, _OutFile, Opts) -> + File = shorten_filename(File0), + case file(File, [from_core|make_erl_options(Opts)]) of + {ok,_Mod} -> ok; + Other -> Other + end. + +shorten_filename(Name0) -> + {ok,Cwd} = file:get_cwd(), + case lists:prefix(Cwd, Name0) of + false -> Name0; + true -> + Name = case lists:nthtail(length(Cwd), Name0) of + "/"++N -> N; + N -> N + end, + Name + end. + +%% Converts generic compiler options to specific options. + +make_erl_options(Opts) -> + + %% This way of extracting will work even if the record passed + %% has more fields than known during compilation. + + Includes = Opts#options.includes, + Defines = Opts#options.defines, + Outdir = Opts#options.outdir, + Warning = Opts#options.warning, + Verbose = Opts#options.verbose, + Specific = Opts#options.specific, + OutputType = Opts#options.output_type, + Cwd = Opts#options.cwd, + + Options = + case Verbose of + true -> [verbose]; + false -> [] + end ++ + case Warning of + 0 -> []; + _ -> [report_warnings] + end ++ + map( + fun ({Name, Value}) -> + {d, Name, Value}; + (Name) -> + {d, Name} + end, + Defines) ++ + case OutputType of + undefined -> []; + jam -> [jam]; + beam -> [beam]; + native -> [native] + end, + + Options++[report_errors, {cwd, Cwd}, {outdir, Outdir}| + map(fun(Dir) -> {i, Dir} end, Includes)]++Specific. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_lib.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_lib.erl new file mode 100644 index 0000000000..1fe45d5308 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_lib.erl @@ -0,0 +1,509 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: core_lib.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose: Core Erlang abstract syntax functions. + +-module(core_lib). + +-export([get_anno/1,set_anno/2]). +-export([is_atomic/1,is_literal/1,is_literal_list/1, + is_simple/1,is_simple_list/1,is_simple_top/1]). +-export([literal_value/1,make_literal/1]). +-export([make_values/1]). +-export([map/2, fold/3, mapfold/3]). +-export([is_var_used/2]). + +%% -compile([export_all]). + +-include("core_parse.hrl"). + +%% get_anno(Core) -> Anno. +%% set_anno(Core, Anno) -> Core. +%% Generic get/set annotation. + +get_anno(C) -> element(2, C). +set_anno(C, A) -> setelement(2, C, A). + +%% is_atomic(Expr) -> true | false. + +is_atomic(#c_char{}) -> true; +is_atomic(#c_int{}) -> true; +is_atomic(#c_float{}) -> true; +is_atomic(#c_atom{}) -> true; +is_atomic(#c_string{}) -> true; +is_atomic(#c_nil{}) -> true; +is_atomic(#c_fname{}) -> true; +is_atomic(_) -> false. + +%% is_literal(Expr) -> true | false. + +is_literal(#c_cons{hd=H,tl=T}) -> + case is_literal(H) of + true -> is_literal(T); + false -> false + end; +is_literal(#c_tuple{es=Es}) -> is_literal_list(Es); +is_literal(#c_binary{segments=Es}) -> is_lit_bin(Es); +is_literal(E) -> is_atomic(E). + +is_literal_list(Es) -> lists:all(fun is_literal/1, Es). + +is_lit_bin(Es) -> + lists:all(fun (#c_bitstr{val=E,size=S}) -> + is_literal(E) and is_literal(S) + end, Es). + +%% is_simple(Expr) -> true | false. + +is_simple(#c_var{}) -> true; +is_simple(#c_cons{hd=H,tl=T}) -> + case is_simple(H) of + true -> is_simple(T); + false -> false + end; +is_simple(#c_tuple{es=Es}) -> is_simple_list(Es); +is_simple(#c_binary{segments=Es}) -> is_simp_bin(Es); +is_simple(E) -> is_atomic(E). + +is_simple_list(Es) -> lists:all(fun is_simple/1, Es). + +is_simp_bin(Es) -> + lists:all(fun (#c_bitstr{val=E,size=S}) -> + is_simple(E) and is_simple(S) + end, Es). + +%% is_simple_top(Expr) -> true | false. +%% Only check if the top-level is a simple. + +is_simple_top(#c_var{}) -> true; +is_simple_top(#c_cons{}) -> true; +is_simple_top(#c_tuple{}) -> true; +is_simple_top(#c_binary{}) -> true; +is_simple_top(E) -> is_atomic(E). + +%% literal_value(LitExpr) -> Value. +%% Return the value of LitExpr. + +literal_value(#c_char{val=C}) -> C; +literal_value(#c_int{val=I}) -> I; +literal_value(#c_float{val=F}) -> F; +literal_value(#c_atom{val=A}) -> A; +literal_value(#c_string{val=S}) -> S; +literal_value(#c_nil{}) -> []; +literal_value(#c_cons{hd=H,tl=T}) -> + [literal_value(H)|literal_value(T)]; +literal_value(#c_tuple{es=Es}) -> + list_to_tuple(literal_value_list(Es)). + +literal_value_list(Vals) -> lists:map(fun literal_value/1, Vals). + +%% make_literal(Value) -> LitExpr. +%% Make a literal expression from an Erlang value. + +make_literal(I) when integer(I) -> #c_int{val=I}; +make_literal(F) when float(F) -> #c_float{val=F}; +make_literal(A) when atom(A) -> #c_atom{val=A}; +make_literal([]) -> #c_nil{}; +make_literal([H|T]) -> + #c_cons{hd=make_literal(H),tl=make_literal(T)}; +make_literal(T) when tuple(T) -> + #c_tuple{es=make_literal_list(tuple_to_list(T))}. + +make_literal_list(Vals) -> lists:map(fun make_literal/1, Vals). + +%% make_values([CoreExpr] | CoreExpr) -> #c_values{} | CoreExpr. +%% Make a suitable values structure, expr or values, depending on +%% Expr. + +make_values([E]) -> E; +make_values([H|_]=Es) -> #c_values{anno=get_anno(H),es=Es}; +make_values([]) -> #c_values{es=[]}; +make_values(E) -> E. + +%% map(MapFun, CoreExpr) -> CoreExpr. +%% This function traverses the core parse format, at each level +%% applying the submited argument function, assumed to do the real +%% work. +%% +%% The "eager" style, where each component of a construct are +%% descended to before the construct itself, admits that some +%% companion functions (the F:s) may be made simpler, since it may be +%% safely assumed that no lower illegal instanced will be +%% created/uncovered by actions on the current level. + +map(F, #c_tuple{es=Es}=R) -> + F(R#c_tuple{es=map_list(F, Es)}); +map(F, #c_cons{hd=Hd, tl=Tl}=R) -> + F(R#c_cons{hd=map(F, Hd), + tl=map(F, Tl)}); +map(F, #c_values{es=Es}=R) -> + F(R#c_values{es=map_list(F, Es)}); + +map(F, #c_alias{var=Var, pat=Pat}=R) -> + F(R#c_alias{var=map(F, Var), + pat=map(F, Pat)}); + +map(F, #c_module{defs=Defs}=R) -> + F(R#c_module{defs=map_list(F, Defs)}); +map(F, #c_def{val=Val}=R) -> + F(R#c_def{val=map(F, Val)}); + +map(F, #c_fun{vars=Vars, body=Body}=R) -> + F(R#c_fun{vars=map_list(F, Vars), + body=map(F, Body)}); +map(F, #c_let{vars=Vs, arg=Arg, body=Body}=R) -> + F(R#c_let{vars=map_list(F, Vs), + arg=map(F, Arg), + body=map(F, Body)}); +map(F, #c_letrec{defs=Fs,body=Body}=R) -> + F(R#c_letrec{defs=map_list(F, Fs), + body=map(F, Body)}); +map(F, #c_seq{arg=Arg, body=Body}=R) -> + F(R#c_seq{arg=map(F, Arg), + body=map(F, Body)}); +map(F, #c_case{arg=Arg, clauses=Clauses}=R) -> + F(R#c_case{arg=map(F, Arg), + clauses=map_list(F, Clauses)}); +map(F, #c_clause{pats=Ps, guard=Guard, body=Body}=R) -> + F(R#c_clause{pats=map_list(F, Ps), + guard=map(F, Guard), + body=map(F, Body)}); +map(F, #c_receive{clauses=Cls, timeout=Tout, action=Act}=R) -> + F(R#c_receive{clauses=map_list(F, Cls), + timeout=map(F, Tout), + action=map(F, Act)}); +map(F, #c_apply{op=Op,args=Args}=R) -> + F(R#c_apply{op=map(F, Op), + args=map_list(F, Args)}); +map(F, #c_call{module=M,name=N,args=Args}=R) -> + F(R#c_call{module=map(F, M), + name=map(F, N), + args=map_list(F, Args)}); +map(F, #c_primop{name=N,args=Args}=R) -> + F(R#c_primop{name=map(F, N), + args=map_list(F, Args)}); +map(F, #c_try{arg=Expr,vars=Vars,body=Body,evars=Evars,handler=Handler}=R) -> + F(R#c_try{arg=map(F, Expr), + vars=map(F, Vars), + body=map(F, Body), + evars=map(F, Evars), + handler=map(F, Handler)}); +map(F, #c_catch{body=Body}=R) -> + F(R#c_catch{body=map(F, Body)}); +map(F, T) -> F(T). %Atomic nodes. + +map_list(F, L) -> lists:map(fun (E) -> map(F, E) end, L). + +%% fold(FoldFun, Accumulator, CoreExpr) -> Accumulator. +%% This function traverses the core parse format, at each level +%% applying the submited argument function, assumed to do the real +%% work, and keeping the accumulated result in the A (accumulator) +%% argument. + +fold(F, Acc, #c_tuple{es=Es}=R) -> + F(R, fold_list(F, Acc, Es)); +fold(F, Acc, #c_cons{hd=Hd, tl=Tl}=R) -> + F(R, fold(F, fold(F, Acc, Hd), Tl)); +fold(F, Acc, #c_values{es=Es}=R) -> + F(R, fold_list(F, Acc, Es)); + +fold(F, Acc, #c_alias{pat=P,var=V}=R) -> + F(R, fold(F, fold(F, Acc, P), V)); + +fold(F, Acc, #c_module{defs=Defs}=R) -> + F(R, fold_list(F, Acc, Defs)); +fold(F, Acc, #c_def{val=Val}=R) -> + F(R, fold(F, Acc, Val)); + +fold(F, Acc, #c_fun{vars=Vars, body=Body}=R) -> + F(R, fold(F, fold_list(F, Acc, Vars), Body)); +fold(F, Acc, #c_let{vars=Vs, arg=Arg, body=Body}=R) -> + F(R, fold(F, fold(F, fold_list(F, Acc, Vs), Arg), Body)); +fold(F, Acc, #c_letrec{defs=Fs,body=Body}=R) -> + F(R, fold(F, fold_list(F, Acc, Fs), Body)); +fold(F, Acc, #c_seq{arg=Arg, body=Body}=R) -> + F(R, fold(F, fold(F, Acc, Arg), Body)); +fold(F, Acc, #c_case{arg=Arg, clauses=Clauses}=R) -> + F(R, fold_list(F, fold(F, Acc, Arg), Clauses)); +fold(F, Acc, #c_clause{pats=Ps,guard=G,body=B}=R) -> + F(R, fold(F, fold(F, fold_list(F, Acc, Ps), G), B)); +fold(F, Acc, #c_receive{clauses=Cl, timeout=Ti, action=Ac}=R) -> + F(R, fold_list(F, fold(F, fold(F, Acc, Ac), Ti), Cl)); +fold(F, Acc, #c_apply{op=Op, args=Args}=R) -> + F(R, fold_list(F, fold(F, Acc, Op), Args)); +fold(F, Acc, #c_call{module=Mod,name=Name,args=Args}=R) -> + F(R, fold_list(F, fold(F, fold(F, Acc, Mod), Name), Args)); +fold(F, Acc, #c_primop{name=Name,args=Args}=R) -> + F(R, fold_list(F, fold(F, Acc, Name), Args)); +fold(F, Acc, #c_try{arg=E,vars=Vs,body=Body,evars=Evs,handler=H}=R) -> + NewB = fold(F, fold_list(F, fold(F, Acc, E), Vs), Body), + F(R, fold(F, fold_list(F, NewB, Evs), H)); +fold(F, Acc, #c_catch{body=Body}=R) -> + F(R, fold(F, Acc, Body)); +fold(F, Acc, T) -> %Atomic nodes + F(T, Acc). + +fold_list(F, Acc, L) -> + lists:foldl(fun (E, A) -> fold(F, A, E) end, Acc, L). + +%% mapfold(MapfoldFun, Accumulator, CoreExpr) -> {CoreExpr,Accumulator}. +%% This function traverses the core parse format, at each level +%% applying the submited argument function, assumed to do the real +%% work, and keeping the accumulated result in the A (accumulator) +%% argument. + +mapfold(F, Acc0, #c_tuple{es=Es0}=R) -> + {Es1,Acc1} = mapfold_list(F, Acc0, Es0), + F(R#c_tuple{es=Es1}, Acc1); +mapfold(F, Acc0, #c_cons{hd=H0,tl=T0}=R) -> + {H1,Acc1} = mapfold(F, Acc0, H0), + {T1,Acc2} = mapfold(F, Acc1, T0), + F(R#c_cons{hd=H1,tl=T1}, Acc2); +mapfold(F, Acc0, #c_values{es=Es0}=R) -> + {Es1,Acc1} = mapfold_list(F, Acc0, Es0), + F(R#c_values{es=Es1}, Acc1); + +mapfold(F, Acc0, #c_alias{pat=P0,var=V0}=R) -> + {P1,Acc1} = mapfold(F, Acc0, P0), + {V1,Acc2} = mapfold(F, Acc1, V0), + F(R#c_alias{pat=P1,var=V1}, Acc2); + +mapfold(F, Acc0, #c_module{defs=D0}=R) -> + {D1,Acc1} = mapfold_list(F, Acc0, D0), + F(R#c_module{defs=D1}, Acc1); +mapfold(F, Acc0, #c_def{val=V0}=R) -> + {V1,Acc1} = mapfold(F, Acc0, V0), + F(R#c_def{val=V1}, Acc1); + +mapfold(F, Acc0, #c_fun{vars=Vs0, body=B0}=R) -> + {Vs1,Acc1} = mapfold_list(F, Acc0, Vs0), + {B1,Acc2} = mapfold(F, Acc1, B0), + F(R#c_fun{vars=Vs1,body=B1}, Acc2); +mapfold(F, Acc0, #c_let{vars=Vs0, arg=A0, body=B0}=R) -> + {Vs1,Acc1} = mapfold_list(F, Acc0, Vs0), + {A1,Acc2} = mapfold(F, Acc1, A0), + {B1,Acc3} = mapfold(F, Acc2, B0), + F(R#c_let{vars=Vs1,arg=A1,body=B1}, Acc3); +mapfold(F, Acc0, #c_letrec{defs=Fs0,body=B0}=R) -> + {Fs1,Acc1} = mapfold_list(F, Acc0, Fs0), + {B1,Acc2} = mapfold(F, Acc1, B0), + F(R#c_letrec{defs=Fs1,body=B1}, Acc2); +mapfold(F, Acc0, #c_seq{arg=A0, body=B0}=R) -> + {A1,Acc1} = mapfold(F, Acc0, A0), + {B1,Acc2} = mapfold(F, Acc1, B0), + F(R#c_seq{arg=A1,body=B1}, Acc2); +mapfold(F, Acc0, #c_case{arg=A0,clauses=Cs0}=R) -> + {A1,Acc1} = mapfold(F, Acc0, A0), + {Cs1,Acc2} = mapfold_list(F, Acc1, Cs0), + F(R#c_case{arg=A1,clauses=Cs1}, Acc2); +mapfold(F, Acc0, #c_clause{pats=Ps0,guard=G0,body=B0}=R) -> + {Ps1,Acc1} = mapfold_list(F, Acc0, Ps0), + {G1,Acc2} = mapfold(F, Acc1, G0), + {B1,Acc3} = mapfold(F, Acc2, B0), + F(R#c_clause{pats=Ps1,guard=G1,body=B1}, Acc3); +mapfold(F, Acc0, #c_receive{clauses=Cs0,timeout=T0,action=A0}=R) -> + {T1,Acc1} = mapfold(F, Acc0, T0), + {Cs1,Acc2} = mapfold_list(F, Acc1, Cs0), + {A1,Acc3} = mapfold(F, Acc2, A0), + F(R#c_receive{clauses=Cs1,timeout=T1,action=A1}, Acc3); +mapfold(F, Acc0, #c_apply{op=Op0, args=As0}=R) -> + {Op1,Acc1} = mapfold(F, Acc0, Op0), + {As1,Acc2} = mapfold_list(F, Acc1, As0), + F(R#c_apply{op=Op1,args=As1}, Acc2); +mapfold(F, Acc0, #c_call{module=M0,name=N0,args=As0}=R) -> + {M1,Acc1} = mapfold(F, Acc0, M0), + {N1,Acc2} = mapfold(F, Acc1, N0), + {As1,Acc3} = mapfold_list(F, Acc2, As0), + F(R#c_call{module=M1,name=N1,args=As1}, Acc3); +mapfold(F, Acc0, #c_primop{name=N0, args=As0}=R) -> + {N1,Acc1} = mapfold(F, Acc0, N0), + {As1,Acc2} = mapfold_list(F, Acc1, As0), + F(R#c_primop{name=N1,args=As1}, Acc2); +mapfold(F, Acc0, #c_try{arg=E0,vars=Vs0,body=B0,evars=Evs0,handler=H0}=R) -> + {E1,Acc1} = mapfold(F, Acc0, E0), + {Vs1,Acc2} = mapfold_list(F, Acc1, Vs0), + {B1,Acc3} = mapfold(F, Acc2, B0), + {Evs1,Acc4} = mapfold_list(F, Acc3, Evs0), + {H1,Acc5} = mapfold(F, Acc4, H0), + F(R#c_try{arg=E1,vars=Vs1,body=B1,evars=Evs1,handler=H1}, Acc5); +mapfold(F, Acc0, #c_catch{body=B0}=R) -> + {B1,Acc1} = mapfold(F, Acc0, B0), + F(R#c_catch{body=B1}, Acc1); +mapfold(F, Acc, T) -> %Atomic nodes + F(T, Acc). + +mapfold_list(F, Acc, L) -> + lists:mapfoldl(fun (E, A) -> mapfold(F, A, E) end, Acc, L). + +%% is_var_used(VarName, Expr) -> true | false. +%% Test if the variable VarName is used in Expr. + +is_var_used(V, B) -> vu_body(V, B). + +vu_body(V, #c_values{es=Es}) -> + vu_expr_list(V, Es); +vu_body(V, Body) -> + vu_expr(V, Body). + +vu_expr(V, #c_var{name=V2}) -> V =:= V2; +vu_expr(V, #c_cons{hd=H,tl=T}) -> + case vu_expr(V, H) of + true -> true; + false -> vu_expr(V, T) + end; +vu_expr(V, #c_tuple{es=Es}) -> + vu_expr_list(V, Es); +vu_expr(V, #c_binary{segments=Ss}) -> + vu_seg_list(V, Ss); +vu_expr(V, #c_fun{vars=Vs,body=B}) -> + %% Variables in fun shadow previous variables + case vu_var_list(V, Vs) of + true -> false; + false -> vu_body(V, B) + end; +vu_expr(V, #c_let{vars=Vs,arg=Arg,body=B}) -> + case vu_body(V, Arg) of + true -> true; + false -> + %% Variables in let shadow previous variables. + case vu_var_list(V, Vs) of + true -> false; + false -> vu_body(V, B) + end + end; +vu_expr(V, #c_letrec{defs=Fs,body=B}) -> + case lists:any(fun (#c_def{val=Fb}) -> vu_body(V, Fb) end, Fs) of + true -> true; + false -> vu_body(V, B) + end; +vu_expr(V, #c_seq{arg=Arg,body=B}) -> + case vu_expr(V, Arg) of + true -> true; + false -> vu_body(V, B) + end; +vu_expr(V, #c_case{arg=Arg,clauses=Cs}) -> + case vu_expr(V, Arg) of + true -> true; + false -> vu_clauses(V, Cs) + end; +vu_expr(V, #c_receive{clauses=Cs,timeout=T,action=A}) -> + case vu_clauses(V, Cs) of + true -> true; + false -> + case vu_expr(V, T) of + true -> true; + false -> vu_body(V, A) + end + end; +vu_expr(V, #c_apply{op=Op,args=As}) -> + vu_expr_list(V, [Op|As]); +vu_expr(V, #c_call{module=M,name=N,args=As}) -> + vu_expr_list(V, [M,N|As]); +vu_expr(V, #c_primop{args=As}) -> %Name is an atom + vu_expr_list(V, As); +vu_expr(V, #c_catch{body=B}) -> + vu_body(V, B); +vu_expr(V, #c_try{arg=E,vars=Vs,body=B,evars=Evs,handler=H}) -> + case vu_body(V, E) of + true -> true; + false -> + %% Variables shadow previous ones. + case case vu_var_list(V, Vs) of + true -> false; + false -> vu_body(V, B) + end of + true -> true; + false -> + case vu_var_list(V, Evs) of + true -> false; + false -> vu_body(V, H) + end + end + end; +vu_expr(_, _) -> false. %Everything else + +vu_expr_list(V, Es) -> + lists:any(fun(E) -> vu_expr(V, E) end, Es). + +vu_seg_list(V, Ss) -> + lists:any(fun (#c_bitstr{val=Val,size=Size}) -> + case vu_expr(V, Val) of + true -> true; + false -> vu_expr(V, Size) + end + end, Ss). + +%% vu_clause(VarName, Clause) -> true | false. +%% vu_clauses(VarName, [Clause]) -> true | false. +%% Have to get the pattern results right. + +vu_clause(V, #c_clause{pats=Ps,guard=G,body=B}) -> + case vu_pattern_list(V, Ps) of + {true,_Shad} -> true; %It is used + {false,true} -> false; %Shadowed + {false,false} -> %Not affected + case vu_expr(V, G) of + true -> true; + false ->vu_body(V, B) + end + end. + +vu_clauses(V, Cs) -> + lists:any(fun(C) -> vu_clause(V, C) end, Cs). + +%% vu_pattern(VarName, Pattern) -> {Used,Shadow}. +%% vu_pattern_list(VarName, [Pattern]) -> {Used,Shadow}. +%% Binaries complicate patterns as a variable can both be properly +%% used, in a bit segment size, and shadow. They can also do both. + +%%vu_pattern(V, Pat) -> vu_pattern(V, Pat, {false,false}). + +vu_pattern(V, #c_var{name=V2}, St) -> + setelement(2, St, V =:= V2); +vu_pattern(V, #c_cons{hd=H,tl=T}, St0) -> + case vu_pattern(V, H, St0) of + {true,true}=St1 -> St1; %Nothing more to know + St1 -> vu_pattern(V, T, St1) + end; +vu_pattern(V, #c_tuple{es=Es}, St) -> + vu_pattern_list(V, Es, St); +vu_pattern(V, #c_binary{segments=Ss}, St) -> + vu_pat_seg_list(V, Ss, St); +vu_pattern(V, #c_alias{var=Var,pat=P}, St0) -> + case vu_pattern(V, Var, St0) of + {true,true}=St1 -> St1; + St1 -> vu_pattern(V, P, St1) + end; +vu_pattern(_, _, St) -> St. + +vu_pattern_list(V, Ps) -> vu_pattern_list(V, Ps, {false,false}). + +vu_pattern_list(V, Ps, St0) -> + lists:foldl(fun(P, St) -> vu_pattern(V, P, St) end, St0, Ps). + +vu_pat_seg_list(V, Ss, St) -> + lists:foldl(fun (#c_bitstr{val=Val,size=Size}, St0) -> + case vu_pattern(V, Val, St0) of + {true,true}=St1 -> St1; + {_Used,Shad} -> {vu_expr(V, Size),Shad} + end + end, St, Ss). + +%% vu_var_list(VarName, [Var]) -> true | false. + +vu_var_list(V, Vs) -> + lists:any(fun (#c_var{name=V2}) -> V =:= V2 end, Vs). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_lint.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_lint.erl new file mode 100644 index 0000000000..773d1e53c8 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_lint.erl @@ -0,0 +1,515 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: core_lint.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Do necessary checking of Core Erlang code. + +%% Check Core module for errors. Seeing this module is used in the +%% compiler after optimisations wedone more checking than would be +%% necessary after just parsing. Don't check all constructs. +%% +%% We check the following: +%% +%% All referred functions, called and exported, are defined. +%% Format of export list. +%% Format of attributes +%% Used variables are defined. +%% Variables in let and funs. +%% Patterns case clauses. +%% Values only as multiple values/variables/patterns. +%% Return same number of values as requested +%% Correct number of arguments +%% +%% Checks to add: +%% +%% Consistency of values/variables +%% Consistency of function return values/calls. +%% +%% We keep the names defined variables and functions in a ordered list +%% of variable names and function name/arity pairs. + +-module(core_lint). + + +-export([module/1,module/2,format_error/1]). + +-import(lists, [reverse/1,all/2,foldl/3]). +-import(ordsets, [add_element/2,is_element/2,union/2]). +%-import(ordsets, [subtract/2]). + +-include("core_parse.hrl"). + +%% Define the lint state record. + +-record(lint, {module=[], %Current module + func=[], %Current function + errors=[], %Errors + warnings=[]}). %Warnings + +%% Keep track of defined +-record(def, {vars=[], + funs=[]}). + +%%-deftype retcount() -> any | unknown | int(). + +%% format_error(Error) +%% Return a string describing the error. + +format_error(invalid_exports) -> "invalid exports"; +format_error(invalid_attributes) -> "invalid attributes"; +format_error({undefined_function,{F,A}}) -> + io_lib:format("function ~w/~w undefined", [F,A]); +format_error({undefined_function,{F1,A1},{F2,A2}}) -> + io_lib:format("undefined function ~w/~w in ~w/~w", [F1,A1,F2,A2]); +format_error({illegal_expr,{F,A}}) -> + io_lib:format("illegal expression in ~w/~w", [F,A]); +format_error({illegal_guard,{F,A}}) -> + io_lib:format("illegal guard expression in ~w/~w", [F,A]); +format_error({illegal_pattern,{F,A}}) -> + io_lib:format("illegal pattern in ~w/~w", [F,A]); +format_error({illegal_try,{F,A}}) -> + io_lib:format("illegal try expression in ~w/~w", [F,A]); +format_error({pattern_mismatch,{F,A}}) -> + io_lib:format("pattern count mismatch in ~w/~w", [F,A]); +format_error({return_mismatch,{F,A}}) -> + io_lib:format("return count mismatch in ~w/~w", [F,A]); +format_error({arg_mismatch,{F,A}}) -> + io_lib:format("argument count mismatch in ~w/~w", [F,A]); +format_error({unbound_var,N,{F,A}}) -> + io_lib:format("unbound variable ~s in ~w/~w", [N,F,A]); +format_error({duplicate_var,N,{F,A}}) -> + io_lib:format("duplicate variable ~s in ~w/~w", [N,F,A]); +format_error({not_var,{F,A}}) -> + io_lib:format("expecting variable in ~w/~w", [F,A]); +format_error({not_pattern,{F,A}}) -> + io_lib:format("expecting pattern in ~w/~w", [F,A]); +format_error({not_bs_pattern,{F,A}}) -> + io_lib:format("expecting bit syntax pattern in ~w/~w", [F,A]). + +%% module(CoreMod) -> +%% module(CoreMod, [CompileOption]) -> +%% {ok,[Warning]} | {error,[Error],[Warning]} + +module(M) -> module(M, []). + +module(#c_module{name=M,exports=Es,attrs=As,defs=Ds}, _Opts) -> + Defined = defined_funcs(Ds), + St0 = #lint{module=M#c_atom.val}, + St1 = check_exports(Es, St0), + St2 = check_attrs(As, St1), + St3 = module_defs(Ds, Defined, St2), + St4 = check_state(Es, Defined, St3), + return_status(St4). + +%% defined_funcs([FuncDef]) -> [Fname]. + +defined_funcs(Fs) -> + foldl(fun (#c_def{name=#c_fname{id=I,arity=A}}, Def) -> + add_element({I,A}, Def) + end, [], Fs). + +%% return_status(State) -> +%% {ok,[Warning]} | {error,[Error],[Warning]} +%% Pack errors and warnings properly and return ok | error. + +return_status(St) -> + Ws = reverse(St#lint.warnings), + case reverse(St#lint.errors) of + [] -> {ok,[{St#lint.module,Ws}]}; + Es -> {error,[{St#lint.module,Es}],[{St#lint.module,Ws}]} + end. + +%% add_error(ErrorDescriptor, State) -> State' +%% add_warning(ErrorDescriptor, State) -> State' +%% Note that we don't use line numbers here. + +add_error(E, St) -> St#lint{errors=[{none,core_lint,E}|St#lint.errors]}. + +%%add_warning(W, St) -> St#lint{warnings=[{none,core_lint,W}|St#lint.warnings]}. + +check_exports(Es, St) -> + case all(fun (#c_fname{id=Name,arity=Arity}) when + atom(Name), integer(Arity) -> true; + (_) -> false + end, Es) of + true -> St; + false -> add_error(invalid_exports, St) + end. + +check_attrs(As, St) -> + case all(fun (#c_def{name=#c_atom{},val=V}) -> core_lib:is_literal(V); + (_) -> false + end, As) of + true -> St; + false -> add_error(invalid_attributes, St) + end. + +check_state(Es, Defined, St) -> + foldl(fun (#c_fname{id=N,arity=A}, St1) -> + F = {N,A}, + case is_element(F, Defined) of + true -> St1; + false -> add_error({undefined_function,F}, St) + end + end, St, Es). +% Undef = subtract(Es, Defined), +% St1 = foldl(fun (F, St) -> add_error({undefined_function,F}, St) end, +% St0, Undef), +% St1. + +%% module_defs(CoreBody, Defined, State) -> State. + +module_defs(B, Def, St) -> + %% Set top level function name. + foldl(fun (Func, St0) -> + #c_fname{id=F,arity=A} = Func#c_def.name, + St1 = St0#lint{func={F,A}}, + function(Func, Def, St1) + end, St, B). + +%% functions([Fdef], Defined, State) -> State. + +functions(Fs, Def, St0) -> + foldl(fun (F, St) -> function(F, Def, St) end, St0, Fs). + +%% function(CoreFunc, Defined, State) -> State. + +function(#c_def{name=#c_fname{},val=B}, Def, St) -> + %% Body must be a fun! + case B of + #c_fun{} -> expr(B, Def, any, St); + _ -> add_error({illegal_expr,St#lint.func}, St) + end. + +%% body(Expr, Defined, RetCount, State) -> State. + +body(#c_values{es=Es}, Def, Rt, St) -> + return_match(Rt, length(Es), expr_list(Es, Def, St)); +body(E, Def, Rt, St0) -> + St1 = expr(E, Def, Rt, St0), + case core_lib:is_simple_top(E) of + true -> return_match(Rt, 1, St1); + false -> St1 + end. + +%% guard(Expr, Defined, State) -> State. +%% Guards are boolean expressions with test wrapped in a protected. + +guard(Expr, Def, St) -> gexpr(Expr, Def, 1, St). + +%% guard_list([Expr], Defined, State) -> State. + +%% guard_list(Es, Def, St0) -> +%% foldl(fun (E, St) -> guard(E, Def, St) end, St0, Es). + +%% gbody(Expr, Defined, RetCount, State) -> State. + +gbody(#c_values{es=Es}, Def, Rt, St) -> + return_match(Rt, length(Es), gexpr_list(Es, Def, St)); +gbody(E, Def, Rt, St0) -> + St1 = gexpr(E, Def, Rt, St0), + case core_lib:is_simple_top(E) of + true -> return_match(Rt, 1, St1); + false -> St1 + end. + +gexpr(#c_var{name=N}, Def, _Rt, St) -> expr_var(N, Def, St); +gexpr(#c_int{}, _Def, _Rt, St) -> St; +gexpr(#c_float{}, _Def, _Rt, St) -> St; +gexpr(#c_atom{}, _Def, _Rt, St) -> St; +gexpr(#c_char{}, _Def, _Rt, St) -> St; +gexpr(#c_string{}, _Def, _Rt, St) -> St; +gexpr(#c_nil{}, _Def, _Rt, St) -> St; +gexpr(#c_cons{hd=H,tl=T}, Def, _Rt, St) -> + gexpr_list([H,T], Def, St); +gexpr(#c_tuple{es=Es}, Def, _Rt, St) -> + gexpr_list(Es, Def, St); +gexpr(#c_binary{segments=Ss}, Def, _Rt, St) -> + gbitstr_list(Ss, Def, St); +gexpr(#c_seq{arg=Arg,body=B}, Def, Rt, St0) -> + St1 = gexpr(Arg, Def, any, St0), %Ignore values + gbody(B, Def, Rt, St1); +gexpr(#c_let{vars=Vs,arg=Arg,body=B}, Def, Rt, St0) -> + St1 = gbody(Arg, Def, let_varcount(Vs), St0), %This is a guard body + {Lvs,St2} = variable_list(Vs, St1), + gbody(B, union(Lvs, Def), Rt, St2); +gexpr(#c_call{module=#c_atom{val=erlang}, + name=#c_atom{}, + args=As}, Def, 1, St) -> + gexpr_list(As, Def, St); +gexpr(#c_primop{name=N,args=As}, Def, _Rt, St0) when record(N, c_atom) -> + gexpr_list(As, Def, St0); +gexpr(#c_try{arg=E,vars=[#c_var{name=X}],body=#c_var{name=X}, + evars=[#c_var{},#c_var{},#c_var{}],handler=#c_atom{val=false}}, + Def, Rt, St) -> + gbody(E, Def, Rt, St); +gexpr(_, _, _, St) -> + add_error({illegal_guard,St#lint.func}, St). + +%% gexpr_list([Expr], Defined, State) -> State. + +gexpr_list(Es, Def, St0) -> + foldl(fun (E, St) -> gexpr(E, Def, 1, St) end, St0, Es). + +%% gbitstr_list([Elem], Defined, State) -> State. + +gbitstr_list(Es, Def, St0) -> + foldl(fun (E, St) -> gbitstr(E, Def, St) end, St0, Es). + +gbitstr(#c_bitstr{val=V,size=S,unit=U,type=T,flags=Fs}, Def, St0) -> + St1 = bit_type(U, T, Fs, St0), + gexpr_list([V,S], Def, St1). + +%% expr(Expr, Defined, RetCount, State) -> State. + +expr(#c_var{name=N}, Def, _Rt, St) -> expr_var(N, Def, St); +expr(#c_int{}, _Def, _Rt, St) -> St; +expr(#c_float{}, _Def, _Rt, St) -> St; +expr(#c_atom{}, _Def, _Rt, St) -> St; +expr(#c_char{}, _Def, _Rt, St) -> St; +expr(#c_string{}, _Def, _Rt, St) -> St; +expr(#c_nil{}, _Def, _Rt, St) -> St; +expr(#c_cons{hd=H,tl=T}, Def, _Rt, St) -> + expr_list([H,T], Def, St); +expr(#c_tuple{es=Es}, Def, _Rt, St) -> + expr_list(Es, Def, St); +expr(#c_binary{segments=Ss}, Def, _Rt, St) -> + bitstr_list(Ss, Def, St); +expr(#c_fname{id=I,arity=A}, Def, _Rt, St) -> + expr_fname({I,A}, Def, St); +expr(#c_fun{vars=Vs,body=B}, Def, Rt, St0) -> + {Vvs,St1} = variable_list(Vs, St0), + return_match(Rt, 1, body(B, union(Vvs, Def), any, St1)); +expr(#c_seq{arg=Arg,body=B}, Def, Rt, St0) -> + St1 = expr(Arg, Def, any, St0), %Ignore values + body(B, Def, Rt, St1); +expr(#c_let{vars=Vs,arg=Arg,body=B}, Def, Rt, St0) -> + St1 = body(Arg, Def, let_varcount(Vs), St0), %This is a body + {Lvs,St2} = variable_list(Vs, St1), + body(B, union(Lvs, Def), Rt, St2); +expr(#c_letrec{defs=Fs,body=B}, Def0, Rt, St0) -> + Def1 = union(defined_funcs(Fs), Def0), %All defined stuff + St1 = functions(Fs, Def1, St0), + body(B, Def1, Rt, St1#lint{func=St0#lint.func}); +expr(#c_case{arg=Arg,clauses=Cs}, Def, Rt, St0) -> + Pc = case_patcount(Cs), + St1 = body(Arg, Def, Pc, St0), + clauses(Cs, Def, Pc, Rt, St1); +expr(#c_receive{clauses=Cs,timeout=T,action=A}, Def, Rt, St0) -> + St1 = expr(T, Def, 1, St0), + St2 = body(A, Def, Rt, St1), + clauses(Cs, Def, 1, Rt, St2); +expr(#c_apply{op=Op,args=As}, Def, _Rt, St0) -> + St1 = apply_op(Op, Def, length(As), St0), + expr_list(As, Def, St1); +expr(#c_call{module=M,name=N,args=As}, Def, _Rt, St0) -> + St1 = expr(M, Def, 1, St0), + St2 = expr(N, Def, 1, St1), + expr_list(As, Def, St2); +expr(#c_primop{name=N,args=As}, Def, _Rt, St0) when record(N, c_atom) -> + expr_list(As, Def, St0); +expr(#c_catch{body=B}, Def, Rt, St) -> + return_match(Rt, 1, body(B, Def, 1, St)); +expr(#c_try{arg=A,vars=Vs,body=B,evars=Evs,handler=H}, Def, Rt, St0) -> + St1 = case length(Evs) of + 2 -> St0; + _ -> add_error({illegal_try,St0#lint.func}, St0) + end, + St2 = body(A, Def, let_varcount(Vs), St1), + {Ns,St3} = variable_list(Vs, St2), + St4 = body(B, union(Ns, Def), Rt, St3), + {Ens,St5} = variable_list(Evs, St4), + body(H, union(Ens, Def), Rt, St5); +expr(_, _, _, St) -> + %%io:fwrite("clint: ~p~n", [Other]), + add_error({illegal_expr,St#lint.func}, St). + +%% expr_list([Expr], Defined, State) -> State. + +expr_list(Es, Def, St0) -> + foldl(fun (E, St) -> expr(E, Def, 1, St) end, St0, Es). + +%% bitstr_list([Elem], Defined, State) -> State. + +bitstr_list(Es, Def, St0) -> + foldl(fun (E, St) -> bitstr(E, Def, St) end, St0, Es). + +bitstr(#c_bitstr{val=V,size=S,unit=U,type=T,flags=Fs}, Def, St0) -> + St1 = bit_type(U, T, Fs, St0), + expr_list([V,S], Def, St1). + +%% apply_op(Op, Defined, ArgCount, State) -> State. +%% A apply op is either an fname or an expression. + +apply_op(#c_fname{id=I,arity=A}, Def, Ac, St0) -> + St1 = expr_fname({I,A}, Def, St0), + arg_match(Ac, A, St1); +apply_op(E, Def, _, St) -> expr(E, Def, 1, St). %Hard to check + +%% expr_var(VarName, Defined, State) -> State. + +expr_var(N, Def, St) -> + case is_element(N, Def) of + true -> St; + false -> add_error({unbound_var,N,St#lint.func}, St) + end. + +%% expr_fname(Fname, Defined, State) -> State. + +expr_fname(Fname, Def, St) -> + case is_element(Fname, Def) of + true -> St; + false -> add_error({undefined_function,Fname,St#lint.func}, St) + end. + +%% let_varcount([Var]) -> int(). + +let_varcount([]) -> any; %Ignore values +let_varcount(Es) -> length(Es). + +%% case_patcount([Clause]) -> int(). + +case_patcount([#c_clause{pats=Ps}|_]) -> length(Ps). + +%% clauses([Clause], Defined, PatCount, RetCount, State) -> State. + +clauses(Cs, Def, Pc, Rt, St0) -> + foldl(fun (C, St) -> clause(C, Def, Pc, Rt, St) end, St0, Cs). + +%% clause(Clause, Defined, PatCount, RetCount, State) -> State. + +clause(#c_clause{pats=Ps,guard=G,body=B}, Def0, Pc, Rt, St0) -> + St1 = pattern_match(Pc, length(Ps), St0), + {Pvs,St2} = pattern_list(Ps, Def0, St1), + Def1 = union(Pvs, Def0), + St3 = guard(G, Def1, St2), + body(B, Def1, Rt, St3). + +%% variable(Var, [PatVar], State) -> {[VarName],State}. + +variable(#c_var{name=N}, Ps, St) -> + case is_element(N, Ps) of + true -> {[],add_error({duplicate_var,N,St#lint.func}, St)}; + false -> {[N],St} + end; +variable(_, Def, St) -> {Def,add_error({not_var,St#lint.func}, St)}. + +%% variable_list([Var], State) -> {[Var],State}. +%% variable_list([Var], [PatVar], State) -> {[Var],State}. + +variable_list(Vs, St) -> variable_list(Vs, [], St). + +variable_list(Vs, Ps, St) -> + foldl(fun (V, {Ps0,St0}) -> + {Vvs,St1} = variable(V, Ps0, St0), + {union(Vvs, Ps0),St1} + end, {Ps,St}, Vs). + +%% pattern(Pattern, Defined, State) -> {[PatVar],State}. +%% pattern(Pattern, Defined, [PatVar], State) -> {[PatVar],State}. +%% Patterns are complicated by sizes in binaries. These are pure +%% input variables which create no bindings. We, therefor, need to +%% carry around the original defined variables to get the correct +%% handling. + +%% pattern(P, Def, St) -> pattern(P, Def, [], St). + +pattern(#c_var{name=N}, Def, Ps, St) -> + pat_var(N, Def, Ps, St); +pattern(#c_int{}, _Def, Ps, St) -> {Ps,St}; +pattern(#c_float{}, _Def, Ps, St) -> {Ps,St}; +pattern(#c_atom{}, _Def, Ps, St) -> {Ps,St}; +pattern(#c_char{}, _Def, Ps, St) -> {Ps,St}; +pattern(#c_string{}, _Def, Ps, St) -> {Ps,St}; +pattern(#c_nil{}, _Def, Ps, St) -> {Ps,St}; +pattern(#c_cons{hd=H,tl=T}, Def, Ps, St) -> + pattern_list([H,T], Def, Ps, St); +pattern(#c_tuple{es=Es}, Def, Ps, St) -> + pattern_list(Es, Def, Ps, St); +pattern(#c_binary{segments=Ss}, Def, Ps, St) -> + pat_bin(Ss, Def, Ps, St); +pattern(#c_alias{var=V,pat=P}, Def, Ps, St0) -> + {Vvs,St1} = variable(V, Ps, St0), + pattern(P, Def, union(Vvs, Ps), St1); +pattern(_, _, Ps, St) -> {Ps,add_error({not_pattern,St#lint.func}, St)}. + +pat_var(N, _Def, Ps, St) -> + case is_element(N, Ps) of + true -> {Ps,add_error({duplicate_var,N,St#lint.func}, St)}; + false -> {add_element(N, Ps),St} + end. + +%% pat_bin_list([Elem], Defined, [PatVar], State) -> {[PatVar],State}. + +pat_bin(Es, Def, Ps0, St0) -> + foldl(fun (E, {Ps,St}) -> pat_segment(E, Def, Ps, St) end, {Ps0,St0}, Es). + +pat_segment(#c_bitstr{val=V,size=S,unit=U,type=T,flags=Fs}, Def, Ps, St0) -> + St1 = bit_type(U, T, Fs, St0), + St2 = pat_bit_expr(S, T, Def, St1), + pattern(V, Def, Ps, St2); +pat_segment(_, _, Ps, St) -> + {Ps,add_error({not_bs_pattern,St#lint.func}, St)}. + +%% pat_bit_expr(SizePat, Type, Defined, State) -> State. +%% Check the Size pattern, this is an input! Be a bit tough here. + +pat_bit_expr(#c_int{val=I}, _, _, St) when I >= 0 -> St; +pat_bit_expr(#c_var{name=N}, _, Def, St) -> + expr_var(N, Def, St); +pat_bit_expr(#c_atom{val=all}, binary, _Def, St) -> St; +pat_bit_expr(_, _, _, St) -> + add_error({illegal_expr,St#lint.func}, St). + +bit_type(Unit, Type, Flags, St) -> + U = core_lib:literal_value(Unit), + T = core_lib:literal_value(Type), + Fs = core_lib:literal_value(Flags), + case erl_bits:set_bit_type(default, [T,{unit,U}|Fs]) of + {ok,_,_} -> St; + {error,E} -> add_error({E,St#lint.func}, St) + end. + +%% pattern_list([Var], Defined, State) -> {[PatVar],State}. +%% pattern_list([Var], Defined, [PatVar], State) -> {[PatVar],State}. + +pattern_list(Pats, Def, St) -> pattern_list(Pats, Def, [], St). + +pattern_list(Pats, Def, Ps0, St0) -> + foldl(fun (P, {Ps,St}) -> pattern(P, Def, Ps, St) end, {Ps0,St0}, Pats). + +%% pattern_match(Required, Supplied, State) -> State. +%% Check that the required number of patterns match the supplied. + +pattern_match(N, N, St) -> St; +pattern_match(_Req, _Sup, St) -> + add_error({pattern_mismatch,St#lint.func}, St). + +%% return_match(Required, Supplied, State) -> State. +%% Check that the required number of return values match the supplied. + +return_match(any, _Sup, St) -> St; +return_match(_Req, unknown, St) -> St; +return_match(N, N, St) -> St; +return_match(_Req, _Sup, St) -> + add_error({return_mismatch,St#lint.func}, St). + +%% arg_match(Required, Supplied, State) -> State. + +arg_match(_Req, unknown, St) -> St; +arg_match(N, N, St) -> St; +arg_match(_Req, _Sup, St) -> + add_error({arg_mismatch,St#lint.func}, St). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_parse.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_parse.erl new file mode 100644 index 0000000000..77c33c561b --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_parse.erl @@ -0,0 +1,4909 @@ +-module(core_parse). +-define(THIS_MODULE, core_parse). +-export([parse/1, parse_and_scan/1, format_error/1]). + +-export([abstract/1,abstract/2,normalise/1]). + +%% The following directive is needed for (significantly) faster compilation +%% of the generated .erl file by the HiPE compiler. Please do not remove. +-compile([{hipe,[{regalloc,linear_scan}]}]). + +-include("core_parse.hrl"). + +tok_val(T) -> element(3, T). +tok_line(T) -> element(2, T). + +abstract(T, _N) -> abstract(T). + +abstract(Term) -> core_lib:make_literal(Term). + +normalise(Core) -> core_lib:literal_value(Core). + +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: core_parse.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% The parser generator will insert appropriate declarations before this line.% + +parse(Tokens) -> + case catch yeccpars1(Tokens, false, 0, [], []) of + error -> + Errorline = + if Tokens == [] -> 0; true -> element(2, hd(Tokens)) end, + {error, + {Errorline, ?THIS_MODULE, "syntax error at or after this line."}}; + Other -> + Other + end. + +parse_and_scan({Mod, Fun, Args}) -> + case apply(Mod, Fun, Args) of + {eof, _} -> + {ok, eof}; + {error, Descriptor, _} -> + {error, Descriptor}; + {ok, Tokens, _} -> + yeccpars1(Tokens, {Mod, Fun, Args}, 0, [], []) + end. + +format_error(Message) -> + case io_lib:deep_char_list(Message) of + true -> + Message; + _ -> + io_lib:write(Message) + end. + +% To be used in grammar files to throw an error message to the parser toplevel. +% Doesn't have to be exported! +return_error(Line, Message) -> + throw({error, {Line, ?THIS_MODULE, Message}}). + + +% Don't change yeccpars1/6 too much, it is called recursively by yeccpars2/8! +yeccpars1([Token | Tokens], Tokenizer, State, States, Vstack) -> + yeccpars2(State, element(1, Token), States, Vstack, Token, Tokens, + Tokenizer); +yeccpars1([], {M, F, A}, State, States, Vstack) -> + case catch apply(M, F, A) of + {eof, Endline} -> + {error, {Endline, ?THIS_MODULE, "end_of_file"}}; + {error, Descriptor, _Endline} -> + {error, Descriptor}; + {'EXIT', Reason} -> + {error, {0, ?THIS_MODULE, Reason}}; + {ok, Tokens, _Endline} -> + case catch yeccpars1(Tokens, {M, F, A}, State, States, Vstack) of + error -> + Errorline = element(2, hd(Tokens)), + {error, {Errorline, ?THIS_MODULE, + "syntax error at or after this line."}}; + Other -> + Other + end + end; +yeccpars1([], false, State, States, Vstack) -> + yeccpars2(State, '$end', States, Vstack, {'$end', 999999}, [], false). + +% For internal use only. +yeccerror(Token) -> + {error, + {element(2, Token), ?THIS_MODULE, + ["syntax error before: ", yecctoken2string(Token)]}}. + +yecctoken2string({atom, _, A}) -> io_lib:write(A); +yecctoken2string({integer,_,N}) -> io_lib:write(N); +yecctoken2string({float,_,F}) -> io_lib:write(F); +yecctoken2string({char,_,C}) -> io_lib:write_char(C); +yecctoken2string({var,_,V}) -> io_lib:format('~s', [V]); +yecctoken2string({string,_,S}) -> io_lib:write_string(S); +yecctoken2string({reserved_symbol, _, A}) -> io_lib:format('~w', [A]); +yecctoken2string({_Cat, _, Val}) -> io_lib:format('~w', [Val]); + +yecctoken2string({'dot', _}) -> io_lib:format('~w', ['.']); +yecctoken2string({'$end', _}) -> + []; +yecctoken2string({Other, _}) when atom(Other) -> + io_lib:format('~w', [Other]); +yecctoken2string(Other) -> + io_lib:write(Other). + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + +yeccpars2(0, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 1, [0 | __Ss], [__T | __Stack]); +yeccpars2(0, 'module', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 2, [0 | __Ss], [__T | __Stack]); +yeccpars2(0, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(1, 'module', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 313, [1 | __Ss], [__T | __Stack]); +yeccpars2(1, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(2, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 4, [2 | __Ss], [__T | __Stack]); +yeccpars2(2, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(3, '$end', _, __Stack, _, _, _) -> + {ok, hd(__Stack)}; +yeccpars2(3, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(4, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 5, [4 | __Ss], [__T | __Stack]); +yeccpars2(4, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(5, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [5 | __Ss], [__T | __Stack]); +yeccpars2(5, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 306, [5 | __Ss], [__T | __Stack]); +yeccpars2(5, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(6, 'attributes', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 7, [6 | __Ss], [__T | __Stack]); +yeccpars2(6, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(7, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 276, [7 | __Ss], [__T | __Stack]); +yeccpars2(7, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(8, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 9, [8 | __Ss], [__T | __Stack]); +yeccpars2(8, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [8 | __Ss], [__T | __Stack]); +yeccpars2(8, __Cat, __Ss, __Stack, __T, __Ts, __Tzr) -> + __Val = [], + yeccpars2(13, __Cat, [8 | __Ss], [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(9, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [9 | __Ss], [__T | __Stack]); +yeccpars2(9, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(10, '=', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 20, [10 | __Ss], [__T | __Stack]); +yeccpars2(10, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(11, '/', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 18, [11 | __Ss], [__T | __Stack]); +yeccpars2(11, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(12, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 9, [12 | __Ss], [__T | __Stack]); +yeccpars2(12, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [12 | __Ss], [__T | __Stack]); +yeccpars2(12, __Cat, __Ss, __Stack, __T, __Ts, __Tzr) -> + __Val = [], + yeccpars2(17, __Cat, [12 | __Ss], [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(13, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(module_defs, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(14, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_function_name, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(15, 'end', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 16, [15 | __Ss], [__T | __Stack]); +yeccpars2(15, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(16, __Cat, __Ss, [__6,__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_module{name = #c_atom{val = tok_val(__2)}, exports = __3, attrs = __4, defs = __5}, + __Nss = lists:nthtail(5, __Ss), + yeccpars2(yeccgoto(module_definition, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(17, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__2], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(function_definitions, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(18, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 19, [18 | __Ss], [__T | __Stack]); +yeccpars2(18, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(19, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_fname{id = tok_val(__1), arity = tok_val(__3)}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(function_name, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(20, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [20 | __Ss], [__T | __Stack]); +yeccpars2(20, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 21, [20 | __Ss], [__T | __Stack]); +yeccpars2(20, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(21, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [21 | __Ss], [__T | __Stack]); +yeccpars2(21, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(22, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_def{name = __1, val = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(function_definition, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(23, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 25, [23 | __Ss], [__T | __Stack]); +yeccpars2(23, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(24, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_fun, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(25, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 27, [25 | __Ss], [__T | __Stack]); +yeccpars2(25, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [25 | __Ss], [__T | __Stack]); +yeccpars2(25, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [25 | __Ss], [__T | __Stack]); +yeccpars2(25, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(26, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [26 | __Ss], [__T | __Stack]); +yeccpars2(26, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(27, '->', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 265, [27 | __Ss], [__T | __Stack]); +yeccpars2(27, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(28, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 263, [28 | __Ss], [__T | __Stack]); +yeccpars2(28, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(anno_variables, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(29, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 32, [29 | __Ss], [__T | __Stack]); +yeccpars2(29, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(30, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_var{name = tok_val(__1)}, + yeccpars2(yeccgoto(variable, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(31, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_variable, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(32, '->', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 33, [32 | __Ss], [__T | __Stack]); +yeccpars2(32, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(33, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [33 | __Ss], [__T | __Stack]); +yeccpars2(33, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(34, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 247, [34 | __Ss], [__T | __Stack]); +yeccpars2(34, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(35, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [35 | __Ss], [__T | __Stack]); +yeccpars2(35, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(36, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 240, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [36 | __Ss], [__T | __Stack]); +yeccpars2(36, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(37, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 149, [37 | __Ss], [__T | __Stack]); +yeccpars2(37, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(38, __Cat, __Ss, [__6,__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_fun{vars = __3, body = __6}, + __Nss = lists:nthtail(5, __Ss), + yeccpars2(yeccgoto(fun_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(39, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(40, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [40 | __Ss], [__T | __Stack]); +yeccpars2(40, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(41, '/', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 18, [41 | __Ss], [__T | __Stack]); +yeccpars2(41, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_atom{val = tok_val(__1)}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(42, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(43, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(44, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [44 | __Ss], [__T | __Stack]); +yeccpars2(44, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(45, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(46, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [46 | __Ss], [__T | __Stack]); +yeccpars2(46, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(47, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(48, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [48 | __Ss], [__T | __Stack]); +yeccpars2(48, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(49, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(50, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_char{val = tok_val(__1)}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(51, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(52, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [52 | __Ss], [__T | __Stack]); +yeccpars2(52, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(53, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(54, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_float{val = tok_val(__1)}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(55, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(56, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(57, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_int{val = tok_val(__1)}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(58, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 83, [58 | __Ss], [__T | __Stack]); +yeccpars2(58, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [58 | __Ss], [__T | __Stack]); +yeccpars2(58, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [58 | __Ss], [__T | __Stack]); +yeccpars2(58, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(59, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(60, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 9, [60 | __Ss], [__T | __Stack]); +yeccpars2(60, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [60 | __Ss], [__T | __Stack]); +yeccpars2(60, __Cat, __Ss, __Stack, __T, __Ts, __Tzr) -> + __Val = [], + yeccpars2(210, __Cat, [60 | __Ss], [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(61, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(62, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_nil{}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(63, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 208, [63 | __Ss], [__T | __Stack]); +yeccpars2(63, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(64, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(65, 'after', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 99, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 97, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 96, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [65 | __Ss], [__T | __Stack]); +yeccpars2(65, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(66, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(67, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(68, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(69, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_string{val = tok_val(__1)}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(70, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [70 | __Ss], [__T | __Stack]); +yeccpars2(70, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(71, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(72, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(73, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(single_expression, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(74, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 77, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [74 | __Ss], [__T | __Stack]); +yeccpars2(74, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(75, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 79, [75 | __Ss], [__T | __Stack]); +yeccpars2(75, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(anno_expressions, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(76, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 78, [76 | __Ss], [__T | __Stack]); +yeccpars2(76, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(77, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_tuple{es = []}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(tuple, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(78, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_tuple{es = __2}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tuple, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(79, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [79 | __Ss], [__T | __Stack]); +yeccpars2(79, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(80, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(anno_expressions, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(81, 'of', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 82, [81 | __Ss], [__T | __Stack]); +yeccpars2(81, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(82, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 83, [82 | __Ss], [__T | __Stack]); +yeccpars2(82, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [82 | __Ss], [__T | __Stack]); +yeccpars2(82, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [82 | __Ss], [__T | __Stack]); +yeccpars2(82, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(83, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 92, [83 | __Ss], [__T | __Stack]); +yeccpars2(83, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [83 | __Ss], [__T | __Stack]); +yeccpars2(83, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [83 | __Ss], [__T | __Stack]); +yeccpars2(83, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(84, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(let_vars, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(85, '->', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 86, [85 | __Ss], [__T | __Stack]); +yeccpars2(85, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(86, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [86 | __Ss], [__T | __Stack]); +yeccpars2(86, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(87, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 88, [87 | __Ss], [__T | __Stack]); +yeccpars2(87, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(88, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 83, [88 | __Ss], [__T | __Stack]); +yeccpars2(88, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [88 | __Ss], [__T | __Stack]); +yeccpars2(88, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [88 | __Ss], [__T | __Stack]); +yeccpars2(88, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(89, '->', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 90, [89 | __Ss], [__T | __Stack]); +yeccpars2(89, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(90, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [90 | __Ss], [__T | __Stack]); +yeccpars2(90, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(91, __Cat, __Ss, [__10,__9,__8,__7,__6,__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = if length(__8) == 2 -> #c_try{arg = __2, vars = __4, body = __6, evars = __8, handler = __10}; true -> return_error(tok_line(__7),"expected 2 exception variables in 'try'") end, + __Nss = lists:nthtail(9, __Ss), + yeccpars2(yeccgoto(try_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(92, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(let_vars, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(93, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 94, [93 | __Ss], [__T | __Stack]); +yeccpars2(93, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(94, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(let_vars, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(95, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 190, [95 | __Ss], [__T | __Stack]); +yeccpars2(95, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(96, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 97, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [96 | __Ss], [__T | __Stack]); +yeccpars2(96, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(97, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 182, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [97 | __Ss], [__T | __Stack]); +yeccpars2(97, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(98, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 149, [98 | __Ss], [__T | __Stack]); +yeccpars2(98, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(99, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [99 | __Ss], [__T | __Stack]); +yeccpars2(99, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(100, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 97, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 96, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [100 | __Ss], [__T | __Stack]); +yeccpars2(100, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(anno_clauses, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(101, 'after', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 99, [101 | __Ss], [__T | __Stack]); +yeccpars2(101, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(102, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(clause_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(103, '=', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 162, [103 | __Ss], [__T | __Stack]); +yeccpars2(103, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(104, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_atom{val = tok_val(__1)}, + yeccpars2(yeccgoto(atomic_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(105, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(atomic_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(106, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(other_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(107, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(other_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(108, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_clause, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(109, 'when', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 164, [109 | __Ss], [__T | __Stack]); +yeccpars2(109, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(110, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(other_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(111, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(112, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = begin + {T,A} = __2, #c_receive{clauses = [], timeout = T, action = A} + end, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(receive_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(113, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(other_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(114, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 118, [114 | __Ss], [__T | __Stack]); +yeccpars2(114, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(115, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [115 | __Ss], [__T | __Stack]); +yeccpars2(115, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(116, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 120, [116 | __Ss], [__T | __Stack]); +yeccpars2(116, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(anno_patterns, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(117, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 119, [117 | __Ss], [__T | __Stack]); +yeccpars2(117, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(118, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_tuple{es = []}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(tuple_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(119, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_tuple{es = __2}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tuple_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(120, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [120 | __Ss], [__T | __Stack]); +yeccpars2(120, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(121, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(anno_patterns, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(122, '=', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 162, [122 | __Ss], [__T | __Stack]); +yeccpars2(122, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(123, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 159, [123 | __Ss], [__T | __Stack]); +yeccpars2(123, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(124, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 125, [124 | __Ss], [__T | __Stack]); +yeccpars2(124, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_variable, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(125, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [125 | __Ss], [__T | __Stack]); +yeccpars2(125, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(126, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 129, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 142, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 140, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 131, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 137, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 138, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 133, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 130, [126 | __Ss], [__T | __Stack]); +yeccpars2(126, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(127, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 128, [127 | __Ss], [__T | __Stack]); +yeccpars2(127, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(128, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = core_lib:set_anno(__2,__4), + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(anno_variable, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(129, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 129, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 142, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 140, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 131, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 137, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 138, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 133, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 149, [129 | __Ss], [__T | __Stack]); +yeccpars2(129, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(130, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(annotation, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(131, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = tok_val(__1), + yeccpars2(yeccgoto(atomic_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(132, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(133, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = tok_val(__1), + yeccpars2(yeccgoto(atomic_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(134, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(135, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 147, [135 | __Ss], [__T | __Stack]); +yeccpars2(135, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(constants, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(136, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 146, [136 | __Ss], [__T | __Stack]); +yeccpars2(136, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(137, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = tok_val(__1), + yeccpars2(yeccgoto(atomic_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(138, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = tok_val(__1), + yeccpars2(yeccgoto(atomic_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(139, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + yeccpars2(yeccgoto(atomic_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(140, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = tok_val(__1), + yeccpars2(yeccgoto(atomic_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(141, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(142, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 129, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 142, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 144, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 140, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 131, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 137, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 138, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 133, [142 | __Ss], [__T | __Stack]); +yeccpars2(142, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(143, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 145, [143 | __Ss], [__T | __Stack]); +yeccpars2(143, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(144, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = {}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(tuple_constant, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(145, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = list_to_tuple(__2), + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tuple_constant, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(146, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(annotation, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(147, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 129, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 142, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 140, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 131, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 137, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 138, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 133, [147 | __Ss], [__T | __Stack]); +yeccpars2(147, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(148, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(constants, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(149, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = {nil,tok_line(__1)}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(nil, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(150, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 151, [150 | __Ss], [__T | __Stack]); +yeccpars2(150, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 154, [150 | __Ss], [__T | __Stack]); +yeccpars2(150, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 152, [150 | __Ss], [__T | __Stack]); +yeccpars2(150, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(151, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 129, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 142, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 140, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 131, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 137, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 138, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 133, [151 | __Ss], [__T | __Stack]); +yeccpars2(151, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(152, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + yeccpars2(yeccgoto(tail_constant, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(153, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__2|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(cons_constant, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(154, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 129, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 142, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 140, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 131, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 137, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 138, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 133, [154 | __Ss], [__T | __Stack]); +yeccpars2(154, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(155, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 156, [155 | __Ss], [__T | __Stack]); +yeccpars2(155, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(156, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail_constant, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(157, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 151, [157 | __Ss], [__T | __Stack]); +yeccpars2(157, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 154, [157 | __Ss], [__T | __Stack]); +yeccpars2(157, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 152, [157 | __Ss], [__T | __Stack]); +yeccpars2(157, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(158, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__2|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail_constant, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(159, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [159 | __Ss], [__T | __Stack]); +yeccpars2(159, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(160, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 161, [160 | __Ss], [__T | __Stack]); +yeccpars2(160, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(161, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = core_lib:set_anno(__2,__4), + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(anno_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(162, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [162 | __Ss], [__T | __Stack]); +yeccpars2(162, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(163, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_alias{var = __1, pat = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(other_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(164, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [164 | __Ss], [__T | __Stack]); +yeccpars2(164, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(165, '->', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 166, [165 | __Ss], [__T | __Stack]); +yeccpars2(165, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(166, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [166 | __Ss], [__T | __Stack]); +yeccpars2(166, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(167, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_clause{pats = __1, guard = __3, body = __5}, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(clause, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(168, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = begin + {T,A} = __3, #c_receive{clauses = __2, timeout = T, action = A} + end, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(receive_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(169, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__2], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(anno_clauses, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(170, '->', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 171, [170 | __Ss], [__T | __Stack]); +yeccpars2(170, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(171, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [171 | __Ss], [__T | __Stack]); +yeccpars2(171, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(172, __Cat, __Ss, [__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = {__2,__4}, + __Nss = lists:nthtail(3, __Ss), + yeccpars2(yeccgoto(timeout, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(173, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 174, [173 | __Ss], [__T | __Stack]); +yeccpars2(173, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 177, [173 | __Ss], [__T | __Stack]); +yeccpars2(173, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 175, [173 | __Ss], [__T | __Stack]); +yeccpars2(173, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(174, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [174 | __Ss], [__T | __Stack]); +yeccpars2(174, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(175, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_nil{}, + yeccpars2(yeccgoto(tail_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(176, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_cons{hd = __2, tl = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(cons_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(177, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [177 | __Ss], [__T | __Stack]); +yeccpars2(177, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(178, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 179, [178 | __Ss], [__T | __Stack]); +yeccpars2(178, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(179, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(180, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 174, [180 | __Ss], [__T | __Stack]); +yeccpars2(180, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 177, [180 | __Ss], [__T | __Stack]); +yeccpars2(180, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 175, [180 | __Ss], [__T | __Stack]); +yeccpars2(180, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(181, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_cons{hd = __2, tl = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(182, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(clause_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(183, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 184, [183 | __Ss], [__T | __Stack]); +yeccpars2(183, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(184, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(clause_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(185, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 187, [185 | __Ss], [__T | __Stack]); +yeccpars2(185, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(186, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 159, [186 | __Ss], [__T | __Stack]); +yeccpars2(186, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(anno_pattern, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(187, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [187 | __Ss], [__T | __Stack]); +yeccpars2(187, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(188, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 189, [188 | __Ss], [__T | __Stack]); +yeccpars2(188, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(189, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = core_lib:set_anno(__2,__4), + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(anno_clause, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(190, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 191, [190 | __Ss], [__T | __Stack]); +yeccpars2(190, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 194, [190 | __Ss], [__T | __Stack]); +yeccpars2(190, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(191, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 200, [191 | __Ss], [__T | __Stack]); +yeccpars2(191, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(192, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 198, [192 | __Ss], [__T | __Stack]); +yeccpars2(192, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(segment_patterns, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(193, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 196, [193 | __Ss], [__T | __Stack]); +yeccpars2(193, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(194, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 195, [194 | __Ss], [__T | __Stack]); +yeccpars2(194, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(195, __Cat, __Ss, [__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_binary{segments = []}, + __Nss = lists:nthtail(3, __Ss), + yeccpars2(yeccgoto(binary_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(196, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 197, [196 | __Ss], [__T | __Stack]); +yeccpars2(196, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(197, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_binary{segments = __3}, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(binary_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(198, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 191, [198 | __Ss], [__T | __Stack]); +yeccpars2(198, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(199, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(segment_patterns, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(200, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 115, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [200 | __Ss], [__T | __Stack]); +yeccpars2(200, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(201, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 202, [201 | __Ss], [__T | __Stack]); +yeccpars2(201, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(202, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 203, [202 | __Ss], [__T | __Stack]); +yeccpars2(202, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(203, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 205, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [203 | __Ss], [__T | __Stack]); +yeccpars2(203, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(204, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = case __5 of [S,U,T,Fs] -> #c_bitstr{val = __3, size = S, unit = U, type = T, flags = Fs}; true -> return_error(tok_line(__1),"expected 4 arguments in binary segment") end, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(segment_pattern, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(205, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(arg_list, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(206, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 207, [206 | __Ss], [__T | __Stack]); +yeccpars2(206, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(207, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(arg_list, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(208, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 203, [208 | __Ss], [__T | __Stack]); +yeccpars2(208, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(209, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = begin + Name = #c_atom{val = tok_val(__2)}, #c_primop{name = Name, args = __3} + end, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(primop_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(210, 'in', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 211, [210 | __Ss], [__T | __Stack]); +yeccpars2(210, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(211, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [211 | __Ss], [__T | __Stack]); +yeccpars2(211, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(212, __Cat, __Ss, [__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_letrec{defs = __2, body = __4}, + __Nss = lists:nthtail(3, __Ss), + yeccpars2(yeccgoto(letrec_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(213, '=', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 214, [213 | __Ss], [__T | __Stack]); +yeccpars2(213, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(214, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [214 | __Ss], [__T | __Stack]); +yeccpars2(214, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(215, 'in', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 216, [215 | __Ss], [__T | __Stack]); +yeccpars2(215, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(216, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [216 | __Ss], [__T | __Stack]); +yeccpars2(216, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(217, __Cat, __Ss, [__6,__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_let{vars = __2, arg = __4, body = __6}, + __Nss = lists:nthtail(5, __Ss), + yeccpars2(yeccgoto(let_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(218, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [218 | __Ss], [__T | __Stack]); +yeccpars2(218, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(219, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_seq{arg = __2, body = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(sequence, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(220, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_catch{body = __2}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(catch_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(221, 'of', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 222, [221 | __Ss], [__T | __Stack]); +yeccpars2(221, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(222, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 97, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 96, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 95, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 98, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 114, [222 | __Ss], [__T | __Stack]); +yeccpars2(222, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(223, 'end', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 224, [223 | __Ss], [__T | __Stack]); +yeccpars2(223, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(224, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_case{arg = __2, clauses = __4}, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(case_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(225, ':', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 226, [225 | __Ss], [__T | __Stack]); +yeccpars2(225, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(226, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [226 | __Ss], [__T | __Stack]); +yeccpars2(226, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(227, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 203, [227 | __Ss], [__T | __Stack]); +yeccpars2(227, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(228, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_call{module = __2, name = __4, args = __5}, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(call_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(229, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 203, [229 | __Ss], [__T | __Stack]); +yeccpars2(229, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(230, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_apply{op = __2, args = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(application_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(231, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 232, [231 | __Ss], [__T | __Stack]); +yeccpars2(231, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 235, [231 | __Ss], [__T | __Stack]); +yeccpars2(231, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 233, [231 | __Ss], [__T | __Stack]); +yeccpars2(231, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(232, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [232 | __Ss], [__T | __Stack]); +yeccpars2(232, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(233, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_nil{}, + yeccpars2(yeccgoto(tail, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(234, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_cons{hd = __2, tl = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(cons, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(235, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [235 | __Ss], [__T | __Stack]); +yeccpars2(235, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(236, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 237, [236 | __Ss], [__T | __Stack]); +yeccpars2(236, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(237, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(238, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 232, [238 | __Ss], [__T | __Stack]); +yeccpars2(238, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 235, [238 | __Ss], [__T | __Stack]); +yeccpars2(238, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 233, [238 | __Ss], [__T | __Stack]); +yeccpars2(238, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(239, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_cons{hd = __2, tl = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(240, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_values{es = []}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(expression, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(241, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 242, [241 | __Ss], [__T | __Stack]); +yeccpars2(241, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(242, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_values{es = __2}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(expression, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(243, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 244, [243 | __Ss], [__T | __Stack]); +yeccpars2(243, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(244, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [244 | __Ss], [__T | __Stack]); +yeccpars2(244, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(245, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 246, [245 | __Ss], [__T | __Stack]); +yeccpars2(245, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(246, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = core_lib:set_anno(__2,__4), + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(anno_expression, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(247, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 248, [247 | __Ss], [__T | __Stack]); +yeccpars2(247, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 251, [247 | __Ss], [__T | __Stack]); +yeccpars2(247, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(248, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 257, [248 | __Ss], [__T | __Stack]); +yeccpars2(248, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(249, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 255, [249 | __Ss], [__T | __Stack]); +yeccpars2(249, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(segments, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(250, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 253, [250 | __Ss], [__T | __Stack]); +yeccpars2(250, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(251, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 252, [251 | __Ss], [__T | __Stack]); +yeccpars2(251, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(252, __Cat, __Ss, [__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_binary{segments = []}, + __Nss = lists:nthtail(3, __Ss), + yeccpars2(yeccgoto(binary, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(253, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 254, [253 | __Ss], [__T | __Stack]); +yeccpars2(253, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(254, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_binary{segments = __3}, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(binary, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(255, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 248, [255 | __Ss], [__T | __Stack]); +yeccpars2(255, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(256, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(segments, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(257, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [257 | __Ss], [__T | __Stack]); +yeccpars2(257, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(258, '>', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 259, [258 | __Ss], [__T | __Stack]); +yeccpars2(258, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(259, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 260, [259 | __Ss], [__T | __Stack]); +yeccpars2(259, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(260, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [260 | __Ss], [__T | __Stack]); +yeccpars2(260, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(261, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 262, [261 | __Ss], [__T | __Stack]); +yeccpars2(261, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(262, __Cat, __Ss, [__7,__6,__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = case __6 of [S,U,T,Fs] -> #c_bitstr{val = __3, size = S, unit = U, type = T, flags = Fs}; true -> return_error(tok_line(__1),"expected 4 arguments in binary segment") end, + __Nss = lists:nthtail(6, __Ss), + yeccpars2(yeccgoto(segment, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(263, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 26, [263 | __Ss], [__T | __Stack]); +yeccpars2(263, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [263 | __Ss], [__T | __Stack]); +yeccpars2(263, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(264, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(anno_variables, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(265, 'receive', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 65, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'catch', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 48, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'try', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 70, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'primop', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 63, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'call', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 44, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'apply', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 40, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'case', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 46, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'letrec', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 60, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'let', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 58, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'fun', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 23, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'do', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 52, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 41, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, '#', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 34, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 37, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 74, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, '<', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 36, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 35, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, 'var', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 30, [265 | __Ss], [__T | __Stack]); +yeccpars2(265, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(266, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_fun{vars = [], body = __5}, + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(fun_expr, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(267, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 125, [267 | __Ss], [__T | __Stack]); +yeccpars2(267, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(268, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 269, [268 | __Ss], [__T | __Stack]); +yeccpars2(268, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(269, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [269 | __Ss], [__T | __Stack]); +yeccpars2(269, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(270, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 271, [270 | __Ss], [__T | __Stack]); +yeccpars2(270, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(271, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = core_lib:set_anno(__2,__4), + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(anno_fun, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(272, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 273, [272 | __Ss], [__T | __Stack]); +yeccpars2(272, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(273, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [273 | __Ss], [__T | __Stack]); +yeccpars2(273, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(274, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 275, [274 | __Ss], [__T | __Stack]); +yeccpars2(274, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(275, __Cat, __Ss, [__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = core_lib:set_anno(__2,__4), + __Nss = lists:nthtail(4, __Ss), + yeccpars2(yeccgoto(anno_function_name, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(276, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 278, [276 | __Ss], [__T | __Stack]); +yeccpars2(276, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 277, [276 | __Ss], [__T | __Stack]); +yeccpars2(276, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(277, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(module_attribute, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(278, '=', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 284, [278 | __Ss], [__T | __Stack]); +yeccpars2(278, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(279, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 282, [279 | __Ss], [__T | __Stack]); +yeccpars2(279, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(attribute_list, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(280, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 281, [280 | __Ss], [__T | __Stack]); +yeccpars2(280, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(281, __Cat, __Ss, [__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __3, + __Nss = lists:nthtail(3, __Ss), + yeccpars2(yeccgoto(module_attribute, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(282, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 278, [282 | __Ss], [__T | __Stack]); +yeccpars2(282, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(283, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(attribute_list, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(284, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 285, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 290, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [284 | __Ss], [__T | __Stack]); +yeccpars2(284, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(285, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 285, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 290, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 149, [285 | __Ss], [__T | __Stack]); +yeccpars2(285, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(286, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(287, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(288, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_def{name = #c_atom{val = tok_val(__1)}, val = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(attribute, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(289, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(290, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 285, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 290, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 293, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [290 | __Ss], [__T | __Stack]); +yeccpars2(290, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(291, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 295, [291 | __Ss], [__T | __Stack]); +yeccpars2(291, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(literals, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(292, '}', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 294, [292 | __Ss], [__T | __Stack]); +yeccpars2(292, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(293, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_tuple{es = []}, + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(tuple_literal, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(294, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_tuple{es = __2}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tuple_literal, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(295, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 285, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 290, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [295 | __Ss], [__T | __Stack]); +yeccpars2(295, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(296, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(literals, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(297, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 298, [297 | __Ss], [__T | __Stack]); +yeccpars2(297, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 301, [297 | __Ss], [__T | __Stack]); +yeccpars2(297, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 299, [297 | __Ss], [__T | __Stack]); +yeccpars2(297, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(298, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 285, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 290, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [298 | __Ss], [__T | __Stack]); +yeccpars2(298, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(299, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_nil{}, + yeccpars2(yeccgoto(tail_literal, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(300, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_cons{hd = __2, tl = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(cons_literal, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(301, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 285, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, '{', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 290, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, 'string', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 69, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 104, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, 'float', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 54, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, 'integer', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 57, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, 'char', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 50, [301 | __Ss], [__T | __Stack]); +yeccpars2(301, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(302, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 303, [302 | __Ss], [__T | __Stack]); +yeccpars2(302, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(303, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail_literal, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(304, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 298, [304 | __Ss], [__T | __Stack]); +yeccpars2(304, '|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 301, [304 | __Ss], [__T | __Stack]); +yeccpars2(304, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 299, [304 | __Ss], [__T | __Stack]); +yeccpars2(304, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(305, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_cons{hd = __2, tl = __3}, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(tail_literal, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(306, __Cat, __Ss, [__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [], + __Nss = lists:nthtail(1, __Ss), + yeccpars2(yeccgoto(module_export, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(307, ',', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 311, [307 | __Ss], [__T | __Stack]); +yeccpars2(307, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1], + yeccpars2(yeccgoto(exported_names, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(308, ']', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 310, [308 | __Ss], [__T | __Stack]); +yeccpars2(308, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(309, __Cat, __Ss, [__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __1, + yeccpars2(yeccgoto(exported_name, hd(__Ss)), __Cat, __Ss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(310, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = __2, + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(module_export, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(311, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [311 | __Ss], [__T | __Stack]); +yeccpars2(311, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(312, __Cat, __Ss, [__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = [__1|__3], + __Nss = lists:nthtail(2, __Ss), + yeccpars2(yeccgoto(exported_names, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(313, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 314, [313 | __Ss], [__T | __Stack]); +yeccpars2(313, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(314, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 5, [314 | __Ss], [__T | __Stack]); +yeccpars2(314, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(315, 'attributes', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 7, [315 | __Ss], [__T | __Stack]); +yeccpars2(315, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(316, '(', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 9, [316 | __Ss], [__T | __Stack]); +yeccpars2(316, 'atom', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 11, [316 | __Ss], [__T | __Stack]); +yeccpars2(316, __Cat, __Ss, __Stack, __T, __Ts, __Tzr) -> + __Val = [], + yeccpars2(13, __Cat, [316 | __Ss], [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(317, 'end', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 318, [317 | __Ss], [__T | __Stack]); +yeccpars2(317, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(318, '-|', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 319, [318 | __Ss], [__T | __Stack]); +yeccpars2(318, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(319, '[', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 126, [319 | __Ss], [__T | __Stack]); +yeccpars2(319, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(320, ')', __Ss, __Stack, __T, __Ts, __Tzr) -> + yeccpars1(__Ts, __Tzr, 321, [320 | __Ss], [__T | __Stack]); +yeccpars2(320, _, _, _, __T, _, _) -> + yeccerror(__T); +yeccpars2(321, __Cat, __Ss, [__10,__9,__8,__7,__6,__5,__4,__3,__2,__1|__Stack], __T, __Ts, __Tzr) -> + __Val = #c_module{anno = __9, name = tok_val(__3), exports = __4, attrs = __5, defs = __6}, + __Nss = lists:nthtail(9, __Ss), + yeccpars2(yeccgoto(module_definition, hd(__Nss)), __Cat, __Nss, [__Val | __Stack], __T, __Ts, __Tzr); +yeccpars2(__Other, _, _, _, _, _, _) -> + exit({parser, __Other, missing_state_in_action_table}). + +yeccgoto(anno_clause, 65) -> + 100; +yeccgoto(anno_clause, 100) -> + 100; +yeccgoto(anno_clause, 222) -> + 100; +yeccgoto(anno_clauses, 65) -> + 101; +yeccgoto(anno_clauses, 100) -> + 169; +yeccgoto(anno_clauses, 222) -> + 223; +yeccgoto(anno_expression, 33) -> + 38; +yeccgoto(anno_expression, 36) -> + 75; +yeccgoto(anno_expression, 37) -> + 231; +yeccgoto(anno_expression, 40) -> + 229; +yeccgoto(anno_expression, 44) -> + 225; +yeccgoto(anno_expression, 46) -> + 221; +yeccgoto(anno_expression, 48) -> + 220; +yeccgoto(anno_expression, 52) -> + 218; +yeccgoto(anno_expression, 70) -> + 81; +yeccgoto(anno_expression, 74) -> + 75; +yeccgoto(anno_expression, 79) -> + 75; +yeccgoto(anno_expression, 86) -> + 87; +yeccgoto(anno_expression, 90) -> + 91; +yeccgoto(anno_expression, 99) -> + 170; +yeccgoto(anno_expression, 164) -> + 165; +yeccgoto(anno_expression, 166) -> + 167; +yeccgoto(anno_expression, 171) -> + 172; +yeccgoto(anno_expression, 203) -> + 75; +yeccgoto(anno_expression, 211) -> + 212; +yeccgoto(anno_expression, 214) -> + 215; +yeccgoto(anno_expression, 216) -> + 217; +yeccgoto(anno_expression, 218) -> + 219; +yeccgoto(anno_expression, 226) -> + 227; +yeccgoto(anno_expression, 232) -> + 238; +yeccgoto(anno_expression, 235) -> + 236; +yeccgoto(anno_expression, 257) -> + 258; +yeccgoto(anno_expression, 260) -> + 75; +yeccgoto(anno_expression, 265) -> + 266; +yeccgoto(anno_expressions, 36) -> + 241; +yeccgoto(anno_expressions, 74) -> + 76; +yeccgoto(anno_expressions, 79) -> + 80; +yeccgoto(anno_expressions, 203) -> + 206; +yeccgoto(anno_expressions, 260) -> + 261; +yeccgoto(anno_fun, 20) -> + 22; +yeccgoto(anno_function_name, 8) -> + 10; +yeccgoto(anno_function_name, 12) -> + 10; +yeccgoto(anno_function_name, 60) -> + 10; +yeccgoto(anno_function_name, 316) -> + 10; +yeccgoto(anno_pattern, 65) -> + 102; +yeccgoto(anno_pattern, 96) -> + 102; +yeccgoto(anno_pattern, 97) -> + 116; +yeccgoto(anno_pattern, 98) -> + 173; +yeccgoto(anno_pattern, 100) -> + 102; +yeccgoto(anno_pattern, 114) -> + 116; +yeccgoto(anno_pattern, 120) -> + 116; +yeccgoto(anno_pattern, 162) -> + 163; +yeccgoto(anno_pattern, 174) -> + 180; +yeccgoto(anno_pattern, 177) -> + 178; +yeccgoto(anno_pattern, 200) -> + 201; +yeccgoto(anno_pattern, 222) -> + 102; +yeccgoto(anno_patterns, 97) -> + 183; +yeccgoto(anno_patterns, 114) -> + 117; +yeccgoto(anno_patterns, 120) -> + 121; +yeccgoto(anno_variable, 25) -> + 28; +yeccgoto(anno_variable, 58) -> + 84; +yeccgoto(anno_variable, 65) -> + 103; +yeccgoto(anno_variable, 82) -> + 84; +yeccgoto(anno_variable, 83) -> + 28; +yeccgoto(anno_variable, 88) -> + 84; +yeccgoto(anno_variable, 96) -> + 103; +yeccgoto(anno_variable, 97) -> + 103; +yeccgoto(anno_variable, 98) -> + 103; +yeccgoto(anno_variable, 100) -> + 103; +yeccgoto(anno_variable, 114) -> + 103; +yeccgoto(anno_variable, 115) -> + 122; +yeccgoto(anno_variable, 120) -> + 103; +yeccgoto(anno_variable, 162) -> + 103; +yeccgoto(anno_variable, 174) -> + 103; +yeccgoto(anno_variable, 177) -> + 103; +yeccgoto(anno_variable, 200) -> + 103; +yeccgoto(anno_variable, 222) -> + 103; +yeccgoto(anno_variable, 263) -> + 28; +yeccgoto(anno_variables, 25) -> + 29; +yeccgoto(anno_variables, 83) -> + 93; +yeccgoto(anno_variables, 263) -> + 264; +yeccgoto(annotation, 125) -> + 127; +yeccgoto(annotation, 159) -> + 160; +yeccgoto(annotation, 187) -> + 188; +yeccgoto(annotation, 244) -> + 245; +yeccgoto(annotation, 269) -> + 270; +yeccgoto(annotation, 273) -> + 274; +yeccgoto(annotation, 319) -> + 320; +yeccgoto(application_expr, 33) -> + 39; +yeccgoto(application_expr, 35) -> + 39; +yeccgoto(application_expr, 36) -> + 39; +yeccgoto(application_expr, 37) -> + 39; +yeccgoto(application_expr, 40) -> + 39; +yeccgoto(application_expr, 44) -> + 39; +yeccgoto(application_expr, 46) -> + 39; +yeccgoto(application_expr, 48) -> + 39; +yeccgoto(application_expr, 52) -> + 39; +yeccgoto(application_expr, 70) -> + 39; +yeccgoto(application_expr, 74) -> + 39; +yeccgoto(application_expr, 79) -> + 39; +yeccgoto(application_expr, 86) -> + 39; +yeccgoto(application_expr, 90) -> + 39; +yeccgoto(application_expr, 99) -> + 39; +yeccgoto(application_expr, 164) -> + 39; +yeccgoto(application_expr, 166) -> + 39; +yeccgoto(application_expr, 171) -> + 39; +yeccgoto(application_expr, 203) -> + 39; +yeccgoto(application_expr, 211) -> + 39; +yeccgoto(application_expr, 214) -> + 39; +yeccgoto(application_expr, 216) -> + 39; +yeccgoto(application_expr, 218) -> + 39; +yeccgoto(application_expr, 226) -> + 39; +yeccgoto(application_expr, 232) -> + 39; +yeccgoto(application_expr, 235) -> + 39; +yeccgoto(application_expr, 257) -> + 39; +yeccgoto(application_expr, 260) -> + 39; +yeccgoto(application_expr, 265) -> + 39; +yeccgoto(arg_list, 202) -> + 204; +yeccgoto(arg_list, 208) -> + 209; +yeccgoto(arg_list, 227) -> + 228; +yeccgoto(arg_list, 229) -> + 230; +yeccgoto(atomic_constant, 126) -> + 132; +yeccgoto(atomic_constant, 129) -> + 132; +yeccgoto(atomic_constant, 142) -> + 132; +yeccgoto(atomic_constant, 147) -> + 132; +yeccgoto(atomic_constant, 151) -> + 132; +yeccgoto(atomic_constant, 154) -> + 132; +yeccgoto(atomic_literal, 33) -> + 42; +yeccgoto(atomic_literal, 35) -> + 42; +yeccgoto(atomic_literal, 36) -> + 42; +yeccgoto(atomic_literal, 37) -> + 42; +yeccgoto(atomic_literal, 40) -> + 42; +yeccgoto(atomic_literal, 44) -> + 42; +yeccgoto(atomic_literal, 46) -> + 42; +yeccgoto(atomic_literal, 48) -> + 42; +yeccgoto(atomic_literal, 52) -> + 42; +yeccgoto(atomic_literal, 65) -> + 105; +yeccgoto(atomic_literal, 70) -> + 42; +yeccgoto(atomic_literal, 74) -> + 42; +yeccgoto(atomic_literal, 79) -> + 42; +yeccgoto(atomic_literal, 86) -> + 42; +yeccgoto(atomic_literal, 90) -> + 42; +yeccgoto(atomic_literal, 96) -> + 105; +yeccgoto(atomic_literal, 97) -> + 105; +yeccgoto(atomic_literal, 98) -> + 105; +yeccgoto(atomic_literal, 99) -> + 42; +yeccgoto(atomic_literal, 100) -> + 105; +yeccgoto(atomic_literal, 114) -> + 105; +yeccgoto(atomic_literal, 115) -> + 105; +yeccgoto(atomic_literal, 120) -> + 105; +yeccgoto(atomic_literal, 162) -> + 105; +yeccgoto(atomic_literal, 164) -> + 42; +yeccgoto(atomic_literal, 166) -> + 42; +yeccgoto(atomic_literal, 171) -> + 42; +yeccgoto(atomic_literal, 174) -> + 105; +yeccgoto(atomic_literal, 177) -> + 105; +yeccgoto(atomic_literal, 200) -> + 105; +yeccgoto(atomic_literal, 203) -> + 42; +yeccgoto(atomic_literal, 211) -> + 42; +yeccgoto(atomic_literal, 214) -> + 42; +yeccgoto(atomic_literal, 216) -> + 42; +yeccgoto(atomic_literal, 218) -> + 42; +yeccgoto(atomic_literal, 222) -> + 105; +yeccgoto(atomic_literal, 226) -> + 42; +yeccgoto(atomic_literal, 232) -> + 42; +yeccgoto(atomic_literal, 235) -> + 42; +yeccgoto(atomic_literal, 257) -> + 42; +yeccgoto(atomic_literal, 260) -> + 42; +yeccgoto(atomic_literal, 265) -> + 42; +yeccgoto(atomic_literal, 284) -> + 286; +yeccgoto(atomic_literal, 285) -> + 286; +yeccgoto(atomic_literal, 290) -> + 286; +yeccgoto(atomic_literal, 295) -> + 286; +yeccgoto(atomic_literal, 298) -> + 286; +yeccgoto(atomic_literal, 301) -> + 286; +yeccgoto(atomic_pattern, 65) -> + 106; +yeccgoto(atomic_pattern, 96) -> + 106; +yeccgoto(atomic_pattern, 97) -> + 106; +yeccgoto(atomic_pattern, 98) -> + 106; +yeccgoto(atomic_pattern, 100) -> + 106; +yeccgoto(atomic_pattern, 114) -> + 106; +yeccgoto(atomic_pattern, 115) -> + 106; +yeccgoto(atomic_pattern, 120) -> + 106; +yeccgoto(atomic_pattern, 162) -> + 106; +yeccgoto(atomic_pattern, 174) -> + 106; +yeccgoto(atomic_pattern, 177) -> + 106; +yeccgoto(atomic_pattern, 200) -> + 106; +yeccgoto(atomic_pattern, 222) -> + 106; +yeccgoto(attribute, 276) -> + 279; +yeccgoto(attribute, 282) -> + 279; +yeccgoto(attribute_list, 276) -> + 280; +yeccgoto(attribute_list, 282) -> + 283; +yeccgoto(binary, 33) -> + 43; +yeccgoto(binary, 35) -> + 43; +yeccgoto(binary, 36) -> + 43; +yeccgoto(binary, 37) -> + 43; +yeccgoto(binary, 40) -> + 43; +yeccgoto(binary, 44) -> + 43; +yeccgoto(binary, 46) -> + 43; +yeccgoto(binary, 48) -> + 43; +yeccgoto(binary, 52) -> + 43; +yeccgoto(binary, 70) -> + 43; +yeccgoto(binary, 74) -> + 43; +yeccgoto(binary, 79) -> + 43; +yeccgoto(binary, 86) -> + 43; +yeccgoto(binary, 90) -> + 43; +yeccgoto(binary, 99) -> + 43; +yeccgoto(binary, 164) -> + 43; +yeccgoto(binary, 166) -> + 43; +yeccgoto(binary, 171) -> + 43; +yeccgoto(binary, 203) -> + 43; +yeccgoto(binary, 211) -> + 43; +yeccgoto(binary, 214) -> + 43; +yeccgoto(binary, 216) -> + 43; +yeccgoto(binary, 218) -> + 43; +yeccgoto(binary, 226) -> + 43; +yeccgoto(binary, 232) -> + 43; +yeccgoto(binary, 235) -> + 43; +yeccgoto(binary, 257) -> + 43; +yeccgoto(binary, 260) -> + 43; +yeccgoto(binary, 265) -> + 43; +yeccgoto(binary_pattern, 65) -> + 107; +yeccgoto(binary_pattern, 96) -> + 107; +yeccgoto(binary_pattern, 97) -> + 107; +yeccgoto(binary_pattern, 98) -> + 107; +yeccgoto(binary_pattern, 100) -> + 107; +yeccgoto(binary_pattern, 114) -> + 107; +yeccgoto(binary_pattern, 115) -> + 107; +yeccgoto(binary_pattern, 120) -> + 107; +yeccgoto(binary_pattern, 162) -> + 107; +yeccgoto(binary_pattern, 174) -> + 107; +yeccgoto(binary_pattern, 177) -> + 107; +yeccgoto(binary_pattern, 200) -> + 107; +yeccgoto(binary_pattern, 222) -> + 107; +yeccgoto(call_expr, 33) -> + 45; +yeccgoto(call_expr, 35) -> + 45; +yeccgoto(call_expr, 36) -> + 45; +yeccgoto(call_expr, 37) -> + 45; +yeccgoto(call_expr, 40) -> + 45; +yeccgoto(call_expr, 44) -> + 45; +yeccgoto(call_expr, 46) -> + 45; +yeccgoto(call_expr, 48) -> + 45; +yeccgoto(call_expr, 52) -> + 45; +yeccgoto(call_expr, 70) -> + 45; +yeccgoto(call_expr, 74) -> + 45; +yeccgoto(call_expr, 79) -> + 45; +yeccgoto(call_expr, 86) -> + 45; +yeccgoto(call_expr, 90) -> + 45; +yeccgoto(call_expr, 99) -> + 45; +yeccgoto(call_expr, 164) -> + 45; +yeccgoto(call_expr, 166) -> + 45; +yeccgoto(call_expr, 171) -> + 45; +yeccgoto(call_expr, 203) -> + 45; +yeccgoto(call_expr, 211) -> + 45; +yeccgoto(call_expr, 214) -> + 45; +yeccgoto(call_expr, 216) -> + 45; +yeccgoto(call_expr, 218) -> + 45; +yeccgoto(call_expr, 226) -> + 45; +yeccgoto(call_expr, 232) -> + 45; +yeccgoto(call_expr, 235) -> + 45; +yeccgoto(call_expr, 257) -> + 45; +yeccgoto(call_expr, 260) -> + 45; +yeccgoto(call_expr, 265) -> + 45; +yeccgoto(case_expr, 33) -> + 47; +yeccgoto(case_expr, 35) -> + 47; +yeccgoto(case_expr, 36) -> + 47; +yeccgoto(case_expr, 37) -> + 47; +yeccgoto(case_expr, 40) -> + 47; +yeccgoto(case_expr, 44) -> + 47; +yeccgoto(case_expr, 46) -> + 47; +yeccgoto(case_expr, 48) -> + 47; +yeccgoto(case_expr, 52) -> + 47; +yeccgoto(case_expr, 70) -> + 47; +yeccgoto(case_expr, 74) -> + 47; +yeccgoto(case_expr, 79) -> + 47; +yeccgoto(case_expr, 86) -> + 47; +yeccgoto(case_expr, 90) -> + 47; +yeccgoto(case_expr, 99) -> + 47; +yeccgoto(case_expr, 164) -> + 47; +yeccgoto(case_expr, 166) -> + 47; +yeccgoto(case_expr, 171) -> + 47; +yeccgoto(case_expr, 203) -> + 47; +yeccgoto(case_expr, 211) -> + 47; +yeccgoto(case_expr, 214) -> + 47; +yeccgoto(case_expr, 216) -> + 47; +yeccgoto(case_expr, 218) -> + 47; +yeccgoto(case_expr, 226) -> + 47; +yeccgoto(case_expr, 232) -> + 47; +yeccgoto(case_expr, 235) -> + 47; +yeccgoto(case_expr, 257) -> + 47; +yeccgoto(case_expr, 260) -> + 47; +yeccgoto(case_expr, 265) -> + 47; +yeccgoto(catch_expr, 33) -> + 49; +yeccgoto(catch_expr, 35) -> + 49; +yeccgoto(catch_expr, 36) -> + 49; +yeccgoto(catch_expr, 37) -> + 49; +yeccgoto(catch_expr, 40) -> + 49; +yeccgoto(catch_expr, 44) -> + 49; +yeccgoto(catch_expr, 46) -> + 49; +yeccgoto(catch_expr, 48) -> + 49; +yeccgoto(catch_expr, 52) -> + 49; +yeccgoto(catch_expr, 70) -> + 49; +yeccgoto(catch_expr, 74) -> + 49; +yeccgoto(catch_expr, 79) -> + 49; +yeccgoto(catch_expr, 86) -> + 49; +yeccgoto(catch_expr, 90) -> + 49; +yeccgoto(catch_expr, 99) -> + 49; +yeccgoto(catch_expr, 164) -> + 49; +yeccgoto(catch_expr, 166) -> + 49; +yeccgoto(catch_expr, 171) -> + 49; +yeccgoto(catch_expr, 203) -> + 49; +yeccgoto(catch_expr, 211) -> + 49; +yeccgoto(catch_expr, 214) -> + 49; +yeccgoto(catch_expr, 216) -> + 49; +yeccgoto(catch_expr, 218) -> + 49; +yeccgoto(catch_expr, 226) -> + 49; +yeccgoto(catch_expr, 232) -> + 49; +yeccgoto(catch_expr, 235) -> + 49; +yeccgoto(catch_expr, 257) -> + 49; +yeccgoto(catch_expr, 260) -> + 49; +yeccgoto(catch_expr, 265) -> + 49; +yeccgoto(clause, 65) -> + 108; +yeccgoto(clause, 96) -> + 185; +yeccgoto(clause, 100) -> + 108; +yeccgoto(clause, 222) -> + 108; +yeccgoto(clause_pattern, 65) -> + 109; +yeccgoto(clause_pattern, 96) -> + 109; +yeccgoto(clause_pattern, 100) -> + 109; +yeccgoto(clause_pattern, 222) -> + 109; +yeccgoto(cons, 33) -> + 51; +yeccgoto(cons, 35) -> + 51; +yeccgoto(cons, 36) -> + 51; +yeccgoto(cons, 37) -> + 51; +yeccgoto(cons, 40) -> + 51; +yeccgoto(cons, 44) -> + 51; +yeccgoto(cons, 46) -> + 51; +yeccgoto(cons, 48) -> + 51; +yeccgoto(cons, 52) -> + 51; +yeccgoto(cons, 70) -> + 51; +yeccgoto(cons, 74) -> + 51; +yeccgoto(cons, 79) -> + 51; +yeccgoto(cons, 86) -> + 51; +yeccgoto(cons, 90) -> + 51; +yeccgoto(cons, 99) -> + 51; +yeccgoto(cons, 164) -> + 51; +yeccgoto(cons, 166) -> + 51; +yeccgoto(cons, 171) -> + 51; +yeccgoto(cons, 203) -> + 51; +yeccgoto(cons, 211) -> + 51; +yeccgoto(cons, 214) -> + 51; +yeccgoto(cons, 216) -> + 51; +yeccgoto(cons, 218) -> + 51; +yeccgoto(cons, 226) -> + 51; +yeccgoto(cons, 232) -> + 51; +yeccgoto(cons, 235) -> + 51; +yeccgoto(cons, 257) -> + 51; +yeccgoto(cons, 260) -> + 51; +yeccgoto(cons, 265) -> + 51; +yeccgoto(cons_constant, 126) -> + 134; +yeccgoto(cons_constant, 129) -> + 134; +yeccgoto(cons_constant, 142) -> + 134; +yeccgoto(cons_constant, 147) -> + 134; +yeccgoto(cons_constant, 151) -> + 134; +yeccgoto(cons_constant, 154) -> + 134; +yeccgoto(cons_literal, 284) -> + 287; +yeccgoto(cons_literal, 285) -> + 287; +yeccgoto(cons_literal, 290) -> + 287; +yeccgoto(cons_literal, 295) -> + 287; +yeccgoto(cons_literal, 298) -> + 287; +yeccgoto(cons_literal, 301) -> + 287; +yeccgoto(cons_pattern, 65) -> + 110; +yeccgoto(cons_pattern, 96) -> + 110; +yeccgoto(cons_pattern, 97) -> + 110; +yeccgoto(cons_pattern, 98) -> + 110; +yeccgoto(cons_pattern, 100) -> + 110; +yeccgoto(cons_pattern, 114) -> + 110; +yeccgoto(cons_pattern, 115) -> + 110; +yeccgoto(cons_pattern, 120) -> + 110; +yeccgoto(cons_pattern, 162) -> + 110; +yeccgoto(cons_pattern, 174) -> + 110; +yeccgoto(cons_pattern, 177) -> + 110; +yeccgoto(cons_pattern, 200) -> + 110; +yeccgoto(cons_pattern, 222) -> + 110; +yeccgoto(constant, 126) -> + 135; +yeccgoto(constant, 129) -> + 150; +yeccgoto(constant, 142) -> + 135; +yeccgoto(constant, 147) -> + 135; +yeccgoto(constant, 151) -> + 157; +yeccgoto(constant, 154) -> + 155; +yeccgoto(constants, 126) -> + 136; +yeccgoto(constants, 142) -> + 143; +yeccgoto(constants, 147) -> + 148; +yeccgoto(exported_name, 5) -> + 307; +yeccgoto(exported_name, 311) -> + 307; +yeccgoto(exported_names, 5) -> + 308; +yeccgoto(exported_names, 311) -> + 312; +yeccgoto(expression, 33) -> + 53; +yeccgoto(expression, 35) -> + 243; +yeccgoto(expression, 36) -> + 53; +yeccgoto(expression, 37) -> + 53; +yeccgoto(expression, 40) -> + 53; +yeccgoto(expression, 44) -> + 53; +yeccgoto(expression, 46) -> + 53; +yeccgoto(expression, 48) -> + 53; +yeccgoto(expression, 52) -> + 53; +yeccgoto(expression, 70) -> + 53; +yeccgoto(expression, 74) -> + 53; +yeccgoto(expression, 79) -> + 53; +yeccgoto(expression, 86) -> + 53; +yeccgoto(expression, 90) -> + 53; +yeccgoto(expression, 99) -> + 53; +yeccgoto(expression, 164) -> + 53; +yeccgoto(expression, 166) -> + 53; +yeccgoto(expression, 171) -> + 53; +yeccgoto(expression, 203) -> + 53; +yeccgoto(expression, 211) -> + 53; +yeccgoto(expression, 214) -> + 53; +yeccgoto(expression, 216) -> + 53; +yeccgoto(expression, 218) -> + 53; +yeccgoto(expression, 226) -> + 53; +yeccgoto(expression, 232) -> + 53; +yeccgoto(expression, 235) -> + 53; +yeccgoto(expression, 257) -> + 53; +yeccgoto(expression, 260) -> + 53; +yeccgoto(expression, 265) -> + 53; +yeccgoto(fun_expr, 20) -> + 24; +yeccgoto(fun_expr, 21) -> + 268; +yeccgoto(fun_expr, 33) -> + 55; +yeccgoto(fun_expr, 35) -> + 55; +yeccgoto(fun_expr, 36) -> + 55; +yeccgoto(fun_expr, 37) -> + 55; +yeccgoto(fun_expr, 40) -> + 55; +yeccgoto(fun_expr, 44) -> + 55; +yeccgoto(fun_expr, 46) -> + 55; +yeccgoto(fun_expr, 48) -> + 55; +yeccgoto(fun_expr, 52) -> + 55; +yeccgoto(fun_expr, 70) -> + 55; +yeccgoto(fun_expr, 74) -> + 55; +yeccgoto(fun_expr, 79) -> + 55; +yeccgoto(fun_expr, 86) -> + 55; +yeccgoto(fun_expr, 90) -> + 55; +yeccgoto(fun_expr, 99) -> + 55; +yeccgoto(fun_expr, 164) -> + 55; +yeccgoto(fun_expr, 166) -> + 55; +yeccgoto(fun_expr, 171) -> + 55; +yeccgoto(fun_expr, 203) -> + 55; +yeccgoto(fun_expr, 211) -> + 55; +yeccgoto(fun_expr, 214) -> + 55; +yeccgoto(fun_expr, 216) -> + 55; +yeccgoto(fun_expr, 218) -> + 55; +yeccgoto(fun_expr, 226) -> + 55; +yeccgoto(fun_expr, 232) -> + 55; +yeccgoto(fun_expr, 235) -> + 55; +yeccgoto(fun_expr, 257) -> + 55; +yeccgoto(fun_expr, 260) -> + 55; +yeccgoto(fun_expr, 265) -> + 55; +yeccgoto(function_definition, 8) -> + 12; +yeccgoto(function_definition, 12) -> + 12; +yeccgoto(function_definition, 60) -> + 12; +yeccgoto(function_definition, 316) -> + 12; +yeccgoto(function_definitions, 8) -> + 13; +yeccgoto(function_definitions, 12) -> + 17; +yeccgoto(function_definitions, 60) -> + 210; +yeccgoto(function_definitions, 316) -> + 13; +yeccgoto(function_name, 5) -> + 309; +yeccgoto(function_name, 8) -> + 14; +yeccgoto(function_name, 9) -> + 272; +yeccgoto(function_name, 12) -> + 14; +yeccgoto(function_name, 33) -> + 56; +yeccgoto(function_name, 35) -> + 56; +yeccgoto(function_name, 36) -> + 56; +yeccgoto(function_name, 37) -> + 56; +yeccgoto(function_name, 40) -> + 56; +yeccgoto(function_name, 44) -> + 56; +yeccgoto(function_name, 46) -> + 56; +yeccgoto(function_name, 48) -> + 56; +yeccgoto(function_name, 52) -> + 56; +yeccgoto(function_name, 60) -> + 14; +yeccgoto(function_name, 70) -> + 56; +yeccgoto(function_name, 74) -> + 56; +yeccgoto(function_name, 79) -> + 56; +yeccgoto(function_name, 86) -> + 56; +yeccgoto(function_name, 90) -> + 56; +yeccgoto(function_name, 99) -> + 56; +yeccgoto(function_name, 164) -> + 56; +yeccgoto(function_name, 166) -> + 56; +yeccgoto(function_name, 171) -> + 56; +yeccgoto(function_name, 203) -> + 56; +yeccgoto(function_name, 211) -> + 56; +yeccgoto(function_name, 214) -> + 56; +yeccgoto(function_name, 216) -> + 56; +yeccgoto(function_name, 218) -> + 56; +yeccgoto(function_name, 226) -> + 56; +yeccgoto(function_name, 232) -> + 56; +yeccgoto(function_name, 235) -> + 56; +yeccgoto(function_name, 257) -> + 56; +yeccgoto(function_name, 260) -> + 56; +yeccgoto(function_name, 265) -> + 56; +yeccgoto(function_name, 311) -> + 309; +yeccgoto(function_name, 316) -> + 14; +yeccgoto(let_expr, 33) -> + 59; +yeccgoto(let_expr, 35) -> + 59; +yeccgoto(let_expr, 36) -> + 59; +yeccgoto(let_expr, 37) -> + 59; +yeccgoto(let_expr, 40) -> + 59; +yeccgoto(let_expr, 44) -> + 59; +yeccgoto(let_expr, 46) -> + 59; +yeccgoto(let_expr, 48) -> + 59; +yeccgoto(let_expr, 52) -> + 59; +yeccgoto(let_expr, 70) -> + 59; +yeccgoto(let_expr, 74) -> + 59; +yeccgoto(let_expr, 79) -> + 59; +yeccgoto(let_expr, 86) -> + 59; +yeccgoto(let_expr, 90) -> + 59; +yeccgoto(let_expr, 99) -> + 59; +yeccgoto(let_expr, 164) -> + 59; +yeccgoto(let_expr, 166) -> + 59; +yeccgoto(let_expr, 171) -> + 59; +yeccgoto(let_expr, 203) -> + 59; +yeccgoto(let_expr, 211) -> + 59; +yeccgoto(let_expr, 214) -> + 59; +yeccgoto(let_expr, 216) -> + 59; +yeccgoto(let_expr, 218) -> + 59; +yeccgoto(let_expr, 226) -> + 59; +yeccgoto(let_expr, 232) -> + 59; +yeccgoto(let_expr, 235) -> + 59; +yeccgoto(let_expr, 257) -> + 59; +yeccgoto(let_expr, 260) -> + 59; +yeccgoto(let_expr, 265) -> + 59; +yeccgoto(let_vars, 58) -> + 213; +yeccgoto(let_vars, 82) -> + 85; +yeccgoto(let_vars, 88) -> + 89; +yeccgoto(letrec_expr, 33) -> + 61; +yeccgoto(letrec_expr, 35) -> + 61; +yeccgoto(letrec_expr, 36) -> + 61; +yeccgoto(letrec_expr, 37) -> + 61; +yeccgoto(letrec_expr, 40) -> + 61; +yeccgoto(letrec_expr, 44) -> + 61; +yeccgoto(letrec_expr, 46) -> + 61; +yeccgoto(letrec_expr, 48) -> + 61; +yeccgoto(letrec_expr, 52) -> + 61; +yeccgoto(letrec_expr, 70) -> + 61; +yeccgoto(letrec_expr, 74) -> + 61; +yeccgoto(letrec_expr, 79) -> + 61; +yeccgoto(letrec_expr, 86) -> + 61; +yeccgoto(letrec_expr, 90) -> + 61; +yeccgoto(letrec_expr, 99) -> + 61; +yeccgoto(letrec_expr, 164) -> + 61; +yeccgoto(letrec_expr, 166) -> + 61; +yeccgoto(letrec_expr, 171) -> + 61; +yeccgoto(letrec_expr, 203) -> + 61; +yeccgoto(letrec_expr, 211) -> + 61; +yeccgoto(letrec_expr, 214) -> + 61; +yeccgoto(letrec_expr, 216) -> + 61; +yeccgoto(letrec_expr, 218) -> + 61; +yeccgoto(letrec_expr, 226) -> + 61; +yeccgoto(letrec_expr, 232) -> + 61; +yeccgoto(letrec_expr, 235) -> + 61; +yeccgoto(letrec_expr, 257) -> + 61; +yeccgoto(letrec_expr, 260) -> + 61; +yeccgoto(letrec_expr, 265) -> + 61; +yeccgoto(literal, 284) -> + 288; +yeccgoto(literal, 285) -> + 297; +yeccgoto(literal, 290) -> + 291; +yeccgoto(literal, 295) -> + 291; +yeccgoto(literal, 298) -> + 304; +yeccgoto(literal, 301) -> + 302; +yeccgoto(literals, 290) -> + 292; +yeccgoto(literals, 295) -> + 296; +yeccgoto(module_attribute, 6) -> + 8; +yeccgoto(module_attribute, 315) -> + 316; +yeccgoto(module_definition, 0) -> + 3; +yeccgoto(module_defs, 8) -> + 15; +yeccgoto(module_defs, 316) -> + 317; +yeccgoto(module_export, 4) -> + 6; +yeccgoto(module_export, 314) -> + 315; +yeccgoto(nil, 33) -> + 62; +yeccgoto(nil, 35) -> + 62; +yeccgoto(nil, 36) -> + 62; +yeccgoto(nil, 37) -> + 62; +yeccgoto(nil, 40) -> + 62; +yeccgoto(nil, 44) -> + 62; +yeccgoto(nil, 46) -> + 62; +yeccgoto(nil, 48) -> + 62; +yeccgoto(nil, 52) -> + 62; +yeccgoto(nil, 65) -> + 62; +yeccgoto(nil, 70) -> + 62; +yeccgoto(nil, 74) -> + 62; +yeccgoto(nil, 79) -> + 62; +yeccgoto(nil, 86) -> + 62; +yeccgoto(nil, 90) -> + 62; +yeccgoto(nil, 96) -> + 62; +yeccgoto(nil, 97) -> + 62; +yeccgoto(nil, 98) -> + 62; +yeccgoto(nil, 99) -> + 62; +yeccgoto(nil, 100) -> + 62; +yeccgoto(nil, 114) -> + 62; +yeccgoto(nil, 115) -> + 62; +yeccgoto(nil, 120) -> + 62; +yeccgoto(nil, 126) -> + 139; +yeccgoto(nil, 129) -> + 139; +yeccgoto(nil, 142) -> + 139; +yeccgoto(nil, 147) -> + 139; +yeccgoto(nil, 151) -> + 139; +yeccgoto(nil, 154) -> + 139; +yeccgoto(nil, 162) -> + 62; +yeccgoto(nil, 164) -> + 62; +yeccgoto(nil, 166) -> + 62; +yeccgoto(nil, 171) -> + 62; +yeccgoto(nil, 174) -> + 62; +yeccgoto(nil, 177) -> + 62; +yeccgoto(nil, 200) -> + 62; +yeccgoto(nil, 203) -> + 62; +yeccgoto(nil, 211) -> + 62; +yeccgoto(nil, 214) -> + 62; +yeccgoto(nil, 216) -> + 62; +yeccgoto(nil, 218) -> + 62; +yeccgoto(nil, 222) -> + 62; +yeccgoto(nil, 226) -> + 62; +yeccgoto(nil, 232) -> + 62; +yeccgoto(nil, 235) -> + 62; +yeccgoto(nil, 257) -> + 62; +yeccgoto(nil, 260) -> + 62; +yeccgoto(nil, 265) -> + 62; +yeccgoto(nil, 284) -> + 62; +yeccgoto(nil, 285) -> + 62; +yeccgoto(nil, 290) -> + 62; +yeccgoto(nil, 295) -> + 62; +yeccgoto(nil, 298) -> + 62; +yeccgoto(nil, 301) -> + 62; +yeccgoto(other_pattern, 65) -> + 111; +yeccgoto(other_pattern, 96) -> + 186; +yeccgoto(other_pattern, 97) -> + 111; +yeccgoto(other_pattern, 98) -> + 111; +yeccgoto(other_pattern, 100) -> + 111; +yeccgoto(other_pattern, 114) -> + 111; +yeccgoto(other_pattern, 115) -> + 123; +yeccgoto(other_pattern, 120) -> + 111; +yeccgoto(other_pattern, 162) -> + 111; +yeccgoto(other_pattern, 174) -> + 111; +yeccgoto(other_pattern, 177) -> + 111; +yeccgoto(other_pattern, 200) -> + 111; +yeccgoto(other_pattern, 222) -> + 111; +yeccgoto(primop_expr, 33) -> + 64; +yeccgoto(primop_expr, 35) -> + 64; +yeccgoto(primop_expr, 36) -> + 64; +yeccgoto(primop_expr, 37) -> + 64; +yeccgoto(primop_expr, 40) -> + 64; +yeccgoto(primop_expr, 44) -> + 64; +yeccgoto(primop_expr, 46) -> + 64; +yeccgoto(primop_expr, 48) -> + 64; +yeccgoto(primop_expr, 52) -> + 64; +yeccgoto(primop_expr, 70) -> + 64; +yeccgoto(primop_expr, 74) -> + 64; +yeccgoto(primop_expr, 79) -> + 64; +yeccgoto(primop_expr, 86) -> + 64; +yeccgoto(primop_expr, 90) -> + 64; +yeccgoto(primop_expr, 99) -> + 64; +yeccgoto(primop_expr, 164) -> + 64; +yeccgoto(primop_expr, 166) -> + 64; +yeccgoto(primop_expr, 171) -> + 64; +yeccgoto(primop_expr, 203) -> + 64; +yeccgoto(primop_expr, 211) -> + 64; +yeccgoto(primop_expr, 214) -> + 64; +yeccgoto(primop_expr, 216) -> + 64; +yeccgoto(primop_expr, 218) -> + 64; +yeccgoto(primop_expr, 226) -> + 64; +yeccgoto(primop_expr, 232) -> + 64; +yeccgoto(primop_expr, 235) -> + 64; +yeccgoto(primop_expr, 257) -> + 64; +yeccgoto(primop_expr, 260) -> + 64; +yeccgoto(primop_expr, 265) -> + 64; +yeccgoto(receive_expr, 33) -> + 66; +yeccgoto(receive_expr, 35) -> + 66; +yeccgoto(receive_expr, 36) -> + 66; +yeccgoto(receive_expr, 37) -> + 66; +yeccgoto(receive_expr, 40) -> + 66; +yeccgoto(receive_expr, 44) -> + 66; +yeccgoto(receive_expr, 46) -> + 66; +yeccgoto(receive_expr, 48) -> + 66; +yeccgoto(receive_expr, 52) -> + 66; +yeccgoto(receive_expr, 70) -> + 66; +yeccgoto(receive_expr, 74) -> + 66; +yeccgoto(receive_expr, 79) -> + 66; +yeccgoto(receive_expr, 86) -> + 66; +yeccgoto(receive_expr, 90) -> + 66; +yeccgoto(receive_expr, 99) -> + 66; +yeccgoto(receive_expr, 164) -> + 66; +yeccgoto(receive_expr, 166) -> + 66; +yeccgoto(receive_expr, 171) -> + 66; +yeccgoto(receive_expr, 203) -> + 66; +yeccgoto(receive_expr, 211) -> + 66; +yeccgoto(receive_expr, 214) -> + 66; +yeccgoto(receive_expr, 216) -> + 66; +yeccgoto(receive_expr, 218) -> + 66; +yeccgoto(receive_expr, 226) -> + 66; +yeccgoto(receive_expr, 232) -> + 66; +yeccgoto(receive_expr, 235) -> + 66; +yeccgoto(receive_expr, 257) -> + 66; +yeccgoto(receive_expr, 260) -> + 66; +yeccgoto(receive_expr, 265) -> + 66; +yeccgoto(segment, 247) -> + 249; +yeccgoto(segment, 255) -> + 249; +yeccgoto(segment_pattern, 190) -> + 192; +yeccgoto(segment_pattern, 198) -> + 192; +yeccgoto(segment_patterns, 190) -> + 193; +yeccgoto(segment_patterns, 198) -> + 199; +yeccgoto(segments, 247) -> + 250; +yeccgoto(segments, 255) -> + 256; +yeccgoto(sequence, 33) -> + 67; +yeccgoto(sequence, 35) -> + 67; +yeccgoto(sequence, 36) -> + 67; +yeccgoto(sequence, 37) -> + 67; +yeccgoto(sequence, 40) -> + 67; +yeccgoto(sequence, 44) -> + 67; +yeccgoto(sequence, 46) -> + 67; +yeccgoto(sequence, 48) -> + 67; +yeccgoto(sequence, 52) -> + 67; +yeccgoto(sequence, 70) -> + 67; +yeccgoto(sequence, 74) -> + 67; +yeccgoto(sequence, 79) -> + 67; +yeccgoto(sequence, 86) -> + 67; +yeccgoto(sequence, 90) -> + 67; +yeccgoto(sequence, 99) -> + 67; +yeccgoto(sequence, 164) -> + 67; +yeccgoto(sequence, 166) -> + 67; +yeccgoto(sequence, 171) -> + 67; +yeccgoto(sequence, 203) -> + 67; +yeccgoto(sequence, 211) -> + 67; +yeccgoto(sequence, 214) -> + 67; +yeccgoto(sequence, 216) -> + 67; +yeccgoto(sequence, 218) -> + 67; +yeccgoto(sequence, 226) -> + 67; +yeccgoto(sequence, 232) -> + 67; +yeccgoto(sequence, 235) -> + 67; +yeccgoto(sequence, 257) -> + 67; +yeccgoto(sequence, 260) -> + 67; +yeccgoto(sequence, 265) -> + 67; +yeccgoto(single_expression, 33) -> + 68; +yeccgoto(single_expression, 35) -> + 68; +yeccgoto(single_expression, 36) -> + 68; +yeccgoto(single_expression, 37) -> + 68; +yeccgoto(single_expression, 40) -> + 68; +yeccgoto(single_expression, 44) -> + 68; +yeccgoto(single_expression, 46) -> + 68; +yeccgoto(single_expression, 48) -> + 68; +yeccgoto(single_expression, 52) -> + 68; +yeccgoto(single_expression, 70) -> + 68; +yeccgoto(single_expression, 74) -> + 68; +yeccgoto(single_expression, 79) -> + 68; +yeccgoto(single_expression, 86) -> + 68; +yeccgoto(single_expression, 90) -> + 68; +yeccgoto(single_expression, 99) -> + 68; +yeccgoto(single_expression, 164) -> + 68; +yeccgoto(single_expression, 166) -> + 68; +yeccgoto(single_expression, 171) -> + 68; +yeccgoto(single_expression, 203) -> + 68; +yeccgoto(single_expression, 211) -> + 68; +yeccgoto(single_expression, 214) -> + 68; +yeccgoto(single_expression, 216) -> + 68; +yeccgoto(single_expression, 218) -> + 68; +yeccgoto(single_expression, 226) -> + 68; +yeccgoto(single_expression, 232) -> + 68; +yeccgoto(single_expression, 235) -> + 68; +yeccgoto(single_expression, 257) -> + 68; +yeccgoto(single_expression, 260) -> + 68; +yeccgoto(single_expression, 265) -> + 68; +yeccgoto(tail, 231) -> + 234; +yeccgoto(tail, 238) -> + 239; +yeccgoto(tail_constant, 150) -> + 153; +yeccgoto(tail_constant, 157) -> + 158; +yeccgoto(tail_literal, 297) -> + 300; +yeccgoto(tail_literal, 304) -> + 305; +yeccgoto(tail_pattern, 173) -> + 176; +yeccgoto(tail_pattern, 180) -> + 181; +yeccgoto(timeout, 65) -> + 112; +yeccgoto(timeout, 101) -> + 168; +yeccgoto(try_expr, 33) -> + 71; +yeccgoto(try_expr, 35) -> + 71; +yeccgoto(try_expr, 36) -> + 71; +yeccgoto(try_expr, 37) -> + 71; +yeccgoto(try_expr, 40) -> + 71; +yeccgoto(try_expr, 44) -> + 71; +yeccgoto(try_expr, 46) -> + 71; +yeccgoto(try_expr, 48) -> + 71; +yeccgoto(try_expr, 52) -> + 71; +yeccgoto(try_expr, 70) -> + 71; +yeccgoto(try_expr, 74) -> + 71; +yeccgoto(try_expr, 79) -> + 71; +yeccgoto(try_expr, 86) -> + 71; +yeccgoto(try_expr, 90) -> + 71; +yeccgoto(try_expr, 99) -> + 71; +yeccgoto(try_expr, 164) -> + 71; +yeccgoto(try_expr, 166) -> + 71; +yeccgoto(try_expr, 171) -> + 71; +yeccgoto(try_expr, 203) -> + 71; +yeccgoto(try_expr, 211) -> + 71; +yeccgoto(try_expr, 214) -> + 71; +yeccgoto(try_expr, 216) -> + 71; +yeccgoto(try_expr, 218) -> + 71; +yeccgoto(try_expr, 226) -> + 71; +yeccgoto(try_expr, 232) -> + 71; +yeccgoto(try_expr, 235) -> + 71; +yeccgoto(try_expr, 257) -> + 71; +yeccgoto(try_expr, 260) -> + 71; +yeccgoto(try_expr, 265) -> + 71; +yeccgoto(tuple, 33) -> + 72; +yeccgoto(tuple, 35) -> + 72; +yeccgoto(tuple, 36) -> + 72; +yeccgoto(tuple, 37) -> + 72; +yeccgoto(tuple, 40) -> + 72; +yeccgoto(tuple, 44) -> + 72; +yeccgoto(tuple, 46) -> + 72; +yeccgoto(tuple, 48) -> + 72; +yeccgoto(tuple, 52) -> + 72; +yeccgoto(tuple, 70) -> + 72; +yeccgoto(tuple, 74) -> + 72; +yeccgoto(tuple, 79) -> + 72; +yeccgoto(tuple, 86) -> + 72; +yeccgoto(tuple, 90) -> + 72; +yeccgoto(tuple, 99) -> + 72; +yeccgoto(tuple, 164) -> + 72; +yeccgoto(tuple, 166) -> + 72; +yeccgoto(tuple, 171) -> + 72; +yeccgoto(tuple, 203) -> + 72; +yeccgoto(tuple, 211) -> + 72; +yeccgoto(tuple, 214) -> + 72; +yeccgoto(tuple, 216) -> + 72; +yeccgoto(tuple, 218) -> + 72; +yeccgoto(tuple, 226) -> + 72; +yeccgoto(tuple, 232) -> + 72; +yeccgoto(tuple, 235) -> + 72; +yeccgoto(tuple, 257) -> + 72; +yeccgoto(tuple, 260) -> + 72; +yeccgoto(tuple, 265) -> + 72; +yeccgoto(tuple_constant, 126) -> + 141; +yeccgoto(tuple_constant, 129) -> + 141; +yeccgoto(tuple_constant, 142) -> + 141; +yeccgoto(tuple_constant, 147) -> + 141; +yeccgoto(tuple_constant, 151) -> + 141; +yeccgoto(tuple_constant, 154) -> + 141; +yeccgoto(tuple_literal, 284) -> + 289; +yeccgoto(tuple_literal, 285) -> + 289; +yeccgoto(tuple_literal, 290) -> + 289; +yeccgoto(tuple_literal, 295) -> + 289; +yeccgoto(tuple_literal, 298) -> + 289; +yeccgoto(tuple_literal, 301) -> + 289; +yeccgoto(tuple_pattern, 65) -> + 113; +yeccgoto(tuple_pattern, 96) -> + 113; +yeccgoto(tuple_pattern, 97) -> + 113; +yeccgoto(tuple_pattern, 98) -> + 113; +yeccgoto(tuple_pattern, 100) -> + 113; +yeccgoto(tuple_pattern, 114) -> + 113; +yeccgoto(tuple_pattern, 115) -> + 113; +yeccgoto(tuple_pattern, 120) -> + 113; +yeccgoto(tuple_pattern, 162) -> + 113; +yeccgoto(tuple_pattern, 174) -> + 113; +yeccgoto(tuple_pattern, 177) -> + 113; +yeccgoto(tuple_pattern, 200) -> + 113; +yeccgoto(tuple_pattern, 222) -> + 113; +yeccgoto(variable, 25) -> + 31; +yeccgoto(variable, 26) -> + 267; +yeccgoto(variable, 33) -> + 73; +yeccgoto(variable, 35) -> + 73; +yeccgoto(variable, 36) -> + 73; +yeccgoto(variable, 37) -> + 73; +yeccgoto(variable, 40) -> + 73; +yeccgoto(variable, 44) -> + 73; +yeccgoto(variable, 46) -> + 73; +yeccgoto(variable, 48) -> + 73; +yeccgoto(variable, 52) -> + 73; +yeccgoto(variable, 58) -> + 31; +yeccgoto(variable, 65) -> + 31; +yeccgoto(variable, 70) -> + 73; +yeccgoto(variable, 74) -> + 73; +yeccgoto(variable, 79) -> + 73; +yeccgoto(variable, 82) -> + 31; +yeccgoto(variable, 83) -> + 31; +yeccgoto(variable, 86) -> + 73; +yeccgoto(variable, 88) -> + 31; +yeccgoto(variable, 90) -> + 73; +yeccgoto(variable, 96) -> + 124; +yeccgoto(variable, 97) -> + 31; +yeccgoto(variable, 98) -> + 31; +yeccgoto(variable, 99) -> + 73; +yeccgoto(variable, 100) -> + 31; +yeccgoto(variable, 114) -> + 31; +yeccgoto(variable, 115) -> + 124; +yeccgoto(variable, 120) -> + 31; +yeccgoto(variable, 162) -> + 31; +yeccgoto(variable, 164) -> + 73; +yeccgoto(variable, 166) -> + 73; +yeccgoto(variable, 171) -> + 73; +yeccgoto(variable, 174) -> + 31; +yeccgoto(variable, 177) -> + 31; +yeccgoto(variable, 200) -> + 31; +yeccgoto(variable, 203) -> + 73; +yeccgoto(variable, 211) -> + 73; +yeccgoto(variable, 214) -> + 73; +yeccgoto(variable, 216) -> + 73; +yeccgoto(variable, 218) -> + 73; +yeccgoto(variable, 222) -> + 31; +yeccgoto(variable, 226) -> + 73; +yeccgoto(variable, 232) -> + 73; +yeccgoto(variable, 235) -> + 73; +yeccgoto(variable, 257) -> + 73; +yeccgoto(variable, 260) -> + 73; +yeccgoto(variable, 263) -> + 31; +yeccgoto(variable, 265) -> + 73; +yeccgoto(__Symbol, __State) -> + exit({__Symbol, __State, missing_in_goto_table}). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_parse.hrl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_parse.hrl new file mode 100644 index 0000000000..3d60360f47 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_parse.hrl @@ -0,0 +1,111 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: core_parse.hrl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Core Erlang syntax trees as records. + +%% It would be nice to incorporate some generic functions as well but +%% this could make including this file difficult. + +%% Note: the annotation list is *always* the first record field. +%% Thus it is possible to define the macros: +%% -define(get_ann(X), element(2, X)). +%% -define(set_ann(X, Y), setelement(2, X, Y)). + +-record(c_int, {anno=[], val}). % val :: integer() + +-record(c_float, {anno=[], val}). % val :: float() + +-record(c_atom, {anno=[], val}). % val :: atom() + +-record(c_char, {anno=[], val}). % val :: char() + +-record(c_string, {anno=[], val}). % val :: string() + +-record(c_nil, {anno=[]}). + +-record(c_binary, {anno=[], segments}). % segments :: [#ce_bitstr{}] + +-record(c_bitstr, {anno=[],val, % val :: Tree, + size, % size :: Tree, + unit, % unit :: integer(), + type, % type :: atom(), + flags}). % flags :: [atom()], + +-record(c_cons, {anno=[], hd, % hd :: Tree, + tl}). % tl :: Tree + +-record(c_tuple, {anno=[], es}). % es :: [Tree] + +-record(c_var, {anno=[], name}). % name :: integer() | atom() + +-record(c_fname, {anno=[], id, % id :: atom(), + arity}). % arity :: integer() + +-record(c_values, {anno=[], es}). % es :: [Tree] + +-record(c_fun, {anno=[], vars, % vars :: [Tree], + body}). % body :: Tree + +-record(c_seq, {anno=[], arg, % arg :: Tree, + body}). % body :: Tree + +-record(c_let, {anno=[], vars, % vars :: [Tree], + arg, % arg :: Tree, + body}). % body :: Tree + +-record(c_letrec, {anno=[], defs, % defs :: [#ce_def{}], + body}). % body :: Tree + +-record(c_def, {anno=[], name, % name :: Tree, + val}). % val :: Tree, + +-record(c_case, {anno=[], arg, % arg :: Tree, + clauses}). % clauses :: [Tree] + +-record(c_clause, {anno=[], pats, % pats :: [Tree], + guard, % guard :: Tree, + body}). % body :: Tree + +-record(c_alias, {anno=[], var, % var :: Tree, + pat}). % pat :: Tree + +-record(c_receive, {anno=[], clauses, % clauses :: [Tree], + timeout, % timeout :: Tree, + action}). % action :: Tree + +-record(c_apply, {anno=[], op, % op :: Tree, + args}). % args :: [Tree] + +-record(c_call, {anno=[], module, % module :: Tree, + name, % name :: Tree, + args}). % args :: [Tree] + +-record(c_primop, {anno=[], name, % name :: Tree, + args}). % args :: [Tree] + +-record(c_try, {anno=[], arg, % arg :: Tree, + vars, % vars :: [Tree], + body, % body :: Tree + evars, % evars :: [Tree], + handler}). % handler :: Tree + +-record(c_catch, {anno=[], body}). % body :: Tree + +-record(c_module, {anno=[], name, % name :: Tree, + exports, % exports :: [Tree], + attrs, % attrs :: [#ce_def{}], + defs}). % defs :: [#ce_def{}] diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_pp.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_pp.erl new file mode 100644 index 0000000000..2bfbcb85e2 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_pp.erl @@ -0,0 +1,430 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: core_pp.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Core Erlang (naive) prettyprinter + +-module(core_pp). + +-export([format/1]). + +-include("core_parse.hrl"). + +%% ====================================================================== %% +%% format(Node) -> Text +%% Node = coreErlang() +%% Text = string() | [Text] +%% +%% Prettyprint-formats (naively) an abstract Core Erlang syntax +%% tree. + +-record(ctxt, {class = term, + indent = 0, + item_indent = 2, + body_indent = 4, + tab_width = 8, + line = 0}). + +format(Node) -> case catch format(Node, #ctxt{}) of + {'EXIT',_} -> io_lib:format("~p",[Node]); + Other -> Other + end. + +maybe_anno(Node, Fun, Ctxt) -> + As = core_lib:get_anno(Node), + case get_line(As) of + none -> + maybe_anno(Node, Fun, Ctxt, As); + Line -> + if Line > Ctxt#ctxt.line -> + [io_lib:format("%% Line ~w",[Line]), + nl_indent(Ctxt), + maybe_anno(Node, Fun, Ctxt#ctxt{line = Line}, As) + ]; + true -> + maybe_anno(Node, Fun, Ctxt, As) + end + end. + +maybe_anno(Node, Fun, Ctxt, As) -> + case strip_line(As) of + [] -> + Fun(Node, Ctxt); + List -> + Ctxt1 = add_indent(Ctxt, 2), + Ctxt2 = add_indent(Ctxt1, 3), + ["( ", + Fun(Node, Ctxt1), + nl_indent(Ctxt1), + "-| ",format_1(core_lib:make_literal(List), Ctxt2)," )" + ] + end. + +strip_line([A | As]) when integer(A) -> + strip_line(As); +strip_line([A | As]) -> + [A | strip_line(As)]; +strip_line([]) -> + []. + +get_line([L | _As]) when integer(L) -> + L; +get_line([_ | As]) -> + get_line(As); +get_line([]) -> + none. + +format(Node, Ctxt) -> + maybe_anno(Node, fun format_1/2, Ctxt). + +format_1(#c_char{val=C}, _) -> io_lib:write_char(C); +format_1(#c_int{val=I}, _) -> integer_to_list(I); +format_1(#c_float{val=F}, _) -> float_to_list(F); +format_1(#c_atom{val=A}, _) -> core_atom(A); +format_1(#c_nil{}, _) -> "[]"; +format_1(#c_string{val=S}, _) -> io_lib:write_string(S); +format_1(#c_var{name=V}, _) -> + %% Internal variable names may be: + %% - atoms representing proper Erlang variable names, or + %% any atoms that may be printed without single-quoting + %% - nonnegative integers. + %% It is important that when printing variables, no two names + %% should ever map to the same string. + if atom(V) -> + S = atom_to_list(V), + case S of + [C | _] when C >= $A, C =< $Z -> + %% Ordinary uppercase-prefixed names are + %% printed just as they are. + S; + [$_ | _] -> + %% Already "_"-prefixed names are prefixed + %% with "_X", e.g. '_foo' => '_X_foo', to + %% avoid generating things like "____foo" upon + %% repeated writing and reading of code. + %% ("_X_X_X_foo" is better.) + [$_, $X | S]; + _ -> + %% Plain atoms are prefixed with a single "_". + %% E.g. foo => "_foo". + [$_ | S] + end; + integer(V) -> + %% Integers are also simply prefixed with "_". + [$_ | integer_to_list(V)] + end; +format_1(#c_binary{segments=Segs}, Ctxt) -> + ["#{", + format_vseq(Segs, "", ",", add_indent(Ctxt, 2), + fun format_bitstr/2), + "}#" + ]; +format_1(#c_tuple{es=Es}, Ctxt) -> + [${, + format_hseq(Es, ",", add_indent(Ctxt, 1), fun format/2), + $} + ]; +format_1(#c_cons{hd=H,tl=T}, Ctxt) -> + Txt = ["["|format(H, add_indent(Ctxt, 1))], + [Txt|format_list_tail(T, add_indent(Ctxt, width(Txt, Ctxt)))]; +format_1(#c_values{es=Es}, Ctxt) -> + format_values(Es, Ctxt); +format_1(#c_alias{var=V,pat=P}, Ctxt) -> + Txt = [format(V, Ctxt)|" = "], + [Txt|format(P, add_indent(Ctxt, width(Txt, Ctxt)))]; +format_1(#c_let{vars=Vs,arg=A,body=B}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.body_indent), + ["let ", + format_values(Vs, add_indent(Ctxt, 4)), + " =", + nl_indent(Ctxt1), + format(A, Ctxt1), + nl_indent(Ctxt), + "in " + | format(B, add_indent(Ctxt, 4)) + ]; +format_1(#c_letrec{defs=Fs,body=B}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.body_indent), + ["letrec", + nl_indent(Ctxt1), + format_funcs(Fs, Ctxt1), + nl_indent(Ctxt), + "in " + | format(B, add_indent(Ctxt, 4)) + ]; +format_1(#c_seq{arg=A,body=B}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, 4), + ["do ", + format(A, Ctxt1), + nl_indent(Ctxt1) + | format(B, Ctxt1) + ]; +format_1(#c_case{arg=A,clauses=Cs}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.item_indent), + ["case ", + format(A, add_indent(Ctxt, 5)), + " of", + nl_indent(Ctxt1), + format_clauses(Cs, Ctxt1), + nl_indent(Ctxt) + | "end" + ]; +format_1(#c_receive{clauses=Cs,timeout=T,action=A}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.item_indent), + ["receive", + nl_indent(Ctxt1), + format_clauses(Cs, Ctxt1), + nl_indent(Ctxt), + "after ", + format(T, add_indent(Ctxt, 6)), + " ->", + nl_indent(Ctxt1), + format(A, Ctxt1) + ]; +format_1(#c_fname{id=I,arity=A}, _) -> + [core_atom(I),$/,integer_to_list(A)]; +format_1(#c_fun{vars=Vs,body=B}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.body_indent), + ["fun (", + format_hseq(Vs, ",", add_indent(Ctxt, 5), fun format/2), + ") ->", + nl_indent(Ctxt1) + | format(B, Ctxt1) + ]; +format_1(#c_apply{op=O,args=As}, Ctxt0) -> + Ctxt1 = add_indent(Ctxt0, 6), %"apply " + Op = format(O, Ctxt1), + Ctxt2 = add_indent(Ctxt0, 4), + ["apply ",Op, + nl_indent(Ctxt2), + $(,format_hseq(As, ", ", add_indent(Ctxt2, 1), fun format/2),$) + ]; +format_1(#c_call{module=M,name=N,args=As}, Ctxt0) -> + Ctxt1 = add_indent(Ctxt0, 5), %"call " + Mod = format(M, Ctxt1), + Ctxt2 = add_indent(Ctxt1, width(Mod, Ctxt1)+1), + Name = format(N, Ctxt2), + Ctxt3 = add_indent(Ctxt0, 4), + ["call ",Mod,":",Name, + nl_indent(Ctxt3), + $(,format_hseq(As, ", ", add_indent(Ctxt3, 1), fun format/2),$) + ]; +format_1(#c_primop{name=N,args=As}, Ctxt0) -> + Ctxt1 = add_indent(Ctxt0, 7), %"primop " + Name = format(N, Ctxt1), + Ctxt2 = add_indent(Ctxt0, 4), + ["primop ",Name, + nl_indent(Ctxt2), + $(,format_hseq(As, ", ", add_indent(Ctxt2, 1), fun format/2),$) + ]; +format_1(#c_catch{body=B}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.body_indent), + ["catch", + nl_indent(Ctxt1), + format(B, Ctxt1) + ]; +format_1(#c_try{arg=E,vars=Vs,body=B,evars=Evs,handler=H}, Ctxt) -> + Ctxt1 = add_indent(Ctxt, Ctxt#ctxt.body_indent), + ["try", + nl_indent(Ctxt1), + format(E, Ctxt1), + nl_indent(Ctxt), + "of ", + format_values(Vs, add_indent(Ctxt, 3)), + " ->", + nl_indent(Ctxt1), + format(B, Ctxt1), + nl_indent(Ctxt), + "catch ", + format_values(Evs, add_indent(Ctxt, 6)), + " ->", + nl_indent(Ctxt1) + | format(H, Ctxt1) + ]; +format_1(#c_def{name=N,val=V}, Ctxt) -> + Ctxt1 = add_indent(set_class(Ctxt, expr), Ctxt#ctxt.body_indent), + [format(N, Ctxt), + " =", + nl_indent(Ctxt1) + | format(V, Ctxt1) + ]; +format_1(#c_module{name=N,exports=Es,attrs=As,defs=Ds}, Ctxt) -> + Mod = ["module ", format(N, Ctxt)], + [Mod," [", + format_vseq(Es, + "", ",", + add_indent(set_class(Ctxt, term), width(Mod, Ctxt)+2), + fun format/2), + "]", + nl_indent(Ctxt), + " attributes [", + format_vseq(As, + "", ",", + add_indent(set_class(Ctxt, def), 16), + fun format/2), + "]", + nl_indent(Ctxt), + format_funcs(Ds, Ctxt), + nl_indent(Ctxt) + | "end" + ]; +format_1(Type, _) -> + ["** Unsupported type: ", + io_lib:write(Type) + | " **" + ]. + +format_funcs(Fs, Ctxt) -> + format_vseq(Fs, + "", "", + set_class(Ctxt, def), + fun format/2). + +format_values(Vs, Ctxt) -> + [$<, + format_hseq(Vs, ",", add_indent(Ctxt, 1), fun format/2), + $>]. + +format_bitstr(#c_bitstr{val=V,size=S,unit=U,type=T,flags=Fs}, Ctxt0) -> + Vs = [S, U, T, Fs], + Ctxt1 = add_indent(Ctxt0, 2), + Val = format(V, Ctxt1), + Ctxt2 = add_indent(Ctxt1, width(Val, Ctxt1) + 2), + ["#<", Val, ">(", format_hseq(Vs,",", Ctxt2, fun format/2), $)]. + +format_clauses(Cs, Ctxt) -> + format_vseq(Cs, "", "", set_class(Ctxt, clause), + fun format_clause/2). + +format_clause(Node, Ctxt) -> + maybe_anno(Node, fun format_clause_1/2, Ctxt). + +format_clause_1(#c_clause{pats=Ps,guard=G,body=B}, Ctxt) -> + Ptxt = format_values(Ps, Ctxt), + Ctxt2 = add_indent(Ctxt, Ctxt#ctxt.body_indent), + [Ptxt, + " when ", + format_guard(G, add_indent(set_class(Ctxt, expr), + width(Ptxt, Ctxt) + 6)), + " ->", + nl_indent(Ctxt2) + | format(B, set_class(Ctxt2, expr)) + ]. + +format_guard(Node, Ctxt) -> + maybe_anno(Node, fun format_guard_1/2, Ctxt). + +format_guard_1(#c_call{module=M,name=N,args=As}, Ctxt0) -> + Ctxt1 = add_indent(Ctxt0, 5), %"call " + Mod = format(M, Ctxt1), + Ctxt2 = add_indent(Ctxt1, width(Mod, Ctxt1)+1), + Name = format(N, Ctxt2), + Ctxt3 = add_indent(Ctxt0, 4), + ["call ",Mod,":",Name, + nl_indent(Ctxt3), + $(,format_vseq(As, "",",", add_indent(Ctxt3, 1), fun format_guard/2),$) + ]; +format_guard_1(E, Ctxt) -> format_1(E, Ctxt). %Anno already done + +%% format_hseq([Thing], Separator, Context, Fun) -> Txt. +%% Format a sequence horizontally on the same line with Separator between. + +format_hseq([H], _, Ctxt, Fun) -> + Fun(H, Ctxt); +format_hseq([H|T], Sep, Ctxt, Fun) -> + Txt = [Fun(H, Ctxt)|Sep], + Ctxt1 = add_indent(Ctxt, width(Txt, Ctxt)), + [Txt|format_hseq(T, Sep, Ctxt1, Fun)]; +format_hseq([], _, _, _) -> "". + +%% format_vseq([Thing], LinePrefix, LineSuffix, Context, Fun) -> Txt. +%% Format a sequence vertically in indented lines adding LinePrefix +%% to the beginning of each line and LineSuffix to the end of each +%% line. No prefix on the first line or suffix on the last line. + +format_vseq([H], _Pre, _Suf, Ctxt, Fun) -> + Fun(H, Ctxt); +format_vseq([H|T], Pre, Suf, Ctxt, Fun) -> + [Fun(H, Ctxt),Suf,nl_indent(Ctxt),Pre| + format_vseq(T, Pre, Suf, Ctxt, Fun)]; +format_vseq([], _, _, _, _) -> "". + +format_list_tail(#c_nil{anno=[]}, _) -> "]"; +format_list_tail(#c_cons{anno=[],hd=H,tl=T}, Ctxt) -> + Txt = [$,|format(H, Ctxt)], + Ctxt1 = add_indent(Ctxt, width(Txt, Ctxt)), + [Txt|format_list_tail(T, Ctxt1)]; +format_list_tail(Tail, Ctxt) -> + ["|",format(Tail, add_indent(Ctxt, 1)),"]"]. + +indent(Ctxt) -> indent(Ctxt#ctxt.indent, Ctxt). + +indent(N, _) when N =< 0 -> ""; +indent(N, Ctxt) -> + T = Ctxt#ctxt.tab_width, + string:chars($\t, N div T, string:chars($\s, N rem T)). + +nl_indent(Ctxt) -> [$\n|indent(Ctxt)]. + + +unindent(T, Ctxt) -> + unindent(T, Ctxt#ctxt.indent, Ctxt, []). + +unindent(T, N, _, C) when N =< 0 -> + [T|C]; +unindent([$\s|T], N, Ctxt, C) -> + unindent(T, N - 1, Ctxt, C); +unindent([$\t|T], N, Ctxt, C) -> + Tab = Ctxt#ctxt.tab_width, + if N >= Tab -> + unindent(T, N - Tab, Ctxt, C); + true -> + unindent([string:chars($\s, Tab - N)|T], 0, Ctxt, C) + end; +unindent([L|T], N, Ctxt, C) when list(L) -> + unindent(L, N, Ctxt, [T|C]); +unindent([H|T], _, _, C) -> + [H|[T|C]]; +unindent([], N, Ctxt, [H|T]) -> + unindent(H, N, Ctxt, T); +unindent([], _, _, []) -> []. + + +width(Txt, Ctxt) -> + case catch width(Txt, 0, Ctxt, []) of + {'EXIT',_} -> exit({bad_text,Txt}); + Other -> Other + end. + +width([$\t|T], A, Ctxt, C) -> + width(T, A + Ctxt#ctxt.tab_width, Ctxt, C); +width([$\n|T], _, Ctxt, C) -> + width(unindent([T|C], Ctxt), Ctxt); +width([H|T], A, Ctxt, C) when list(H) -> + width(H, A, Ctxt, [T|C]); +width([_|T], A, Ctxt, C) -> + width(T, A + 1, Ctxt, C); +width([], A, Ctxt, [H|T]) -> + width(H, A, Ctxt, T); +width([], A, _, []) -> A. + +add_indent(Ctxt, Dx) -> + Ctxt#ctxt{indent = Ctxt#ctxt.indent + Dx}. + +set_class(Ctxt, Class) -> + Ctxt#ctxt{class = Class}. + +core_atom(A) -> io_lib:write_string(atom_to_list(A), $'). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_scan.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_scan.erl new file mode 100644 index 0000000000..a97270b9f3 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/core_scan.erl @@ -0,0 +1,495 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: core_scan.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose: Scanner for Core Erlang. + +%% For handling ISO 8859-1 (Latin-1) we use the following type +%% information: +%% +%% 000 - 037 NUL - US control +%% 040 - 057 SPC - / punctuation +%% 060 - 071 0 - 9 digit +%% 072 - 100 : - @ punctuation +%% 101 - 132 A - Z uppercase +%% 133 - 140 [ - ` punctuation +%% 141 - 172 a - z lowercase +%% 173 - 176 { - ~ punctuation +%% 177 DEL control +%% 200 - 237 control +%% 240 - 277 NBSP - � punctuation +%% 300 - 326 � - � uppercase +%% 327 � punctuation +%% 330 - 336 � - � uppercase +%% 337 - 366 � - � lowercase +%% 367 � punctuation +%% 370 - 377 � - � lowercase +%% +%% Many punctuation characters region have special meaning. Must +%% watch using � \327, bvery close to x \170 + +-module(core_scan). + +-export([string/1,string/2,tokens/3,format_error/1]). + +-import(lists, [reverse/1]). + +%% tokens(Continuation, CharList, StartPos) -> +%% {done, {ok, [Tok], EndPos}, Rest} | +%% {done, {error,{ErrorPos,core_scan,What}, EndPos}, Rest} | +%% {more, Continuation'} +%% This is the main function into the re-entrant scanner. It calls the +%% re-entrant pre-scanner until this says done, then calls scan/1 on +%% the result. +%% +%% The continuation has the form: +%% {RestChars,CharsSoFar,CurrentPos,StartPos} + +tokens([], Chars, Pos) -> %First call + tokens({[],[],Pos,Pos}, Chars, Pos); +tokens({Chars,SoFar0,Cp,Sp}, MoreChars, _) -> + In = Chars ++ MoreChars, + case pre_scan(In, SoFar0, Cp) of + {done,_,[],Ep} -> %Found nothing + {done,{eof,Ep},[]}; + {done,_,SoFar1,Ep} -> %Got complete tokens + Res = case scan(reverse(SoFar1), Sp) of + {ok,Toks} -> {ok,Toks,Ep}; + {error,E} -> {error,E,Ep} + end, + {done,Res,[]}; + {more,Rest,SoFar1,Cp1} -> %Missing end token + {more,{Rest,SoFar1,Cp1,Sp}}; + Other -> %An error has occurred + {done,Other,[]} + end. + +%% string([Char]) -> +%% string([Char], StartPos) -> +%% {ok, [Tok], EndPos} | +%% {error,{Pos,core_scan,What}, EndPos} + +string(Cs) -> string(Cs, 1). + +string(Cs, Sp) -> + %% Add an 'eof' to always get correct handling. + case string_pre_scan(Cs, [], Sp) of + {done,_,SoFar,Ep} -> %Got tokens + case scan(reverse(SoFar), Sp) of + {ok,Toks} -> {ok,Toks,Ep}; + {error,E} -> {error,E,Ep} + end; + Other -> Other %An error has occurred + end. + +%% string_pre_scan(Cs, SoFar0, StartPos) -> +%% {done,Rest,SoFar,EndPos} | {error,E,EndPos}. + +string_pre_scan(Cs, SoFar0, Sp) -> + case pre_scan(Cs, SoFar0, Sp) of + {done,Rest,SoFar1,Ep} -> %Got complete tokens + {done,Rest,SoFar1,Ep}; + {more,Rest,SoFar1,Ep} -> %Missing end token + string_pre_scan(Rest ++ eof, SoFar1, Ep); + Other -> Other %An error has occurred + end. + +%% format_error(Error) +%% Return a string describing the error. + +format_error({string,Quote,Head}) -> + ["unterminated " ++ string_thing(Quote) ++ + " starting with " ++ io_lib:write_string(Head,Quote)]; +format_error({illegal,Type}) -> io_lib:fwrite("illegal ~w", [Type]); +format_error(char) -> "unterminated character"; +format_error(scan) -> "premature end"; +format_error({base,Base}) -> io_lib:fwrite("illegal base '~w'", [Base]); +format_error(float) -> "bad float"; +format_error(Other) -> io_lib:write(Other). + +string_thing($') -> "atom"; +string_thing($") -> "string". + +%% Re-entrant pre-scanner. +%% +%% If the input list of characters is insufficient to build a term the +%% scanner returns a request for more characters and a continuation to be +%% used when trying to build a term with more characters. To indicate +%% end-of-file the input character list should be replaced with 'eof' +%% as an empty list has meaning. +%% +%% When more characters are need inside a comment, string or quoted +%% atom, which can become rather long, instead of pushing the +%% characters read so far back onto RestChars to be reread, a special +%% reentry token is returned indicating the middle of a construct. +%% The token is the start character as an atom, '%', '"' and '\''. + +%% pre_scan([Char], SoFar, StartPos) -> +%% {done,RestChars,ScannedChars,NewPos} | +%% {more,RestChars,ScannedChars,NewPos} | +%% {error,{ErrorPos,core_scan,Description},NewPos}. +%% Main pre-scan function. It has been split into 2 functions because of +%% efficiency, with a good indexing compiler it would be unnecessary. + +pre_scan([C|Cs], SoFar, Pos) -> + pre_scan(C, Cs, SoFar, Pos); +pre_scan([], SoFar, Pos) -> + {more,[],SoFar,Pos}; +pre_scan(eof, SoFar, Pos) -> + {done,eof,SoFar,Pos}. + +%% pre_scan(Char, [Char], SoFar, Pos) + +pre_scan($$, Cs0, SoFar0, Pos) -> + case pre_char(Cs0, [$$|SoFar0]) of + {Cs,SoFar} -> + pre_scan(Cs, SoFar, Pos); + more -> + {more,[$$|Cs0],SoFar0, Pos}; + error -> + pre_error(char, Pos, Pos) + end; +pre_scan($', Cs, SoFar, Pos) -> + pre_string(Cs, $', '\'', Pos, [$'|SoFar], Pos); +pre_scan({'\'',Sp}, Cs, SoFar, Pos) -> %Re-entering quoted atom + pre_string(Cs, $', '\'', Sp, SoFar, Pos); +pre_scan($", Cs, SoFar, Pos) -> + pre_string(Cs, $", '"', Pos, [$"|SoFar], Pos); +pre_scan({'"',Sp}, Cs, SoFar, Pos) -> %Re-entering string + pre_string(Cs, $", '"', Sp, SoFar, Pos); +pre_scan($%, Cs, SoFar, Pos) -> + pre_comment(Cs, SoFar, Pos); +pre_scan('%', Cs, SoFar, Pos) -> %Re-entering comment + pre_comment(Cs, SoFar, Pos); +pre_scan($\n, Cs, SoFar, Pos) -> + pre_scan(Cs, [$\n|SoFar], Pos+1); +pre_scan(C, Cs, SoFar, Pos) -> + pre_scan(Cs, [C|SoFar], Pos). + +%% pre_string([Char], Quote, Reent, StartPos, SoFar, Pos) + +pre_string([Q|Cs], Q, _, _, SoFar, Pos) -> + pre_scan(Cs, [Q|SoFar], Pos); +pre_string([$\n|Cs], Q, Reent, Sp, SoFar, Pos) -> + pre_string(Cs, Q, Reent, Sp, [$\n|SoFar], Pos+1); +pre_string([$\\|Cs0], Q, Reent, Sp, SoFar0, Pos) -> + case pre_escape(Cs0, SoFar0) of + {Cs,SoFar} -> + pre_string(Cs, Q, Reent, Sp, SoFar, Pos); + more -> + {more,[{Reent,Sp},$\\|Cs0],SoFar0,Pos}; + error -> + pre_string_error(Q, Sp, SoFar0, Pos) + end; +pre_string([C|Cs], Q, Reent, Sp, SoFar, Pos) -> + pre_string(Cs, Q, Reent, Sp, [C|SoFar], Pos); +pre_string([], _, Reent, Sp, SoFar, Pos) -> + {more,[{Reent,Sp}],SoFar,Pos}; +pre_string(eof, Q, _, Sp, SoFar, Pos) -> + pre_string_error(Q, Sp, SoFar, Pos). + +pre_string_error(Q, Sp, SoFar, Pos) -> + S = reverse(string:substr(SoFar, 1, string:chr(SoFar, Q)-1)), + pre_error({string,Q,string:substr(S, 1, 16)}, Sp, Pos). + +pre_char([C|Cs], SoFar) -> pre_char(C, Cs, SoFar); +pre_char([], _) -> more; +pre_char(eof, _) -> error. + +pre_char($\\, Cs, SoFar) -> + pre_escape(Cs, SoFar); +pre_char(C, Cs, SoFar) -> + {Cs,[C|SoFar]}. + +pre_escape([$^|Cs0], SoFar) -> + case Cs0 of + [C3|Cs] -> + {Cs,[C3,$^,$\\|SoFar]}; + [] -> more; + eof -> error + end; +pre_escape([C|Cs], SoFar) -> + {Cs,[C,$\\|SoFar]}; +pre_escape([], _) -> more; +pre_escape(eof, _) -> error. + +%% pre_comment([Char], SoFar, Pos) +%% Comments are replaced by one SPACE. + +pre_comment([$\n|Cs], SoFar, Pos) -> + pre_scan(Cs, [$\n,$\s|SoFar], Pos+1); %Terminate comment +pre_comment([_|Cs], SoFar, Pos) -> + pre_comment(Cs, SoFar, Pos); +pre_comment([], SoFar, Pos) -> + {more,['%'],SoFar,Pos}; +pre_comment(eof, Sofar, Pos) -> + pre_scan(eof, [$\s|Sofar], Pos). + +pre_error(E, Epos, Pos) -> + {error,{Epos,core_scan,E}, Pos}. + +%% scan(CharList, StartPos) +%% This takes a list of characters and tries to tokenise them. +%% +%% The token list is built in reverse order (in a stack) to save appending +%% and then reversed when all the tokens have been collected. Most tokens +%% are built in the same way. +%% +%% Returns: +%% {ok,[Tok]} +%% {error,{ErrorPos,core_scan,What}} + +scan(Cs, Pos) -> + scan1(Cs, [], Pos). + +%% scan1(Characters, TokenStack, Position) +%% Scan a list of characters into tokens. + +scan1([$\n|Cs], Toks, Pos) -> %Skip newline + scan1(Cs, Toks, Pos+1); +scan1([C|Cs], Toks, Pos) when C >= $\000, C =< $\s -> %Skip control chars + scan1(Cs, Toks, Pos); +scan1([C|Cs], Toks, Pos) when C >= $\200, C =< $\240 -> + scan1(Cs, Toks, Pos); +scan1([C|Cs], Toks, Pos) when C >= $a, C =< $z -> %Keywords + scan_key_word(C, Cs, Toks, Pos); +scan1([C|Cs], Toks, Pos) when C >= $�, C =< $�, C /= $� -> + scan_key_word(C, Cs, Toks, Pos); +scan1([C|Cs], Toks, Pos) when C >= $A, C =< $Z -> %Variables + scan_variable(C, Cs, Toks, Pos); +scan1([C|Cs], Toks, Pos) when C >= $�, C =< $�, C /= $� -> + scan_variable(C, Cs, Toks, Pos); +scan1([C|Cs], Toks, Pos) when C >= $0, C =< $9 -> %Numbers + scan_number(C, Cs, Toks, Pos); +scan1([$-,C|Cs], Toks, Pos) when C >= $0, C =< $9 -> %Signed numbers + scan_signed_number($-, C, Cs, Toks, Pos); +scan1([$+,C|Cs], Toks, Pos) when C >= $0, C =< $9 -> %Signed numbers + scan_signed_number($+, C, Cs, Toks, Pos); +scan1([$_|Cs], Toks, Pos) -> %_ variables + scan_variable($_, Cs, Toks, Pos); +scan1([$$|Cs0], Toks, Pos) -> %Character constant + {C,Cs,Pos1} = scan_char(Cs0, Pos), + scan1(Cs, [{char,Pos,C}|Toks], Pos1); +scan1([$'|Cs0], Toks, Pos) -> %Atom (always quoted) + {S,Cs1,Pos1} = scan_string(Cs0, $', Pos), + case catch list_to_atom(S) of + A when atom(A) -> + scan1(Cs1, [{atom,Pos,A}|Toks], Pos1); + _Error -> scan_error({illegal,atom}, Pos) + end; +scan1([$"|Cs0], Toks, Pos) -> %String + {S,Cs1,Pos1} = scan_string(Cs0, $", Pos), + scan1(Cs1, [{string,Pos,S}|Toks], Pos1); +%% Punctuation characters and operators, first recognise multiples. +scan1("->" ++ Cs, Toks, Pos) -> + scan1(Cs, [{'->',Pos}|Toks], Pos); +scan1("-|" ++ Cs, Toks, Pos) -> + scan1(Cs, [{'-|',Pos}|Toks], Pos); +scan1([C|Cs], Toks, Pos) -> %Punctuation character + P = list_to_atom([C]), + scan1(Cs, [{P,Pos}|Toks], Pos); +scan1([], Toks0, _) -> + Toks = reverse(Toks0), + {ok,Toks}. + +%% scan_key_word(FirstChar, CharList, Tokens, Pos) +%% scan_variable(FirstChar, CharList, Tokens, Pos) + +scan_key_word(C, Cs0, Toks, Pos) -> + {Wcs,Cs} = scan_name(Cs0, []), + case catch list_to_atom([C|reverse(Wcs)]) of + Name when atom(Name) -> + scan1(Cs, [{Name,Pos}|Toks], Pos); + _Error -> scan_error({illegal,atom}, Pos) + end. + +scan_variable(C, Cs0, Toks, Pos) -> + {Wcs,Cs} = scan_name(Cs0, []), + case catch list_to_atom([C|reverse(Wcs)]) of + Name when atom(Name) -> + scan1(Cs, [{var,Pos,Name}|Toks], Pos); + _Error -> scan_error({illegal,var}, Pos) + end. + +%% scan_name(Cs) -> lists:splitwith(fun (C) -> name_char(C) end, Cs). + +scan_name([C|Cs], Ncs) -> + case name_char(C) of + true -> scan_name(Cs, [C|Ncs]); + false -> {Ncs,[C|Cs]} %Must rebuild here, sigh! + end; +scan_name([], Ncs) -> + {Ncs,[]}. + +name_char(C) when C >= $a, C =< $z -> true; +name_char(C) when C >= $�, C =< $�, C /= $� -> true; +name_char(C) when C >= $A, C =< $Z -> true; +name_char(C) when C >= $�, C =< $�, C /= $� -> true; +name_char(C) when C >= $0, C =< $9 -> true; +name_char($_) -> true; +name_char($@) -> true; +name_char(_) -> false. + +%% scan_string(CharList, QuoteChar, Pos) -> {StringChars,RestChars,NewPos}. + +scan_string(Cs, Q, Pos) -> + scan_string(Cs, [], Q, Pos). + +scan_string([Q|Cs], Scs, Q, Pos) -> + {reverse(Scs),Cs,Pos}; +scan_string([$\n|Cs], Scs, Q, Pos) -> + scan_string(Cs, [$\n|Scs], Q, Pos+1); +scan_string([$\\|Cs0], Scs, Q, Pos) -> + {C,Cs,Pos1} = scan_escape(Cs0, Pos), + scan_string(Cs, [C|Scs], Q, Pos1); +scan_string([C|Cs], Scs, Q, Pos) -> + scan_string(Cs, [C|Scs], Q, Pos). + +%% scan_char(Chars, Pos) -> {Char,RestChars,NewPos}. +%% Read a single character from a character constant. The pre-scan +%% phase has checked for errors here. + +scan_char([$\\|Cs], Pos) -> + scan_escape(Cs, Pos); +scan_char([$\n|Cs], Pos) -> %Newline + {$\n,Cs,Pos+1}; +scan_char([C|Cs], Pos) -> + {C,Cs,Pos}. + +scan_escape([O1,O2,O3|Cs], Pos) when %\<1-3> octal digits + O1 >= $0, O1 =< $7, O2 >= $0, O2 =< $7, O3 >= $0, O3 =< $7 -> + Val = (O1*8 + O2)*8 + O3 - 73*$0, + {Val,Cs,Pos}; +scan_escape([O1,O2|Cs], Pos) when + O1 >= $0, O1 =< $7, O2 >= $0, O2 =< $7 -> + Val = (O1*8 + O2) - 9*$0, + {Val,Cs,Pos}; +scan_escape([O1|Cs], Pos) when + O1 >= $0, O1 =< $7 -> + {O1 - $0,Cs,Pos}; +scan_escape([$^,C|Cs], Pos) -> %\^X -> CTL-X + Val = C band 31, + {Val,Cs,Pos}; +%scan_escape([$\n,C1|Cs],Pos) -> +% {C1,Cs,Pos+1}; +%scan_escape([C,C1|Cs],Pos) when C >= $\000, C =< $\s -> +% {C1,Cs,Pos}; +scan_escape([$\n|Cs],Pos) -> + {$\n,Cs,Pos+1}; +scan_escape([C0|Cs],Pos) -> + C = escape_char(C0), + {C,Cs,Pos}. + +escape_char($n) -> $\n; %\n = LF +escape_char($r) -> $\r; %\r = CR +escape_char($t) -> $\t; %\t = TAB +escape_char($v) -> $\v; %\v = VT +escape_char($b) -> $\b; %\b = BS +escape_char($f) -> $\f; %\f = FF +escape_char($e) -> $\e; %\e = ESC +escape_char($s) -> $\s; %\s = SPC +escape_char($d) -> $\d; %\d = DEL +escape_char(C) -> C. + +%% scan_number(Char, CharList, TokenStack, Pos) +%% We can handle simple radix notation: +%% <digit>#<digits> - the digits read in that base +%% <digits> - the digits in base 10 +%% <digits>.<digits> +%% <digits>.<digits>E+-<digits> +%% +%% Except for explicitly based integers we build a list of all the +%% characters and then use list_to_integer/1 or list_to_float/1 to +%% generate the value. + +%% SPos == Start position +%% CPos == Current position + +scan_number(C, Cs0, Toks, Pos) -> + {Ncs,Cs,Pos1} = scan_integer(Cs0, [C], Pos), + scan_after_int(Cs, Ncs, Toks, Pos, Pos1). + +scan_signed_number(S, C, Cs0, Toks, Pos) -> + {Ncs,Cs,Pos1} = scan_integer(Cs0, [C,S], Pos), + scan_after_int(Cs, Ncs, Toks, Pos, Pos1). + +scan_integer([C|Cs], Stack, Pos) when C >= $0, C =< $9 -> + scan_integer(Cs, [C|Stack], Pos); +scan_integer(Cs, Stack, Pos) -> + {Stack,Cs,Pos}. + +scan_after_int([$.,C|Cs0], Ncs0, Toks, SPos, CPos) when C >= $0, C =< $9 -> + {Ncs,Cs,CPos1} = scan_integer(Cs0, [C,$.|Ncs0], CPos), + scan_after_fraction(Cs, Ncs, Toks, SPos, CPos1); +scan_after_int([$#|Cs], Ncs, Toks, SPos, CPos) -> + case list_to_integer(reverse(Ncs)) of + Base when Base >= 2, Base =< 16 -> + scan_based_int(Cs, 0, Base, Toks, SPos, CPos); + Base -> + scan_error({base,Base}, CPos) + end; +scan_after_int(Cs, Ncs, Toks, SPos, CPos) -> + N = list_to_integer(reverse(Ncs)), + scan1(Cs, [{integer,SPos,N}|Toks], CPos). + +scan_based_int([C|Cs], SoFar, Base, Toks, SPos, CPos) when + C >= $0, C =< $9, C < Base + $0 -> + Next = SoFar * Base + (C - $0), + scan_based_int(Cs, Next, Base, Toks, SPos, CPos); +scan_based_int([C|Cs], SoFar, Base, Toks, SPos, CPos) when + C >= $a, C =< $f, C < Base + $a - 10 -> + Next = SoFar * Base + (C - $a + 10), + scan_based_int(Cs, Next, Base, Toks, SPos, CPos); +scan_based_int([C|Cs], SoFar, Base, Toks, SPos, CPos) when + C >= $A, C =< $F, C < Base + $A - 10 -> + Next = SoFar * Base + (C - $A + 10), + scan_based_int(Cs, Next, Base, Toks, SPos, CPos); +scan_based_int(Cs, SoFar, _, Toks, SPos, CPos) -> + scan1(Cs, [{integer,SPos,SoFar}|Toks], CPos). + +scan_after_fraction([$E|Cs], Ncs, Toks, SPos, CPos) -> + scan_exponent(Cs, [$E|Ncs], Toks, SPos, CPos); +scan_after_fraction([$e|Cs], Ncs, Toks, SPos, CPos) -> + scan_exponent(Cs, [$E|Ncs], Toks, SPos, CPos); +scan_after_fraction(Cs, Ncs, Toks, SPos, CPos) -> + case catch list_to_float(reverse(Ncs)) of + N when float(N) -> + scan1(Cs, [{float,SPos,N}|Toks], CPos); + _Error -> scan_error({illegal,float}, SPos) + end. + +%% scan_exponent(CharList, NumberCharStack, TokenStack, StartPos, CurPos) +%% Generate an error here if E{+|-} not followed by any digits. + +scan_exponent([$+|Cs], Ncs, Toks, SPos, CPos) -> + scan_exponent1(Cs, [$+|Ncs], Toks, SPos, CPos); +scan_exponent([$-|Cs], Ncs, Toks, SPos, CPos) -> + scan_exponent1(Cs, [$-|Ncs], Toks, SPos, CPos); +scan_exponent(Cs, Ncs, Toks, SPos, CPos) -> + scan_exponent1(Cs, Ncs, Toks, SPos, CPos). + +scan_exponent1([C|Cs0], Ncs0, Toks, SPos, CPos) when C >= $0, C =< $9 -> + {Ncs,Cs,CPos1} = scan_integer(Cs0, [C|Ncs0], CPos), + case catch list_to_float(reverse(Ncs)) of + N when float(N) -> + scan1(Cs, [{float,SPos,N}|Toks], CPos1); + _Error -> scan_error({illegal,float}, SPos) + end; +scan_exponent1(_, _, _, _, CPos) -> + scan_error(float, CPos). + +scan_error(In, Pos) -> + {error,{Pos,core_scan,In}}. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/erl_bifs.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/erl_bifs.erl new file mode 100644 index 0000000000..1dbeefb5ac --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/erl_bifs.erl @@ -0,0 +1,486 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: erl_bifs.erl,v 1.2 2009/09/17 09:46:19 kostis Exp $ +%% +%% Purpose: Information about the Erlang built-in functions. + +-module(erl_bifs). + +-export([is_bif/3, is_guard_bif/3, is_pure/3, is_safe/3]). + + +%% ===================================================================== +%% is_bif(Module, Name, Arity) -> boolean() +%% +%% Module = Name = atom() +%% Arity = integer() +%% +%% Returns `true' if the function `Module:Name/Arity' is a Built-In +%% Function (BIF) of Erlang. BIFs "come with the implementation", +%% and can be assumed to exist and have the same behaviour in any +%% later versions of the same implementation of the language. Being +%% a BIF does *not* imply that the function belongs to the module +%% `erlang', nor that it is implemented in C or assembler (cf. +%% `erlang:is_builtin/3'), or that it is auto-imported by the +%% compiler (cf. `erl_internal:bif/3'). + +is_bif(erlang, '!', 2) -> true; +is_bif(erlang, '*', 2) -> true; +is_bif(erlang, '+', 1) -> true; +is_bif(erlang, '+', 2) -> true; +is_bif(erlang, '++', 2) -> true; +is_bif(erlang, '-', 1) -> true; +is_bif(erlang, '-', 2) -> true; +is_bif(erlang, '--', 2) -> true; +is_bif(erlang, '/', 2) -> true; +is_bif(erlang, '/=', 2) -> true; +is_bif(erlang, '<', 2) -> true; +is_bif(erlang, '=/=', 2) -> true; +is_bif(erlang, '=:=', 2) -> true; +is_bif(erlang, '=<', 2) -> true; +is_bif(erlang, '==', 2) -> true; +is_bif(erlang, '>', 2) -> true; +is_bif(erlang, '>=', 2) -> true; +is_bif(erlang, 'and', 2) -> true; +is_bif(erlang, 'band', 2) -> true; +is_bif(erlang, 'bnot', 1) -> true; +is_bif(erlang, 'bor', 2) -> true; +is_bif(erlang, 'bsl', 2) -> true; +is_bif(erlang, 'bsr', 2) -> true; +is_bif(erlang, 'bxor', 2) -> true; +is_bif(erlang, 'div', 2) -> true; +is_bif(erlang, 'not', 1) -> true; +is_bif(erlang, 'or', 2) -> true; +is_bif(erlang, 'rem', 2) -> true; +is_bif(erlang, 'xor', 2) -> true; +is_bif(erlang, abs, 1) -> true; +is_bif(erlang, append_element, 2) -> true; +is_bif(erlang, apply, 2) -> true; +is_bif(erlang, apply, 3) -> true; +is_bif(erlang, atom_to_list, 1) -> true; +is_bif(erlang, binary_to_list, 1) -> true; +is_bif(erlang, binary_to_list, 3) -> true; +is_bif(erlang, binary_to_term, 1) -> true; +is_bif(erlang, cancel_timer, 1) -> true; +is_bif(erlang, concat_binary, 1) -> true; +is_bif(erlang, date, 0) -> true; +is_bif(erlang, demonitor, 1) -> true; +is_bif(erlang, disconnect_node, 1) -> true; +is_bif(erlang, display, 1) -> true; +is_bif(erlang, element, 2) -> true; +is_bif(erlang, erase, 0) -> true; +is_bif(erlang, erase, 1) -> true; +is_bif(erlang, error, 1) -> true; +is_bif(erlang, error, 2) -> true; +is_bif(erlang, exit, 1) -> true; +is_bif(erlang, exit, 2) -> true; +is_bif(erlang, fault, 1) -> true; +is_bif(erlang, fault, 2) -> true; +is_bif(erlang, float, 1) -> true; +is_bif(erlang, float_to_list, 1) -> true; +is_bif(erlang, fun_info, 1) -> true; +is_bif(erlang, fun_info, 2) -> true; +is_bif(erlang, fun_to_list, 1) -> true; +is_bif(erlang, get, 0) -> true; +is_bif(erlang, get, 1) -> true; +is_bif(erlang, get_cookie, 0) -> true; +is_bif(erlang, get_keys, 1) -> true; +is_bif(erlang, group_leader, 0) -> true; +is_bif(erlang, group_leader, 2) -> true; +is_bif(erlang, halt, 0) -> false; +is_bif(erlang, halt, 1) -> false; +is_bif(erlang, hash, 2) -> false; +is_bif(erlang, hd, 1) -> true; +is_bif(erlang, info, 1) -> true; +is_bif(erlang, integer_to_list, 1) -> true; +is_bif(erlang, is_alive, 0) -> true; +is_bif(erlang, is_atom, 1) -> true; +is_bif(erlang, is_binary, 1) -> true; +is_bif(erlang, is_boolean, 1) -> true; +is_bif(erlang, is_builtin, 3) -> true; +is_bif(erlang, is_constant, 1) -> true; +is_bif(erlang, is_float, 1) -> true; +is_bif(erlang, is_function, 1) -> true; +is_bif(erlang, is_integer, 1) -> true; +is_bif(erlang, is_list, 1) -> true; +is_bif(erlang, is_number, 1) -> true; +is_bif(erlang, is_pid, 1) -> true; +is_bif(erlang, is_port, 1) -> true; +is_bif(erlang, is_process_alive, 1) -> true; +is_bif(erlang, is_record, 3) -> true; +is_bif(erlang, is_reference, 1) -> true; +is_bif(erlang, is_tuple, 1) -> true; +is_bif(erlang, length, 1) -> true; +is_bif(erlang, link, 1) -> true; +is_bif(erlang, list_to_atom, 1) -> true; +is_bif(erlang, list_to_binary, 1) -> true; +is_bif(erlang, list_to_float, 1) -> true; +is_bif(erlang, list_to_integer, 1) -> true; +is_bif(erlang, list_to_pid, 1) -> true; +is_bif(erlang, list_to_tuple, 1) -> true; +is_bif(erlang, loaded, 0) -> true; +is_bif(erlang, localtime, 0) -> true; +is_bif(erlang, localtime_to_universaltime, 1) -> true; +is_bif(erlang, make_ref, 0) -> true; +is_bif(erlang, make_tuple, 2) -> true; +is_bif(erlang, md5, 1) -> true; +is_bif(erlang, md5_final, 1) -> true; +is_bif(erlang, md5_init, 0) -> true; +is_bif(erlang, md5_update, 2) -> true; +is_bif(erlang, monitor, 2) -> true; +is_bif(erlang, monitor_node, 2) -> true; +is_bif(erlang, node, 0) -> true; +is_bif(erlang, node, 1) -> true; +is_bif(erlang, nodes, 0) -> true; +is_bif(erlang, now, 0) -> true; +is_bif(erlang, open_port, 2) -> true; +is_bif(erlang, phash, 2) -> true; +is_bif(erlang, pid_to_list, 1) -> true; +is_bif(erlang, port_close, 2) -> true; +is_bif(erlang, port_command, 2) -> true; +is_bif(erlang, port_connect, 2) -> true; +is_bif(erlang, port_control, 3) -> true; +is_bif(erlang, port_info, 2) -> true; +is_bif(erlang, port_to_list, 1) -> true; +is_bif(erlang, ports, 0) -> true; +is_bif(erlang, pre_loaded, 0) -> true; +is_bif(erlang, process_display, 2) -> true; +is_bif(erlang, process_flag, 2) -> true; +is_bif(erlang, process_flag, 3) -> true; +is_bif(erlang, process_info, 1) -> true; +is_bif(erlang, process_info, 2) -> true; +is_bif(erlang, processes, 0) -> true; +is_bif(erlang, put, 2) -> true; +is_bif(erlang, read_timer, 1) -> true; +is_bif(erlang, ref_to_list, 1) -> true; +is_bif(erlang, register, 2) -> true; +is_bif(erlang, registered, 0) -> true; +is_bif(erlang, resume_process, 1) -> true; +is_bif(erlang, round, 1) -> true; +is_bif(erlang, self, 0) -> true; +is_bif(erlang, send_after, 3) -> true; +is_bif(erlang, set_cookie, 2) -> true; +is_bif(erlang, setelement, 3) -> true; +is_bif(erlang, size, 1) -> true; +is_bif(erlang, spawn, 1) -> true; +is_bif(erlang, spawn, 2) -> true; +is_bif(erlang, spawn, 3) -> true; +is_bif(erlang, spawn, 4) -> true; +is_bif(erlang, spawn_link, 1) -> true; +is_bif(erlang, spawn_link, 2) -> true; +is_bif(erlang, spawn_link, 3) -> true; +is_bif(erlang, spawn_link, 4) -> true; +is_bif(erlang, spawn_opt, 4) -> true; +is_bif(erlang, split_binary, 2) -> true; +is_bif(erlang, start_timer, 3) -> true; +is_bif(erlang, statistics, 1) -> true; +is_bif(erlang, suspend_process, 1) -> true; +is_bif(erlang, system_flag, 2) -> true; +is_bif(erlang, system_info, 1) -> true; +is_bif(erlang, term_to_binary, 1) -> true; +is_bif(erlang, term_to_binary, 2) -> true; +is_bif(erlang, throw, 1) -> true; +is_bif(erlang, time, 0) -> true; +is_bif(erlang, tl, 1) -> true; +is_bif(erlang, trace, 3) -> true; +is_bif(erlang, trace_info, 2) -> true; +is_bif(erlang, trace_pattern, 2) -> true; +is_bif(erlang, trace_pattern, 3) -> true; +is_bif(erlang, trunc, 1) -> true; +is_bif(erlang, tuple_to_list, 1) -> true; +is_bif(erlang, universaltime, 0) -> true; +is_bif(erlang, universaltime_to_localtime, 1) -> true; +is_bif(erlang, unlink, 1) -> true; +is_bif(erlang, unregister, 1) -> true; +is_bif(erlang, whereis, 1) -> true; +is_bif(erlang, yield, 0) -> true; +is_bif(lists, append, 2) -> true; +is_bif(lists, reverse, 1) -> true; +is_bif(lists, reverse, 2) -> true; +is_bif(lists, subtract, 2) -> true; +is_bif(math, acos, 1) -> true; +is_bif(math, acosh, 1) -> true; +is_bif(math, asin, 1) -> true; +is_bif(math, asinh, 1) -> true; +is_bif(math, atan, 1) -> true; +is_bif(math, atan2, 2) -> true; +is_bif(math, atanh, 1) -> true; +is_bif(math, cos, 1) -> true; +is_bif(math, cosh, 1) -> true; +is_bif(math, erf, 1) -> true; +is_bif(math, erfc, 1) -> true; +is_bif(math, exp, 1) -> true; +is_bif(math, log, 1) -> true; +is_bif(math, log10, 1) -> true; +is_bif(math, pow, 2) -> true; +is_bif(math, sin, 1) -> true; +is_bif(math, sinh, 1) -> true; +is_bif(math, sqrt, 1) -> true; +is_bif(math, tan, 1) -> true; +is_bif(math, tanh, 1) -> true; +is_bif(_, _, _) -> false. + + +%% ===================================================================== +%% is_guard_bif(Module, Name, Arity) -> boolean() +%% +%% Module = Name = atom() +%% Arity = integer() +%% +%% Returns `true' if the built-in function `Module:Name/Arity' may +%% be called from a clause guard. Note that such "guard BIFs" are +%% not necessarily "pure", since some (notably `erlang:self/0') may +%% depend on the current state, nor "safe", since many guard BIFs +%% can fail. Also note that even a "pure" function could be +%% unsuitable for calling from a guard because of its time or space +%% complexity. + +is_guard_bif(erlang, '*', 2) -> true; +is_guard_bif(erlang, '+', 1) -> true; +is_guard_bif(erlang, '+', 2) -> true; +is_guard_bif(erlang, '-', 1) -> true; +is_guard_bif(erlang, '-', 2) -> true; +is_guard_bif(erlang, '/', 2) -> true; +is_guard_bif(erlang, '/=', 2) -> true; +is_guard_bif(erlang, '<', 2) -> true; +is_guard_bif(erlang, '=/=', 2) -> true; +is_guard_bif(erlang, '=:=', 2) -> true; +is_guard_bif(erlang, '=<', 2) -> true; +is_guard_bif(erlang, '==', 2) -> true; +is_guard_bif(erlang, '>', 2) -> true; +is_guard_bif(erlang, '>=', 2) -> true; +is_guard_bif(erlang, 'and', 2) -> true; +is_guard_bif(erlang, 'band', 2) -> true; +is_guard_bif(erlang, 'bnot', 1) -> true; +is_guard_bif(erlang, 'bor', 2) -> true; +is_guard_bif(erlang, 'bsl', 2) -> true; +is_guard_bif(erlang, 'bsr', 2) -> true; +is_guard_bif(erlang, 'bxor', 2) -> true; +is_guard_bif(erlang, 'div', 2) -> true; +is_guard_bif(erlang, 'not', 1) -> true; +is_guard_bif(erlang, 'or', 2) -> true; +is_guard_bif(erlang, 'rem', 2) -> true; +is_guard_bif(erlang, 'xor', 2) -> true; +is_guard_bif(erlang, abs, 1) -> true; +is_guard_bif(erlang, element, 2) -> true; +is_guard_bif(erlang, error, 1) -> true; % unorthodox +is_guard_bif(erlang, exit, 1) -> true; % unorthodox +is_guard_bif(erlang, fault, 1) -> true; % unorthodox +is_guard_bif(erlang, float, 1) -> true; % (the type coercion function) +is_guard_bif(erlang, hd, 1) -> true; +is_guard_bif(erlang, is_atom, 1) -> true; +is_guard_bif(erlang, is_boolean, 1) -> true; +is_guard_bif(erlang, is_binary, 1) -> true; +is_guard_bif(erlang, is_constant, 1) -> true; +is_guard_bif(erlang, is_float, 1) -> true; +is_guard_bif(erlang, is_function, 1) -> true; +is_guard_bif(erlang, is_integer, 1) -> true; +is_guard_bif(erlang, is_list, 1) -> true; +is_guard_bif(erlang, is_number, 1) -> true; +is_guard_bif(erlang, is_pid, 1) -> true; +is_guard_bif(erlang, is_port, 1) -> true; +is_guard_bif(erlang, is_reference, 1) -> true; +is_guard_bif(erlang, is_tuple, 1) -> true; +is_guard_bif(erlang, length, 1) -> true; +is_guard_bif(erlang, list_to_atom, 1) -> true; % unorthodox +is_guard_bif(erlang, node, 0) -> true; % (not pure) +is_guard_bif(erlang, node, 1) -> true; % (not pure) +is_guard_bif(erlang, round, 1) -> true; +is_guard_bif(erlang, self, 0) -> true; % (not pure) +is_guard_bif(erlang, size, 1) -> true; +is_guard_bif(erlang, throw, 1) -> true; % unorthodox +is_guard_bif(erlang, tl, 1) -> true; +is_guard_bif(erlang, trunc, 1) -> true; +is_guard_bif(math, acos, 1) -> true; % unorthodox +is_guard_bif(math, acosh, 1) -> true; % unorthodox +is_guard_bif(math, asin, 1) -> true; % unorthodox +is_guard_bif(math, asinh, 1) -> true; % unorthodox +is_guard_bif(math, atan, 1) -> true; % unorthodox +is_guard_bif(math, atan2, 2) -> true; % unorthodox +is_guard_bif(math, atanh, 1) -> true; % unorthodox +is_guard_bif(math, cos, 1) -> true; % unorthodox +is_guard_bif(math, cosh, 1) -> true; % unorthodox +is_guard_bif(math, erf, 1) -> true; % unorthodox +is_guard_bif(math, erfc, 1) -> true; % unorthodox +is_guard_bif(math, exp, 1) -> true; % unorthodox +is_guard_bif(math, log, 1) -> true; % unorthodox +is_guard_bif(math, log10, 1) -> true; % unorthodox +is_guard_bif(math, pow, 2) -> true; % unorthodox +is_guard_bif(math, sin, 1) -> true; % unorthodox +is_guard_bif(math, sinh, 1) -> true; % unorthodox +is_guard_bif(math, sqrt, 1) -> true; % unorthodox +is_guard_bif(math, tan, 1) -> true; % unorthodox +is_guard_bif(math, tanh, 1) -> true; % unorthodox +is_guard_bif(_, _, _) -> false. + + +%% ===================================================================== +%% is_pure(Module, Name, Arity) -> boolean() +%% +%% Module = Name = atom() +%% Arity = integer() +%% +%% Returns `true' if the function `Module:Name/Arity' does not +%% affect the state, nor depend on the state, although its +%% evaluation is not guaranteed to complete normally for all input. + +is_pure(erlang, '*', 2) -> true; +is_pure(erlang, '+', 1) -> true; % (even for non-numbers) +is_pure(erlang, '+', 2) -> true; +is_pure(erlang, '++', 2) -> true; +is_pure(erlang, '-', 1) -> true; +is_pure(erlang, '-', 2) -> true; +is_pure(erlang, '--', 2) -> true; +is_pure(erlang, '/', 2) -> true; +is_pure(erlang, '/=', 2) -> true; +is_pure(erlang, '<', 2) -> true; +is_pure(erlang, '=/=', 2) -> true; +is_pure(erlang, '=:=', 2) -> true; +is_pure(erlang, '=<', 2) -> true; +is_pure(erlang, '==', 2) -> true; +is_pure(erlang, '>', 2) -> true; +is_pure(erlang, '>=', 2) -> true; +is_pure(erlang, 'and', 2) -> true; +is_pure(erlang, 'band', 2) -> true; +is_pure(erlang, 'bnot', 1) -> true; +is_pure(erlang, 'bor', 2) -> true; +is_pure(erlang, 'bsl', 2) -> true; +is_pure(erlang, 'bsr', 2) -> true; +is_pure(erlang, 'bxor', 2) -> true; +is_pure(erlang, 'div', 2) -> true; +is_pure(erlang, 'not', 1) -> true; +is_pure(erlang, 'or', 2) -> true; +is_pure(erlang, 'rem', 2) -> true; +is_pure(erlang, 'xor', 2) -> true; +is_pure(erlang, abs, 1) -> true; +is_pure(erlang, atom_to_list, 1) -> true; +is_pure(erlang, binary_to_list, 1) -> true; +is_pure(erlang, binary_to_list, 3) -> true; +is_pure(erlang, concat_binary, 1) -> true; +is_pure(erlang, element, 2) -> true; +is_pure(erlang, float, 1) -> true; +is_pure(erlang, float_to_list, 1) -> true; +is_pure(erlang, hash, 2) -> false; +is_pure(erlang, hd, 1) -> true; +is_pure(erlang, integer_to_list, 1) -> true; +is_pure(erlang, is_atom, 1) -> true; +is_pure(erlang, is_boolean, 1) -> true; +is_pure(erlang, is_binary, 1) -> true; +is_pure(erlang, is_builtin, 3) -> true; +is_pure(erlang, is_constant, 1) -> true; +is_pure(erlang, is_float, 1) -> true; +is_pure(erlang, is_function, 1) -> true; +is_pure(erlang, is_integer, 1) -> true; +is_pure(erlang, is_list, 1) -> true; +is_pure(erlang, is_number, 1) -> true; +is_pure(erlang, is_pid, 1) -> true; +is_pure(erlang, is_port, 1) -> true; +is_pure(erlang, is_record, 3) -> true; +is_pure(erlang, is_reference, 1) -> true; +is_pure(erlang, is_tuple, 1) -> true; +is_pure(erlang, length, 1) -> true; +is_pure(erlang, list_to_atom, 1) -> true; +is_pure(erlang, list_to_binary, 1) -> true; +is_pure(erlang, list_to_float, 1) -> true; +is_pure(erlang, list_to_integer, 1) -> true; +is_pure(erlang, list_to_pid, 1) -> true; +is_pure(erlang, list_to_tuple, 1) -> true; +is_pure(erlang, phash, 2) -> false; +is_pure(erlang, pid_to_list, 1) -> true; +is_pure(erlang, round, 1) -> true; +is_pure(erlang, setelement, 3) -> true; +is_pure(erlang, size, 1) -> true; +is_pure(erlang, split_binary, 2) -> true; +is_pure(erlang, term_to_binary, 1) -> true; +is_pure(erlang, tl, 1) -> true; +is_pure(erlang, trunc, 1) -> true; +is_pure(erlang, tuple_to_list, 1) -> true; +is_pure(lists, append, 2) -> true; +is_pure(lists, subtract, 2) -> true; +is_pure(math, acos, 1) -> true; +is_pure(math, acosh, 1) -> true; +is_pure(math, asin, 1) -> true; +is_pure(math, asinh, 1) -> true; +is_pure(math, atan, 1) -> true; +is_pure(math, atan2, 2) -> true; +is_pure(math, atanh, 1) -> true; +is_pure(math, cos, 1) -> true; +is_pure(math, cosh, 1) -> true; +is_pure(math, erf, 1) -> true; +is_pure(math, erfc, 1) -> true; +is_pure(math, exp, 1) -> true; +is_pure(math, log, 1) -> true; +is_pure(math, log10, 1) -> true; +is_pure(math, pow, 2) -> true; +is_pure(math, sin, 1) -> true; +is_pure(math, sinh, 1) -> true; +is_pure(math, sqrt, 1) -> true; +is_pure(math, tan, 1) -> true; +is_pure(math, tanh, 1) -> true; +is_pure(_, _, _) -> false. + + +%% ===================================================================== +%% is_safe(Module, Name, Arity) -> boolean() +%% +%% Module = Name = atom() +%% Arity = integer() +%% +%% Returns `true' if the function `Module:Name/Arity' is completely +%% effect free, i.e., if its evaluation always completes normally +%% and does not affect the state (although the value it returns +%% might depend on the state). + +is_safe(erlang, '/=', 2) -> true; +is_safe(erlang, '<', 2) -> true; +is_safe(erlang, '=/=', 2) -> true; +is_safe(erlang, '=:=', 2) -> true; +is_safe(erlang, '=<', 2) -> true; +is_safe(erlang, '==', 2) -> true; +is_safe(erlang, '>', 2) -> true; +is_safe(erlang, '>=', 2) -> true; +is_safe(erlang, date, 0) -> true; +is_safe(erlang, get, 0) -> true; +is_safe(erlang, get, 1) -> true; +is_safe(erlang, get_cookie, 0) -> true; +is_safe(erlang, get_keys, 1) -> true; +is_safe(erlang, group_leader, 0) -> true; +is_safe(erlang, is_alive, 0) -> true; +is_safe(erlang, is_atom, 1) -> true; +is_safe(erlang, is_boolean, 1) -> true; +is_safe(erlang, is_binary, 1) -> true; +is_safe(erlang, is_constant, 1) -> true; +is_safe(erlang, is_float, 1) -> true; +is_safe(erlang, is_function, 1) -> true; +is_safe(erlang, is_integer, 1) -> true; +is_safe(erlang, is_list, 1) -> true; +is_safe(erlang, is_number, 1) -> true; +is_safe(erlang, is_pid, 1) -> true; +is_safe(erlang, is_port, 1) -> true; +is_safe(erlang, is_record, 3) -> true; +is_safe(erlang, is_reference, 1) -> true; +is_safe(erlang, is_tuple, 1) -> true; +is_safe(erlang, make_ref, 0) -> true; +is_safe(erlang, node, 0) -> true; +is_safe(erlang, nodes, 0) -> true; +is_safe(erlang, ports, 0) -> true; +is_safe(erlang, pre_loaded, 0) -> true; +is_safe(erlang, processes, 0) -> true; +is_safe(erlang, registered, 0) -> true; +is_safe(erlang, self, 0) -> true; +is_safe(erlang, term_to_binary, 1) -> true; +is_safe(erlang, time, 0) -> true; +is_safe(_, _, _) -> false. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/rec_env.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/rec_env.erl new file mode 100644 index 0000000000..01c2512397 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/rec_env.erl @@ -0,0 +1,611 @@ +%% ===================================================================== +%% This library is free software; you can redistribute it and/or modify +%% it under the terms of the GNU Lesser General Public License as +%% published by the Free Software Foundation; either version 2 of the +%% License, or (at your option) any later version. +%% +%% This library is distributed in the hope that it will be useful, but +%% WITHOUT ANY WARRANTY; without even the implied warranty of +%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +%% Lesser General Public License for more details. +%% +%% You should have received a copy of the GNU Lesser General Public +%% License along with this library; if not, write to the Free Software +%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 +%% USA +%% +%% $Id: rec_env.erl,v 1.2 2009/09/17 09:46:19 kostis Exp $ +%% +%% @author Richard Carlsson <[email protected]> +%% @copyright 1999-2004 Richard Carlsson +%% @doc Abstract environments, supporting self-referential bindings and +%% automatic new-key generation. + +%% The current implementation is based on Erlang standard library +%% dictionaries. + +%%% -define(DEBUG, true). + +-module(rec_env). + +-export([bind/3, bind_list/3, bind_recursive/4, delete/2, empty/0, + get/2, is_defined/2, is_empty/1, keys/1, lookup/2, new_key/1, + new_key/2, new_keys/2, new_keys/3, size/1, to_list/1]). + +-ifdef(DEBUG). +-export([test/1, test_custom/1, test_custom/2]). +-endif. + +-ifdef(DEBUG). +%% Code for testing: +%%@hidden +test(N) -> + test_0(integer, N). + +%%@hidden +test_custom(N) -> + F = fun (X) -> list_to_atom("X"++integer_to_list(X)) end, + test_custom(F, N). + +%%@hidden +test_custom(F, N) -> + test_0({custom, F}, N). + +test_0(Type, N) -> + put(new_key_calls, 0), + put(new_key_retries, 0), + put(new_key_max, 0), + Env = test_1(Type, N, empty()), + io:fwrite("\ncalls: ~w.\n", [get(new_key_calls)]), + io:fwrite("\nretries: ~w.\n", [get(new_key_retries)]), + io:fwrite("\nmax: ~w.\n", [get(new_key_max)]), + dict:to_list(element(1,Env)). + +test_1(integer = Type, N, Env) when integer(N), N > 0 -> + Key = new_key(Env), + test_1(Type, N - 1, bind(Key, value, Env)); +test_1({custom, F} = Type, N, Env) when integer(N), N > 0 -> + Key = new_key(F, Env), + test_1(Type, N - 1, bind(Key, value, Env)); +test_1(_,0, Env) -> + Env. +-endif. + + +%% Representation: +%% +%% environment() = [Mapping] +%% +%% Mapping = {map, Dict} | {rec, Dict, Dict} +%% Dict = dict:dictionary() +%% +%% An empty environment is a list containing a single `{map, Dict}' +%% element - empty lists are not valid environments. To find a key in an +%% environment, it is searched for in each mapping in the list, in +%% order, until it the key is found in some mapping, or the end of the +%% list is reached. In a 'rec' mapping, we keep the original dictionary +%% together with a version where entries may have been deleted - this +%% makes it possible to garbage collect the entire 'rec' mapping when +%% all its entries are unused (for example, by being shadowed by later +%% definitions). + + + +%% ===================================================================== +%% @type environment(). An abstract environment. + + +%% ===================================================================== +%% @spec empty() -> environment() +%% +%% @doc Returns an empty environment. + +empty() -> + [{map, dict:new()}]. + + +%% ===================================================================== +%% @spec is_empty(Env::environment()) -> boolean() +%% +%% @doc Returns <code>true</code> if the environment is empty, otherwise +%% <code>false</code>. + +is_empty([{map, Dict} | Es]) -> + N = dict:size(Dict), + if N /= 0 -> false; + Es == [] -> true; + true -> is_empty(Es) + end; +is_empty([{rec, Dict, _} | Es]) -> + N = dict:size(Dict), + if N /= 0 -> false; + Es == [] -> true; + true -> is_empty(Es) + end. + + +%% ===================================================================== +%% @spec size(Env::environment()) -> integer() +%% +%% @doc Returns the number of entries in an environment. + +%% (The name 'size' cannot be used in local calls, since there exists a +%% built-in function with the same name.) + +size(Env) -> + env_size(Env). + +env_size([{map, Dict}]) -> + dict:size(Dict); +env_size([{map, Dict} | Env]) -> + dict:size(Dict) + env_size(Env); +env_size([{rec, Dict, _Dict0} | Env]) -> + dict:size(Dict) + env_size(Env). + + +%% ===================================================================== +%% @spec is_defined(Key, Env) -> boolean() +%% +%% Key = term() +%% Env = environment() +%% +%% @doc Returns <code>true</code> if <code>Key</code> is bound in the +%% environment, otherwise <code>false</code>. + +is_defined(Key, [{map, Dict} | Env]) -> + case dict:is_key(Key, Dict) of + true -> + true; + false when Env == [] -> + false; + false -> + is_defined(Key, Env) + end; +is_defined(Key, [{rec, Dict, _Dict0} | Env]) -> + case dict:is_key(Key, Dict) of + true -> + true; + false -> + is_defined(Key, Env) + end. + + +%% ===================================================================== +%% @spec keys(Env::environment()) -> [term()] +%% +%% @doc Returns the ordered list of all keys in the environment. + +keys(Env) -> + lists:sort(keys(Env, [])). + +keys([{map, Dict}], S) -> + dict:fetch_keys(Dict) ++ S; +keys([{map, Dict} | Env], S) -> + keys(Env, dict:fetch_keys(Dict) ++ S); +keys([{rec, Dict, _Dict0} | Env], S) -> + keys(Env, dict:fetch_keys(Dict) ++ S). + + +%% ===================================================================== +%% @spec to_list(Env) -> [{Key, Value}] +%% +%% Env = environment() +%% Key = term() +%% Value = term() +%% +%% @doc Returns an ordered list of <code>{Key, Value}</code> pairs for +%% all keys in <code>Env</code>. <code>Value</code> is the same as that +%% returned by {@link get/2}. + +to_list(Env) -> + lists:sort(to_list(Env, [])). + +to_list([{map, Dict}], S) -> + dict:to_list(Dict) ++ S; +to_list([{map, Dict} | Env], S) -> + to_list(Env, dict:to_list(Dict) ++ S); +to_list([{rec, Dict, _Dict0} | Env], S) -> + to_list(Env, dict:to_list(Dict) ++ S). + + +%% ===================================================================== +%% @spec bind(Key, Value, Env) -> environment() +%% +%% Key = term() +%% Value = term() +%% Env = environment() +%% +%% @doc Make a nonrecursive entry. This binds <code>Key</code> to +%% <code>Value</code>. If the key already existed in the environment, +%% the old entry is replaced. + +%% Note that deletion is done to free old bindings so they can be +%% garbage collected. + +bind(Key, Value, [{map, Dict}]) -> + [{map, dict:store(Key, Value, Dict)}]; +bind(Key, Value, [{map, Dict} | Env]) -> + [{map, dict:store(Key, Value, Dict)} | delete_any(Key, Env)]; +bind(Key, Value, Env) -> + [{map, dict:store(Key, Value, dict:new())} | delete_any(Key, Env)]. + + +%% ===================================================================== +%% @spec bind_list(Keys, Values, Env) -> environment() +%% +%% Keys = [term()] +%% Values = [term()] +%% Env = environment() +%% +%% @doc Make N nonrecursive entries. This binds each key in +%% <code>Keys</code> to the corresponding value in +%% <code>Values</code>. If some key already existed in the environment, +%% the previous entry is replaced. If <code>Keys</code> does not have +%% the same length as <code>Values</code>, an exception is generated. + +bind_list(Ks, Vs, [{map, Dict}]) -> + [{map, store_list(Ks, Vs, Dict)}]; +bind_list(Ks, Vs, [{map, Dict} | Env]) -> + [{map, store_list(Ks, Vs, Dict)} | delete_list(Ks, Env)]; +bind_list(Ks, Vs, Env) -> + [{map, store_list(Ks, Vs, dict:new())} | delete_list(Ks, Env)]. + +store_list([K | Ks], [V | Vs], Dict) -> + store_list(Ks, Vs, dict:store(K, V, Dict)); +store_list([], _, Dict) -> + Dict. + +delete_list([K | Ks], Env) -> + delete_list(Ks, delete_any(K, Env)); +delete_list([], Env) -> + Env. + +%% By not calling `delete' unless we have to, we avoid unnecessary +%% rewriting of the data. + +delete_any(Key, Env) -> + case is_defined(Key, Env) of + true -> + delete(Key, Env); + false -> + Env + end. + +%% ===================================================================== +%% @spec delete(Key, Env) -> environment() +%% +%% Key = term() +%% Env = environment() +%% +%% @doc Delete an entry. This removes <code>Key</code> from the +%% environment. + +delete(Key, [{map, Dict} = E | Env]) -> + case dict:is_key(Key, Dict) of + true -> + [{map, dict:erase(Key, Dict)} | Env]; + false -> + delete_1(Key, Env, E) + end; +delete(Key, [{rec, Dict, Dict0} = E | Env]) -> + case dict:is_key(Key, Dict) of + true -> + %% The Dict0 component must be preserved as it is until all + %% keys in Dict have been deleted. + Dict1 = dict:erase(Key, Dict), + case dict:size(Dict1) of + 0 -> + Env; % the whole {rec,...} is now garbage + _ -> + [{rec, Dict1, Dict0} | Env] + end; + false -> + [E | delete(Key, Env)] + end. + +%% This is just like above, except we pass on the preceding 'map' +%% mapping in the list to enable merging when removing 'rec' mappings. + +delete_1(Key, [{rec, Dict, Dict0} = E | Env], E1) -> + case dict:is_key(Key, Dict) of + true -> + Dict1 = dict:erase(Key, Dict), + case dict:size(Dict1) of + 0 -> + concat(E1, Env); + _ -> + [E1, {rec, Dict1, Dict0} | Env] + end; + false -> + [E1, E | delete(Key, Env)] + end. + +concat({map, D1}, [{map, D2} | Env]) -> + [dict:merge(fun (_K, V1, _V2) -> V1 end, D1, D2) | Env]; +concat(E1, Env) -> + [E1 | Env]. + + +%% ===================================================================== +%% @spec bind_recursive(Keys, Values, Fun, Env) -> NewEnv +%% +%% Keys = [term()] +%% Values = [term()] +%% Fun = (Value, Env) -> term() +%% Env = environment() +%% NewEnv = environment() +%% +%% @doc Make N recursive entries. This binds each key in +%% <code>Keys</code> to the value of <code>Fun(Value, NewEnv)</code> for +%% the corresponding <code>Value</code>. If <code>Keys</code> does not +%% have the same length as <code>Values</code>, an exception is +%% generated. If some key already existed in the environment, the old +%% entry is replaced. +%% +%% <p>Note: the function <code>Fun</code> is evaluated each time one of +%% the stored keys is looked up, but only then.</p> +%% +%% <p>Examples: +%%<pre> +%% NewEnv = bind_recursive([foo, bar], [1, 2], +%% fun (V, E) -> V end, +%% Env)</pre> +%% +%% This does nothing interesting; <code>get(foo, NewEnv)</code> yields +%% <code>1</code> and <code>get(bar, NewEnv)</code> yields +%% <code>2</code>, but there is more overhead than if the {@link +%% bind_list/3} function had been used. +%% +%% <pre> +%% NewEnv = bind_recursive([foo, bar], [1, 2], +%% fun (V, E) -> {V, E} end, +%% Env)</pre> +%% +%% Here, however, <code>get(foo, NewEnv)</code> will yield <code>{1, +%% NewEnv}</code> and <code>get(bar, NewEnv)</code> will yield <code>{2, +%% NewEnv}</code>, i.e., the environment <code>NewEnv</code> contains +%% recursive bindings.</p> + +bind_recursive([], [], _, Env) -> + Env; +bind_recursive(Ks, Vs, F, Env) -> + F1 = fun (V) -> + fun (Dict) -> F(V, [{rec, Dict, Dict} | Env]) end + end, + Dict = bind_recursive_1(Ks, Vs, F1, dict:new()), + [{rec, Dict, Dict} | Env]. + +bind_recursive_1([K | Ks], [V | Vs], F, Dict) -> + bind_recursive_1(Ks, Vs, F, dict:store(K, F(V), Dict)); +bind_recursive_1([], [], _, Dict) -> + Dict. + + +%% ===================================================================== +%% @spec lookup(Key, Env) -> error | {ok, Value} +%% +%% Key = term() +%% Env = environment() +%% Value = term() +%% +%% @doc Returns <code>{ok, Value}</code> if <code>Key</code> is bound to +%% <code>Value</code> in <code>Env</code>, and <code>error</code> +%% otherwise. + +lookup(Key, [{map, Dict} | Env]) -> + case dict:find(Key, Dict) of + {ok, _}=Value -> + Value; + error when Env == [] -> + error; + error -> + lookup(Key, Env) + end; +lookup(Key, [{rec, Dict, Dict0} | Env]) -> + case dict:find(Key, Dict) of + {ok, F} -> + {ok, F(Dict0)}; + error -> + lookup(Key, Env) + end. + + +%% ===================================================================== +%% @spec get(Key, Env) -> Value +%% +%% Key = term() +%% Env = environment() +%% Value = term() +%% +%% @doc Returns the value that <code>Key</code> is bound to in +%% <code>Env</code>. Throws <code>{undefined, Key}</code> if the key +%% does not exist in <code>Env</code>. + +get(Key, Env) -> + case lookup(Key, Env) of + {ok, Value} -> Value; + error -> throw({undefined, Key}) + end. + + +%% ===================================================================== +%% The key-generating algorithm could possibly be further improved. The +%% important thing to keep in mind is, that when we need a new key, we +%% are generally in mid-traversal of a syntax tree, and existing names +%% in the tree may be closely grouped and evenly distributed or even +%% forming a compact range (often having been generated by a "gensym", +%% or by this very algorithm itself). This means that if we generate an +%% identifier whose value is too close to those already seen (i.e., +%% which are in the environment), it is very probable that we will +%% shadow a not-yet-seen identifier further down in the tree, the result +%% being that we induce another later renaming, and end up renaming most +%% of the identifiers, completely contrary to our intention. We need to +%% generate new identifiers in a way that avoids such systematic +%% collisions. +%% +%% One way of getting a new key to try when the previous attempt failed +%% is of course to e.g. add one to the last tried value. However, in +%% general it's a bad idea to try adjacent identifiers: the percentage +%% of retries will typically increase a lot, so you may lose big on the +%% extra lookups while gaining only a little from the quicker +%% computation. +%% +%% We want an initial range that is large enough for most typical cases. +%% If we start with, say, a range of 10, we might quickly use up most of +%% the values in the range 1-10 (or 1-100) for new top-level variables - +%% but as we start traversing the syntax tree, it is quite likely that +%% exactly those variables will be encountered again (this depends on +%% how the names in the tree were created), and will then need to be +%% renamed. If we instead begin with a larger range, it is less likely +%% that any top-level names that we introduce will shadow names that we +%% will find in the tree. Of course we cannot know how large is large +%% enough: for any initial range, there is some syntax tree that uses +%% all the values in that range, and thus any top-level names introduced +%% will shadow names in the tree. The point is to avoid this happening +%% all the time - a range of about 1000 seems enough for most programs. +%% +%% The following values have been shown to work well: + +-define(MINIMUM_RANGE, 1000). +-define(START_RANGE_FACTOR, 50). +-define(MAX_RETRIES, 2). % retries before enlarging range +-define(ENLARGE_FACTOR, 10). % range enlargment factor + +-ifdef(DEBUG). +%% If you want to use these process dictionary counters, make sure to +%% initialise them to zero before you call any of the key-generating +%% functions. +%% +%% new_key_calls total number of calls +%% new_key_retries failed key generation attempts +%% new_key_max maximum generated integer value +%% +-define(measure_calls(), + put(new_key_calls, 1 + get(new_key_calls))). +-define(measure_max_key(N), + case N > get(new_key_max) of + true -> + put(new_key_max, N); + false -> + ok + end). +-define(measure_retries(N), + put(new_key_retries, get(new_key_retries) + N)). +-else. +-define(measure_calls(), ok). +-define(measure_max_key(N), ok). +-define(measure_retries(N), ok). +-endif. + + +%% ===================================================================== +%% @spec new_key(Env::environment()) -> integer() +%% +%% @doc Returns an integer which is not already used as key in the +%% environment. New integers are generated using an algorithm which +%% tries to keep the values randomly distributed within a reasonably +%% small range relative to the number of entries in the environment. +%% +%% <p>This function uses the Erlang standard library module +%% <code>random</code> to generate new keys.</p> +%% +%% <p>Note that only the new key is returned; the environment itself is +%% not updated by this function.</p> + +new_key(Env) -> + new_key(fun (X) -> X end, Env). + + +%% ===================================================================== +%% @spec new_key(Function, Env) -> term() +%% +%% Function = (integer()) -> term() +%% Env = environment() +%% +%% @doc Returns a term which is not already used as key in the +%% environment. The term is generated by applying <code>Function</code> +%% to an integer generated as in {@link new_key/1}. +%% +%% <p>Note that only the generated term is returned; the environment +%% itself is not updated by this function.</p> + +new_key(F, Env) -> + ?measure_calls(), + R = start_range(Env), +%%% io:fwrite("Start range: ~w.\n", [R]), + new_key(R, F, Env). + +new_key(R, F, Env) -> + new_key(generate(R, R), R, 0, F, Env). + +new_key(N, R, T, F, Env) when T < ?MAX_RETRIES -> + A = F(N), + case is_defined(A, Env) of + true -> +%%% io:fwrite("CLASH: ~w.\n", [A]), + new_key(generate(N, R), R, T + 1, F, Env); + false -> + ?measure_max_key(N), + ?measure_retries(T), +%%% io:fwrite("New: ~w.\n", [N]), + A + end; +new_key(N, R, _T, F, Env) -> + %% Too many retries - enlarge the range and start over. + ?measure_retries((_T + 1)), + R1 = trunc(R * ?ENLARGE_FACTOR), +%%% io:fwrite("**NEW RANGE**: ~w.\n", [R1]), + new_key(generate(N, R1), R1, 0, F, Env). + +start_range(Env) -> + max(env_size(Env) * ?START_RANGE_FACTOR, ?MINIMUM_RANGE). + +max(X, Y) when X > Y -> X; +max(_, Y) -> Y. + +%% The previous key might or might not be used to compute the next key +%% to be tried. It is currently not used. +%% +%% In order to avoid causing cascading renamings, it is important that +%% this function does not generate values in order, but +%% (pseudo-)randomly distributed over the range. + +generate(_N, Range) -> + random:uniform(Range). % works well + + +%% ===================================================================== +%% @spec new_keys(N, Env) -> [integer()] +%% +%% N = integer() +%% Env = environment() +%% +%% @doc Returns a list of <code>N</code> distinct integers that are not +%% already used as keys in the environment. See {@link new_key/1} for +%% details. + +new_keys(N, Env) when integer(N) -> + new_keys(N, fun (X) -> X end, Env). + + +%% ===================================================================== +%% @spec new_keys(N, Function, Env) -> [term()] +%% +%% N = integer() +%% Function = (integer()) -> term() +%% Env = environment() +%% +%% @doc Returns a list of <code>N</code> distinct terms that are not +%% already used as keys in the environment. See {@link new_key/3} for +%% details. + +new_keys(N, F, Env) when integer(N) -> + R = start_range(Env), + new_keys(N, [], R, F, Env). + +new_keys(N, Ks, R, F, Env) when N > 0 -> + Key = new_key(R, F, Env), + Env1 = bind(Key, true, Env), % dummy binding + new_keys(N - 1, [Key | Ks], R, F, Env1); +new_keys(0, Ks, _, _, _) -> + Ks. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_expand_pmod.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_expand_pmod.erl new file mode 100644 index 0000000000..f48cc05b9c --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_expand_pmod.erl @@ -0,0 +1,425 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: sys_expand_pmod.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +-module(sys_expand_pmod). + +%% Expand function definition forms of parameterized module. We assume +%% all record definitions, imports, queries, etc., have been expanded +%% away. Any calls on the form 'foo(...)' must be calls to local +%% functions. Auto-generated functions (module_info,...) have not yet +%% been added to the function definitions, but are listed in 'defined' +%% and 'exports'. The 'new/N' function is neither added to the +%% definitions nor to the 'exports'/'defines' lists yet. + +-export([forms/4]). + +-record(pmod, {parameters, exports, defined, predef}). + +%% TODO: more abstract handling of predefined/static functions. + +forms(Fs0, Ps, Es0, Ds0) -> + PreDef = [{module_info,0},{module_info,1}], + forms(Fs0, Ps, Es0, Ds0, PreDef). + +forms(Fs0, Ps, Es0, Ds0, PreDef) -> + St0 = #pmod{parameters=Ps,exports=Es0,defined=Ds0, predef=PreDef}, + {Fs1, St1} = forms(Fs0, St0), + Es1 = update_function_names(Es0, St1), + Ds1 = update_function_names(Ds0, St1), + Fs2 = update_forms(Fs1, St1), + {Fs2,Es1,Ds1}. + +%% This is extremely simplistic for now; all functions get an extra +%% parameter, whether they need it or not, except for static functions. + +update_function_names(Es, St) -> + [update_function_name(E, St) || E <- Es]. + +update_function_name(E={F,A}, St) -> + case ordsets:is_element(E, St#pmod.predef) of + true -> E; + false -> {F, A + 1} + end. + +update_forms([{function,L,N,A,Cs}|Fs],St) -> + [{function,L,N,A+1,Cs}|update_forms(Fs,St)]; +update_forms([F|Fs],St) -> + [F|update_forms(Fs,St)]; +update_forms([],_St) -> + []. + +%% Process the program forms. + +forms([F0|Fs0],St0) -> + {F1,St1} = form(F0,St0), + {Fs1,St2} = forms(Fs0,St1), + {[F1|Fs1],St2}; +forms([], St0) -> + {[], St0}. + +%% Only function definitions are of interest here. State is not updated. +form({function,Line,Name0,Arity0,Clauses0},St) -> + {Name,Arity,Clauses} = function(Name0, Arity0, Clauses0, St), + {{function,Line,Name,Arity,Clauses},St}; +%% Pass anything else through +form(F,St) -> {F,St}. + +function(Name, Arity, Clauses0, St) -> + Clauses1 = clauses(Clauses0,St), + {Name,Arity,Clauses1}. + +clauses([C|Cs],St) -> + {clause,L,H,G,B} = clause(C,St), + T = {tuple,L,[{var,L,V} || V <- ['_'|St#pmod.parameters]]}, + [{clause,L,H++[{match,L,T,{var,L,'THIS'}}],G,B}|clauses(Cs,St)]; +clauses([],_St) -> []. + +clause({clause,Line,H0,G0,B0},St) -> + H1 = head(H0,St), + G1 = guard(G0,St), + B1 = exprs(B0,St), + {clause,Line,H1,G1,B1}. + +head(Ps,St) -> patterns(Ps,St). + +patterns([P0|Ps],St) -> + P1 = pattern(P0,St), + [P1|patterns(Ps,St)]; +patterns([],_St) -> []. + +string_to_conses([], _Line, Tail) -> + Tail; +string_to_conses([E|Rest], Line, Tail) -> + {cons, Line, {integer, Line, E}, string_to_conses(Rest, Line, Tail)}. + +pattern({var,Line,V},_St) -> {var,Line,V}; +pattern({match,Line,L0,R0},St) -> + L1 = pattern(L0,St), + R1 = pattern(R0,St), + {match,Line,L1,R1}; +pattern({integer,Line,I},_St) -> {integer,Line,I}; +pattern({char,Line,C},_St) -> {char,Line,C}; +pattern({float,Line,F},_St) -> {float,Line,F}; +pattern({atom,Line,A},_St) -> {atom,Line,A}; +pattern({string,Line,S},_St) -> {string,Line,S}; +pattern({nil,Line},_St) -> {nil,Line}; +pattern({cons,Line,H0,T0},St) -> + H1 = pattern(H0,St), + T1 = pattern(T0,St), + {cons,Line,H1,T1}; +pattern({tuple,Line,Ps0},St) -> + Ps1 = pattern_list(Ps0,St), + {tuple,Line,Ps1}; +pattern({bin,Line,Fs},St) -> + Fs2 = pattern_grp(Fs,St), + {bin,Line,Fs2}; +pattern({op,_Line,'++',{nil,_},R},St) -> + pattern(R,St); +pattern({op,_Line,'++',{cons,Li,{char,C2,I},T},R},St) -> + pattern({cons,Li,{char,C2,I},{op,Li,'++',T,R}},St); +pattern({op,_Line,'++',{cons,Li,{integer,L2,I},T},R},St) -> + pattern({cons,Li,{integer,L2,I},{op,Li,'++',T,R}},St); +pattern({op,_Line,'++',{string,Li,L},R},St) -> + pattern(string_to_conses(L, Li, R),St); +pattern({op,Line,Op,A},_St) -> + {op,Line,Op,A}; +pattern({op,Line,Op,L,R},_St) -> + {op,Line,Op,L,R}. + +pattern_grp([{bin_element,L1,E1,S1,T1} | Fs],St) -> + S2 = case S1 of + default -> + default; + _ -> + expr(S1,St) + end, + T2 = case T1 of + default -> + default; + _ -> + bit_types(T1) + end, + [{bin_element,L1,expr(E1,St),S2,T2} | pattern_grp(Fs,St)]; +pattern_grp([],_St) -> + []. + +bit_types([]) -> + []; +bit_types([Atom | Rest]) when atom(Atom) -> + [Atom | bit_types(Rest)]; +bit_types([{Atom, Integer} | Rest]) when atom(Atom), integer(Integer) -> + [{Atom, Integer} | bit_types(Rest)]. + +pattern_list([P0|Ps],St) -> + P1 = pattern(P0,St), + [P1|pattern_list(Ps,St)]; +pattern_list([],_St) -> []. + +guard([G0|Gs],St) when list(G0) -> + [guard0(G0,St) | guard(Gs,St)]; +guard(L,St) -> + guard0(L,St). + +guard0([G0|Gs],St) -> + G1 = guard_test(G0,St), + [G1|guard0(Gs,St)]; +guard0([],_St) -> []. + +guard_test(Expr={call,Line,{atom,La,F},As0},St) -> + case erl_internal:type_test(F, length(As0)) of + true -> + As1 = gexpr_list(As0,St), + {call,Line,{atom,La,F},As1}; + _ -> + gexpr(Expr,St) + end; +guard_test(Any,St) -> + gexpr(Any,St). + +gexpr({var,L,V},_St) -> + {var,L,V}; +% %% alternative implementation of accessing module parameters +% case index(V,St#pmod.parameters) of +% N when N > 0 -> +% {call,L,{remote,L,{atom,L,erlang},{atom,L,element}}, +% [{integer,L,N+1},{var,L,'THIS'}]}; +% _ -> +% {var,L,V} +% end; +gexpr({integer,Line,I},_St) -> {integer,Line,I}; +gexpr({char,Line,C},_St) -> {char,Line,C}; +gexpr({float,Line,F},_St) -> {float,Line,F}; +gexpr({atom,Line,A},_St) -> {atom,Line,A}; +gexpr({string,Line,S},_St) -> {string,Line,S}; +gexpr({nil,Line},_St) -> {nil,Line}; +gexpr({cons,Line,H0,T0},St) -> + H1 = gexpr(H0,St), + T1 = gexpr(T0,St), + {cons,Line,H1,T1}; +gexpr({tuple,Line,Es0},St) -> + Es1 = gexpr_list(Es0,St), + {tuple,Line,Es1}; +gexpr({call,Line,{atom,La,F},As0},St) -> + case erl_internal:guard_bif(F, length(As0)) of + true -> As1 = gexpr_list(As0,St), + {call,Line,{atom,La,F},As1} + end; +% Pre-expansion generated calls to erlang:is_record/3 must also be handled +gexpr({call,Line,{remote,La,{atom,Lb,erlang},{atom,Lc,is_record}},As0},St) + when length(As0) == 3 -> + As1 = gexpr_list(As0,St), + {call,Line,{remote,La,{atom,Lb,erlang},{atom,Lc,is_record}},As1}; +% Guard bif's can be remote, but only in the module erlang... +gexpr({call,Line,{remote,La,{atom,Lb,erlang},{atom,Lc,F}},As0},St) -> + case erl_internal:guard_bif(F, length(As0)) or + erl_internal:arith_op(F, length(As0)) or + erl_internal:comp_op(F, length(As0)) or + erl_internal:bool_op(F, length(As0)) of + true -> As1 = gexpr_list(As0,St), + {call,Line,{remote,La,{atom,Lb,erlang},{atom,Lc,F}},As1} + end; +% Unfortunately, writing calls as {M,F}(...) is also allowed. +gexpr({call,Line,{tuple,La,[{atom,Lb,erlang},{atom,Lc,F}]},As0},St) -> + case erl_internal:guard_bif(F, length(As0)) or + erl_internal:arith_op(F, length(As0)) or + erl_internal:comp_op(F, length(As0)) or + erl_internal:bool_op(F, length(As0)) of + true -> As1 = gexpr_list(As0,St), + {call,Line,{tuple,La,[{atom,Lb,erlang},{atom,Lc,F}]},As1} + end; +gexpr({bin,Line,Fs},St) -> + Fs2 = pattern_grp(Fs,St), + {bin,Line,Fs2}; +gexpr({op,Line,Op,A0},St) -> + case erl_internal:arith_op(Op, 1) or + erl_internal:bool_op(Op, 1) of + true -> A1 = gexpr(A0,St), + {op,Line,Op,A1} + end; +gexpr({op,Line,Op,L0,R0},St) -> + case erl_internal:arith_op(Op, 2) or + erl_internal:bool_op(Op, 2) or + erl_internal:comp_op(Op, 2) of + true -> + L1 = gexpr(L0,St), + R1 = gexpr(R0,St), + {op,Line,Op,L1,R1} + end. + +gexpr_list([E0|Es],St) -> + E1 = gexpr(E0,St), + [E1|gexpr_list(Es,St)]; +gexpr_list([],_St) -> []. + +exprs([E0|Es],St) -> + E1 = expr(E0,St), + [E1|exprs(Es,St)]; +exprs([],_St) -> []. + +expr({var,L,V},_St) -> + {var,L,V}; +% case index(V,St#pmod.parameters) of +% N when N > 0 -> +% {call,L,{remote,L,{atom,L,erlang},{atom,L,element}}, +% [{integer,L,N+1},{var,L,'THIS'}]}; +% _ -> +% {var,L,V} +% end; +expr({integer,Line,I},_St) -> {integer,Line,I}; +expr({float,Line,F},_St) -> {float,Line,F}; +expr({atom,Line,A},_St) -> {atom,Line,A}; +expr({string,Line,S},_St) -> {string,Line,S}; +expr({char,Line,C},_St) -> {char,Line,C}; +expr({nil,Line},_St) -> {nil,Line}; +expr({cons,Line,H0,T0},St) -> + H1 = expr(H0,St), + T1 = expr(T0,St), + {cons,Line,H1,T1}; +expr({lc,Line,E0,Qs0},St) -> + Qs1 = lc_quals(Qs0,St), + E1 = expr(E0,St), + {lc,Line,E1,Qs1}; +expr({tuple,Line,Es0},St) -> + Es1 = expr_list(Es0,St), + {tuple,Line,Es1}; +expr({block,Line,Es0},St) -> + Es1 = exprs(Es0,St), + {block,Line,Es1}; +expr({'if',Line,Cs0},St) -> + Cs1 = icr_clauses(Cs0,St), + {'if',Line,Cs1}; +expr({'case',Line,E0,Cs0},St) -> + E1 = expr(E0,St), + Cs1 = icr_clauses(Cs0,St), + {'case',Line,E1,Cs1}; +expr({'receive',Line,Cs0},St) -> + Cs1 = icr_clauses(Cs0,St), + {'receive',Line,Cs1}; +expr({'receive',Line,Cs0,To0,ToEs0},St) -> + To1 = expr(To0,St), + ToEs1 = exprs(ToEs0,St), + Cs1 = icr_clauses(Cs0,St), + {'receive',Line,Cs1,To1,ToEs1}; +expr({'try',Line,Es0,Scs0,Ccs0,As0},St) -> + Es1 = exprs(Es0,St), + Scs1 = icr_clauses(Scs0,St), + Ccs1 = icr_clauses(Ccs0,St), + As1 = exprs(As0,St), + {'try',Line,Es1,Scs1,Ccs1,As1}; +expr({'fun',Line,Body,Info},St) -> + case Body of + {clauses,Cs0} -> + Cs1 = fun_clauses(Cs0,St), + {'fun',Line,{clauses,Cs1},Info}; + {function,F,A} -> + {F1,A1} = update_function_name({F,A},St), + if A1 == A -> + {'fun',Line,{function,F,A},Info}; + true -> + %% Must rewrite local fun-name to a fun that does a + %% call with the extra THIS parameter. + As = make_vars(A, Line), + As1 = As ++ [{var,Line,'THIS'}], + Call = {call,Line,{atom,Line,F1},As1}, + Cs = [{clause,Line,As,[],[Call]}], + {'fun',Line,{clauses,Cs},Info} + end; + {function,M,F,A} -> %This is an error in lint! + {'fun',Line,{function,M,F,A},Info} + end; +expr({call,Lc,{atom,_,new}=Name,As0},#pmod{parameters=Ps}=St) + when length(As0) =:= length(Ps) -> + %% The new() function does not take a 'THIS' argument (it's static). + As1 = expr_list(As0,St), + {call,Lc,Name,As1}; +expr({call,Lc,{atom,_,module_info}=Name,As0},St) + when length(As0) == 0; length(As0) == 1 -> + %% The module_info/0 and module_info/1 functions are also static. + As1 = expr_list(As0,St), + {call,Lc,Name,As1}; +expr({call,Lc,{atom,Lf,F},As0},St) -> + %% Local function call - needs THIS parameter. + As1 = expr_list(As0,St), + {call,Lc,{atom,Lf,F},As1 ++ [{var,0,'THIS'}]}; +expr({call,Line,F0,As0},St) -> + %% Other function call + F1 = expr(F0,St), + As1 = expr_list(As0,St), + {call,Line,F1,As1}; +expr({'catch',Line,E0},St) -> + E1 = expr(E0,St), + {'catch',Line,E1}; +expr({match,Line,P0,E0},St) -> + E1 = expr(E0,St), + P1 = pattern(P0,St), + {match,Line,P1,E1}; +expr({bin,Line,Fs},St) -> + Fs2 = pattern_grp(Fs,St), + {bin,Line,Fs2}; +expr({op,Line,Op,A0},St) -> + A1 = expr(A0,St), + {op,Line,Op,A1}; +expr({op,Line,Op,L0,R0},St) -> + L1 = expr(L0,St), + R1 = expr(R0,St), + {op,Line,Op,L1,R1}; +%% The following are not allowed to occur anywhere! +expr({remote,Line,M0,F0},St) -> + M1 = expr(M0,St), + F1 = expr(F0,St), + {remote,Line,M1,F1}. + +expr_list([E0|Es],St) -> + E1 = expr(E0,St), + [E1|expr_list(Es,St)]; +expr_list([],_St) -> []. + +icr_clauses([C0|Cs],St) -> + C1 = clause(C0,St), + [C1|icr_clauses(Cs,St)]; +icr_clauses([],_St) -> []. + +lc_quals([{generate,Line,P0,E0}|Qs],St) -> + E1 = expr(E0,St), + P1 = pattern(P0,St), + [{generate,Line,P1,E1}|lc_quals(Qs,St)]; +lc_quals([E0|Qs],St) -> + E1 = expr(E0,St), + [E1|lc_quals(Qs,St)]; +lc_quals([],_St) -> []. + +fun_clauses([C0|Cs],St) -> + C1 = clause(C0,St), + [C1|fun_clauses(Cs,St)]; +fun_clauses([],_St) -> []. + +% %% Return index from 1 upwards, or 0 if not in the list. +% +% index(X,Ys) -> index(X,Ys,1). +% +% index(X,[X|Ys],A) -> A; +% index(X,[Y|Ys],A) -> index(X,Ys,A+1); +% index(X,[],A) -> 0. + +make_vars(N, L) -> + make_vars(1, N, L). + +make_vars(N, M, L) when N =< M -> + V = list_to_atom("X"++integer_to_list(N)), + [{var,L,V} | make_vars(N + 1, M, L)]; +make_vars(_, _, _) -> + []. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_pre_attributes.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_pre_attributes.erl new file mode 100644 index 0000000000..21d28868f0 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_pre_attributes.erl @@ -0,0 +1,212 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: sys_pre_attributes.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Transform Erlang compiler attributes + +-module(sys_pre_attributes). + +-export([parse_transform/2]). + +-define(OPTION_TAG, attributes). + +-record(state, {forms, + pre_ops = [], + post_ops = [], + options}). + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Inserts, deletes and replaces Erlang compiler attributes. +%% +%% Valid options are: +%% +%% {attribute, insert, AttrName, NewAttrVal} +%% {attribute, replace, AttrName, NewAttrVal} % replace first occurrence +%% {attribute, delete, AttrName} +%% +%% The transformation is performed in two passes: +%% +%% pre_transform +%% ------------- +%% Searches for attributes in the list of Forms in order to +%% delete or replace them. 'delete' will delete all occurrences +%% of attributes with the given name. 'replace' will replace the +%% first occurrence of the attribute. This pass is will only be +%% performed if there are replace or delete operations stated +%% as options. +%% +%% post_transform +%% ------------- +%% Looks up the module attribute and inserts the new attributes +%% directly after. This pass will only be performed if there are +%% any attributes left to be inserted after pre_transform. The left +%% overs will be those replace operations that not has been performed +%% due to that the pre_transform pass did not find the attribute plus +%% all insert operations. + +parse_transform(Forms, Options) -> + S = #state{forms = Forms, options = Options}, + S2 = init_transform(S), + report_verbose("Pre options: ~p~n", [S2#state.pre_ops], S2), + report_verbose("Post options: ~p~n", [S2#state.post_ops], S2), + S3 = pre_transform(S2), + S4 = post_transform(S3), + S4#state.forms. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Computes the lists of pre_ops and post_ops that are +%% used in the real transformation. +init_transform(S) -> + case S#state.options of + Options when list(Options) -> + init_transform(Options, S); + Option -> + init_transform([Option], S) + end. + +init_transform([{attribute, insert, Name, Val} | Tail], S) -> + Op = {insert, Name, Val}, + PostOps = [Op | S#state.post_ops], + init_transform(Tail, S#state{post_ops = PostOps}); +init_transform([{attribute, replace, Name, Val} | Tail], S) -> + Op = {replace, Name, Val}, + PreOps = [Op | S#state.pre_ops], + PostOps = [Op | S#state.post_ops], + init_transform(Tail, S#state{pre_ops = PreOps, post_ops = PostOps}); +init_transform([{attribute, delete, Name} | Tail], S) -> + Op = {delete, Name}, + PreOps = [Op | S#state.pre_ops], + init_transform(Tail, S#state{pre_ops = PreOps}); +init_transform([], S) -> + S; +init_transform([_ | T], S) -> + init_transform(T, S); +init_transform(BadOpt, S) -> + report_error("Illegal option (ignored): ~p~n", [BadOpt], S), + S. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Handle delete and perhaps replace + +pre_transform(S) when S#state.pre_ops == [] -> + S; +pre_transform(S) -> + pre_transform(S#state.forms, [], S). + +pre_transform([H | T], Acc, S) -> + case H of + {attribute, Line, Name, Val} -> + case lists:keysearch(Name, 2, S#state.pre_ops) of + false -> + pre_transform(T, [H | Acc], S); + + {value, {replace, Name, NewVal}} -> + report_warning("Replace attribute ~p: ~p -> ~p~n", + [Name, Val, NewVal], + S), + New = {attribute, Line, Name, NewVal}, + Pre = lists:keydelete(Name, 2, S#state.pre_ops), + Post = lists:keydelete(Name, 2, S#state.post_ops), + S2 = S#state{pre_ops = Pre, post_ops = Post}, + if + Pre == [] -> + %% No need to search the rest of the Forms + Forms = lists:reverse(Acc, [New | T]), + S2#state{forms = Forms}; + true -> + pre_transform(T, [New | Acc], S2) + end; + + {value, {delete, Name}} -> + report_warning("Delete attribute ~p: ~p~n", + [Name, Val], + S), + pre_transform(T, Acc, S) + end; + _Any -> + pre_transform(T, [H | Acc], S) + end; +pre_transform([], Acc, S) -> + S#state{forms = lists:reverse(Acc)}. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Handle insert and perhaps replace + +post_transform(S) when S#state.post_ops == [] -> + S; +post_transform(S) -> + post_transform(S#state.forms, [], S). + +post_transform([H | T], Acc, S) -> + case H of + {attribute, Line, module, Val} -> + Acc2 = lists:reverse([{attribute, Line, module, Val} | Acc]), + Forms = Acc2 ++ attrs(S#state.post_ops, Line, S) ++ T, + S#state{forms = Forms, post_ops = []}; + _Any -> + post_transform(T, [H | Acc], S) + end; +post_transform([], Acc, S) -> + S#state{forms = lists:reverse(Acc)}. + +attrs([{replace, Name, NewVal} | T], Line, S) -> + report_verbose("Insert attribute ~p: ~p~n", [Name, NewVal], S), + [{attribute, Line, Name, NewVal} | attrs(T, Line, S)]; +attrs([{insert, Name, NewVal} | T], Line, S) -> + report_verbose("Insert attribute ~p: ~p~n", [Name, NewVal], S), + [{attribute, Line, Name, NewVal} | attrs(T, Line, S)]; +attrs([], _, _) -> + []. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Report functions. +%% +%% Errors messages are controlled with the 'report_errors' compiler option +%% Warning messages are controlled with the 'report_warnings' compiler option +%% Verbose messages are controlled with the 'verbose' compiler option + +report_error(Format, Args, S) -> + case is_error(S) of + true -> + io:format("~p: * ERROR * " ++ Format, [?MODULE | Args]); + false -> + ok + end. + +report_warning(Format, Args, S) -> + case is_warning(S) of + true -> + io:format("~p: * WARNING * " ++ Format, [?MODULE | Args]); + false -> + ok + end. + +report_verbose(Format, Args, S) -> + case is_verbose(S) of + true -> + io:format("~p: " ++ Format, [?MODULE | Args]); + false -> + ok + end. + +is_error(S) -> + lists:member(report_errors, S#state.options) or is_verbose(S). + +is_warning(S) -> + lists:member(report_warnings, S#state.options) or is_verbose(S). + +is_verbose(S) -> + lists:member(verbose, S#state.options). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_pre_expand.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_pre_expand.erl new file mode 100644 index 0000000000..08bc6cb147 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/sys_pre_expand.erl @@ -0,0 +1,1026 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: sys_pre_expand.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Expand some source Erlang constructions. This is part of the +%% pre-processing phase. + +%% N.B. Although structs (tagged tuples) are not yet allowed in the +%% language there is code included in pattern/2 and expr/3 (commented out) +%% that handles them by transforming them to tuples. + +-module(sys_pre_expand). + +%% Main entry point. +-export([module/2]). + +-import(ordsets, [from_list/1,add_element/2, + union/1,union/2,intersection/1,intersection/2,subtract/2]). +-import(lists, [member/2,map/2,foldl/3,foldr/3,sort/1,reverse/1,duplicate/2]). + +-include("../my_include/erl_bits.hrl"). + +-record(expand, {module=[], %Module name + parameters=undefined, %Module parameters + package="", %Module package + exports=[], %Exports + imports=[], %Imports + mod_imports, %Module Imports + compile=[], %Compile flags + records=dict:new(), %Record definitions + attributes=[], %Attributes + defined=[], %Defined functions + vcount=0, %Variable counter + func=[], %Current function + arity=[], %Arity for current function + fcount=0, %Local fun count + fun_index=0, %Global index for funs + bitdefault, + bittypes + }). + +%% module(Forms, CompileOptions) +%% {ModuleName,Exports,TransformedForms} +%% Expand the forms in one module. N.B.: the lists of predefined +%% exports and imports are really ordsets! + +module(Fs, Opts) -> + %% Set pre-defined exported functions. + PreExp = [{module_info,0},{module_info,1}], + + %% Set pre-defined module imports. + PreModImp = [{erlang,erlang},{packages,packages}], + + %% Build initial expand record. + St0 = #expand{exports=PreExp, + mod_imports=dict:from_list(PreModImp), + compile=Opts, + defined=PreExp, + bitdefault = erl_bits:system_bitdefault(), + bittypes = erl_bits:system_bittypes() + }, + %% Expand the functions. + {Tfs,St1} = forms(Fs, foldl(fun define_function/2, St0, Fs)), + {Efs,St2} = expand_pmod(Tfs, St1), + %% Get the correct list of exported functions. + Exports = case member(export_all, St2#expand.compile) of + true -> St2#expand.defined; + false -> St2#expand.exports + end, + %% Generate all functions from stored info. + {Ats,St3} = module_attrs(St2#expand{exports = Exports}), + {Mfs,St4} = module_predef_funcs(St3), + {St4#expand.module, St4#expand.exports, Ats ++ Efs ++ Mfs, + St4#expand.compile}. + +expand_pmod(Fs0, St) -> + case St#expand.parameters of + undefined -> + {Fs0,St}; + Ps -> + {Fs1,Xs,Ds} = sys_expand_pmod:forms(Fs0, Ps, + St#expand.exports, + St#expand.defined), + A = length(Ps), + Vs = [{var,0,V} || V <- Ps], + N = {atom,0,St#expand.module}, + B = [{tuple,0,[N|Vs]}], + F = {function,0,new,A,[{clause,0,Vs,[],B}]}, + As = St#expand.attributes, + {[F|Fs1],St#expand{exports=add_element({new,A}, Xs), + defined=add_element({new,A}, Ds), + attributes = [{abstract, true} | As]}} + end. + +%% -type define_function(Form, State) -> State. +%% Add function to defined if form a function. + +define_function({function,_,N,A,_Cs}, St) -> + St#expand{defined=add_element({N,A}, St#expand.defined)}; +define_function(_, St) -> St. + +module_attrs(St) -> + {[{attribute,0,Name,Val} || {Name,Val} <- St#expand.attributes],St}. + +module_predef_funcs(St) -> + PreDef = [{module_info,0},{module_info,1}], + PreExp = PreDef, + {[{function,0,module_info,0, + [{clause,0,[],[], + [{call,0,{remote,0,{atom,0,erlang},{atom,0,get_module_info}}, + [{atom,0,St#expand.module}]}]}]}, + {function,0,module_info,1, + [{clause,0,[{var,0,'X'}],[], + [{call,0,{remote,0,{atom,0,erlang},{atom,0,get_module_info}}, + [{atom,0,St#expand.module},{var,0,'X'}]}]}]}], + St#expand{defined=union(from_list(PreDef), St#expand.defined), + exports=union(from_list(PreExp), St#expand.exports)}}. + +%% forms(Forms, State) -> +%% {TransformedForms,State'} +%% Process the forms. Attributes are lost and just affect the state. +%% Ignore uninteresting forms like eof and type. + +forms([{attribute,_,Name,Val}|Fs0], St0) -> + St1 = attribute(Name, Val, St0), + forms(Fs0, St1); +forms([{function,L,N,A,Cs}|Fs0], St0) -> + {Ff,St1} = function(L, N, A, Cs, St0), + {Fs,St2} = forms(Fs0, St1), + {[Ff|Fs],St2}; +forms([_|Fs], St) -> forms(Fs, St); +forms([], St) -> {[],St}. + +%% -type attribute(Attribute, Value, State) -> +%% State. +%% Process an attribute, this just affects the state. + +attribute(module, {Module, As}, St) -> + M = package_to_string(Module), + St#expand{module=list_to_atom(M), + package = packages:strip_last(M), + parameters=As}; +attribute(module, Module, St) -> + M = package_to_string(Module), + St#expand{module=list_to_atom(M), + package = packages:strip_last(M)}; +attribute(export, Es, St) -> + St#expand{exports=union(from_list(Es), St#expand.exports)}; +attribute(import, Is, St) -> + import(Is, St); +attribute(compile, C, St) when list(C) -> + St#expand{compile=St#expand.compile ++ C}; +attribute(compile, C, St) -> + St#expand{compile=St#expand.compile ++ [C]}; +attribute(record, {Name,Defs}, St) -> + St#expand{records=dict:store(Name, normalise_fields(Defs), + St#expand.records)}; +attribute(file, _File, St) -> St; %This is ignored +attribute(Name, Val, St) when list(Val) -> + St#expand{attributes=St#expand.attributes ++ [{Name,Val}]}; +attribute(Name, Val, St) -> + St#expand{attributes=St#expand.attributes ++ [{Name,[Val]}]}. + +function(L, N, A, Cs0, St0) -> + {Cs,St} = clauses(Cs0, St0#expand{func=N,arity=A,fcount=0}), + {{function,L,N,A,Cs},St}. + +%% -type clauses([Clause], State) -> +%% {[TransformedClause],State}. +%% Expand function clauses. + +clauses([{clause,Line,H0,G0,B0}|Cs0], St0) -> + {H,Hvs,_Hus,St1} = head(H0, St0), + {G,Gvs,_Gus,St2} = guard(G0, Hvs, St1), + {B,_Bvs,_Bus,St3} = exprs(B0, union(Hvs, Gvs), St2), + {Cs,St4} = clauses(Cs0, St3), + {[{clause,Line,H,G,B}|Cs],St4}; +clauses([], St) -> {[],St}. + +%% head(HeadPatterns, State) -> +%% {TransformedPatterns,Variables,UsedVariables,State'} + +head(As, St) -> pattern_list(As, St). + +%% pattern(Pattern, State) -> +%% {TransformedPattern,Variables,UsedVariables,State'} +%% BITS: added used variables for bit patterns with varaible length +%% + +pattern({var,_,'_'}=Var, St) -> %Ignore anonymous variable. + {Var,[],[],St}; +pattern({var,_,V}=Var, St) -> + {Var,[V],[],St}; +pattern({char,_,_}=Char, St) -> + {Char,[],[],St}; +pattern({integer,_,_}=Int, St) -> + {Int,[],[],St}; +pattern({float,_,_}=Float, St) -> + {Float,[],[],St}; +pattern({atom,_,_}=Atom, St) -> + {Atom,[],[],St}; +pattern({string,_,_}=String, St) -> + {String,[],[],St}; +pattern({nil,_}=Nil, St) -> + {Nil,[],[],St}; +pattern({cons,Line,H,T}, St0) -> + {TH,THvs,Hus,St1} = pattern(H, St0), + {TT,TTvs,Tus,St2} = pattern(T, St1), + {{cons,Line,TH,TT},union(THvs, TTvs),union(Hus,Tus),St2}; +pattern({tuple,Line,Ps}, St0) -> + {TPs,TPsvs,Tus,St1} = pattern_list(Ps, St0), + {{tuple,Line,TPs},TPsvs,Tus,St1}; +%%pattern({struct,Line,Tag,Ps}, St0) -> +%% {TPs,TPsvs,St1} = pattern_list(Ps, St0), +%% {{tuple,Line,[{atom,Line,Tag}|TPs]},TPsvs,St1}; +pattern({record_field,_,_,_}=M, St) -> + {expand_package(M, St), [], [], St}; % must be a package name +pattern({record_index,Line,Name,Field}, St) -> + {index_expr(Line, Field, Name, record_fields(Name, St)),[],[],St}; +pattern({record,Line,Name,Pfs}, St0) -> + Fs = record_fields(Name, St0), + {TMs,TMsvs,Us,St1} = pattern_list(pattern_fields(Fs, Pfs), St0), + {{tuple,Line,[{atom,Line,Name}|TMs]},TMsvs,Us,St1}; +pattern({bin,Line,Es0}, St0) -> + {Es1,Esvs,Esus,St1} = pattern_bin(Es0, St0), + {{bin,Line,Es1},Esvs,Esus,St1}; +pattern({op,_,'++',{nil,_},R}, St) -> + pattern(R, St); +pattern({op,_,'++',{cons,Li,H,T},R}, St) -> + pattern({cons,Li,H,{op,Li,'++',T,R}}, St); +pattern({op,_,'++',{string,Li,L},R}, St) -> + pattern(string_to_conses(Li, L, R), St); +pattern({match,Line,Pat1, Pat2}, St0) -> + {TH,Hvt,Hus,St1} = pattern(Pat2, St0), + {TT,Tvt,Tus,St2} = pattern(Pat1, St1), + {{match,Line,TT,TH}, union(Hvt,Tvt), union(Hus,Tus), St2}; +%% Compile-time pattern expressions, including unary operators. +pattern({op,Line,Op,A}, St) -> + { erl_eval:partial_eval({op,Line,Op,A}), [], [], St}; +pattern({op,Line,Op,L,R}, St) -> + { erl_eval:partial_eval({op,Line,Op,L,R}), [], [], St}. + +pattern_list([P0|Ps0], St0) -> + {P,Pvs,Pus,St1} = pattern(P0, St0), + {Ps,Psvs,Psus,St2} = pattern_list(Ps0, St1), + {[P|Ps],union(Pvs, Psvs),union(Pus, Psus),St2}; +pattern_list([], St) -> {[],[],[],St}. + +%% guard(Guard, VisibleVariables, State) -> +%% {TransformedGuard,NewVariables,UsedVariables,State'} +%% Transform a list of guard tests. We KNOW that this has been checked +%% and what the guards test are. Use expr for transforming the guard +%% expressions. + +guard([G0|Gs0], Vs, St0) -> + {G,Hvs,Hus,St1} = guard_tests(G0, Vs, St0), + {Gs,Tvs,Tus,St2} = guard(Gs0, Vs, St1), + {[G|Gs],union(Hvs, Tvs),union(Hus, Tus),St2}; +guard([], _, St) -> {[],[],[],St}. + +guard_tests([Gt0|Gts0], Vs, St0) -> + {Gt1,Gvs,Gus,St1} = guard_test(Gt0, Vs, St0), + {Gts1,Gsvs,Gsus,St2} = guard_tests(Gts0, union(Gvs, Vs), St1), + {[Gt1|Gts1],union(Gvs, Gsvs),union(Gus, Gsus),St2}; +guard_tests([], _, St) -> {[],[],[],St}. + +guard_test({call,Line,{atom,_,record},[A,{atom,_,Name}]}, Vs, St) -> + record_test_in_guard(Line, A, Name, Vs, St); +guard_test({call,Line,{atom,Lt,Tname},As}, Vs, St) -> + %% XXX This is ugly. We can remove this workaround if/when + %% we'll allow 'andalso' in guards. For now, we must have + %% different code in guards and in bodies. + Test = {remote,Lt, + {atom,Lt,erlang}, + {atom,Lt,normalise_test(Tname, length(As))}}, + put(sys_pre_expand_in_guard, yes), + R = expr({call,Line,Test,As}, Vs, St), + erase(sys_pre_expand_in_guard), + R; +guard_test(Test, Vs, St) -> + %% XXX See the previous clause. + put(sys_pre_expand_in_guard, yes), + R = expr(Test, Vs, St), + erase(sys_pre_expand_in_guard), + R. + +%% record_test(Line, Term, Name, Vs, St) -> TransformedExpr +%% Generate code for is_record/1. + +record_test(Line, Term, Name, Vs, St) -> + case get(sys_pre_expand_in_guard) of + undefined -> + record_test_in_body(Line, Term, Name, Vs, St); + yes -> + record_test_in_guard(Line, Term, Name, Vs, St) + end. + +record_test_in_guard(Line, Term, Name, Vs, St) -> + %% Notes: (1) To keep is_record/3 properly atomic (e.g. when inverted + %% using 'not'), we cannot convert it to an instruction + %% sequence here. It must remain a single call. + %% (2) Later passes assume that the last argument (the size) + %% is a literal. + %% (3) We don't want calls to erlang:is_record/3 (in the source code) + %% confused we the internal instruction. (Reason: (2) above + + %% code bloat.) + %% (4) Xref may be run on the abstract code, so the name in the + %% abstract code must be erlang:is_record/3. + %% (5) To achive both (3) and (4) at the same time, set the name + %% here to erlang:is_record/3, but mark it as compiler-generated. + %% The v3_core pass will change the name to erlang:internal_is_record/3. + Fs = record_fields(Name, St), + expr({call,-Line,{remote,-Line,{atom,-Line,erlang},{atom,-Line,is_record}}, + [Term,{atom,Line,Name},{integer,Line,length(Fs)+1}]}, + Vs, St). + +record_test_in_body(Line, Expr, Name, Vs, St0) -> + %% As Expr may have side effects, we must evaluate it + %% first and bind the value to a new variable. + %% We must use also handle the case that Expr does not + %% evaluate to a tuple properly. + Fs = record_fields(Name, St0), + {Var,St} = new_var(Line, St0), + + expr({block,Line, + [{match,Line,Var,Expr}, + {op,Line, + 'andalso', + {call,Line,{atom,Line,is_tuple},[Var]}, + {op,Line,'andalso', + {op,Line,'=:=', + {call,Line,{atom,Line,size},[Var]}, + {integer,Line,length(Fs)+1}}, + {op,Line,'=:=', + {call,Line,{atom,Line,element},[{integer,Line,1},Var]}, + {atom,Line,Name}}}}]}, Vs, St). + +normalise_test(atom, 1) -> is_atom; +normalise_test(binary, 1) -> is_binary; +normalise_test(constant, 1) -> is_constant; +normalise_test(float, 1) -> is_float; +normalise_test(function, 1) -> is_function; +normalise_test(integer, 1) -> is_integer; +normalise_test(list, 1) -> is_list; +normalise_test(number, 1) -> is_number; +normalise_test(pid, 1) -> is_pid; +normalise_test(port, 1) -> is_port; +normalise_test(reference, 1) -> is_reference; +normalise_test(tuple, 1) -> is_tuple; +normalise_test(Name, _) -> Name. + +%% exprs(Expressions, VisibleVariables, State) -> +%% {TransformedExprs,NewVariables,UsedVariables,State'} + +exprs([E0|Es0], Vs, St0) -> + {E,Evs,Eus,St1} = expr(E0, Vs, St0), + {Es,Esvs,Esus,St2} = exprs(Es0, union(Evs, Vs), St1), + {[E|Es],union(Evs, Esvs),union(Eus, Esus),St2}; +exprs([], _, St) -> {[],[],[],St}. + +%% expr(Expression, VisibleVariables, State) -> +%% {TransformedExpression,NewVariables,UsedVariables,State'} + +expr({var,_,V}=Var, _Vs, St) -> + {Var,[],[V],St}; +expr({char,_,_}=Char, _Vs, St) -> + {Char,[],[],St}; +expr({integer,_,_}=Int, _Vs, St) -> + {Int,[],[],St}; +expr({float,_,_}=Float, _Vs, St) -> + {Float,[],[],St}; +expr({atom,_,_}=Atom, _Vs, St) -> + {Atom,[],[],St}; +expr({string,_,_}=String, _Vs, St) -> + {String,[],[],St}; +expr({nil,_}=Nil, _Vs, St) -> + {Nil,[],[],St}; +expr({cons,Line,H0,T0}, Vs, St0) -> + {H,Hvs,Hus,St1} = expr(H0, Vs, St0), + {T,Tvs,Tus,St2} = expr(T0, Vs, St1), + {{cons,Line,H,T},union(Hvs, Tvs),union(Hus, Tus),St2}; +expr({lc,Line,E0,Qs0}, Vs, St0) -> + {E1,Qs1,_,Lvs,Lus,St1} = lc_tq(Line, E0, Qs0, {nil,Line}, Vs, St0), + {{lc,Line,E1,Qs1},Lvs,Lus,St1}; +expr({tuple,Line,Es0}, Vs, St0) -> + {Es1,Esvs,Esus,St1} = expr_list(Es0, Vs, St0), + {{tuple,Line,Es1},Esvs,Esus,St1}; +%%expr({struct,Line,Tag,Es0}, Vs, St0) -> +%% {Es1,Esvs,Esus,St1} = expr_list(Es0, Vs, St0), +%% {{tuple,Line,[{atom,Line,Tag}|Es1]},Esvs,Esus,St1}; +expr({record_field,_,_,_}=M, _Vs, St) -> + {expand_package(M, St), [], [], St}; % must be a package name +expr({record_index,Line,Name,F}, Vs, St) -> + I = index_expr(Line, F, Name, record_fields(Name, St)), + expr(I, Vs, St); +expr({record,Line,Name,Is}, Vs, St) -> + expr({tuple,Line,[{atom,Line,Name}| + record_inits(record_fields(Name, St), Is)]}, + Vs, St); +expr({record_field,Line,R,Name,F}, Vs, St) -> + I = index_expr(Line, F, Name, record_fields(Name, St)), + expr({call,Line,{atom,Line,element},[I,R]}, Vs, St); +expr({record,_,R,Name,Us}, Vs, St0) -> + {Ue,St1} = record_update(R, Name, record_fields(Name, St0), Us, St0), + expr(Ue, Vs, St1); +expr({bin,Line,Es0}, Vs, St0) -> + {Es1,Esvs,Esus,St1} = expr_bin(Es0, Vs, St0), + {{bin,Line,Es1},Esvs,Esus,St1}; +expr({block,Line,Es0}, Vs, St0) -> + {Es,Esvs,Esus,St1} = exprs(Es0, Vs, St0), + {{block,Line,Es},Esvs,Esus,St1}; +expr({'if',Line,Cs0}, Vs, St0) -> + {Cs,Csvss,Csuss,St1} = icr_clauses(Cs0, Vs, St0), + All = new_in_all(Vs, Csvss), + {{'if',Line,Cs},All,union(Csuss),St1}; +expr({'case',Line,E0,Cs0}, Vs, St0) -> + {E,Evs,Eus,St1} = expr(E0, Vs, St0), + {Cs,Csvss,Csuss,St2} = icr_clauses(Cs0, union(Evs, Vs), St1), + All = new_in_all(Vs, Csvss), + {{'case',Line,E,Cs},union(Evs, All),union([Eus|Csuss]),St2}; +expr({'cond',Line,Cs}, Vs, St0) -> + {V,St1} = new_var(Line,St0), + expr(cond_clauses(Cs,V), Vs, St1); +expr({'receive',Line,Cs0}, Vs, St0) -> + {Cs,Csvss,Csuss,St1} = icr_clauses(Cs0, Vs, St0), + All = new_in_all(Vs, Csvss), + {{'receive',Line,Cs},All,union(Csuss),St1}; +expr({'receive',Line,Cs0,To0,ToEs0}, Vs, St0) -> + {To,Tovs,Tous,St1} = expr(To0, Vs, St0), + {ToEs,ToEsvs,_ToEsus,St2} = exprs(ToEs0, Vs, St1), + {Cs,Csvss,Csuss,St3} = icr_clauses(Cs0, Vs, St2), + All = new_in_all(Vs, [ToEsvs|Csvss]), + {{'receive',Line,Cs,To,ToEs},union(Tovs, All),union([Tous|Csuss]),St3}; +expr({'fun',Line,Body}, Vs, St) -> + fun_tq(Line, Body, Vs, St); +%%% expr({call,_,{atom,La,this_module},[]}, _Vs, St) -> +%%% {{atom,La,St#expand.module}, [], [], St}; +%%% expr({call,_,{atom,La,this_package},[]}, _Vs, St) -> +%%% {{atom,La,list_to_atom(St#expand.package)}, [], [], St}; +%%% expr({call,_,{atom,La,this_package},[{atom,_,Name}]}, _Vs, St) -> +%%% M = packages:concat(St#expand.package,Name), +%%% {{atom,La,list_to_atom(M)}, [], [], St}; +%%% expr({call,Line,{atom,La,this_package},[A]}, Vs, St) -> +%%% M = {call,Line,{remote,La,{atom,La,packages},{atom,La,concat}}, +%%% [{string,La,St#expand.package}, A]}, +%%% expr({call,Line,{atom,Line,list_to_atom},[M]}, Vs, St); +expr({call,Line,{atom,_,is_record},[A,{atom,_,Name}]}, Vs, St) -> + record_test(Line, A, Name, Vs, St); +expr({call,Line,{remote,_,{atom,_,erlang},{atom,_,is_record}}, + [A,{atom,_,Name}]}, Vs, St) -> + record_test(Line, A, Name, Vs, St); +expr({call,Line,{atom,La,N},As0}, Vs, St0) -> + {As,Asvs,Asus,St1} = expr_list(As0, Vs, St0), + Ar = length(As), + case erl_internal:bif(N, Ar) of + true -> + {{call,Line,{remote,La,{atom,La,erlang},{atom,La,N}},As}, + Asvs,Asus,St1}; + false -> + case imported(N, Ar, St1) of + {yes,Mod} -> + {{call,Line,{remote,La,{atom,La,Mod},{atom,La,N}},As}, + Asvs,Asus,St1}; + no -> + case {N,Ar} of + {record_info,2} -> + record_info_call(Line, As, St1); + _ -> + {{call,Line,{atom,La,N},As},Asvs,Asus,St1} + end + end + end; +expr({call,Line,{record_field,_,_,_}=M,As0}, Vs, St0) -> + expr({call,Line,expand_package(M, St0),As0}, Vs, St0); +expr({call,Line,{remote,Lr,M,F},As0}, Vs, St0) -> + M1 = expand_package(M, St0), + {[M2,F1|As1],Asvs,Asus,St1} = expr_list([M1,F|As0], Vs, St0), + {{call,Line,{remote,Lr,M2,F1},As1},Asvs,Asus,St1}; +expr({call,Line,{tuple,_,[{atom,_,_}=M,{atom,_,_}=F]},As}, Vs, St) -> + %% Rewrite {Mod,Function}(Args...) to Mod:Function(Args...). + expr({call,Line,{remote,Line,M,F},As}, Vs, St); +expr({call,Line,F,As0}, Vs, St0) -> + {[Fun1|As1],Asvs,Asus,St1} = expr_list([F|As0], Vs, St0), + {{call,Line,Fun1,As1},Asvs,Asus,St1}; +expr({'try',Line,Es0,Scs0,Ccs0,As0}, Vs, St0) -> + {Es1,Esvs,Esus,St1} = exprs(Es0, Vs, St0), + Cvs = union(Esvs, Vs), + {Scs1,Scsvss,Scsuss,St2} = icr_clauses(Scs0, Cvs, St1), + {Ccs1,Ccsvss,Ccsuss,St3} = icr_clauses(Ccs0, Cvs, St2), + Csvss = Scsvss ++ Ccsvss, + Csuss = Scsuss ++ Ccsuss, + All = new_in_all(Vs, Csvss), + {As1,Asvs,Asus,St4} = exprs(As0, Cvs, St3), + {{'try',Line,Es1,Scs1,Ccs1,As1}, union([Asvs,Esvs,All]), + union([Esus,Asus|Csuss]), St4}; +expr({'catch',Line,E0}, Vs, St0) -> + %% Catch exports no new variables. + {E,_Evs,Eus,St1} = expr(E0, Vs, St0), + {{'catch',Line,E},[],Eus,St1}; +expr({match,Line,P0,E0}, Vs, St0) -> + {E,Evs,Eus,St1} = expr(E0, Vs, St0), + {P,Pvs,Pus,St2} = pattern(P0, St1), + {{match,Line,P,E}, + union(subtract(Pvs, Vs), Evs), + union(intersection(Pvs, Vs), union(Eus,Pus)),St2}; +expr({op,L,'andalso',E1,E2}, Vs, St0) -> + {V,St1} = new_var(L,St0), + E = make_bool_switch(L,E1,V, + make_bool_switch(L,E2,V,{atom,L,true}, + {atom,L,false}), + {atom,L,false}), + expr(E, Vs, St1); +expr({op,L,'orelse',E1,E2}, Vs, St0) -> + {V,St1} = new_var(L,St0), + E = make_bool_switch(L,E1,V,{atom,L,true}, + make_bool_switch(L,E2,V,{atom,L,true}, + {atom,L,false})), + expr(E, Vs, St1); +expr({op,Line,'++',{lc,Ll,E0,Qs0},M0}, Vs, St0) -> + {E1,Qs1,M1,Lvs,Lus,St1} = lc_tq(Ll, E0, Qs0, M0, Vs, St0), + {{op,Line,'++',{lc,Ll,E1,Qs1},M1},Lvs,Lus,St1}; +expr({op,_,'++',{string,L1,S1},{string,_,S2}}, _Vs, St) -> + {{string,L1,S1 ++ S2},[],[],St}; +expr({op,Ll,'++',{string,L1,S1}=Str,R0}, Vs, St0) -> + {R1,Rvs,Rus,St1} = expr(R0, Vs, St0), + E = case R1 of + {string,_,S2} -> {string,L1,S1 ++ S2}; + _Other when length(S1) < 8 -> string_to_conses(L1, S1, R1); + _Other -> {op,Ll,'++',Str,R1} + end, + {E,Rvs,Rus,St1}; +expr({op,Ll,'++',{cons,Lc,H,T},L2}, Vs, St) -> + expr({cons,Ll,H,{op,Lc,'++',T,L2}}, Vs, St); +expr({op,_,'++',{nil,_},L2}, Vs, St) -> + expr(L2, Vs, St); +expr({op,Line,Op,A0}, Vs, St0) -> + {A,Avs,Aus,St1} = expr(A0, Vs, St0), + {{op,Line,Op,A},Avs,Aus,St1}; +expr({op,Line,Op,L0,R0}, Vs, St0) -> + {L,Lvs,Lus,St1} = expr(L0, Vs, St0), + {R,Rvs,Rus,St2} = expr(R0, Vs, St1), + {{op,Line,Op,L,R},union(Lvs, Rvs),union(Lus, Rus),St2}. + +expr_list([E0|Es0], Vs, St0) -> + {E,Evs,Eus,St1} = expr(E0, Vs, St0), + {Es,Esvs,Esus,St2} = expr_list(Es0, Vs, St1), + {[E|Es],union(Evs, Esvs),union(Eus, Esus),St2}; +expr_list([], _, St) -> + {[],[],[],St}. + +%% icr_clauses([Clause], [VisibleVariable], State) -> +%% {[TransformedClause],[[NewVariable]],[[UsedVariable]],State'} +%% Be very careful here to return the variables that are really used +%% and really new. + +icr_clauses([], _, St) -> + {[],[[]],[],St}; +icr_clauses(Clauses, Vs, St) -> + icr_clauses2(Clauses, Vs, St). + +icr_clauses2([{clause,Line,H0,G0,B0}|Cs0], Vs, St0) -> + {H,Hvs,Hus,St1} = head(H0, St0), %Hvs is really used! + {G,Gvs,Gus,St2} = guard(G0, union(Hvs, Vs), St1), + {B,Bvs,Bus,St3} = exprs(B0, union([Vs,Hvs,Gvs]), St2), + New = subtract(union([Hvs,Gvs,Bvs]), Vs), %Really new + Used = intersection(union([Hvs,Hus,Gus,Bus]), Vs), %Really used + {Cs,Csvs,Csus,St4} = icr_clauses2(Cs0, Vs, St3), + {[{clause,Line,H,G,B}|Cs],[New|Csvs],[Used|Csus],St4}; +icr_clauses2([], _, St) -> + {[],[],[],St}. + +%% lc_tq(Line, Expr, Qualifiers, More, [VisibleVar], State) -> +%% {TransExpr,[TransQual],TransMore,[NewVar],[UsedVar],State'} + +lc_tq(Line, E0, [{generate,Lg,P0,G0}|Qs0], M0, Vs, St0) -> + {G1,Gvs,Gus,St1} = expr(G0, Vs, St0), + {P1,Pvs,Pus,St2} = pattern(P0, St1), + {E1,Qs1,M1,Lvs,Lus,St3} = lc_tq(Line, E0, Qs0, M0, union(Pvs, Vs), St2), + {E1,[{generate,Lg,P1,G1}|Qs1],M1, + union(Gvs, Lvs),union([Gus,Pus,Lus]),St3}; +lc_tq(Line, E0, [F0|Qs0], M0, Vs, St0) -> + %% Allow record/2 and expand out as guard test. + case erl_lint:is_guard_test(F0) of + true -> + {F1,Fvs,_Fus,St1} = guard_tests([F0], Vs, St0), + {E1,Qs1,M1,Lvs,Lus,St2} = lc_tq(Line, E0, Qs0, M0, union(Fvs, Vs), St1), + {E1,F1++Qs1,M1,Lvs,Lus,St2}; + false -> + {F1,Fvs,_Fus,St1} = expr(F0, Vs, St0), + {E1,Qs1,M1,Lvs,Lus,St2} = lc_tq(Line, E0, Qs0, M0, union(Fvs, Vs), St1), + {E1,[F1|Qs1],M1,Lvs,Lus,St2} + end; +lc_tq(_Line, E0, [], M0, Vs, St0) -> + {E1,Evs,Eus,St1} = expr(E0, Vs, St0), + {M1,Mvs,Mus,St2} = expr(M0, Vs, St1), + {E1,[],M1,union(Evs, Mvs),union(Eus, Mus),St2}. + +%% fun_tq(Line, Body, VisibleVariables, State) -> +%% {Fun,NewVariables,UsedVariables,State'} +%% Transform an "explicit" fun {'fun', Line, {clauses, Cs}} into an +%% extended form {'fun', Line, {clauses, Cs}, Info}, unless it is the +%% name of a BIF (erl_lint has checked that it is not an import). +%% Process the body sequence directly to get the new and used variables. +%% "Implicit" funs {'fun', Line, {function, F, A}} are not changed. + +fun_tq(Lf, {function,F,A}, Vs, St0) -> + {As,St1} = new_vars(A, Lf, St0), + Cs = [{clause,Lf,As,[],[{call,Lf,{atom,Lf,F},As}]}], + case erl_internal:bif(F, A) of + true -> + fun_tq(Lf, {clauses,Cs}, Vs, St1); + false -> + Index = St0#expand.fun_index, + Uniq = erlang:hash(Cs, (1 bsl 27)-1), + {Fname,St2} = new_fun_name(St1), + {{'fun',Lf,{function,F,A},{Index,Uniq,Fname}},[],[], + St2#expand{fun_index=Index+1}} + end; +fun_tq(Lf, {clauses,Cs0}, Vs, St0) -> + Uniq = erlang:hash(Cs0, (1 bsl 27)-1), + {Cs1,_Hvss,Frees,St1} = fun_clauses(Cs0, Vs, St0), + Ufrees = union(Frees), + Index = St1#expand.fun_index, + {Fname,St2} = new_fun_name(St1), + {{'fun',Lf,{clauses,Cs1},{Index,Uniq,Fname}},[],Ufrees, + St2#expand{fun_index=Index+1}}. + +fun_clauses([{clause,L,H0,G0,B0}|Cs0], Vs, St0) -> + {H,Hvs,Hus,St1} = head(H0, St0), + {G,Gvs,Gus,St2} = guard(G0, union(Hvs, Vs), St1), + {B,Bvs,Bus,St3} = exprs(B0, union([Vs,Hvs,Gvs]), St2), + %% Free variables cannot be new anywhere in the clause. + Free = subtract(union([Gus,Hus,Bus]), union([Hvs,Gvs,Bvs])), + %%io:format(" Gus :~p~n Bvs :~p~n Bus :~p~n Free:~p~n" ,[Gus,Bvs,Bus,Free]), + {Cs,Hvss,Frees,St4} = fun_clauses(Cs0, Vs, St3), + {[{clause,L,H,G,B}|Cs],[Hvs|Hvss],[Free|Frees],St4}; +fun_clauses([], _, St) -> {[],[],[],St}. + +%% new_fun_name(State) -> {FunName,State}. + +new_fun_name(#expand{func=F,arity=A,fcount=I}=St) -> + Name = "-" ++ atom_to_list(F) ++ "/" ++ integer_to_list(A) + ++ "-fun-" ++ integer_to_list(I) ++ "-", + {list_to_atom(Name),St#expand{fcount=I+1}}. + + +%% normalise_fields([RecDef]) -> [Field]. +%% Normalise the field definitions to always have a default value. If +%% none has been given then use 'undefined'. + +normalise_fields(Fs) -> + map(fun ({record_field,Lf,Field}) -> + {record_field,Lf,Field,{atom,Lf,undefined}}; + (F) -> F end, Fs). + +%% record_fields(RecordName, State) +%% find_field(FieldName, Fields) + +record_fields(R, St) -> dict:fetch(R, St#expand.records). + +find_field(F, [{record_field,_,{atom,_,F},Val}|_]) -> {ok,Val}; +find_field(F, [_|Fs]) -> find_field(F, Fs); +find_field(_, []) -> error. + +%% field_names(RecFields) -> [Name]. +%% Return a list of the field names structures. + +field_names(Fs) -> + map(fun ({record_field,_,Field,_Val}) -> Field end, Fs). + +%% index_expr(Line, FieldExpr, Name, Fields) -> IndexExpr. +%% Return an expression which evaluates to the index of a +%% field. Currently only handle the case where the field is an +%% atom. This expansion must be passed through expr again. + +index_expr(Line, {atom,_,F}, _Name, Fs) -> + {integer,Line,index_expr(F, Fs, 2)}. + +index_expr(F, [{record_field,_,{atom,_,F},_}|_], I) -> I; +index_expr(F, [_|Fs], I) -> + index_expr(F, Fs, I+1). + +%% pattern_fields([RecDefField], [Match]) -> [Pattern]. +%% Build a list of match patterns for the record tuple elements. +%% This expansion must be passed through pattern again. N.B. We are +%% scanning the record definition field list! + +pattern_fields(Fs, Ms) -> + Wildcard = record_wildcard_init(Ms), + map(fun ({record_field,L,{atom,_,F},_}) -> + case find_field(F, Ms) of + {ok,Match} -> Match; + error when Wildcard =:= none -> {var,L,'_'}; + error -> Wildcard + end end, + Fs). + +%% record_inits([RecDefField], [Init]) -> [InitExpr]. +%% Build a list of initialisation expressions for the record tuple +%% elements. This expansion must be passed through expr +%% again. N.B. We are scanning the record definition field list! + +record_inits(Fs, Is) -> + WildcardInit = record_wildcard_init(Is), + map(fun ({record_field,_,{atom,_,F},D}) -> + case find_field(F, Is) of + {ok,Init} -> Init; + error when WildcardInit =:= none -> D; + error -> WildcardInit + end end, + Fs). + +record_wildcard_init([{record_field,_,{var,_,'_'},D}|_]) -> D; +record_wildcard_init([_|Is]) -> record_wildcard_init(Is); +record_wildcard_init([]) -> none. + +%% record_update(Record, RecordName, [RecDefField], [Update], State) -> +%% {Expr,State'} +%% Build an expression to update fields in a record returning a new +%% record. Try to be smart and optimise this. This expansion must be +%% passed through expr again. + +record_update(R, Name, Fs, Us0, St0) -> + Line = element(2, R), + {Pre,Us,St1} = record_exprs(Us0, St0), + Nf = length(Fs), %# of record fields + Nu = length(Us), %# of update fields + Nc = Nf - Nu, %# of copy fields + + %% We need a new variable for the record expression + %% to guarantee that it is only evaluated once. + {Var,St2} = new_var(Line, St1), + + %% Try to be intelligent about which method of updating record to use. + {Update,St} = + if + Nu == 0 -> {R,St2}; %No fields updated + Nu =< Nc -> %Few fields updated + {record_setel(Var, Name, Fs, Us), St2}; + true -> %The wide area inbetween + record_match(Var, Name, Fs, Us, St2) + end, + {{block,element(2, R),Pre ++ [{match,Line,Var,R},Update]},St}. + +%% record_match(Record, RecordName, [RecDefField], [Update], State) +%% Build a 'case' expression to modify record fields. + +record_match(R, Name, Fs, Us, St0) -> + {Ps,News,St1} = record_upd_fs(Fs, Us, St0), + Lr = element(2, hd(Us)), + {{'case',Lr,R, + [{clause,Lr,[{tuple,Lr,[{atom,Lr,Name}|Ps]}],[], + [{tuple,Lr,[{atom,Lr,Name}|News]}]}, + {clause,Lr,[{var,Lr,'_'}],[], + [call_error(Lr, {tuple,Lr,[{atom,Lr,badrecord},{atom,Lr,Name}]})]} + ]}, + St1}. + +record_upd_fs([{record_field,Lf,{atom,_La,F},_Val}|Fs], Us, St0) -> + {P,St1} = new_var(Lf, St0), + {Ps,News,St2} = record_upd_fs(Fs, Us, St1), + case find_field(F, Us) of + {ok,New} -> {[P|Ps],[New|News],St2}; + error -> {[P|Ps],[P|News],St2} + end; +record_upd_fs([], _, St) -> {[],[],St}. + +%% record_setel(Record, RecordName, [RecDefField], [Update]) +%% Build a nested chain of setelement calls to build the +%% updated record tuple. + +record_setel(R, Name, Fs, Us0) -> + Us1 = foldl(fun ({record_field,Lf,Field,Val}, Acc) -> + I = index_expr(Lf, Field, Name, Fs), + [{I,Lf,Val}|Acc] + end, [], Us0), + Us = sort(Us1), + Lr = element(2, hd(Us)), + Wildcards = duplicate(length(Fs), {var,Lr,'_'}), + {'case',Lr,R, + [{clause,Lr,[{tuple,Lr,[{atom,Lr,Name}|Wildcards]}],[], + [foldr(fun ({I,Lf,Val}, Acc) -> + {call,Lf,{atom,Lf,setelement},[I,Acc,Val]} end, + R, Us)]}, + {clause,Lr,[{var,Lr,'_'}],[], + [call_error(Lr, {tuple,Lr,[{atom,Lr,badrecord},{atom,Lr,Name}]})]}]}. + +%% Expand a call to record_info/2. We have checked that it is not +%% shadowed by an import. + +record_info_call(Line, [{atom,_Li,Info},{atom,_Ln,Name}], St) -> + case Info of + size -> + {{integer,Line,1+length(record_fields(Name, St))},[],[],St}; + fields -> + {make_list(field_names(record_fields(Name, St)), Line), + [],[],St} + end. + +%% Break out expressions from an record update list and bind to new +%% variables. The idea is that we will evaluate all update expressions +%% before starting to update the record. + +record_exprs(Us, St) -> + record_exprs(Us, St, [], []). + +record_exprs([{record_field,Lf,{atom,_La,_F}=Name,Val}=Field0|Us], St0, Pre, Fs) -> + case is_simple_val(Val) of + true -> + record_exprs(Us, St0, Pre, [Field0|Fs]); + false -> + {Var,St} = new_var(Lf, St0), + Bind = {match,Lf,Var,Val}, + Field = {record_field,Lf,Name,Var}, + record_exprs(Us, St, [Bind|Pre], [Field|Fs]) + end; +record_exprs([], St, Pre, Fs) -> + {reverse(Pre),Fs,St}. + +is_simple_val({var,_,_}) -> true; +is_simple_val({atom,_,_}) -> true; +is_simple_val({integer,_,_}) -> true; +is_simple_val({float,_,_}) -> true; +is_simple_val({nil,_}) -> true; +is_simple_val(_) -> false. + +%% pattern_bin([Element], State) -> {[Element],[Variable],[UsedVar],State}. + +pattern_bin(Es0, St) -> + Es1 = bin_expand_strings(Es0), + foldr(fun (E, Acc) -> pattern_element(E, Acc) end, {[],[],[],St}, Es1). + +pattern_element({bin_element,Line,Expr,Size,Type}, {Es,Esvs,Esus,St0}) -> + {Expr1,Vs1,Us1,St1} = pattern(Expr, St0), + {Size1,Vs2,Us2,St2} = pat_bit_size(Size, St1), + {Size2,Type1} = make_bit_type(Line, Size1,Type), + {[{bin_element,Line,Expr1,Size2,Type1}|Es], + union([Vs1,Vs2,Esvs]),union([Us1,Us2,Esus]),St2}. + +pat_bit_size(default, St) -> {default,[],[],St}; +pat_bit_size({atom,_La,all}=All, St) -> {All,[],[],St}; +pat_bit_size({var,_Lv,V}=Var, St) -> {Var,[],[V],St}; +pat_bit_size(Size, St) -> + Line = element(2, Size), + {value,Sz,_} = erl_eval:expr(Size, erl_eval:new_bindings()), + {{integer,Line,Sz},[],[],St}. + +make_bit_type(Line, default, Type0) -> + case erl_bits:set_bit_type(default, Type0) of + {ok,all,Bt} -> {{atom,Line,all},erl_bits:as_list(Bt)}; + {ok,Size,Bt} -> {{integer,Line,Size},erl_bits:as_list(Bt)} + end; +make_bit_type(_Line, Size, Type0) -> %Integer or 'all' + {ok,Size,Bt} = erl_bits:set_bit_type(Size, Type0), + {Size,erl_bits:as_list(Bt)}. + +%% expr_bin([Element], [VisibleVar], State) -> +%% {[Element],[NewVar],[UsedVar],State}. + +expr_bin(Es0, Vs, St) -> + Es1 = bin_expand_strings(Es0), + foldr(fun (E, Acc) -> bin_element(E, Vs, Acc) end, {[],[],[],St}, Es1). + +bin_element({bin_element,Line,Expr,Size,Type}, Vs, {Es,Esvs,Esus,St0}) -> + {Expr1,Vs1,Us1,St1} = expr(Expr, Vs, St0), + {Size1,Vs2,Us2,St2} = if Size == default -> {default,[],[],St1}; + true -> expr(Size, Vs, St1) + end, + {Size2,Type1} = make_bit_type(Line, Size1, Type), + {[{bin_element,Line,Expr1,Size2,Type1}|Es], + union([Vs1,Vs2,Esvs]),union([Us1,Us2,Esus]),St2}. + +bin_expand_strings(Es) -> + foldr(fun ({bin_element,Line,{string,_,S},default,default}, Es1) -> + foldr(fun (C, Es2) -> + [{bin_element,Line,{char,Line,C},default,default}|Es2] + end, Es1, S); + (E, Es1) -> [E|Es1] + end, [], Es). + +%% new_var_name(State) -> {VarName,State}. + +new_var_name(St) -> + C = St#expand.vcount, + {list_to_atom("pre" ++ integer_to_list(C)),St#expand{vcount=C+1}}. + +%% new_var(Line, State) -> {Var,State}. + +new_var(L, St0) -> + {New,St1} = new_var_name(St0), + {{var,L,New},St1}. + +%% new_vars(Count, Line, State) -> {[Var],State}. +%% Make Count new variables. + +new_vars(N, L, St) -> new_vars(N, L, St, []). + +new_vars(N, L, St0, Vs) when N > 0 -> + {V,St1} = new_var(L, St0), + new_vars(N-1, L, St1, [V|Vs]); +new_vars(0, _L, St, Vs) -> {Vs,St}. + +%% make_list(TermList, Line) -> ConsTerm. + +make_list(Ts, Line) -> + foldr(fun (H, T) -> {cons,Line,H,T} end, {nil,Line}, Ts). + +string_to_conses(Line, Cs, Tail) -> + foldr(fun (C, T) -> {cons,Line,{char,Line,C},T} end, Tail, Cs). + + +%% In syntax trees, module/package names are atoms or lists of atoms. + +package_to_string(A) when atom(A) -> atom_to_list(A); +package_to_string(L) when list(L) -> packages:concat(L). + +expand_package({atom,L,A} = M, St) -> + case dict:find(A, St#expand.mod_imports) of + {ok, A1} -> + {atom,L,A1}; + error -> + case packages:is_segmented(A) of + true -> + M; + false -> + M1 = packages:concat(St#expand.package, A), + {atom,L,list_to_atom(M1)} + end + end; +expand_package(M, _St) -> + case erl_parse:package_segments(M) of + error -> + M; + M1 -> + {atom,element(2,M),list_to_atom(package_to_string(M1))} + end. + +%% Create a case-switch on true/false, generating badarg for all other +%% values. + +make_bool_switch(L, E, V, T, F) -> + make_bool_switch_1(L, E, V, [T], [F]). + +make_bool_switch_1(L, E, V, T, F) -> + case get(sys_pre_expand_in_guard) of + undefined -> make_bool_switch_body(L, E, V, T, F); + yes -> make_bool_switch_guard(L, E, V, T, F) + end. + +make_bool_switch_guard(_, E, _, [{atom,_,true}], [{atom,_,false}]) -> E; +make_bool_switch_guard(L, E, V, T, F) -> + NegL = -abs(L), + {'case',NegL,E, + [{clause,NegL,[{atom,NegL,true}],[],T}, + {clause,NegL,[{atom,NegL,false}],[],F}, + {clause,NegL,[V],[],[V]} + ]}. + +make_bool_switch_body(L, E, V, T, F) -> + NegL = -abs(L), + {'case',NegL,E, + [{clause,NegL,[{atom,NegL,true}],[],T}, + {clause,NegL,[{atom,NegL,false}],[],F}, + {clause,NegL,[V],[], + [call_error(NegL,{tuple,NegL,[{atom,NegL,badarg},V]})]} + ]}. + +%% Expand a list of cond-clauses to a sequence of case-switches. + +cond_clauses([{clause,L,[],[[E]],B}],V) -> + make_bool_switch_1(L,E,V,B,[call_error(L,{atom,L,cond_clause})]); +cond_clauses([{clause,L,[],[[E]],B} | Cs],V) -> + make_bool_switch_1(L,E,V,B,[cond_clauses(Cs,V)]). + +%% call_error(Line, Reason) -> Expr. +%% Build a call to erlang:error/1 with reason Reason. + +call_error(L, R) -> + {call,L,{remote,L,{atom,L,erlang},{atom,L,error}},[R]}. + +%% new_in_all(Before, RegionList) -> NewInAll +%% Return the variables new in all clauses. + +new_in_all(Before, Region) -> + InAll = intersection(Region), + subtract(InAll, Before). + +%% import(Line, Imports, State) -> +%% State' +%% imported(Name, Arity, State) -> +%% {yes,Module} | no +%% Handle import declarations and est for imported functions. No need to +%% check when building imports as code is correct. + +import({Mod0,Fs}, St) -> + Mod = list_to_atom(package_to_string(Mod0)), + Mfs = from_list(Fs), + St#expand{imports=add_imports(Mod, Mfs, St#expand.imports)}; +import(Mod0, St) -> + Mod = package_to_string(Mod0), + Key = list_to_atom(packages:last(Mod)), + St#expand{mod_imports=dict:store(Key, list_to_atom(Mod), + St#expand.mod_imports)}. + +add_imports(Mod, [F|Fs], Is) -> + add_imports(Mod, Fs, orddict:store(F, Mod, Is)); +add_imports(_, [], Is) -> Is. + +imported(F, A, St) -> + case orddict:find({F,A}, St#expand.imports) of + {ok,Mod} -> {yes,Mod}; + error -> no + end. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_codegen.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_codegen.erl new file mode 100644 index 0000000000..6b787e8c95 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_codegen.erl @@ -0,0 +1,1755 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_codegen.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Code generator for Beam. + +%% The following assumptions have been made: +%% +%% 1. Matches, i.e. things with {match,M,Ret} wrappers, only return +%% values; no variables are exported. If the match would have returned +%% extra variables then these have been transformed to multiple return +%% values. +%% +%% 2. All BIF's called in guards are gc-safe so there is no need to +%% put thing on the stack in the guard. While this would in principle +%% work it would be difficult to keep track of the stack depth when +%% trimming. +%% +%% The code generation uses variable lifetime information added by +%% the v3_life module to save variables, allocate registers and +%% move registers to the stack when necessary. +%% +%% We try to use a consistent variable name scheme throughout. The +%% StackReg record is always called Bef,Int<n>,Aft. + +-module(v3_codegen). + +%% The main interface. +-export([module/2]). + +-import(lists, [member/2,keymember/3,keysort/2,keysearch/3,append/1, + map/2,flatmap/2,foldl/3,foldr/3,mapfoldl/3, + sort/1,reverse/1,reverse/2]). +-import(v3_life, [vdb_find/2]). + +%%-compile([export_all]). + +-include("v3_life.hrl"). + +%% Main codegen structure. +-record(cg, {lcount=1, %Label counter + mod, %Current module + func, %Current function + finfo, %Function info label + fcode, %Function code label + btype, %Type of bif used. + bfail, %Fail label of bif + break, %Break label + recv, %Receive label + is_top_block, %Boolean: top block or not + functable = [], %Table of local functions: + %[{{Name, Arity}, Label}...] + in_catch=false, %Inside a catch or not. + need_frame, %Need a stack frame. + new_funs=true}). %Generate new fun instructions. + +%% Stack/register state record. +-record(sr, {reg=[], %Register table + stk=[], %Stack table + res=[]}). %Reserved regs: [{reserved,I,V}] + +module({Mod,Exp,Attr,Forms}, Options) -> + NewFunsFlag = not member(no_new_funs, Options), + {Fs,St} = functions(Forms, #cg{mod=Mod,new_funs=NewFunsFlag}), + {ok,{Mod,Exp,Attr,Fs,St#cg.lcount}}. + +functions(Forms, St0) -> + mapfoldl(fun (F, St) -> function(F, St) end, St0#cg{lcount=1}, Forms). + +function({function,Name,Arity,As0,Vb,Vdb}, St0) -> + %%ok = io:fwrite("cg ~w:~p~n", [?LINE,{Name,Arity}]), + St1 = St0#cg{func={Name,Arity}}, + {Fun,St2} = cg_fun(Vb, As0, Vdb, St1), + Func0 = {function,Name,Arity,St2#cg.fcode,Fun}, + Func = bs_function(Func0), + {Func,St2}. + +%% cg_fun([Lkexpr], [HeadVar], Vdb, State) -> {[Ainstr],State} + +cg_fun(Les, Hvs, Vdb, St0) -> + {Name,Arity} = St0#cg.func, + {Fi,St1} = new_label(St0), %FuncInfo label + {Fl,St2} = local_func_label(Name, Arity, St1), + %% Create initial stack/register state, clear unused arguments. + Bef = clear_dead(#sr{reg=foldl(fun ({var,V}, Reg) -> + put_reg(V, Reg) + end, [], Hvs), + stk=[]}, 0, Vdb), + {B2,_Aft,St3} = cg_list(Les, 0, Vdb, Bef, St2#cg{btype=exit, + bfail=Fi, + finfo=Fi, + fcode=Fl, + is_top_block=true}), + A = [{label,Fi},{func_info,{atom,St3#cg.mod},{atom,Name},Arity}, + {label,Fl}|B2], + {A,St3}. + +%% cg(Lkexpr, Vdb, StackReg, State) -> {[Ainstr],StackReg,State}. +%% Generate code for a kexpr. +%% Split function into two steps for clarity, not efficiency. + +cg(Le, Vdb, Bef, St) -> + cg(Le#l.ke, Le, Vdb, Bef, St). + +cg({block,Es}, Le, Vdb, Bef, St) -> + block_cg(Es, Le, Vdb, Bef, St); +cg({match,M,Rs}, Le, Vdb, Bef, St) -> + match_cg(M, Rs, Le, Vdb, Bef, St); +cg({match_fail,F}, Le, Vdb, Bef, St) -> + match_fail_cg(F, Le, Vdb, Bef, St); +cg({call,Func,As,Rs}, Le, Vdb, Bef, St) -> + call_cg(Func, As, Rs, Le, Vdb, Bef, St); +cg({enter,Func,As}, Le, Vdb, Bef, St) -> + enter_cg(Func, As, Le, Vdb, Bef, St); +cg({bif,Bif,As,Rs}, Le, Vdb, Bef, St) -> + bif_cg(Bif, As, Rs, Le, Vdb, Bef, St); +cg({receive_loop,Te,Rvar,Rm,Tes,Rs}, Le, Vdb, Bef, St) -> + recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, Vdb, Bef, St); +cg(receive_next, Le, Vdb, Bef, St) -> + recv_next_cg(Le, Vdb, Bef, St); +cg(receive_accept, _Le, _Vdb, Bef, St) -> {[remove_message],Bef,St}; +cg({'try',Ta,Vs,Tb,Evs,Th,Rs}, Le, Vdb, Bef, St) -> + try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St); +cg({'catch',Cb,R}, Le, Vdb, Bef, St) -> + catch_cg(Cb, R, Le, Vdb, Bef, St); +cg({set,Var,Con}, Le, Vdb, Bef, St) -> set_cg(Var, Con, Le, Vdb, Bef, St); +cg({return,Rs}, Le, Vdb, Bef, St) -> return_cg(Rs, Le, Vdb, Bef, St); +cg({break,Bs}, Le, Vdb, Bef, St) -> break_cg(Bs, Le, Vdb, Bef, St); +cg({need_heap,0}, _Le, _Vdb, Bef, St) -> + {[],Bef,St}; +cg({need_heap,H}, _Le, _Vdb, Bef, St) -> + {[{test_heap,H,max_reg(Bef#sr.reg)}],Bef,St}. + +%% cg_list([Kexpr], FirstI, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}. + +cg_list(Kes, I, Vdb, Bef, St0) -> + {Keis,{Aft,St1}} = + flatmapfoldl(fun (Ke, {Inta,Sta}) -> +% ok = io:fwrite(" %% ~p\n", [Inta]), +% ok = io:fwrite("cgl:~p\n", [Ke]), + {Keis,Intb,Stb} = cg(Ke, Vdb, Inta, Sta), +% ok = io:fwrite(" ~p\n", [Keis]), +% ok = io:fwrite(" %% ~p\n", [Intb]), + {comment(Inta) ++ Keis,{Intb,Stb}} + end, {Bef,St0}, need_heap(Kes, I)), + {Keis,Aft,St1}. + +%% need_heap([Lkexpr], I, BifType) -> [Lkexpr]. +%% Insert need_heap instructions in Kexpr list. Try to be smart and +%% collect them together as much as possible. + +need_heap(Kes0, I) -> + {Kes1,{H,F}} = flatmapfoldr(fun (Ke, {H0,F0}) -> + {Ns,H1,F1} = need_heap_1(Ke, H0, F0), + {[Ke|Ns],{H1,F1}} + end, {0,false}, Kes0), + %% Prepend need_heap if necessary. + Kes2 = need_heap_need(I, H, F) ++ Kes1, +% ok = io:fwrite("need_heap: ~p~n", +% [{{H,F}, +% map(fun (#l{ke={match,M,Rs}}) -> match; +% (Lke) -> Lke#l.ke end, Kes2)}]), + Kes2. + +need_heap_1(#l{ke={set,_,{binary,_}},i=I}, H, F) -> + {need_heap_need(I, H, F),0,false}; +need_heap_1(#l{ke={set,_,Val}}, H, F) -> + %% Just pass through adding to needed heap. + {[],H + case Val of + {cons,_} -> 2; + {tuple,Es} -> 1 + length(Es); + {string,S} -> 2 * length(S); + _Other -> 0 + end,F}; +need_heap_1(#l{ke={call,_Func,_As,_Rs},i=I}, H, F) -> + %% Calls generate a need if necessary and also force one. + {need_heap_need(I, H, F),0,true}; +need_heap_1(#l{ke={bif,dsetelement,_As,_Rs},i=I}, H, F) -> + {need_heap_need(I, H, F),0,true}; +need_heap_1(#l{ke={bif,{make_fun,_,_,_,_},_As,_Rs},i=I}, H, F) -> + {need_heap_need(I, H, F),0,true}; +need_heap_1(#l{ke={bif,_Bif,_As,_Rs}}, H, F) -> + {[],H,F}; +need_heap_1(#l{i=I}, H, F) -> + %% Others kexprs generate a need if necessary but don't force. + {need_heap_need(I, H, F),0,false}. + +need_heap_need(_I, 0, false) -> []; +need_heap_need(I, H, _F) -> [#l{ke={need_heap,H},i=I}]. + + +%% match_cg(Match, [Ret], Le, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. +%% Generate code for a match. First save all variables on the stack +%% that are to survive after the match. We leave saved variables in +%% their registers as they might actually be in the right place. +%% Should test this. + +match_cg(M, Rs, Le, Vdb, Bef, St0) -> + I = Le#l.i, + {Sis,Int0} = adjust_stack(Bef, I, I+1, Vdb), + {B,St1} = new_label(St0), + {Mis,Int1,St2} = match_cg(M, none, Int0, St1#cg{break=B}), + %% Put return values in registers. + Reg = load_vars(Rs, Int1#sr.reg), + {Sis ++ Mis ++ [{label,B}], + clear_dead(Int1#sr{reg=Reg}, I, Vdb), + St2#cg{break=St1#cg.break}}. + +%% match_cg(Match, Fail, StackReg, State) -> {[Ainstr],StackReg,State}. +%% Generate code for a match tree. N.B. there is no need pass Vdb +%% down as each level which uses this takes its own internal Vdb not +%% the outer one. + +match_cg(Le, Fail, Bef, St) -> + match_cg(Le#l.ke, Le, Fail, Bef, St). + +match_cg({alt,F,S}, _Le, Fail, Bef, St0) -> + {Tf,St1} = new_label(St0), + {Fis,Faft,St2} = match_cg(F, Tf, Bef, St1), + {Sis,Saft,St3} = match_cg(S, Fail, Bef, St2), + Aft = sr_merge(Faft, Saft), + {Fis ++ [{label,Tf}] ++ Sis,Aft,St3}; +match_cg({select,V,Scs}, _Va, Fail, Bef, St) -> + match_fmf(fun (S, F, Sta) -> + select_cg(S, V, F, Fail, Bef, Sta) end, + Fail, St, Scs); +match_cg({guard,Gcs}, _Le, Fail, Bef, St) -> + match_fmf(fun (G, F, Sta) -> guard_clause_cg(G, F, Bef, Sta) end, + Fail, St, Gcs); +match_cg({block,Es}, Le, _Fail, Bef, St) -> + %% Must clear registers and stack of dead variables. + Int = clear_dead(Bef, Le#l.i, Le#l.vdb), + block_cg(Es, Le, Int, St). + +%% match_fail_cg(FailReason, Le, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. +%% Generate code for the match_fail "call". N.B. there is no generic +%% case for when the fail value has been created elsewhere. + +match_fail_cg({function_clause,As}, Le, Vdb, Bef, St) -> + %% Must have the args in {x,0}, {x,1},... + {Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb), + {Sis ++ [{jump,{f,St#cg.finfo}}], + Int#sr{reg=clear_regs(Int#sr.reg)},St}; +match_fail_cg({badmatch,Term}, Le, Vdb, Bef, St) -> + R = cg_reg_arg(Term, Bef), + Int0 = clear_dead(Bef, Le#l.i, Vdb), + {Sis,Int} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb), + {Sis ++ [{badmatch,R}], + Int#sr{reg=clear_regs(Int0#sr.reg)},St}; +match_fail_cg({case_clause,Reason}, Le, Vdb, Bef, St) -> + R = cg_reg_arg(Reason, Bef), + Int0 = clear_dead(Bef, Le#l.i, Vdb), + {Sis,Int} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb), + {Sis++[{case_end,R}], + Int#sr{reg=clear_regs(Bef#sr.reg)},St}; +match_fail_cg(if_clause, Le, Vdb, Bef, St) -> + Int0 = clear_dead(Bef, Le#l.i, Vdb), + {Sis,Int1} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb), + {Sis++[if_end],Int1#sr{reg=clear_regs(Int1#sr.reg)},St}; +match_fail_cg({try_clause,Reason}, Le, Vdb, Bef, St) -> + R = cg_reg_arg(Reason, Bef), + Int0 = clear_dead(Bef, Le#l.i, Vdb), + {Sis,Int} = adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb), + {Sis ++ [{try_case_end,R}], + Int#sr{reg=clear_regs(Int0#sr.reg)},St}. + + +%% block_cg([Kexpr], Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}. +%% block_cg([Kexpr], Le, StackReg, St) -> {[Ainstr],StackReg,St}. + +block_cg(Es, Le, _Vdb, Bef, St) -> + block_cg(Es, Le, Bef, St). + +block_cg(Es, Le, Bef, St0) -> + case St0#cg.is_top_block of + false -> + cg_block(Es, Le#l.i, Le#l.vdb, Bef, St0); + true -> + {Keis,Aft,St1} = cg_block(Es, Le#l.i, Le#l.vdb, Bef, + St0#cg{is_top_block=false, + need_frame=false}), + top_level_block(Keis, Aft, max_reg(Bef#sr.reg), St1) + end. + +cg_block([], _I, _Vdb, Bef, St0) -> + {[],Bef,St0}; +cg_block(Kes0, I, Vdb, Bef, St0) -> + {Kes2,Int1,St1} = + case basic_block(Kes0) of + {Kes1,LastI,Args,Rest} -> + Ke = hd(Kes1), + Fb = Ke#l.i, + cg_basic_block(Kes1, Fb, LastI, Args, Vdb, Bef, St0); + {Kes1,Rest} -> + cg_list(Kes1, I, Vdb, Bef, St0) + end, + {Kes3,Int2,St2} = cg_block(Rest, I, Vdb, Int1, St1), + {Kes2 ++ Kes3,Int2,St2}. + +basic_block(Kes) -> basic_block(Kes, []). + +basic_block([], Acc) -> {reverse(Acc),[]}; +basic_block([Le|Les], Acc) -> + case collect_block(Le#l.ke) of + include -> basic_block(Les, [Le|Acc]); + {block_end,As} -> {reverse(Acc, [Le]),Le#l.i,As,Les}; + no_block -> {reverse(Acc, [Le]),Les} + end. + +collect_block({set,_,{binary,_}}) -> no_block; +collect_block({set,_,_}) -> include; +collect_block({call,{var,_}=Var,As,_Rs}) -> {block_end,As++[Var]}; +collect_block({call,Func,As,_Rs}) -> {block_end,As++func_vars(Func)}; +collect_block({enter,{var,_}=Var,As})-> {block_end,As++[Var]}; +collect_block({enter,Func,As}) -> {block_end,As++func_vars(Func)}; +collect_block({return,Rs}) -> {block_end,Rs}; +collect_block({break,Bs}) -> {block_end,Bs}; +collect_block({bif,_Bif,_As,_Rs}) -> include; +collect_block(_) -> no_block. + +func_vars({remote,M,F}) when element(1, M) == var; + element(1, F) == var -> + [M,F]; +func_vars(_) -> []. + +%% cg_basic_block([Kexpr], FirstI, LastI, As, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. + +cg_basic_block(Kes, Fb, Lf, As, Vdb, Bef, St0) -> + Res = make_reservation(As, 0), + Regs0 = reserve(Res, Bef#sr.reg, Bef#sr.stk), + Stk = extend_stack(Bef, Lf, Lf+1, Vdb), + Int0 = Bef#sr{reg=Regs0,stk=Stk,res=Res}, + X0_v0 = x0_vars(As, Fb, Lf, Vdb), + {Keis,{Aft,_,St1}} = + flatmapfoldl(fun(Ke, St) -> cg_basic_block(Ke, St, Lf, Vdb) end, + {Int0,X0_v0,St0}, need_heap(Kes, Fb)), + {Keis,Aft,St1}. + +cg_basic_block(Ke, {Inta,X0v,Sta}, _Lf, Vdb) when element(1, Ke#l.ke) =:= need_heap -> + {Keis,Intb,Stb} = cg(Ke, Vdb, Inta, Sta), + {comment(Inta) ++ Keis, {Intb,X0v,Stb}}; +cg_basic_block(Ke, {Inta,X0_v1,Sta}, Lf, Vdb) -> + {Sis,Intb} = save_carefully(Inta, Ke#l.i, Lf+1, Vdb), + {X0_v2,Intc} = allocate_x0(X0_v1, Ke#l.i, Intb), + Intd = reserve(Intc), + {Keis,Inte,Stb} = cg(Ke, Vdb, Intd, Sta), + {comment(Inta) ++ Sis ++ Keis, {Inte,X0_v2,Stb}}. + +make_reservation([], _) -> []; +make_reservation([{var,V}|As], I) -> [{I,V}|make_reservation(As, I+1)]; +make_reservation([A|As], I) -> [{I,A}|make_reservation(As, I+1)]. + +reserve(Sr) -> Sr#sr{reg=reserve(Sr#sr.res, Sr#sr.reg, Sr#sr.stk)}. + +reserve([{I,V}|Rs], [free|Regs], Stk) -> [{reserved,I,V}|reserve(Rs, Regs, Stk)]; +reserve([{I,V}|Rs], [{I,V}|Regs], Stk) -> [{I,V}|reserve(Rs, Regs, Stk)]; +reserve([{I,V}|Rs], [{I,Var}|Regs], Stk) -> + case on_stack(Var, Stk) of + true -> [{reserved,I,V}|reserve(Rs, Regs, Stk)]; + false -> [{I,Var}|reserve(Rs, Regs, Stk)] + end; +reserve([{I,V}|Rs], [{reserved,I,_}|Regs], Stk) -> + [{reserved,I,V}|reserve(Rs, Regs, Stk)]; +%reserve([{I,V}|Rs], [Other|Regs], Stk) -> [Other|reserve(Rs, Regs, Stk)]; +reserve([{I,V}|Rs], [], Stk) -> [{reserved,I,V}|reserve(Rs, [], Stk)]; +reserve([], Regs, _) -> Regs. + +extend_stack(Bef, Fb, Lf, Vdb) -> + Stk0 = clear_dead_stk(Bef#sr.stk, Fb, Vdb), + Saves = [V || {V,F,L} <- Vdb, + F < Fb, + L >= Lf, + not on_stack(V, Stk0)], + Stk1 = foldl(fun (V, Stk) -> put_stack(V, Stk) end, Stk0, Saves), + Bef#sr.stk ++ lists:duplicate(length(Stk1) - length(Bef#sr.stk), free). + +save_carefully(Bef, Fb, Lf, Vdb) -> + Stk = Bef#sr.stk, + %% New variables that are in use but not on stack. + New = [ {V,F,L} || {V,F,L} <- Vdb, + F < Fb, + L >= Lf, + not on_stack(V, Stk) ], + Saves = [ V || {V,_,_} <- keysort(2, New) ], + save_carefully(Saves, Bef, []). + +save_carefully([], Bef, Acc) -> {reverse(Acc),Bef}; +save_carefully([V|Vs], Bef, Acc) -> + case put_stack_carefully(V, Bef#sr.stk) of + error -> {reverse(Acc),Bef}; + Stk1 -> + SrcReg = fetch_reg(V, Bef#sr.reg), + Move = {move,SrcReg,fetch_stack(V, Stk1)}, + {x,_} = SrcReg, %Assertion - must be X register. + save_carefully(Vs, Bef#sr{stk=Stk1}, [Move|Acc]) + end. + +x0_vars([], _Fb, _Lf, _Vdb) -> []; +x0_vars([{var,V}|_], Fb, _Lf, Vdb) -> + {V,F,_L} = VFL = vdb_find(V, Vdb), + x0_vars1([VFL], Fb, F, Vdb); +x0_vars([X0|_], Fb, Lf, Vdb) -> + x0_vars1([{X0,Lf,Lf}], Fb, Lf, Vdb). + +x0_vars1(X0, Fb, Xf, Vdb) -> + Vs0 = [VFL || {_V,F,L}=VFL <- Vdb, + F >= Fb, + L < Xf], + Vs1 = keysort(3, Vs0), + keysort(2, X0++Vs1). + +allocate_x0([], _, Bef) -> {[],Bef#sr{res=[]}}; +allocate_x0([{_,_,L}|Vs], I, Bef) when L =< I -> + allocate_x0(Vs, I, Bef); +allocate_x0([{V,_F,_L}=VFL|Vs], _, Bef) -> + {[VFL|Vs],Bef#sr{res=reserve_x0(V, Bef#sr.res)}}. + +reserve_x0(V, [_|Res]) -> [{0,V}|Res]; +reserve_x0(V, []) -> [{0,V}]. + +top_level_block(Keis, Bef, _MaxRegs, St0) when St0#cg.need_frame =:= false, + length(Bef#sr.stk) =:= 0 -> + %% This block need no stack frame. However, we still need to turn the + %% stack frame upside down. + MaxY = length(Bef#sr.stk)-1, + Keis1 = flatmap(fun (Tuple) when tuple(Tuple) -> + [turn_yregs(size(Tuple), Tuple, MaxY)]; + (Other) -> + [Other] + end, Keis), + {Keis1, Bef, St0#cg{is_top_block=true}}; +top_level_block(Keis, Bef, MaxRegs, St0) -> + %% This top block needs an allocate instruction before it, and a + %% deallocate instruction before each return. + FrameSz = length(Bef#sr.stk), + MaxY = FrameSz-1, + Keis1 = flatmap(fun ({call_only,Arity,Func}) -> + [{call_last,Arity,Func,FrameSz}]; + ({call_ext_only,Arity,Func}) -> + [{call_ext_last,Arity,Func,FrameSz}]; + ({apply_only,Arity}) -> + [{apply_last,Arity,FrameSz}]; + (return) -> + [{deallocate,FrameSz}, return]; + (Tuple) when tuple(Tuple) -> + [turn_yregs(size(Tuple), Tuple, MaxY)]; + (Other) -> + [Other] + end, Keis), + {[{allocate_zero,FrameSz,MaxRegs}|Keis1], Bef, St0#cg{is_top_block=true}}. + +%% turn_yregs(Size, Tuple, MaxY) -> Tuple' +%% Renumber y register so that {y, 0} becomes {y, FrameSize-1}, +%% {y, FrameSize-1} becomes {y, 0} and so on. This is to make nested +%% catches work. The code generation algorithm gives a lower register +%% number to the outer catch, which is wrong. + +turn_yregs(0, Tp, _) -> Tp; +turn_yregs(El, Tp, MaxY) when element(1, element(El, Tp)) == yy -> + turn_yregs(El-1, setelement(El, Tp, {y,MaxY-element(2, element(El, Tp))}), MaxY); +turn_yregs(El, Tp, MaxY) when list(element(El, Tp)) -> + New = map(fun ({yy,YY}) -> {y,MaxY-YY}; + (Other) -> Other end, element(El, Tp)), + turn_yregs(El-1, setelement(El, Tp, New), MaxY); +turn_yregs(El, Tp, MaxY) -> + turn_yregs(El-1, Tp, MaxY). + +%% select_cg(Sclause, V, TypeFail, ValueFail, StackReg, State) -> +%% {Is,StackReg,State}. +%% Selecting type and value needs two failure labels, TypeFail is the +%% label to jump to of the next type test when this type fails, and +%% ValueFail is the label when this type is correct but the value is +%% wrong. These are different as in the second case there is no need +%% to try the next type, it will always fail. + +select_cg(#l{ke={type_clause,cons,[S]}}, {var,V}, Tf, Vf, Bef, St) -> + select_cons(S, V, Tf, Vf, Bef, St); +select_cg(#l{ke={type_clause,nil,[S]}}, {var,V}, Tf, Vf, Bef, St) -> + select_nil(S, V, Tf, Vf, Bef, St); +select_cg(#l{ke={type_clause,binary,[S]}}, {var,V}, Tf, Vf, Bef, St) -> + select_binary(S, V, Tf, Vf, Bef, St); +select_cg(#l{ke={type_clause,bin_seg,S}}, {var,V}, Tf, Vf, Bef, St) -> + select_bin_segs(S, V, Tf, Vf, Bef, St); +select_cg(#l{ke={type_clause,bin_end,[S]}}, {var,V}, Tf, Vf, Bef, St) -> + select_bin_end(S, V, Tf, Vf, Bef, St); +select_cg(#l{ke={type_clause,Type,Scs}}, {var,V}, Tf, Vf, Bef, St0) -> + {Vis,{Aft,St1}} = + mapfoldl(fun (S, {Int,Sta}) -> + {Val,Is,Inta,Stb} = select_val(S, V, Vf, Bef, Sta), + {{Is,[Val]},{sr_merge(Int, Inta),Stb}} + end, {void,St0}, Scs), + OptVls = combine(lists:sort(combine(Vis))), + {Vls,Sis,St2} = select_labels(OptVls, St1, [], []), + {select_val_cg(Type, fetch_var(V, Bef), Vls, Tf, Vf, Sis), Aft, St2}. + +select_val_cg(tuple, R, [Arity,{f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) -> + [{test,is_tuple,{f,Tf},[R]},{test,test_arity,{f,Vf},[R,Arity]}|Sis]; +select_val_cg(tuple, R, Vls, Tf, Vf, Sis) -> + [{test,is_tuple,{f,Tf},[R]},{select_tuple_arity,R,{f,Vf},{list,Vls}}|Sis]; +select_val_cg(Type, R, [Val, {f,Lbl}], Fail, Fail, [{label,Lbl}|Sis]) -> + [{test,is_eq_exact,{f,Fail},[R,{Type,Val}]}|Sis]; +select_val_cg(Type, R, [Val, {f,Lbl}], Tf, Vf, [{label,Lbl}|Sis]) -> + [{test,select_type_test(Type),{f,Tf},[R]}, + {test,is_eq_exact,{f,Vf},[R,{Type,Val}]}|Sis]; +select_val_cg(Type, R, Vls0, Tf, Vf, Sis) -> + Vls1 = map(fun ({f,Lbl}) -> {f,Lbl}; + (Value) -> {Type,Value} + end, Vls0), + [{test,select_type_test(Type),{f,Tf},[R]}, {select_val,R,{f,Vf},{list,Vls1}}|Sis]. + +select_type_test(tuple) -> is_tuple; +select_type_test(integer) -> is_integer; +select_type_test(atom) -> is_atom; +select_type_test(float) -> is_float. + +combine([{Is,Vs1}, {Is,Vs2}|Vis]) -> combine([{Is,Vs1 ++ Vs2}|Vis]); +combine([V|Vis]) -> [V|combine(Vis)]; +combine([]) -> []. + +select_labels([{Is,Vs}|Vis], St0, Vls, Sis) -> + {Lbl,St1} = new_label(St0), + select_labels(Vis, St1, add_vls(Vs, Lbl, Vls), [[{label,Lbl}|Is]|Sis]); +select_labels([], St, Vls, Sis) -> + {Vls,append(Sis),St}. + +add_vls([V|Vs], Lbl, Acc) -> + add_vls(Vs, Lbl, [V, {f,Lbl}|Acc]); +add_vls([], _, Acc) -> Acc. + +select_cons(#l{ke={val_clause,{cons,Es},B},i=I,vdb=Vdb}, V, Tf, Vf, Bef, St0) -> + {Eis,Int,St1} = select_extract_cons(V, Es, I, Vdb, Bef, St0), + {Bis,Aft,St2} = match_cg(B, Vf, Int, St1), + {[{test,is_nonempty_list,{f,Tf},[fetch_var(V, Bef)]}] ++ Eis ++ Bis,Aft,St2}. + +select_nil(#l{ke={val_clause,nil,B}}, V, Tf, Vf, Bef, St0) -> + {Bis,Aft,St1} = match_cg(B, Vf, Bef, St0), + {[{test,is_nil,{f,Tf},[fetch_var(V, Bef)]}] ++ Bis,Aft,St1}. + +select_binary(#l{ke={val_clause,{old_binary,Var},B}}=L, + V, Tf, Vf, Bef, St) -> + %% Currently handled in the same way as new binaries. + select_binary(L#l{ke={val_clause,{binary,Var},B}}, V, Tf, Vf, Bef, St); +select_binary(#l{ke={val_clause,{binary,{var,Ivar}},B},i=I,vdb=Vdb}, + V, Tf, Vf, Bef, St0) -> + Int0 = clear_dead(Bef, I, Vdb), + {Bis,Aft,St1} = match_cg(B, Vf, Int0, St0), + {[{test,bs_start_match,{f,Tf},[fetch_var(V, Bef)]},{bs_save,Ivar}|Bis], + Aft,St1}. + +select_bin_segs(Scs, Ivar, Tf, _Vf, Bef, St) -> + match_fmf(fun(S, Fail, Sta) -> + select_bin_seg(S, Ivar, Fail, Bef, Sta) end, + Tf, St, Scs). + +select_bin_seg(#l{ke={val_clause,{bin_seg,Size,U,T,Fs,Es},B},i=I,vdb=Vdb}, + Ivar, Fail, Bef, St0) -> + {Mis,Int,St1} = select_extract_bin(Es, Size, U, T, Fs, Fail, + I, Vdb, Bef, St0), + {Bis,Aft,St2} = match_cg(B, Fail, Int, St1), + {[{bs_restore,Ivar}|Mis] ++ Bis,Aft,St2}. + +select_extract_bin([{var,Hd},{var,Tl}], Size0, Unit, Type, Flags, Vf, + I, Vdb, Bef, St) -> + SizeReg = get_bin_size_reg(Size0, Bef), + {Es,Aft} = + case vdb_find(Hd, Vdb) of + {_,_,Lhd} when Lhd =< I -> + {[{test,bs_skip_bits,{f,Vf},[SizeReg,Unit,{field_flags,Flags}]}, + {bs_save,Tl}],Bef}; + {_,_,_} -> + Reg0 = put_reg(Hd, Bef#sr.reg), + Int1 = Bef#sr{reg=Reg0}, + Rhd = fetch_reg(Hd, Reg0), + Name = get_bits_instr(Type), + {[{test,Name,{f,Vf},[SizeReg,Unit,{field_flags,Flags},Rhd]}, + {bs_save,Tl}],Int1} + end, + {Es,clear_dead(Aft, I, Vdb),St}. + +get_bin_size_reg({var,V}, Bef) -> + fetch_var(V, Bef); +get_bin_size_reg(Literal, _Bef) -> + Literal. + +select_bin_end(#l{ke={val_clause,bin_end,B}}, + Ivar, Tf, Vf, Bef, St0) -> + {Bis,Aft,St2} = match_cg(B, Vf, Bef, St0), + {[{bs_restore,Ivar},{test,bs_test_tail,{f,Tf},[0]}|Bis],Aft,St2}. + +get_bits_instr(integer) -> bs_get_integer; +get_bits_instr(float) -> bs_get_float; +get_bits_instr(binary) -> bs_get_binary. + +select_val(#l{ke={val_clause,{tuple,Es},B},i=I,vdb=Vdb}, V, Vf, Bef, St0) -> + {Eis,Int,St1} = select_extract_tuple(V, Es, I, Vdb, Bef, St0), + {Bis,Aft,St2} = match_cg(B, Vf, Int, St1), + {length(Es),Eis ++ Bis,Aft,St2}; +select_val(#l{ke={val_clause,{_,Val},B}}, _V, Vf, Bef, St0) -> + {Bis,Aft,St1} = match_cg(B, Vf, Bef, St0), + {Val,Bis,Aft,St1}. + +%% select_extract_tuple(Src, [V], I, Vdb, StackReg, State) -> +%% {[E],StackReg,State}. +%% Extract tuple elements, but only if they do not immediately die. + +select_extract_tuple(Src, Vs, I, Vdb, Bef, St) -> + F = fun ({var,V}, {Int0,Elem}) -> + case vdb_find(V, Vdb) of + {V,_,L} when L =< I -> {[], {Int0,Elem+1}}; + _Other -> + Reg1 = put_reg(V, Int0#sr.reg), + Int1 = Int0#sr{reg=Reg1}, + Rsrc = fetch_var(Src, Int1), + {[{get_tuple_element,Rsrc,Elem,fetch_reg(V, Reg1)}], + {Int1,Elem+1}} + end + end, + {Es,{Aft,_}} = flatmapfoldl(F, {Bef,0}, Vs), + {Es,Aft,St}. + +select_extract_cons(Src, [{var,Hd}, {var,Tl}], I, Vdb, Bef, St) -> + {Es,Aft} = case {vdb_find(Hd, Vdb), vdb_find(Tl, Vdb)} of + {{_,_,Lhd}, {_,_,Ltl}} when Lhd =< I, Ltl =< I -> + %% Both head and tail are dead. No need to generate + %% any instruction. + {[], Bef}; + _ -> + %% At least one of head and tail will be used, + %% but we must always fetch both. We will call + %% clear_dead/2 to allow reuse of the register + %% in case only of them is used. + + Reg0 = put_reg(Tl, put_reg(Hd, Bef#sr.reg)), + Int0 = Bef#sr{reg=Reg0}, + Rsrc = fetch_var(Src, Int0), + Rhd = fetch_reg(Hd, Reg0), + Rtl = fetch_reg(Tl, Reg0), + Int1 = clear_dead(Int0, I, Vdb), + {[{get_list,Rsrc,Rhd,Rtl}], Int1} + end, + {Es,Aft,St}. + + +guard_clause_cg(#l{ke={guard_clause,G,B},vdb=Vdb}, Fail, Bef, St0) -> + {Gis,Int,St1} = guard_cg(G, Fail, Vdb, Bef, St0), + {Bis,Aft,St2} = match_cg(B, Fail, Int, St1), + {Gis ++ Bis,Aft,St2}. + +%% guard_cg(Guard, Fail, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. +%% A guard is a boolean expression of tests. Tests return true or +%% false. A fault in a test causes the test to return false. Tests +%% never return the boolean, instead we generate jump code to go to +%% the correct exit point. Primops and tests all go to the next +%% instruction on success or jump to a failure label. + +guard_cg(#l{ke={protected,Ts,Rs},i=I,vdb=Pdb}, Fail, _Vdb, Bef, St) -> + protected_cg(Ts, Rs, Fail, I, Pdb, Bef, St); +guard_cg(#l{ke={block,Ts},i=I,vdb=Bdb}, Fail, _Vdb, Bef, St) -> + guard_cg_list(Ts, Fail, I, Bdb, Bef, St); +guard_cg(#l{ke={test,Test,As},i=I,vdb=_Tdb}, Fail, Vdb, Bef, St) -> + test_cg(Test, As, Fail, I, Vdb, Bef, St); +guard_cg(G, _Fail, Vdb, Bef, St) -> + %%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{G,Fail,Vdb,Bef}]), + {Gis,Aft,St1} = cg(G, Vdb, Bef, St), + %%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{Aft}]), + {Gis,Aft,St1}. + +%% protected_cg([Kexpr], [Ret], Fail, I, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% Do a protected. Protecteds without return values are just done +%% for effect, the return value is not checked, success passes on to +%% the next instruction and failure jumps to Fail. If there are +%% return values then these must be set to 'false' on failure, +%% control always passes to the next instruction. + +protected_cg(Ts, [], Fail, I, Vdb, Bef, St0) -> + %% Protect these calls, revert when done. + {Tis,Aft,St1} = guard_cg_list(Ts, Fail, I, Vdb, Bef, + St0#cg{btype=fail,bfail=Fail}), + {Tis,Aft,St1#cg{btype=St0#cg.btype,bfail=St0#cg.bfail}}; +protected_cg(Ts, Rs, _Fail, I, Vdb, Bef, St0) -> + {Pfail,St1} = new_label(St0), + {Psucc,St2} = new_label(St1), + {Tis,Aft,St3} = guard_cg_list(Ts, Pfail, I, Vdb, Bef, + St2#cg{btype=fail,bfail=Pfail}), + %%ok = io:fwrite("cg ~w: ~p~n", [?LINE,{Rs,I,Vdb,Aft}]), + %% Set return values to false. + Mis = map(fun ({var,V}) -> {move,{atom,false},fetch_var(V, Aft)} end, Rs), + Live = {'%live',max_reg(Aft#sr.reg)}, + {Tis ++ [Live,{jump,{f,Psucc}}, + {label,Pfail}] ++ Mis ++ [Live,{label,Psucc}], + Aft,St3#cg{btype=St0#cg.btype,bfail=St0#cg.bfail}}. + +%% test_cg(TestName, Args, Fail, I, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% Generate test instruction. Use explicit fail label here. + +test_cg(Test, As, Fail, I, Vdb, Bef, St) -> + case test_type(Test, length(As)) of + {cond_op,Op} -> + Ars = cg_reg_args(As, Bef), + Int = clear_dead(Bef, I, Vdb), + {[{test,Op,{f,Fail},Ars}], + clear_dead(Int, I, Vdb), + St}; + {rev_cond_op,Op} -> + [S1,S2] = cg_reg_args(As, Bef), + Int = clear_dead(Bef, I, Vdb), + {[{test,Op,{f,Fail},[S2,S1]}], + clear_dead(Int, I, Vdb), + St} + end. + +test_type(is_atom, 1) -> {cond_op,is_atom}; +test_type(is_boolean, 1) -> {cond_op,is_boolean}; +test_type(is_binary, 1) -> {cond_op,is_binary}; +test_type(is_constant, 1) -> {cond_op,is_constant}; +test_type(is_float, 1) -> {cond_op,is_float}; +test_type(is_function, 1) -> {cond_op,is_function}; +test_type(is_integer, 1) -> {cond_op,is_integer}; +test_type(is_list, 1) -> {cond_op,is_list}; +test_type(is_number, 1) -> {cond_op,is_number}; +test_type(is_pid, 1) -> {cond_op,is_pid}; +test_type(is_port, 1) -> {cond_op,is_port}; +test_type(is_reference, 1) -> {cond_op,is_reference}; +test_type(is_tuple, 1) -> {cond_op,is_tuple}; +test_type('=<', 2) -> {rev_cond_op,is_ge}; +test_type('>', 2) -> {rev_cond_op,is_lt}; +test_type('<', 2) -> {cond_op,is_lt}; +test_type('>=', 2) -> {cond_op,is_ge}; +test_type('==', 2) -> {cond_op,is_eq}; +test_type('/=', 2) -> {cond_op,is_ne}; +test_type('=:=', 2) -> {cond_op,is_eq_exact}; +test_type('=/=', 2) -> {cond_op,is_ne_exact}; +test_type(internal_is_record, 3) -> {cond_op,internal_is_record}. + +%% guard_cg_list([Kexpr], Fail, I, Vdb, StackReg, St) -> +%% {[Ainstr],StackReg,St}. + +guard_cg_list(Kes, Fail, I, Vdb, Bef, St0) -> + {Keis,{Aft,St1}} = + flatmapfoldl(fun (Ke, {Inta,Sta}) -> + {Keis,Intb,Stb} = + guard_cg(Ke, Fail, Vdb, Inta, Sta), + {comment(Inta) ++ Keis,{Intb,Stb}} + end, {Bef,St0}, need_heap(Kes, I)), + {Keis,Aft,St1}. + +%% match_fmf(Fun, LastFail, State, [Clause]) -> {Is,Aft,State}. +%% This is a special flatmapfoldl for match code gen where we +%% generate a "failure" label for each clause. The last clause uses +%% an externally generated failure label, LastFail. N.B. We do not +%% know or care how the failure labels are used. + +match_fmf(F, LastFail, St, [H]) -> + F(H, LastFail, St); +match_fmf(F, LastFail, St0, [H|T]) -> + {Fail,St1} = new_label(St0), + {R,Aft1,St2} = F(H, Fail, St1), + {Rs,Aft2,St3} = match_fmf(F, LastFail, St2, T), + {R ++ [{label,Fail}] ++ Rs,sr_merge(Aft1, Aft2),St3}; +match_fmf(_, _, St, []) -> {[],void,St}. + +%% call_cg(Func, [Arg], [Ret], Le, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. +%% enter_cg(Func, [Arg], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% Call and enter first put the arguments into registers and save any +%% other registers, then clean up and compress the stack and set the +%% frame size. Finally the actual call is made. Call then needs the +%% return values filled in. + +call_cg({var,V}, As, Rs, Le, Vdb, Bef, St0) -> + {Sis,Int} = cg_setup_call(As++[{var,V}], Bef, Le#l.i, Vdb), + %% Put return values in registers. + Reg = load_vars(Rs, clear_regs(Int#sr.reg)), + %% Build complete code and final stack/register state. + Arity = length(As), + {Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)), + {comment({call_fun,{var,V},As}) ++ Sis ++ Frees ++ [{call_fun,Arity}], + Aft,need_stack_frame(St0)}; +call_cg({remote,Mod,Name}, As, Rs, Le, Vdb, Bef, St0) + when element(1, Mod) == var; + element(1, Name) == var -> + {Sis,Int} = cg_setup_call(As++[Mod,Name], Bef, Le#l.i, Vdb), + %% Put return values in registers. + Reg = load_vars(Rs, clear_regs(Int#sr.reg)), + %% Build complete code and final stack/register state. + Arity = length(As), + Call = {apply,Arity}, + St = need_stack_frame(St0), + %%{Call,St1} = build_call(Func, Arity, St0), + {Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)), + {Sis ++ Frees ++ [Call],Aft,St}; +call_cg(Func, As, Rs, Le, Vdb, Bef, St0) -> + {Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb), + %% Put return values in registers. + Reg = load_vars(Rs, clear_regs(Int#sr.reg)), + %% Build complete code and final stack/register state. + Arity = length(As), + {Call,St1} = build_call(Func, Arity, St0), + {Frees,Aft} = free_dead(clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb)), + {comment({call,Func,As}) ++ Sis ++ Frees ++ Call,Aft,St1}. + +build_call({remote,{atom,erlang},{atom,'!'}}, 2, St0) -> + {[send],need_stack_frame(St0)}; +build_call({remote,{atom,Mod},{atom,Name}}, Arity, St0) -> + {[{call_ext,Arity,{extfunc,Mod,Name,Arity}}],need_stack_frame(St0)}; +build_call(Name, Arity, St0) when atom(Name) -> + {Lbl,St1} = local_func_label(Name, Arity, need_stack_frame(St0)), + {[{call,Arity,{f,Lbl}}],St1}. + +free_dead(#sr{stk=Stk0}=Aft) -> + {Instr,Stk} = free_dead(Stk0, 0, [], []), + {Instr,Aft#sr{stk=Stk}}. + +free_dead([dead|Stk], Y, Instr, StkAcc) -> + %% Note: kill/1 is equivalent to init/1 (translated by beam_asm). + %% We use kill/1 to help further optimisation passes. + free_dead(Stk, Y+1, [{kill,{yy,Y}}|Instr], [free|StkAcc]); +free_dead([Any|Stk], Y, Instr, StkAcc) -> + free_dead(Stk, Y+1, Instr, [Any|StkAcc]); +free_dead([], _, Instr, StkAcc) -> {Instr,reverse(StkAcc)}. + +enter_cg({var,V}, As, Le, Vdb, Bef, St0) -> + {Sis,Int} = cg_setup_call(As++[{var,V}], Bef, Le#l.i, Vdb), + %% Build complete code and final stack/register state. + Arity = length(As), + {comment({call_fun,{var,V},As}) ++ Sis ++ [{call_fun,Arity},return], + clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb), + need_stack_frame(St0)}; +enter_cg({remote,Mod,Name}=Func, As, Le, Vdb, Bef, St0) + when element(1, Mod) == var; + element(1, Name) == var -> + {Sis,Int} = cg_setup_call(As++[Mod,Name], Bef, Le#l.i, Vdb), + %% Build complete code and final stack/register state. + Arity = length(As), + Call = {apply_only,Arity}, + St = need_stack_frame(St0), + {comment({enter,Func,As}) ++ Sis ++ [Call], + clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb), + St}; +enter_cg(Func, As, Le, Vdb, Bef, St0) -> + {Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb), + %% Build complete code and final stack/register state. + Arity = length(As), + {Call,St1} = build_enter(Func, Arity, St0), + {comment({enter,Func,As}) ++ Sis ++ Call, + clear_dead(Int#sr{reg=clear_regs(Int#sr.reg)}, Le#l.i, Vdb), + St1}. + +build_enter({remote,{atom,erlang},{atom,'!'}}, 2, St0) -> + {[send,return],need_stack_frame(St0)}; +build_enter({remote,{atom,Mod},{atom,Name}}, Arity, St0) -> + St1 = case trap_bif(Mod, Name, Arity) of + true -> need_stack_frame(St0); + false -> St0 + end, + {[{call_ext_only,Arity,{extfunc,Mod,Name,Arity}}],St1}; +build_enter(Name, Arity, St0) when is_atom(Name) -> + {Lbl,St1} = local_func_label(Name, Arity, St0), + {[{call_only,Arity,{f,Lbl}}],St1}. + +%% local_func_label(Name, Arity, State) -> {Label,State'} +%% Get the function entry label for a local function. + +local_func_label(Name, Arity, St0) -> + Key = {Name,Arity}, + case keysearch(Key, 1, St0#cg.functable) of + {value,{Key,Label}} -> + {Label,St0}; + false -> + {Label,St1} = new_label(St0), + {Label,St1#cg{functable=[{Key,Label}|St1#cg.functable]}} + end. + +%% need_stack_frame(State) -> State' +%% Make a note in the state that this function will need a stack frame. + +need_stack_frame(#cg{need_frame=true}=St) -> St; +need_stack_frame(St) -> St#cg{need_frame=true}. + +%% trap_bif(Mod, Name, Arity) -> true|false +%% Trap bifs that need a stack frame. + +trap_bif(erlang, '!', 2) -> true; +trap_bif(erlang, link, 1) -> true; +trap_bif(erlang, unlink, 1) -> true; +trap_bif(erlang, monitor_node, 2) -> true; +trap_bif(erlang, group_leader, 2) -> true; +trap_bif(erlang, exit, 2) -> true; +trap_bif(_, _, _) -> false. + +%% bif_cg(Bif, [Arg], [Ret], Le, Vdb, StackReg, State) -> +%% {[Ainstr],StackReg,State}. + +bif_cg(dsetelement, [Index0,Tuple0,New0], _Rs, Le, Vdb, Bef, St0) -> + [New,Tuple,{integer,Index1}] = cg_reg_args([New0,Tuple0,Index0], Bef), + Index = Index1-1, + {[{set_tuple_element,New,Tuple,Index}], + clear_dead(Bef, Le#l.i, Vdb), St0}; +bif_cg({make_fun,Func,Arity,Index,Uniq}, As, Rs, Le, Vdb, Bef, St0) -> + %% This behaves more like a function call. + {Sis,Int} = cg_setup_call(As, Bef, Le#l.i, Vdb), + Reg = load_vars(Rs, clear_regs(Int#sr.reg)), + {FuncLbl,St1} = local_func_label(Func, Arity, St0), + MakeFun = case St0#cg.new_funs of + true -> {make_fun2,{f,FuncLbl},Index,Uniq,length(As)}; + false -> {make_fun,{f,FuncLbl},Uniq,length(As)} + end, + {comment({make_fun,{Func,Arity,Uniq},As}) ++ Sis ++ + [MakeFun], + clear_dead(Int#sr{reg=Reg}, Le#l.i, Vdb), + St1}; +bif_cg(Bif, As, [{var,V}], Le, Vdb, Bef, St0) -> + Ars = cg_reg_args(As, Bef), + + %% If we are inside a catch, we must save everything that will + %% be alive after the catch (because the BIF might fail and there + %% will be a jump to the code after the catch). + %% Currently, we are somewhat pessimistic in + %% that we save any variable that will be live after this BIF call. + + {Sis,Int0} = + case St0#cg.in_catch of + true -> adjust_stack(Bef, Le#l.i, Le#l.i+1, Vdb); + false -> {[],Bef} + end, + + Int1 = clear_dead(Int0, Le#l.i, Vdb), + Reg = put_reg(V, Int1#sr.reg), + Int = Int1#sr{reg=Reg}, + Dst = fetch_reg(V, Reg), + {Sis ++ [{bif,Bif,bif_fail(St0#cg.btype, St0#cg.bfail, length(Ars)),Ars,Dst}], + clear_dead(Int, Le#l.i, Vdb), St0}. + +bif_fail(_, _, 0) -> nofail; +bif_fail(exit, _, _) -> {f,0}; +bif_fail(fail, Fail, _) -> {f,Fail}. + +%% recv_loop_cg(TimeOut, ReceiveVar, ReceiveMatch, TimeOutExprs, +%% [Ret], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. + +recv_loop_cg(Te, Rvar, Rm, Tes, Rs, Le, Vdb, Bef, St0) -> + {Sis,Int0} = adjust_stack(Bef, Le#l.i, Le#l.i, Vdb), + Int1 = Int0#sr{reg=clear_regs(Int0#sr.reg)}, + %% Get labels. + {Rl,St1} = new_label(St0), + {Tl,St2} = new_label(St1), + {Bl,St3} = new_label(St2), + St4 = St3#cg{break=Bl,recv=Rl}, %Set correct receive labels + {Ris,Raft,St5} = cg_recv_mesg(Rvar, Rm, Tl, Int1, St4), + {Wis,Taft,St6} = cg_recv_wait(Te, Tes, Le#l.i, Int1, St5), + Int2 = sr_merge(Raft, Taft), %Merge stack/registers + Reg = load_vars(Rs, Int2#sr.reg), + {Sis ++ Ris ++ [{label,Tl}] ++ Wis ++ [{label,Bl}], + clear_dead(Int2#sr{reg=Reg}, Le#l.i, Vdb), + St6#cg{break=St0#cg.break,recv=St0#cg.recv}}. + +%% cg_recv_mesg( ) -> {[Ainstr],Aft,St}. + +cg_recv_mesg({var,R}, Rm, Tl, Bef, St0) -> + Int0 = Bef#sr{reg=put_reg(R, Bef#sr.reg)}, + Ret = fetch_reg(R, Int0#sr.reg), + %% Int1 = clear_dead(Int0, I, Rm#l.vdb), + Int1 = Int0, + {Mis,Int2,St1} = match_cg(Rm, none, Int1, St0), + {[{'%live',0},{label,St1#cg.recv},{loop_rec,{f,Tl},Ret}|Mis],Int2,St1}. + +%% cg_recv_wait(Te, Tes, I, Vdb, Int2, St3) -> {[Ainstr],Aft,St}. + +cg_recv_wait({atom,infinity}, Tes, I, Bef, St0) -> + %% We know that the 'after' body will never be executed. + %% But to keep the stack and register information up to date, + %% we will generate the code for the 'after' body, and then discard it. + Int1 = clear_dead(Bef, I, Tes#l.vdb), + {_,Int2,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, + Int1#sr{reg=clear_regs(Int1#sr.reg)}, St0), + {[{wait,{f,St1#cg.recv}}],Int2,St1}; +cg_recv_wait({integer,0}, Tes, _I, Bef, St0) -> + {Tis,Int,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, Bef, St0), + {[timeout|Tis],Int,St1}; +cg_recv_wait(Te, Tes, I, Bef, St0) -> + Reg = cg_reg_arg(Te, Bef), + %% Must have empty registers here! Bug if anything in registers. + Int0 = clear_dead(Bef, I, Tes#l.vdb), + {Tis,Int,St1} = cg_block(Tes#l.ke, Tes#l.i, Tes#l.vdb, + Int0#sr{reg=clear_regs(Int0#sr.reg)}, St0), + {[{wait_timeout,{f,St1#cg.recv},Reg},timeout] ++ Tis,Int,St1}. + +%% recv_next_cg(Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}. +%% Use adjust stack to clear stack, but only need it for Aft. + +recv_next_cg(Le, Vdb, Bef, St) -> + {Sis,Aft} = adjust_stack(Bef, Le#l.i, Le#l.i+1, Vdb), + {[{loop_rec_end,{f,St#cg.recv}}] ++ Sis,Aft,St}. %Joke + +%% try_cg(TryBlock, [BodyVar], TryBody, [ExcpVar], TryHandler, [Ret], +%% Le, Vdb, StackReg, St) -> {[Ainstr],StackReg,St}. + +try_cg(Ta, Vs, Tb, Evs, Th, Rs, Le, Vdb, Bef, St0) -> + {B,St1} = new_label(St0), %Body label + {H,St2} = new_label(St1), %Handler label + {E,St3} = new_label(St2), %End label + TryTag = Ta#l.i, + Int1 = Bef#sr{stk=put_catch(TryTag, Bef#sr.stk)}, + TryReg = fetch_stack({catch_tag,TryTag}, Int1#sr.stk), + {Ais,Int2,St4} = cg(Ta, Vdb, Int1, St3#cg{break=B,in_catch=true}), + Int3 = Int2#sr{stk=drop_catch(TryTag, Int2#sr.stk)}, + St5 = St4#cg{break=E,in_catch=St3#cg.in_catch}, + {Bis,Baft,St6} = cg(Tb, Vdb, Int3#sr{reg=load_vars(Vs, Int3#sr.reg)}, St5), + {His,Haft,St7} = cg(Th, Vdb, Int3#sr{reg=load_vars(Evs, Int3#sr.reg)}, St6), + Int4 = sr_merge(Baft, Haft), %Merge stack/registers + Aft = Int4#sr{reg=load_vars(Rs, Int4#sr.reg)}, + {[{'try',TryReg,{f,H}}] ++ Ais ++ + [{label,B},{try_end,TryReg}] ++ Bis ++ + [{label,H},{try_case,TryReg}] ++ His ++ + [{label,E}], + clear_dead(Aft, Le#l.i, Vdb), + St7#cg{break=St0#cg.break}}. + +%% catch_cg(CatchBlock, Ret, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. + +catch_cg(C, {var,R}, Le, Vdb, Bef, St0) -> + {B,St1} = new_label(St0), + CatchTag = Le#l.i, + Int1 = Bef#sr{stk=put_catch(CatchTag, Bef#sr.stk)}, + CatchReg = fetch_stack({catch_tag,CatchTag}, Int1#sr.stk), + {Cis,Int2,St2} = cg_block(C, Le#l.i, Le#l.vdb, Int1, + St1#cg{break=B,in_catch=true}), + Aft = Int2#sr{reg=load_reg(R, 0, Int2#sr.reg), + stk=drop_catch(CatchTag, Int2#sr.stk)}, + {[{'catch',CatchReg,{f,B}}] ++ Cis ++ + [{label,B},{catch_end,CatchReg}], + clear_dead(Aft, Le#l.i, Vdb), + St2#cg{break=St1#cg.break,in_catch=St1#cg.in_catch}}. + +%% set_cg([Var], Constr, Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% We have to be careful how a 'set' works. First the structure is +%% built, then it is filled and finally things can be cleared. The +%% annotation must reflect this and make sure that the return +%% variable is allocated first. +%% +%% put_list for constructing a cons is an atomic instruction +%% which can safely resuse one of the source registers as target. +%% Also binaries can reuse a source register as target. + +set_cg([{var,R}], {cons,Es}, Le, Vdb, Bef, St) -> + [S1,S2] = map(fun ({var,V}) -> fetch_var(V, Bef); + (Other) -> Other + end, Es), + Int0 = clear_dead(Bef, Le#l.i, Vdb), + Int1 = Int0#sr{reg=put_reg(R, Int0#sr.reg)}, + Ret = fetch_reg(R, Int1#sr.reg), + {[{put_list,S1,S2,Ret}], Int1, St}; +set_cg([{var,R}], {old_binary,Segs}, Le, Vdb, Bef, St) -> + Fail = bif_fail(St#cg.btype, St#cg.bfail, 42), + PutCode = cg_bin_put(Segs, Fail, Bef), + Code = cg_binary_old(PutCode), + Int0 = clear_dead(Bef, Le#l.i, Vdb), + Aft = Int0#sr{reg=put_reg(R, Int0#sr.reg)}, + Ret = fetch_reg(R, Aft#sr.reg), + {Code ++ [{bs_final,Fail,Ret}],Aft,St}; +set_cg([{var,R}], {binary,Segs}, Le, Vdb, Bef, #cg{in_catch=InCatch}=St) -> + Int0 = Bef#sr{reg=put_reg(R, Bef#sr.reg)}, + Target = fetch_reg(R, Int0#sr.reg), + Fail = bif_fail(St#cg.btype, St#cg.bfail, 42), + Temp = find_scratch_reg(Int0#sr.reg), + PutCode = cg_bin_put(Segs, Fail, Bef), + {Sis,Int1} = + case InCatch of + true -> adjust_stack(Int0, Le#l.i, Le#l.i+1, Vdb); + false -> {[],Int0} + end, + Aft = clear_dead(Int1, Le#l.i, Vdb), + Code = cg_binary(PutCode, Target, Temp, Fail, Aft), + {Sis++Code,Aft,St}; +set_cg([{var,R}], Con, Le, Vdb, Bef, St) -> + %% Find a place for the return register first. + Int = Bef#sr{reg=put_reg(R, Bef#sr.reg)}, + Ret = fetch_reg(R, Int#sr.reg), + Ais = case Con of + {tuple,Es} -> + [{put_tuple,length(Es),Ret}] ++ cg_build_args(Es, Bef); + {var,V} -> % Normally removed by kernel optimizer. + [{move,fetch_var(V, Int),Ret}]; + {string,Str} -> + [{put_string,length(Str),{string,Str},Ret}]; + Other -> + [{move,Other,Ret}] + end, + {Ais,clear_dead(Int, Le#l.i, Vdb),St}; +set_cg([], {binary,Segs}, Le, Vdb, Bef, St) -> + Fail = bif_fail(St#cg.btype, St#cg.bfail, 42), + Target = find_scratch_reg(Bef#sr.reg), + Temp = find_scratch_reg(put_reg(Target, Bef#sr.reg)), + PutCode = cg_bin_put(Segs, Fail, Bef), + Code = cg_binary(PutCode, Target, Temp, Fail, Bef), + Aft = clear_dead(Bef, Le#l.i, Vdb), + {Code,Aft,St}; +set_cg([], {old_binary,Segs}, Le, Vdb, Bef, St) -> + Fail = bif_fail(St#cg.btype, St#cg.bfail, 42), + PutCode = cg_bin_put(Segs, Fail, Bef), + Ais0 = cg_binary_old(PutCode), + Ret = find_scratch_reg(Bef#sr.reg), + Ais = Ais0 ++ [{bs_final,Fail,Ret}], + {Ais,clear_dead(Bef, Le#l.i, Vdb),St}; +set_cg([], _, Le, Vdb, Bef, St) -> + %% This should have been stripped by compiler, just cleanup. + {[],clear_dead(Bef, Le#l.i, Vdb), St}. + + +%%% +%%% Code generation for constructing binaries. +%%% + +cg_binary(PutCode, Target, Temp, Fail, Bef) -> + SzCode = cg_binary_size(PutCode, Target, Temp, Fail), + MaxRegs = max_reg(Bef#sr.reg), + Code = SzCode ++ [{bs_init2,Fail,Target,MaxRegs,{field_flags,[]},Target}|PutCode], + cg_bin_opt(Code). + +cg_binary_size(PutCode, Target, Temp, Fail) -> + Szs = cg_binary_size_1(PutCode, 0, []), + cg_binary_size_expr(Szs, Target, Temp, Fail). + +cg_binary_size_1([{_Put,_Fail,S,U,_Flags,Src}|T], Bits, Acc) -> + cg_binary_size_2(S, U, Src, T, Bits, Acc); +cg_binary_size_1([], Bits, Acc) -> + Bytes = Bits div 8, + RemBits = Bits rem 8, + Res = sort([{1,{integer,RemBits}},{8,{integer,Bytes}}|Acc]), + cg_binary_size_3(Res). + +cg_binary_size_2({integer,N}, U, _, Next, Bits, Acc) -> + cg_binary_size_1(Next, Bits+N*U, Acc); +cg_binary_size_2({atom,all}, 8, E, Next, Bits, Acc) -> + cg_binary_size_1(Next, Bits, [{8,{size,E}}|Acc]); +cg_binary_size_2(Reg, 1, _, Next, Bits, Acc) -> + cg_binary_size_1(Next, Bits, [{1,Reg}|Acc]); +cg_binary_size_2(Reg, 8, _, Next, Bits, Acc) -> + cg_binary_size_1(Next, Bits, [{8,Reg}|Acc]); +cg_binary_size_2(Reg, U, _, Next, Bits, Acc) -> + cg_binary_size_1(Next, Bits, [{1,{'*',Reg,U}}|Acc]). + +cg_binary_size_3([{_,{integer,0}}|T]) -> + cg_binary_size_3(T); +cg_binary_size_3([{U,S1},{U,S2}|T]) -> + {L0,Rest} = cg_binary_size_4(T, U, []), + L = [S1,S2|L0], + [{U,L}|cg_binary_size_3(Rest)]; +cg_binary_size_3([{U,S}|T]) -> + [{U,[S]}|cg_binary_size_3(T)]; +cg_binary_size_3([]) -> []. + +cg_binary_size_4([{U,S}|T], U, Acc) -> + cg_binary_size_4(T, U, [S|Acc]); +cg_binary_size_4(T, _, Acc) -> + {Acc,T}. + +%% cg_binary_size_expr/4 +%% Generate code for calculating the resulting size of a binary. +cg_binary_size_expr(Sizes, Target, Temp, Fail) -> + cg_binary_size_expr_1(Sizes, Target, Temp, Fail, + [{move,{integer,0},Target}]). + +cg_binary_size_expr_1([{1,E0}|T], Target, Temp, Fail, Acc) -> + E1 = cg_gen_binsize(E0, Target, Temp, Fail, Acc), + E = [{bs_bits_to_bytes,Fail,Target,Target}|E1], + cg_binary_size_expr_1(T, Target, Temp, Fail, E); +cg_binary_size_expr_1([{8,E0}], Target, Temp, Fail, Acc) -> + E = cg_gen_binsize(E0, Target, Temp, Fail, Acc), + reverse(E); +cg_binary_size_expr_1([], _, _, _, Acc) -> reverse(Acc). + +cg_gen_binsize([{'*',A,B}|T], Target, Temp, Fail, Acc) -> + cg_gen_binsize(T, Target, Temp, Fail, + [{bs_add,Fail,[Target,A,B],Target}|Acc]); +cg_gen_binsize([{size,B}|T], Target, Temp, Fail, Acc) -> + cg_gen_binsize([Temp|T], Target, Temp, Fail, + [{bif,size,Fail,[B],Temp}|Acc]); +cg_gen_binsize([E0|T], Target, Temp, Fail, Acc) -> + cg_gen_binsize(T, Target, Temp, Fail, + [{bs_add,Fail,[Target,E0,1],Target}|Acc]); +cg_gen_binsize([], _, _, _, Acc) -> Acc. + +%% cg_bin_opt(Code0) -> Code +%% Optimize the size calculations for binary construction. + +cg_bin_opt([{move,{integer,0},D},{bs_add,_,[D,{integer,_}=S,1],Dst}|Is]) -> + cg_bin_opt([{move,S,Dst}|Is]); +cg_bin_opt([{move,{integer,0},D},{bs_add,Fail,[D,S,U],Dst}|Is]) -> + cg_bin_opt([{bs_add,Fail,[{integer,0},S,U],Dst}|Is]); +cg_bin_opt([{move,{integer,Bytes},D},{bs_init2,Fail,D,Regs0,Flags,D}|Is]) -> + Regs = cg_bo_newregs(Regs0, D), + cg_bin_opt([{bs_init2,Fail,Bytes,Regs,Flags,D}|Is]); +cg_bin_opt([{move,Src,D},{bs_init2,Fail,D,Regs0,Flags,D}|Is]) -> + Regs = cg_bo_newregs(Regs0, D), + cg_bin_opt([{bs_init2,Fail,Src,Regs,Flags,D}|Is]); +cg_bin_opt([{move,Src,Dst},{bs_bits_to_bytes,Fail,Dst,Dst}|Is]) -> + cg_bin_opt([{bs_bits_to_bytes,Fail,Src,Dst}|Is]); +cg_bin_opt([{move,Src1,Dst},{bs_add,Fail,[Dst,Src2,U],Dst}|Is]) -> + cg_bin_opt([{bs_add,Fail,[Src1,Src2,U],Dst}|Is]); +cg_bin_opt([{bs_bits_to_bytes,Fail,{integer,N},_}|Is0]) when N rem 8 =/= 0 -> + case Fail of + {f,0} -> + Is = [{move,{atom,badarg},{x,0}}, + {call_ext_only,1,{extfunc,erlang,error,1}}|Is0], + cg_bin_opt(Is); + _ -> + cg_bin_opt([{jump,Fail}|Is0]) + end; +cg_bin_opt([I|Is]) -> + [I|cg_bin_opt(Is)]; +cg_bin_opt([]) -> []. + +cg_bo_newregs(R, {x,X}) when R-1 =:= X -> R-1; +cg_bo_newregs(R, _) -> R. + +%% Common for new and old binary code generation. + +cg_bin_put({bin_seg,S0,U,T,Fs,[E0,Next]}, Fail, Bef) -> + S1 = case S0 of + {var,Sv} -> fetch_var(Sv, Bef); + _ -> S0 + end, + E1 = case E0 of + {var,V} -> fetch_var(V, Bef); + Other -> Other + end, + Op = case T of + integer -> bs_put_integer; + binary -> bs_put_binary; + float -> bs_put_float + end, + [{Op,Fail,S1,U,{field_flags,Fs},E1}|cg_bin_put(Next, Fail, Bef)]; +cg_bin_put(bin_end, _, _) -> []. + +%% Old style. + +cg_binary_old(PutCode) -> + [cg_bs_init(PutCode)] ++ need_bin_buf(PutCode). + +cg_bs_init(Code) -> + {Size,Fs} = foldl(fun ({_,_,{integer,N},U,_,_}, {S,Fs}) -> + {S + N*U,Fs}; + (_, {S,_}) -> + {S,[]} + end, {0,[exact]}, Code), + {bs_init,(Size+7) div 8,{field_flags,Fs}}. + +need_bin_buf(Code0) -> + {Code1,F,H} = foldr(fun ({_,_,{integer,N},U,_,_}=Bs, {Code,F,H}) -> + {[Bs|Code],F,H + N*U}; + ({_,_,_,_,_,_}=Bs, {Code,F,H}) -> + {[Bs|need_bin_buf_need(H, F, Code)],true,0} + end, {[],false,0}, Code0), + need_bin_buf_need(H, F, Code1). + +need_bin_buf_need(0, false, Rest) -> Rest; +need_bin_buf_need(H, _, Rest) -> [{bs_need_buf,H}|Rest]. + +cg_build_args(As, Bef) -> + map(fun ({var,V}) -> {put,fetch_var(V, Bef)}; + (Other) -> {put,Other} + end, As). + +%% return_cg([Val], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% break_cg([Val], Le, Vdb, Bef, St) -> {[Ainstr],Aft,St}. +%% These are very simple, just put return/break values in registers +%% from 0, then return/break. Use the call setup to clean up stack, +%% but must clear registers to ensure sr_merge works correctly. + +return_cg(Rs, Le, Vdb, Bef, St) -> + {Ms,Int} = cg_setup_call(Rs, Bef, Le#l.i, Vdb), + {comment({return,Rs}) ++ Ms ++ [return], + Int#sr{reg=clear_regs(Int#sr.reg)},St}. + +break_cg(Bs, Le, Vdb, Bef, St) -> + {Ms,Int} = cg_setup_call(Bs, Bef, Le#l.i, Vdb), + {comment({break,Bs}) ++ Ms ++ [{jump,{f,St#cg.break}}], + Int#sr{reg=clear_regs(Int#sr.reg)},St}. + +%% cg_reg_arg(Arg0, Info) -> Arg +%% cg_reg_args([Arg0], Info) -> [Arg] +%% Convert argument[s] into registers. Literal values are returned unchanged. + +cg_reg_args(As, Bef) -> [cg_reg_arg(A, Bef) || A <- As]. + +cg_reg_arg({var,V}, Bef) -> fetch_var(V, Bef); +cg_reg_arg(Literal, _) -> Literal. + +%% cg_setup_call([Arg], Bef, Cur, Vdb) -> {[Instr],Aft}. +%% Do the complete setup for a call/enter. + +cg_setup_call(As, Bef, I, Vdb) -> + {Ms,Int0} = cg_call_args(As, Bef, I, Vdb), + %% Have set up arguments, can now clean up, compress and save to stack. + Int1 = Int0#sr{stk=clear_dead_stk(Int0#sr.stk, I, Vdb),res=[]}, + {Sis,Int2} = adjust_stack(Int1, I, I+1, Vdb), + {Ms ++ Sis ++ [{'%live',length(As)}],Int2}. + +%% cg_call_args([Arg], SrState) -> {[Instr],SrState}. +%% Setup the arguments to a call/enter/bif. Put the arguments into +%% consecutive registers starting at {x,0} moving any data which +%% needs to be saved. Return a modified SrState structure with the +%% new register contents. N.B. the resultant register info will +%% contain non-variable values when there are non-variable values. +%% +%% This routine is complicated by unsaved values in x registers. +%% We'll move away any unsaved values that are in the registers +%% to be overwritten by the arguments. + +cg_call_args(As, Bef, I, Vdb) -> + Regs0 = load_arg_regs(Bef#sr.reg, As), + Unsaved = unsaved_registers(Regs0, Bef#sr.stk, I, I+1, Vdb), + {UnsavedMoves,Regs} = move_unsaved(Unsaved, Bef#sr.reg, Regs0), + Moves0 = gen_moves(As, Bef), + Moves = order_moves(Moves0, find_scratch_reg(Regs)), + {UnsavedMoves ++ Moves,Bef#sr{reg=Regs}}. + +%% load_arg_regs([Reg], Arguments) -> [Reg] +%% Update the register descriptor to include the arguments (from {x,0} +%% and upwards). Values in argument register are overwritten. +%% Values in x registers above the arguments are preserved. + +load_arg_regs(Regs, As) -> load_arg_regs(Regs, As, 0). + +load_arg_regs([_|Rs], [{var,V}|As], I) -> [{I,V}|load_arg_regs(Rs, As, I+1)]; +load_arg_regs([_|Rs], [A|As], I) -> [{I,A}|load_arg_regs(Rs, As, I+1)]; +load_arg_regs([], [{var,V}|As], I) -> [{I,V}|load_arg_regs([], As, I+1)]; +load_arg_regs([], [A|As], I) -> [{I,A}|load_arg_regs([], As, I+1)]; +load_arg_regs(Rs, [], _) -> Rs. + +%% Returns the variables must be saved and are currently in the +%% x registers that are about to be overwritten by the arguments. + +unsaved_registers(Regs, Stk, Fb, Lf, Vdb) -> + [V || {V,F,L} <- Vdb, + F < Fb, + L >= Lf, + not on_stack(V, Stk), + not in_reg(V, Regs)]. + +in_reg(V, Regs) -> keymember(V, 2, Regs). + +%% Move away unsaved variables from the registers that are to be +%% overwritten by the arguments. +move_unsaved(Vs, OrigRegs, NewRegs) -> + move_unsaved(Vs, OrigRegs, NewRegs, []). + +move_unsaved([V|Vs], OrigRegs, NewRegs0, Acc) -> + NewRegs = put_reg(V, NewRegs0), + Src = fetch_reg(V, OrigRegs), + Dst = fetch_reg(V, NewRegs), + move_unsaved(Vs, OrigRegs, NewRegs, [{move,Src,Dst}|Acc]); +move_unsaved([], _, Regs, Acc) -> {Acc,Regs}. + +%% gen_moves(As, Sr) +%% Generate the basic move instruction to move the arguments +%% to their proper registers. The list will be sorted on +%% destinations. (I.e. the move to {x,0} will be first -- +%% see the comment to order_moves/2.) + +gen_moves(As, Sr) -> gen_moves(As, Sr, 0, []). + +gen_moves([{var,V}|As], Sr, I, Acc) -> + case fetch_var(V, Sr) of + {x,I} -> gen_moves(As, Sr, I+1, Acc); + Reg -> gen_moves(As, Sr, I+1, [{move,Reg,{x,I}}|Acc]) + end; +gen_moves([A|As], Sr, I, Acc) -> + gen_moves(As, Sr, I+1, [{move,A,{x,I}}|Acc]); +gen_moves([], _, _, Acc) -> lists:keysort(3, Acc). + +%% order_moves([Move], ScratchReg) -> [Move] +%% Orders move instruction so that source registers are not +%% destroyed before they are used. If there are cycles +%% (such as {move,{x,0},{x,1}}, {move,{x,1},{x,1}}), +%% the scratch register is used to break up the cycle. +%% If possible, the first move of the input list is placed +%% last in the result list (to make the move to {x,0} occur +%% just before the call to allow the Beam loader to coalesce +%% the instructions). + +order_moves(Ms, Scr) -> order_moves(Ms, Scr, []). + +order_moves([{move,_,_}=M|Ms0], ScrReg, Acc0) -> + {Chain,Ms} = collect_chain(Ms0, [M], ScrReg), + Acc = reverse(Chain, Acc0), + order_moves(Ms, ScrReg, Acc); +order_moves([], _, Acc) -> Acc. + +collect_chain(Ms, Path, ScrReg) -> + collect_chain(Ms, Path, [], ScrReg). + +collect_chain([{move,Src,Same}=M|Ms0], [{move,Same,_}|_]=Path, Others, ScrReg) -> + case keysearch(Src, 3, Path) of + {value,_} -> %We have a cycle. + {break_up_cycle(M, Path, ScrReg),reverse(Others, Ms0)}; + false -> + collect_chain(reverse(Others, Ms0), [M|Path], [], ScrReg) + end; +collect_chain([M|Ms], Path, Others, ScrReg) -> + collect_chain(Ms, Path, [M|Others], ScrReg); +collect_chain([], Path, Others, _) -> + {Path,Others}. + +break_up_cycle({move,Src,_}=M, Path, ScrReg) -> + [{move,ScrReg,Src},M|break_up_cycle1(Src, Path, ScrReg)]. + +break_up_cycle1(Dst, [{move,Src,Dst}|Path], ScrReg) -> + [{move,Src,ScrReg}|Path]; +break_up_cycle1(Dst, [M|Path], LastMove) -> + [M|break_up_cycle1(Dst, Path, LastMove)]. + +%% clear_dead(Sr, Until, Vdb) -> Aft. +%% Remove all variables in Sr which have died AT ALL so far. + +clear_dead(Sr, Until, Vdb) -> + Sr#sr{reg=clear_dead_reg(Sr, Until, Vdb), + stk=clear_dead_stk(Sr#sr.stk, Until, Vdb)}. + +clear_dead_reg(Sr, Until, Vdb) -> + Reg = map(fun ({I,V}) -> + case vdb_find(V, Vdb) of + {V,_,L} when L > Until -> {I,V}; + _ -> free %Remove anything else + end; + ({reserved,I,V}) -> {reserved,I,V}; + (free) -> free + end, Sr#sr.reg), + reserve(Sr#sr.res, Reg, Sr#sr.stk). + +clear_dead_stk(Stk, Until, Vdb) -> + map(fun ({V}) -> + case vdb_find(V, Vdb) of + {V,_,L} when L > Until -> {V}; + _ -> dead %Remove anything else + end; + (free) -> free; + (dead) -> dead + end, Stk). + +%% sr_merge(Sr1, Sr2) -> Sr. +%% Merge two stack/register states keeping the longest of both stack +%% and register. Perform consistency check on both, elements must be +%% the same. Allow frame size 'void' to make easy creation of +%% "empty" frame. + +sr_merge(#sr{reg=R1,stk=S1,res=[]}, #sr{reg=R2,stk=S2,res=[]}) -> + #sr{reg=longest(R1, R2),stk=longest(S1, S2),res=[]}; +sr_merge(void, S2) -> S2#sr{res=[]}; +sr_merge(S1, void) -> S1#sr{res=[]}. + +longest([H|T1], [H|T2]) -> [H|longest(T1, T2)]; +longest([dead|T1], [free|T2]) -> [dead|longest(T1, T2)]; +longest([free|T1], [dead|T2]) -> [dead|longest(T1, T2)]; +longest([dead|T1], []) -> [dead|T1]; +longest([], [dead|T2]) -> [dead|T2]; +longest([free|T1], []) -> [free|T1]; +longest([], [free|T2]) -> [free|T2]; +longest([], []) -> []. + +%% adjust_stack(Bef, FirstBefore, LastFrom, Vdb) -> {[Ainstr],Aft}. +%% Do complete stack adjustment by compressing stack and adding +%% variables to be saved. Try to optimise ordering on stack by +%% having reverse order to their lifetimes. +%% +%% In Beam, there is a fixed stack frame and no need to do stack compression. + +adjust_stack(Bef, Fb, Lf, Vdb) -> + Stk0 = Bef#sr.stk, + {Stk1,Saves} = save_stack(Stk0, Fb, Lf, Vdb), + {saves(Saves, Bef#sr.reg, Stk1), + Bef#sr{stk=Stk1}}. + +%% save_stack(Stack, FirstBefore, LastFrom, Vdb) -> {[SaveVar],NewStack}. +%% Save variables which are used past current point and which are not +%% already on the stack. + +save_stack(Stk0, Fb, Lf, Vdb) -> + %% New variables that are in use but not on stack. + New = [ {V,F,L} || {V,F,L} <- Vdb, + F < Fb, + L >= Lf, + not on_stack(V, Stk0) ], + %% Add new variables that are not just dropped immediately. + %% N.B. foldr works backwards from the end!! + Saves = [ V || {V,_,_} <- keysort(3, New) ], + Stk1 = foldr(fun (V, Stk) -> put_stack(V, Stk) end, Stk0, Saves), + {Stk1,Saves}. + +%% saves([SaveVar], Reg, Stk) -> [{move,Reg,Stk}]. +%% Generate move instructions to save variables onto stack. The +%% stack/reg info used is that after the new stack has been made. + +saves(Ss, Reg, Stk) -> + Res = map(fun (V) -> + {move,fetch_reg(V, Reg),fetch_stack(V, Stk)} + end, Ss), + Res. + +%% comment(C) -> ['%'{C}]. + +%comment(C) -> [{'%',C}]. +comment(_) -> []. + +%% fetch_var(VarName, StkReg) -> r{R} | sp{Sp}. +%% find_var(VarName, StkReg) -> ok{r{R} | sp{Sp}} | error. +%% Fetch/find a variable in either the registers or on the +%% stack. Fetch KNOWS it's there. + +fetch_var(V, Sr) -> + case find_reg(V, Sr#sr.reg) of + {ok,R} -> R; + error -> fetch_stack(V, Sr#sr.stk) + end. + +% find_var(V, Sr) -> +% case find_reg(V, Sr#sr.reg) of +% {ok,R} -> {ok,R}; +% error -> +% case find_stack(V, Sr#sr.stk) of +% {ok,S} -> {ok,S}; +% error -> error +% end +% end. + +load_vars(Vs, Regs) -> + foldl(fun ({var,V}, Rs) -> put_reg(V, Rs) end, Regs, Vs). + +%% put_reg(Val, Regs) -> Regs. +%% load_reg(Val, Reg, Regs) -> Regs. +%% free_reg(Val, Regs) -> Regs. +%% find_reg(Val, Regs) -> ok{r{R}} | error. +%% fetch_reg(Val, Regs) -> r{R}. +%% Functions to interface the registers. +%% put_reg puts a value into a free register, +%% load_reg loads a value into a fixed register +%% free_reg frees a register containing a specific value. + +% put_regs(Vs, Rs) -> foldl(fun put_reg/2, Rs, Vs). + +put_reg(V, Rs) -> put_reg_1(V, Rs, 0). + +put_reg_1(V, [free|Rs], I) -> [{I,V}|Rs]; +put_reg_1(V, [{reserved,I,V}|Rs], I) -> [{I,V}|Rs]; +put_reg_1(V, [R|Rs], I) -> [R|put_reg_1(V, Rs, I+1)]; +put_reg_1(V, [], I) -> [{I,V}]. + +load_reg(V, R, Rs) -> load_reg_1(V, R, Rs, 0). + +load_reg_1(V, I, [_|Rs], I) -> [{I,V}|Rs]; +load_reg_1(V, I, [R|Rs], C) -> [R|load_reg_1(V, I, Rs, C+1)]; +load_reg_1(V, I, [], I) -> [{I,V}]; +load_reg_1(V, I, [], C) -> [free|load_reg_1(V, I, [], C+1)]. + +% free_reg(V, [{I,V}|Rs]) -> [free|Rs]; +% free_reg(V, [R|Rs]) -> [R|free_reg(V, Rs)]; +% free_reg(V, []) -> []. + +fetch_reg(V, [{I,V}|_]) -> {x,I}; +fetch_reg(V, [_|SRs]) -> fetch_reg(V, SRs). + +find_reg(V, [{I,V}|_]) -> {ok,{x,I}}; +find_reg(V, [_|SRs]) -> find_reg(V, SRs); +find_reg(_, []) -> error. + +%% For the bit syntax, we need a scratch register if we are constructing +%% a binary that will not be used. + +find_scratch_reg(Rs) -> find_scratch_reg(Rs, 0). + +find_scratch_reg([free|_], I) -> {x,I}; +find_scratch_reg([_|Rs], I) -> find_scratch_reg(Rs, I+1); +find_scratch_reg([], I) -> {x,I}. + +%%copy_reg(Val, R, Regs) -> load_reg(Val, R, Regs). +%%move_reg(Val, R, Regs) -> load_reg(Val, R, free_reg(Val, Regs)). + +%%clear_regs(Regs) -> map(fun (R) -> free end, Regs). +clear_regs(_) -> []. + +max_reg(Regs) -> + foldl(fun ({I,_}, _) -> I; + (_, Max) -> Max end, + -1, Regs) + 1. + +%% put_stack(Val, [{Val}]) -> [{Val}]. +%% fetch_stack(Var, Stk) -> sp{S}. +%% find_stack(Var, Stk) -> ok{sp{S}} | error. +%% Functions to interface the stack. + +put_stack(Val, []) -> [{Val}]; +put_stack(Val, [dead|Stk]) -> [{Val}|Stk]; +put_stack(Val, [free|Stk]) -> [{Val}|Stk]; +put_stack(Val, [NotFree|Stk]) -> [NotFree|put_stack(Val, Stk)]. + +put_stack_carefully(Val, Stk0) -> + case catch put_stack_carefully1(Val, Stk0) of + error -> error; + Stk1 when list(Stk1) -> Stk1 + end. + +put_stack_carefully1(_, []) -> throw(error); +put_stack_carefully1(Val, [dead|Stk]) -> [{Val}|Stk]; +put_stack_carefully1(Val, [free|Stk]) -> [{Val}|Stk]; +put_stack_carefully1(Val, [NotFree|Stk]) -> + [NotFree|put_stack_carefully1(Val, Stk)]. + +fetch_stack(Var, Stk) -> fetch_stack(Var, Stk, 0). + +fetch_stack(V, [{V}|_], I) -> {yy,I}; +fetch_stack(V, [_|Stk], I) -> fetch_stack(V, Stk, I+1). + +% find_stack(Var, Stk) -> find_stack(Var, Stk, 0). + +% find_stack(V, [{V}|Stk], I) -> {ok,{yy,I}}; +% find_stack(V, [O|Stk], I) -> find_stack(V, Stk, I+1); +% find_stack(V, [], I) -> error. + +on_stack(V, Stk) -> keymember(V, 1, Stk). + +%% put_catch(CatchTag, Stack) -> Stack' +%% drop_catch(CatchTag, Stack) -> Stack' +%% Special interface for putting and removing catch tags, to ensure that +%% catches nest properly. Also used for try tags. + +put_catch(Tag, Stk0) -> put_catch(Tag, reverse(Stk0), []). + +put_catch(Tag, [], Stk) -> + put_stack({catch_tag,Tag}, Stk); +put_catch(Tag, [{{catch_tag,_}}|_]=RevStk, Stk) -> + reverse(RevStk, put_stack({catch_tag,Tag}, Stk)); +put_catch(Tag, [Other|Stk], Acc) -> + put_catch(Tag, Stk, [Other|Acc]). + +drop_catch(Tag, [{{catch_tag,Tag}}|Stk]) -> [free|Stk]; +drop_catch(Tag, [Other|Stk]) -> [Other|drop_catch(Tag, Stk)]. + +%%% +%%% Finish the code generation for the bit syntax matching. +%%% + +bs_function({function,Name,Arity,CLabel,Asm0}=Func) -> + case bs_needed(Asm0, 0, false, []) of + {false,[]} -> Func; + {true,Dict} -> + Asm = bs_replace(Asm0, Dict, []), + {function,Name,Arity,CLabel,Asm} + end. + +%%% +%%% Pass 1: Found out which bs_restore's that are needed. For now we assume +%%% that a bs_restore is needed unless it is directly preceeded by a bs_save. +%%% + +bs_needed([{bs_save,Name},{bs_restore,Name}|T], N, _BsUsed, Dict) -> + bs_needed(T, N, true, Dict); +bs_needed([{bs_save,_Name}|T], N, _BsUsed, Dict) -> + bs_needed(T, N, true, Dict); +bs_needed([{bs_restore,Name}|T], N, _BsUsed, Dict) -> + case keysearch(Name, 1, Dict) of + {value,{Name,_}} -> bs_needed(T, N, true, Dict); + false -> bs_needed(T, N+1, true, [{Name,N}|Dict]) + end; +bs_needed([{bs_init,_,_}|T], N, _, Dict) -> + bs_needed(T, N, true, Dict); +bs_needed([{bs_init2,_,_,_,_,_}|T], N, _, Dict) -> + bs_needed(T, N, true, Dict); +bs_needed([{bs_start_match,_,_}|T], N, _, Dict) -> + bs_needed(T, N, true, Dict); +bs_needed([_|T], N, BsUsed, Dict) -> + bs_needed(T, N, BsUsed, Dict); +bs_needed([], _, BsUsed, Dict) -> {BsUsed,Dict}. + +%%% +%%% Pass 2: Only needed if there were some bs_* instructions found. +%%% +%%% Remove any bs_save with a name that never were found to be restored +%%% in the first pass. +%%% + +bs_replace([{bs_save,Name}=Save,{bs_restore,Name}|T], Dict, Acc) -> + bs_replace([Save|T], Dict, Acc); +bs_replace([{bs_save,Name}|T], Dict, Acc) -> + case keysearch(Name, 1, Dict) of + {value,{Name,N}} -> + bs_replace(T, Dict, [{bs_save,N}|Acc]); + false -> + bs_replace(T, Dict, Acc) + end; +bs_replace([{bs_restore,Name}|T], Dict, Acc) -> + case keysearch(Name, 1, Dict) of + {value,{Name,N}} -> + bs_replace(T, Dict, [{bs_restore,N}|Acc]); + false -> + bs_replace(T, Dict, Acc) + end; +bs_replace([{bs_init2,Fail,Bytes,Regs,Flags,Dst}|T0], Dict, Acc) -> + case bs_find_test_heap(T0) of + none -> + bs_replace(T0, Dict, [{bs_init2,Fail,Bytes,0,Regs,Flags,Dst}|Acc]); + {T,Words} -> + bs_replace(T, Dict, [{bs_init2,Fail,Bytes,Words,Regs,Flags,Dst}|Acc]) + end; +bs_replace([H|T], Dict, Acc) -> + bs_replace(T, Dict, [H|Acc]); +bs_replace([], _, Acc) -> reverse(Acc). + +bs_find_test_heap(Is) -> + bs_find_test_heap_1(Is, []). + +bs_find_test_heap_1([{bs_put_integer,_,_,_,_,_}=I|Is], Acc) -> + bs_find_test_heap_1(Is, [I|Acc]); +bs_find_test_heap_1([{bs_put_float,_,_,_,_,_}=I|Is], Acc) -> + bs_find_test_heap_1(Is, [I|Acc]); +bs_find_test_heap_1([{bs_put_binary,_,_,_,_,_}=I|Is], Acc) -> + bs_find_test_heap_1(Is, [I|Acc]); +bs_find_test_heap_1([{test_heap,Words,_}|Is], Acc) -> + {reverse(Acc, Is),Words}; +bs_find_test_heap_1(_, _) -> none. + +%% new_label(St) -> {L,St}. + +new_label(St) -> + L = St#cg.lcount, + {L,St#cg{lcount=L+1}}. + +flatmapfoldl(F, Accu0, [Hd|Tail]) -> + {R,Accu1} = F(Hd, Accu0), + {Rs,Accu2} = flatmapfoldl(F, Accu1, Tail), + {R++Rs,Accu2}; +flatmapfoldl(_, Accu, []) -> {[],Accu}. + +flatmapfoldr(F, Accu0, [Hd|Tail]) -> + {Rs,Accu1} = flatmapfoldr(F, Accu0, Tail), + {R,Accu2} = F(Hd, Accu1), + {R++Rs,Accu2}; +flatmapfoldr(_, Accu, []) -> {[],Accu}. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_core.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_core.erl new file mode 100644 index 0000000000..c96837ab5e --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_core.erl @@ -0,0 +1,1319 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_core.erl,v 1.1 2008/12/17 09:53:42 mikpe Exp $ +%% +%% Purpose : Transform normal Erlang to Core Erlang + +%% At this stage all preprocessing has been done. All that is left are +%% "pure" Erlang functions. +%% +%% Core transformation is done in three stages: +%% +%% 1. Flatten expressions into an internal core form without doing +%% matching. +%% +%% 2. Step "forwards" over the icore code annotating each "top-level" +%% thing with variable usage. Detect bound variables in matching +%% and replace with explicit guard test. Annotate "internal-core" +%% expressions with variables they use and create. Convert matches +%% to cases when not pure assignments. +%% +%% 3. Step "backwards" over icore code using variable usage +%% annotations to change implicit exported variables to explicit +%% returns. +%% +%% To ensure the evaluation order we ensure that all arguments are +%% safe. A "safe" is basically a core_lib simple with VERY restricted +%% binaries. +%% +%% We have to be very careful with matches as these create variables. +%% While we try not to flatten things more than necessary we must make +%% sure that all matches are at the top level. For this we use the +%% type "novars" which are non-match expressions. Cases and receives +%% can also create problems due to exports variables so they are not +%% "novars" either. I.e. a novars will not export variables. +%% +%% Annotations in the #iset, #iletrec, and all other internal records +%% is kept in a record, #a, not in a list as in proper core. This is +%% easier and faster and creates no problems as we have complete control +%% over all annotations. +%% +%% On output, the annotation for most Core Erlang terms will contain +%% the source line number. A few terms will be marked with the atom +%% atom 'compiler_generated', to indicate that the compiler has generated +%% them and that no warning should be generated if they are optimized +%% away. +%% +%% +%% In this translation: +%% +%% call ops are safes +%% call arguments are safes +%% match arguments are novars +%% case arguments are novars +%% receive timeouts are novars +%% let/set arguments are expressions +%% fun is not a safe + +-module(v3_core). + +-export([module/2,format_error/1]). + +-import(lists, [map/2,foldl/3,foldr/3,mapfoldl/3,splitwith/2]). +-import(ordsets, [add_element/2,del_element/2,is_element/2, + union/1,union/2,intersection/2,subtract/2]). + +-include("core_parse.hrl"). + +-record(a, {us=[],ns=[],anno=[]}). %Internal annotation + +%% Internal core expressions and help functions. +%% N.B. annotations fields in place as normal Core expressions. + +-record(iset, {anno=#a{},var,arg}). +-record(iletrec, {anno=#a{},defs,body}). +-record(imatch, {anno=#a{},pat,guard=[],arg,fc}). +-record(icase, {anno=#a{},args,clauses,fc}). +-record(iclause, {anno=#a{},pats,pguard=[],guard,body}). +-record(ifun, {anno=#a{},id,vars,clauses,fc}). +-record(iapply, {anno=#a{},op,args}). +-record(icall, {anno=#a{},module,name,args}). +-record(iprimop, {anno=#a{},name,args}). +-record(itry, {anno=#a{},args,vars,body,evars,handler}). +-record(icatch, {anno=#a{},body}). +-record(ireceive1, {anno=#a{},clauses}). +-record(ireceive2, {anno=#a{},clauses,timeout,action}). +-record(iprotect, {anno=#a{},body}). +-record(ibinary, {anno=#a{},segments}). %Not used in patterns. + +-record(core, {vcount=0, %Variable counter + fcount=0, %Function counter + ws=[]}). %Warnings. + +module({Mod,Exp,Forms}, _Opts) -> + Cexp = map(fun ({N,A}) -> #c_fname{id=N,arity=A} end, Exp), + {Kfs,As,Ws} = foldr(fun form/2, {[],[],[]}, Forms), + {ok,#c_module{name=#c_atom{val=Mod},exports=Cexp,attrs=As,defs=Kfs},Ws}. + +form({function,_,_,_,_}=F0, {Fs,As,Ws0}) -> + {F,Ws} = function(F0, Ws0), + {[F|Fs],As,Ws}; +form({attribute,_,_,_}=F, {Fs,As,Ws}) -> + {Fs,[attribute(F)|As],Ws}. + +attribute({attribute,_,Name,Val}) -> + #c_def{name=core_lib:make_literal(Name), + val=core_lib:make_literal(Val)}. + +function({function,_,Name,Arity,Cs0}, Ws0) -> + %%ok = io:fwrite("~p - ", [{Name,Arity}]), + St0 = #core{vcount=0,ws=Ws0}, + {B0,St1} = body(Cs0, Arity, St0), + %%ok = io:fwrite("1", []), + %%ok = io:fwrite("~w:~p~n", [?LINE,B0]), + {B1,St2} = ubody(B0, St1), + %%ok = io:fwrite("2", []), + %%ok = io:fwrite("~w:~p~n", [?LINE,B1]), + {B2,#core{ws=Ws}} = cbody(B1, St2), + %%ok = io:fwrite("3~n", []), + {#c_def{name=#c_fname{id=Name,arity=Arity},val=B2},Ws}. + +body(Cs0, Arity, St0) -> + Anno = [element(2, hd(Cs0))], + {Args,St1} = new_vars(Anno, Arity, St0), + {Cs1,St2} = clauses(Cs0, St1), + {Ps,St3} = new_vars(Arity, St2), %Need new variables here + Fc = fail_clause(Ps, #c_tuple{es=[#c_atom{val=function_clause}|Ps]}), + {#ifun{anno=#a{anno=Anno},id=[],vars=Args,clauses=Cs1,fc=Fc},St3}. + +%% clause(Clause, State) -> {Cclause,State} | noclause. +%% clauses([Clause], State) -> {[Cclause],State}. +%% Convert clauses. Trap bad pattern aliases and remove clause from +%% clause list. + +clauses([C0|Cs0], St0) -> + case clause(C0, St0) of + {noclause,St} -> clauses(Cs0, St); + {C,St1} -> + {Cs,St2} = clauses(Cs0, St1), + {[C|Cs],St2} + end; +clauses([], St) -> {[],St}. + +clause({clause,Lc,H0,G0,B0}, St0) -> + case catch head(H0) of + {'EXIT',_}=Exit -> exit(Exit); %Propagate error + nomatch -> + St = add_warning(Lc, nomatch, St0), + {noclause,St}; %Bad pattern + H1 -> + {G1,St1} = guard(G0, St0), + {B1,St2} = exprs(B0, St1), + {#iclause{anno=#a{anno=[Lc]},pats=H1,guard=G1,body=B1},St2} + end. + +%% head([P]) -> [P]. + +head(Ps) -> pattern_list(Ps). + +%% guard([Expr], State) -> {[Cexpr],State}. +%% Build an explict and/or tree of guard alternatives, then traverse +%% top-level and/or tree and "protect" inner tests. + +guard([], St) -> {[],St}; +guard(Gs0, St) -> + Gs = foldr(fun (Gt0, Rhs) -> + Gt1 = guard_tests(Gt0), + L = element(2, Gt1), + {op,L,'or',Gt1,Rhs} + end, guard_tests(last(Gs0)), first(Gs0)), + gexpr_top(Gs, St). + +guard_tests([]) -> []; +guard_tests(Gs) -> + L = element(2, hd(Gs)), + {protect,L,foldr(fun (G, Rhs) -> {op,L,'and',G,Rhs} end, last(Gs), first(Gs))}. + +%% gexpr_top(Expr, State) -> {Cexpr,State}. +%% Generate an internal core expression of a guard test. Explicitly +%% handle outer boolean expressions and "protect" inner tests in a +%% reasonably smart way. + +gexpr_top(E0, St0) -> + {E1,Eps0,Bools,St1} = gexpr(E0, [], St0), + {E,Eps,St} = force_booleans(Bools, E1, Eps0, St1), + {Eps++[E],St}. + +%% gexpr(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}. +%% Generate an internal core expression of a guard test. + +gexpr({protect,Line,Arg}, Bools0, St0) -> + case gexpr(Arg, [], St0) of + {E0,[],Bools,St1} -> + {E,Eps,St} = force_booleans(Bools, E0, [], St1), + {E,Eps,Bools0,St}; + {E0,Eps0,Bools,St1} -> + {E,Eps,St} = force_booleans(Bools, E0, Eps0, St1), + {#iprotect{anno=#a{anno=[Line]},body=Eps++[E]},[],Bools0,St} + end; +gexpr({op,Line,Op,L,R}=Call, Bools0, St0) -> + case erl_internal:bool_op(Op, 2) of + true -> + {Le,Lps,Bools1,St1} = gexpr(L, Bools0, St0), + {Ll,Llps,St2} = force_safe(Le, St1), + {Re,Rps,Bools,St3} = gexpr(R, Bools1, St2), + {Rl,Rlps,St4} = force_safe(Re, St3), + Anno = [Line], + {#icall{anno=#a{anno=Anno}, %Must have an #a{} + module=#c_atom{anno=Anno,val=erlang},name=#c_atom{anno=Anno,val=Op}, + args=[Ll,Rl]},Lps ++ Llps ++ Rps ++ Rlps,Bools,St4}; + false -> + gexpr_test(Call, Bools0, St0) + end; +gexpr({op,Line,Op,A}=Call, Bools0, St0) -> + case erl_internal:bool_op(Op, 1) of + true -> + {Ae,Aps,Bools,St1} = gexpr(A, Bools0, St0), + {Al,Alps,St2} = force_safe(Ae, St1), + Anno = [Line], + {#icall{anno=#a{anno=Anno}, %Must have an #a{} + module=#c_atom{anno=Anno,val=erlang},name=#c_atom{anno=Anno,val=Op}, + args=[Al]},Aps ++ Alps,Bools,St2}; + false -> + gexpr_test(Call, Bools0, St0) + end; +gexpr(E0, Bools, St0) -> + gexpr_test(E0, Bools, St0). + +%% gexpr_test(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}. +%% Generate a guard test. At this stage we must be sure that we have +%% a proper boolean value here so wrap things with an true test if we +%% don't know, i.e. if it is not a comparison or a type test. + +gexpr_test({atom,L,true}, Bools, St0) -> + {#c_atom{anno=[L],val=true},[],Bools,St0}; +gexpr_test({atom,L,false}, Bools, St0) -> + {#c_atom{anno=[L],val=false},[],Bools,St0}; +gexpr_test(E0, Bools0, St0) -> + {E1,Eps0,St1} = expr(E0, St0), + %% Generate "top-level" test and argument calls. + case E1 of + #icall{anno=Anno,module=#c_atom{val=erlang},name=#c_atom{val=N},args=As} -> + Ar = length(As), + case erl_internal:type_test(N, Ar) orelse + erl_internal:comp_op(N, Ar) orelse + (N == internal_is_record andalso Ar == 3) of + true -> {E1,Eps0,Bools0,St1}; + false -> + Lanno = Anno#a.anno, + {New,St2} = new_var(Lanno, St1), + Bools = [New|Bools0], + {#icall{anno=Anno, %Must have an #a{} + module=#c_atom{anno=Lanno,val=erlang}, + name=#c_atom{anno=Lanno,val='=:='}, + args=[New,#c_atom{anno=Lanno,val=true}]}, + Eps0 ++ [#iset{anno=Anno,var=New,arg=E1}],Bools,St2} + end; + _ -> + Anno = get_ianno(E1), + Lanno = get_lineno_anno(E1), + case core_lib:is_simple(E1) of + true -> + Bools = [E1|Bools0], + {#icall{anno=Anno, %Must have an #a{} + module=#c_atom{anno=Lanno,val=erlang}, + name=#c_atom{anno=Lanno,val='=:='}, + args=[E1,#c_atom{anno=Lanno,val=true}]},Eps0,Bools,St1}; + false -> + {New,St2} = new_var(Lanno, St1), + Bools = [New|Bools0], + {#icall{anno=Anno, %Must have an #a{} + module=#c_atom{anno=Lanno,val=erlang}, + name=#c_atom{anno=Lanno,val='=:='}, + args=[New,#c_atom{anno=Lanno,val=true}]}, + Eps0 ++ [#iset{anno=Anno,var=New,arg=E1}],Bools,St2} + end + end. + +force_booleans([], E, Eps, St) -> + {E,Eps,St}; +force_booleans([V|Vs], E0, Eps0, St0) -> + {E1,Eps1,St1} = force_safe(E0, St0), + Lanno = element(2, V), + Anno = #a{anno=Lanno}, + Call = #icall{anno=Anno,module=#c_atom{anno=Lanno,val=erlang}, + name=#c_atom{anno=Lanno,val=is_boolean}, + args=[V]}, + {New,St} = new_var(Lanno, St1), + Iset = #iset{anno=Anno,var=New,arg=Call}, + Eps = Eps0 ++ Eps1 ++ [Iset], + E = #icall{anno=Anno, + module=#c_atom{anno=Lanno,val=erlang},name=#c_atom{anno=Lanno,val='and'}, + args=[E1,New]}, + force_booleans(Vs, E, Eps, St). + +%% exprs([Expr], State) -> {[Cexpr],State}. +%% Flatten top-level exprs. + +exprs([E0|Es0], St0) -> + {E1,Eps,St1} = expr(E0, St0), + {Es1,St2} = exprs(Es0, St1), + {Eps ++ [E1] ++ Es1,St2}; +exprs([], St) -> {[],St}. + +%% expr(Expr, State) -> {Cexpr,[PreExp],State}. +%% Generate an internal core expression. + +expr({var,L,V}, St) -> {#c_var{anno=[L],name=V},[],St}; +expr({char,L,C}, St) -> {#c_char{anno=[L],val=C},[],St}; +expr({integer,L,I}, St) -> {#c_int{anno=[L],val=I},[],St}; +expr({float,L,F}, St) -> {#c_float{anno=[L],val=F},[],St}; +expr({atom,L,A}, St) -> {#c_atom{anno=[L],val=A},[],St}; +expr({nil,L}, St) -> {#c_nil{anno=[L]},[],St}; +expr({string,L,S}, St) -> {#c_string{anno=[L],val=S},[],St}; +expr({cons,L,H0,T0}, St0) -> + {H1,Hps,St1} = safe(H0, St0), + {T1,Tps,St2} = safe(T0, St1), + {#c_cons{anno=[L],hd=H1,tl=T1},Hps ++ Tps,St2}; +expr({lc,L,E,Qs}, St) -> + lc_tq(L, E, Qs, {nil,L}, St); +expr({tuple,L,Es0}, St0) -> + {Es1,Eps,St1} = safe_list(Es0, St0), + {#c_tuple{anno=[L],es=Es1},Eps,St1}; +expr({bin,L,Es0}, St0) -> + {Es1,Eps,St1} = expr_bin(Es0, St0), + {#ibinary{anno=#a{anno=[L]},segments=Es1},Eps,St1}; +expr({block,_,Es0}, St0) -> + %% Inline the block directly. + {Es1,St1} = exprs(first(Es0), St0), + {E1,Eps,St2} = expr(last(Es0), St1), + {E1,Es1 ++ Eps,St2}; +expr({'if',L,Cs0}, St0) -> + {Cs1,St1} = clauses(Cs0, St0), + Fc = fail_clause([], #c_atom{val=if_clause}), + {#icase{anno=#a{anno=[L]},args=[],clauses=Cs1,fc=Fc},[],St1}; +expr({'case',L,E0,Cs0}, St0) -> + {E1,Eps,St1} = novars(E0, St0), + {Cs1,St2} = clauses(Cs0, St1), + {Fpat,St3} = new_var(St2), + Fc = fail_clause([Fpat], #c_tuple{es=[#c_atom{val=case_clause},Fpat]}), + {#icase{anno=#a{anno=[L]},args=[E1],clauses=Cs1,fc=Fc},Eps,St3}; +expr({'receive',L,Cs0}, St0) -> + {Cs1,St1} = clauses(Cs0, St0), + {#ireceive1{anno=#a{anno=[L]},clauses=Cs1}, [], St1}; +expr({'receive',L,Cs0,Te0,Tes0}, St0) -> + {Te1,Teps,St1} = novars(Te0, St0), + {Tes1,St2} = exprs(Tes0, St1), + {Cs1,St3} = clauses(Cs0, St2), + {#ireceive2{anno=#a{anno=[L]}, + clauses=Cs1,timeout=Te1,action=Tes1},Teps,St3}; +expr({'try',L,Es0,[],Ecs,[]}, St0) -> + %% 'try ... catch ... end' + {Es1,St1} = exprs(Es0, St0), + {V,St2} = new_var(St1), %This name should be arbitrary + {Evs,Hs,St3} = try_exception(Ecs, St2), + {#itry{anno=#a{anno=[L]},args=Es1,vars=[V],body=[V], + evars=Evs,handler=Hs}, + [],St3}; +expr({'try',L,Es0,Cs0,Ecs,[]}, St0) -> + %% 'try ... of ... catch ... end' + {Es1,St1} = exprs(Es0, St0), + {V,St2} = new_var(St1), %This name should be arbitrary + {Cs1,St3} = clauses(Cs0, St2), + {Fpat,St4} = new_var(St3), + Fc = fail_clause([Fpat], #c_tuple{es=[#c_atom{val=try_clause},Fpat]}), + {Evs,Hs,St5} = try_exception(Ecs, St4), + {#itry{anno=#a{anno=[L]},args=Es1, + vars=[V],body=[#icase{anno=#a{},args=[V],clauses=Cs1,fc=Fc}], + evars=Evs,handler=Hs}, + [],St5}; +expr({'try',L,Es0,[],[],As0}, St0) -> + %% 'try ... after ... end' + {Es1,St1} = exprs(Es0, St0), + {As1,St2} = exprs(As0, St1), + {Evs,Hs,St3} = try_after(As1,St2), + {V,St4} = new_var(St3), % (must not exist in As1) + %% TODO: this duplicates the 'after'-code; should lift to function. + {#itry{anno=#a{anno=[L]},args=Es1,vars=[V],body=As1++[V], + evars=Evs,handler=Hs}, + [],St4}; +expr({'try',L,Es,Cs,Ecs,As}, St0) -> + %% 'try ... [of ...] [catch ...] after ... end' + expr({'try',L,[{'try',L,Es,Cs,Ecs,[]}],[],[],As}, St0); +expr({'catch',L,E0}, St0) -> + {E1,Eps,St1} = expr(E0, St0), + {#icatch{anno=#a{anno=[L]},body=Eps ++ [E1]},[],St1}; +expr({'fun',L,{function,F,A},{_,_,_}=Id}, St) -> + {#c_fname{anno=[L,{id,Id}],id=F,arity=A},[],St}; +expr({'fun',L,{clauses,Cs},Id}, St) -> + fun_tq(Id, Cs, L, St); +expr({call,L0,{remote,_,{atom,_,erlang},{atom,_,is_record}},[_,_,_]=As}, St) + when L0 < 0 -> + %% Compiler-generated erlang:is_record/3 should be converted to + %% erlang:internal_is_record/3. + L = -L0, + expr({call,L,{remote,L,{atom,L,erlang},{atom,L,internal_is_record}},As}, St); +expr({call,L,{remote,_,M,F},As0}, St0) -> + {[M1,F1|As1],Aps,St1} = safe_list([M,F|As0], St0), + {#icall{anno=#a{anno=[L]},module=M1,name=F1,args=As1},Aps,St1}; +expr({call,Lc,{atom,Lf,F},As0}, St0) -> + {As1,Aps,St1} = safe_list(As0, St0), + Op = #c_fname{anno=[Lf],id=F,arity=length(As1)}, + {#iapply{anno=#a{anno=[Lc]},op=Op,args=As1},Aps,St1}; +expr({call,L,FunExp,As0}, St0) -> + {Fun,Fps,St1} = safe(FunExp, St0), + {As1,Aps,St2} = safe_list(As0, St1), + {#iapply{anno=#a{anno=[L]},op=Fun,args=As1},Fps ++ Aps,St2}; +expr({match,L,P0,E0}, St0) -> + %% First fold matches together to create aliases. + {P1,E1} = fold_match(E0, P0), + {E2,Eps,St1} = novars(E1, St0), + P2 = (catch pattern(P1)), + {Fpat,St2} = new_var(St1), + Fc = fail_clause([Fpat], #c_tuple{es=[#c_atom{val=badmatch},Fpat]}), + case P2 of + {'EXIT',_}=Exit -> exit(Exit); %Propagate error + nomatch -> + St = add_warning(L, nomatch, St2), + {#icase{anno=#a{anno=[L]}, + args=[E2],clauses=[],fc=Fc},Eps,St}; + _Other -> + {#imatch{anno=#a{anno=[L]},pat=P2,arg=E2,fc=Fc},Eps,St2} + end; +expr({op,_,'++',{lc,Llc,E,Qs},L2}, St) -> + %% Optimise this here because of the list comprehension algorithm. + lc_tq(Llc, E, Qs, L2, St); +expr({op,L,Op,A0}, St0) -> + {A1,Aps,St1} = safe(A0, St0), + LineAnno = [L], + {#icall{anno=#a{anno=LineAnno}, %Must have an #a{} + module=#c_atom{anno=LineAnno,val=erlang}, + name=#c_atom{anno=LineAnno,val=Op},args=[A1]},Aps,St1}; +expr({op,L,Op,L0,R0}, St0) -> + {As,Aps,St1} = safe_list([L0,R0], St0), + LineAnno = [L], + {#icall{anno=#a{anno=LineAnno}, %Must have an #a{} + module=#c_atom{anno=LineAnno,val=erlang}, + name=#c_atom{anno=LineAnno,val=Op},args=As},Aps,St1}. + +%% try_exception([ExcpClause], St) -> {[ExcpVar],Handler,St}. + +try_exception(Ecs0, St0) -> + %% Note that Tag is not needed for rethrow - it is already in Info. + {Evs,St1} = new_vars(3, St0), % Tag, Value, Info + {Ecs1,St2} = clauses(Ecs0, St1), + [_,Value,Info] = Evs, + Ec = #iclause{anno=#a{anno=[compiler_generated]}, + pats=[#c_tuple{es=Evs}],guard=[#c_atom{val=true}], + body=[#iprimop{anno=#a{}, %Must have an #a{} + name=#c_atom{val=raise}, + args=[Info,Value]}]}, + Hs = [#icase{anno=#a{},args=[#c_tuple{es=Evs}],clauses=Ecs1,fc=Ec}], + {Evs,Hs,St2}. + +try_after(As, St0) -> + %% See above. + {Evs,St1} = new_vars(3, St0), % Tag, Value, Info + [_,Value,Info] = Evs, + B = As ++ [#iprimop{anno=#a{}, %Must have an #a{} + name=#c_atom{val=raise}, + args=[Info,Value]}], + Ec = #iclause{anno=#a{anno=[compiler_generated]}, + pats=[#c_tuple{es=Evs}],guard=[#c_atom{val=true}], + body=B}, + Hs = [#icase{anno=#a{},args=[#c_tuple{es=Evs}],clauses=[],fc=Ec}], + {Evs,Hs,St1}. + +%% expr_bin([ArgExpr], St) -> {[Arg],[PreExpr],St}. +%% Flatten the arguments of a bin. Do this straight left to right! + +expr_bin(Es, St) -> + foldr(fun (E, {Ces,Esp,St0}) -> + {Ce,Ep,St1} = bitstr(E, St0), + {[Ce|Ces],Ep ++ Esp,St1} + end, {[],[],St}, Es). + +bitstr({bin_element,_,E0,Size0,[Type,{unit,Unit}|Flags]}, St0) -> + {E1,Eps,St1} = safe(E0, St0), + {Size1,Eps2,St2} = safe(Size0, St1), + {#c_bitstr{val=E1,size=Size1, + unit=core_lib:make_literal(Unit), + type=core_lib:make_literal(Type), + flags=core_lib:make_literal(Flags)}, + Eps ++ Eps2,St2}. + +%% fun_tq(Id, [Clauses], Line, State) -> {Fun,[PreExp],State}. + +fun_tq(Id, Cs0, L, St0) -> + {Cs1,St1} = clauses(Cs0, St0), + Arity = length((hd(Cs1))#iclause.pats), + {Args,St2} = new_vars(Arity, St1), + {Ps,St3} = new_vars(Arity, St2), %Need new variables here + Fc = fail_clause(Ps, #c_tuple{es=[#c_atom{val=function_clause}|Ps]}), + Fun = #ifun{anno=#a{anno=[L]}, + id=[{id,Id}], %We KNOW! + vars=Args,clauses=Cs1,fc=Fc}, + {Fun,[],St3}. + +%% lc_tq(Line, Exp, [Qualifier], More, State) -> {LetRec,[PreExp],State}. +%% This TQ from Simon PJ pp 127-138. +%% This gets a bit messy as we must transform all directly here. We +%% recognise guard tests and try to fold them together and join to a +%% preceding generators, this should give us better and more compact +%% code. +%% More could be transformed before calling lc_tq. + +lc_tq(Line, E, [{generate,Lg,P,G}|Qs0], More, St0) -> + {Gs,Qs1} = splitwith(fun is_guard_test/1, Qs0), + {Name,St1} = new_fun_name("lc", St0), + {Head,St2} = new_var(St1), + {Tname,St3} = new_var_name(St2), + LA = [Line], + LAnno = #a{anno=LA}, + Tail = #c_var{anno=LA,name=Tname}, + {Arg,St4} = new_var(St3), + NewMore = {call,Lg,{atom,Lg,Name},[{var,Lg,Tname}]}, + {Guardc,St5} = lc_guard_tests(Gs, St4), %These are always flat! + {Lc,Lps,St6} = lc_tq(Line, E, Qs1, NewMore, St5), + {Mc,Mps,St7} = expr(More, St6), + {Nc,Nps,St8} = expr(NewMore, St7), + case catch pattern(P) of + {'EXIT',_}=Exit -> + St9 = St8, + Pc = nomatch, + exit(Exit); %Propagate error + nomatch -> + St9 = add_warning(Line, nomatch, St8), + Pc = nomatch; + Pc -> + St9 = St8 + end, + {Gc,Gps,St10} = safe(G, St9), %Will be a function argument! + Fc = fail_clause([Arg], #c_tuple{anno=LA, + es=[#c_atom{val=function_clause},Arg]}), + Cs0 = [#iclause{anno=#a{anno=[compiler_generated|LA]}, + pats=[#c_cons{anno=LA,hd=Head,tl=Tail}], + guard=[], + body=Nps ++ [Nc]}, + #iclause{anno=LAnno, + pats=[#c_nil{anno=LA}],guard=[], + body=Mps ++ [Mc]}], + Cs = case Pc of + nomatch -> Cs0; + _ -> + [#iclause{anno=LAnno, + pats=[#c_cons{anno=LA,hd=Pc,tl=Tail}], + guard=Guardc, + body=Lps ++ [Lc]}|Cs0] + end, + Fun = #ifun{anno=LAnno,id=[],vars=[Arg],clauses=Cs,fc=Fc}, + {#iletrec{anno=LAnno,defs=[{Name,Fun}], + body=Gps ++ [#iapply{anno=LAnno, + op=#c_fname{anno=LA,id=Name,arity=1}, + args=[Gc]}]}, + [],St10}; +lc_tq(Line, E, [Fil0|Qs0], More, St0) -> + %% Special case sequences guard tests. + LA = [Line], + LAnno = #a{anno=LA}, + case is_guard_test(Fil0) of + true -> + {Gs0,Qs1} = splitwith(fun is_guard_test/1, Qs0), + {Lc,Lps,St1} = lc_tq(Line, E, Qs1, More, St0), + {Mc,Mps,St2} = expr(More, St1), + {Gs,St3} = lc_guard_tests([Fil0|Gs0], St2), %These are always flat! + {#icase{anno=LAnno, + args=[], + clauses=[#iclause{anno=LAnno,pats=[], + guard=Gs,body=Lps ++ [Lc]}], + fc=#iclause{anno=LAnno,pats=[],guard=[],body=Mps ++ [Mc]}}, + [],St3}; + false -> + {Lc,Lps,St1} = lc_tq(Line, E, Qs0, More, St0), + {Mc,Mps,St2} = expr(More, St1), + {Fpat,St3} = new_var(St2), + Fc = fail_clause([Fpat], #c_tuple{es=[#c_atom{val=case_clause},Fpat]}), + %% Do a novars little optimisation here. + case Fil0 of + {op,_,'not',Fil1} -> + {Filc,Fps,St4} = novars(Fil1, St3), + {#icase{anno=LAnno, + args=[Filc], + clauses=[#iclause{anno=LAnno, + pats=[#c_atom{anno=LA,val=true}], + guard=[], + body=Mps ++ [Mc]}, + #iclause{anno=LAnno, + pats=[#c_atom{anno=LA,val=false}], + guard=[], + body=Lps ++ [Lc]}], + fc=Fc}, + Fps,St4}; + _Other -> + {Filc,Fps,St4} = novars(Fil0, St3), + {#icase{anno=LAnno, + args=[Filc], + clauses=[#iclause{anno=LAnno, + pats=[#c_atom{anno=LA,val=true}], + guard=[], + body=Lps ++ [Lc]}, + #iclause{anno=LAnno, + pats=[#c_atom{anno=LA,val=false}], + guard=[], + body=Mps ++ [Mc]}], + fc=Fc}, + Fps,St4} + end + end; +lc_tq(Line, E, [], More, St) -> + expr({cons,Line,E,More}, St). + +lc_guard_tests([], St) -> {[],St}; +lc_guard_tests(Gs0, St) -> + Gs = guard_tests(Gs0), + gexpr_top(Gs, St). + +%% is_guard_test(Expression) -> true | false. +%% Test if a general expression is a guard test. Use erl_lint here +%% as it now allows sys_pre_expand transformed source. + +is_guard_test(E) -> erl_lint:is_guard_test(E). + +%% novars(Expr, State) -> {Novars,[PreExpr],State}. +%% Generate a novars expression, basically a call or a safe. At this +%% level we do not need to do a deep check. + +novars(E0, St0) -> + {E1,Eps,St1} = expr(E0, St0), + {Se,Sps,St2} = force_novars(E1, St1), + {Se,Eps ++ Sps,St2}. + +force_novars(#iapply{}=App, St) -> {App,[],St}; +force_novars(#icall{}=Call, St) -> {Call,[],St}; +force_novars(#iprimop{}=Prim, St) -> {Prim,[],St}; +force_novars(#ifun{}=Fun, St) -> {Fun,[],St}; %These are novars too +force_novars(#ibinary{}=Bin, St) -> {Bin,[],St}; +force_novars(Ce, St) -> + force_safe(Ce, St). + +%% safe(Expr, State) -> {Safe,[PreExpr],State}. +%% Generate an internal safe expression. These are simples without +%% binaries which can fail. At this level we do not need to do a +%% deep check. Must do special things with matches here. + +safe(E0, St0) -> + {E1,Eps,St1} = expr(E0, St0), + {Se,Sps,St2} = force_safe(E1, St1), + {Se,Eps ++ Sps,St2}. + +safe_list(Es, St) -> + foldr(fun (E, {Ces,Esp,St0}) -> + {Ce,Ep,St1} = safe(E, St0), + {[Ce|Ces],Ep ++ Esp,St1} + end, {[],[],St}, Es). + +force_safe(#imatch{anno=Anno,pat=P,arg=E,fc=Fc}, St0) -> + {Le,Lps,St1} = force_safe(E, St0), + {Le,Lps ++ [#imatch{anno=Anno,pat=P,arg=Le,fc=Fc}],St1}; +force_safe(Ce, St0) -> + case is_safe(Ce) of + true -> {Ce,[],St0}; + false -> + {V,St1} = new_var(St0), + {V,[#iset{var=V,arg=Ce}],St1} + end. + +is_safe(#c_cons{}) -> true; +is_safe(#c_tuple{}) -> true; +is_safe(#c_var{}) -> true; +is_safe(E) -> core_lib:is_atomic(E). + +%%% %% variable(Expr, State) -> {Variable,[PreExpr],State}. +%%% %% force_variable(Expr, State) -> {Variable,[PreExpr],State}. +%%% %% Generate a variable. + +%%% variable(E0, St0) -> +%%% {E1,Eps,St1} = expr(E0, St0), +%%% {V,Vps,St2} = force_variable(E1, St1), +%%% {V,Eps ++ Vps,St2}. + +%%% force_variable(#c_var{}=Var, St) -> {Var,[],St}; +%%% force_variable(Ce, St0) -> +%%% {V,St1} = new_var(St0), +%%% {V,[#iset{var=V,arg=Ce}],St1}. + +%%% %% atomic(Expr, State) -> {Atomic,[PreExpr],State}. +%%% %% force_atomic(Expr, State) -> {Atomic,[PreExpr],State}. + +%%% atomic(E0, St0) -> +%%% {E1,Eps,St1} = expr(E0, St0), +%%% {A,Aps,St2} = force_atomic(E1, St1), +%%% {A,Eps ++ Aps,St2}. + +%%% force_atomic(Ce, St0) -> +%%% case core_lib:is_atomic(Ce) of +%%% true -> {Ce,[],St0}; +%%% false -> +%%% {V,St1} = new_var(St0), +%%% {V,[#iset{var=V,arg=Ce}],St1} +%%% end. + +%% fold_match(MatchExpr, Pat) -> {MatchPat,Expr}. +%% Fold nested matches into one match with aliased patterns. + +fold_match({match,L,P0,E0}, P) -> + {P1,E1} = fold_match(E0, P), + {{match,L,P0,P1},E1}; +fold_match(E, P) -> {P,E}. + +%% pattern(Pattern) -> CorePat. +%% Transform a pattern by removing line numbers. We also normalise +%% aliases in patterns to standard form, {alias,Pat,[Var]}. + +pattern({var,L,V}) -> #c_var{anno=[L],name=V}; +pattern({char,L,C}) -> #c_char{anno=[L],val=C}; +pattern({integer,L,I}) -> #c_int{anno=[L],val=I}; +pattern({float,L,F}) -> #c_float{anno=[L],val=F}; +pattern({atom,L,A}) -> #c_atom{anno=[L],val=A}; +pattern({string,L,S}) -> #c_string{anno=[L],val=S}; +pattern({nil,L}) -> #c_nil{anno=[L]}; +pattern({cons,L,H,T}) -> + #c_cons{anno=[L],hd=pattern(H),tl=pattern(T)}; +pattern({tuple,L,Ps}) -> + #c_tuple{anno=[L],es=pattern_list(Ps)}; +pattern({bin,L,Ps}) -> + %% We don't create a #ibinary record here, since there is + %% no need to hold any used/new annoations in a pattern. + #c_binary{anno=[L],segments=pat_bin(Ps)}; +pattern({match,_,P1,P2}) -> + pat_alias(pattern(P1), pattern(P2)). + +%% bin_pattern_list([BinElement]) -> [BinSeg]. + +pat_bin(Ps) -> map(fun pat_segment/1, Ps). + +pat_segment({bin_element,_,Term,Size,[Type,{unit,Unit}|Flags]}) -> + #c_bitstr{val=pattern(Term),size=pattern(Size), + unit=core_lib:make_literal(Unit), + type=core_lib:make_literal(Type), + flags=core_lib:make_literal(Flags)}. + +%% pat_alias(CorePat, CorePat) -> AliasPat. +%% Normalise aliases. Trap bad aliases by throwing 'nomatch'. + +pat_alias(#c_var{name=V1}, P2) -> #c_alias{var=#c_var{name=V1},pat=P2}; +pat_alias(P1, #c_var{name=V2}) -> #c_alias{var=#c_var{name=V2},pat=P1}; +pat_alias(#c_cons{}=Cons, #c_string{anno=A,val=[H|T]}=S) -> + pat_alias(Cons, #c_cons{anno=A,hd=#c_char{anno=A,val=H}, + tl=S#c_string{val=T}}); +pat_alias(#c_string{anno=A,val=[H|T]}=S, #c_cons{}=Cons) -> + pat_alias(#c_cons{anno=A,hd=#c_char{anno=A,val=H}, + tl=S#c_string{val=T}}, Cons); +pat_alias(#c_nil{}=Nil, #c_string{val=[]}) -> + Nil; +pat_alias(#c_string{val=[]}, #c_nil{}=Nil) -> + Nil; +pat_alias(#c_cons{anno=A,hd=H1,tl=T1}, #c_cons{hd=H2,tl=T2}) -> + #c_cons{anno=A,hd=pat_alias(H1, H2),tl=pat_alias(T1, T2)}; +pat_alias(#c_tuple{es=Es1}, #c_tuple{es=Es2}) -> + #c_tuple{es=pat_alias_list(Es1, Es2)}; +pat_alias(#c_char{val=C}=Char, #c_int{val=C}) -> + Char; +pat_alias(#c_int{val=C}, #c_char{val=C}=Char) -> + Char; +pat_alias(#c_alias{var=V1,pat=P1}, + #c_alias{var=V2,pat=P2}) -> + if V1 == V2 -> pat_alias(P1, P2); + true -> #c_alias{var=V1,pat=#c_alias{var=V2,pat=pat_alias(P1, P2)}} + end; +pat_alias(#c_alias{var=V1,pat=P1}, P2) -> + #c_alias{var=V1,pat=pat_alias(P1, P2)}; +pat_alias(P1, #c_alias{var=V2,pat=P2}) -> + #c_alias{var=V2,pat=pat_alias(P1, P2)}; +pat_alias(P, P) -> P; +pat_alias(_, _) -> throw(nomatch). + +%% pat_alias_list([A1], [A2]) -> [A]. + +pat_alias_list([A1|A1s], [A2|A2s]) -> + [pat_alias(A1, A2)|pat_alias_list(A1s, A2s)]; +pat_alias_list([], []) -> []; +pat_alias_list(_, _) -> throw(nomatch). + +%% pattern_list([P]) -> [P]. + +pattern_list(Ps) -> map(fun pattern/1, Ps). + +%% first([A]) -> [A]. +%% last([A]) -> A. + +first([_]) -> []; +first([H|T]) -> [H|first(T)]. + +last([L]) -> L; +last([_|T]) -> last(T). + +%% make_vars([Name]) -> [{Var,Name}]. + +make_vars(Vs) -> [ #c_var{name=V} || V <- Vs ]. + +%% new_fun_name(Type, State) -> {FunName,State}. + +new_fun_name(Type, #core{fcount=C}=St) -> + {list_to_atom(Type ++ "$^" ++ integer_to_list(C)),St#core{fcount=C+1}}. + +%% new_var_name(State) -> {VarName,State}. + +new_var_name(#core{vcount=C}=St) -> + {list_to_atom("cor" ++ integer_to_list(C)),St#core{vcount=C + 1}}. + +%% new_var(State) -> {{var,Name},State}. +%% new_var(LineAnno, State) -> {{var,Name},State}. + +new_var(St) -> + new_var([], St). + +new_var(Anno, St0) -> + {New,St} = new_var_name(St0), + {#c_var{anno=Anno,name=New},St}. + +%% new_vars(Count, State) -> {[Var],State}. +%% new_vars(Anno, Count, State) -> {[Var],State}. +%% Make Count new variables. + +new_vars(N, St) -> new_vars_1(N, [], St, []). +new_vars(Anno, N, St) -> new_vars_1(N, Anno, St, []). + +new_vars_1(N, Anno, St0, Vs) when N > 0 -> + {V,St1} = new_var(Anno, St0), + new_vars_1(N-1, Anno, St1, [V|Vs]); +new_vars_1(0, _, St, Vs) -> {Vs,St}. + +fail_clause(Pats, A) -> + #iclause{anno=#a{anno=[compiler_generated]}, + pats=Pats,guard=[], + body=[#iprimop{anno=#a{},name=#c_atom{val=match_fail},args=[A]}]}. + +ubody(B, St) -> uexpr(B, [], St). + +%% uclauses([Lclause], [KnownVar], State) -> {[Lclause],State}. + +uclauses(Lcs, Ks, St0) -> + mapfoldl(fun (Lc, St) -> uclause(Lc, Ks, St) end, St0, Lcs). + +%% uclause(Lclause, [KnownVar], State) -> {Lclause,State}. + +uclause(Cl0, Ks, St0) -> + {Cl1,_Pvs,Used,New,St1} = uclause(Cl0, Ks, Ks, St0), + A0 = get_ianno(Cl1), + A = A0#a{us=Used,ns=New}, + {Cl1#iclause{anno=A},St1}. + +uclause(#iclause{anno=Anno,pats=Ps0,guard=G0,body=B0}, Pks, Ks0, St0) -> + {Ps1,Pg,Pvs,Pus,St1} = upattern_list(Ps0, Pks, St0), + Pu = union(Pus, intersection(Pvs, Ks0)), + Pn = subtract(Pvs, Pu), + Ks1 = union(Pn, Ks0), + {G1,St2} = uguard(Pg, G0, Ks1, St1), + Gu = used_in_any(G1), + Gn = new_in_any(G1), + Ks2 = union(Gn, Ks1), + {B1,St3} = uexprs(B0, Ks2, St2), + Used = intersection(union([Pu,Gu,used_in_any(B1)]), Ks0), + New = union([Pn,Gn,new_in_any(B1)]), + {#iclause{anno=Anno,pats=Ps1,guard=G1,body=B1},Pvs,Used,New,St3}. + +%% uguard([Test], [Kexpr], [KnownVar], State) -> {[Kexpr],State}. +%% Build a guard expression list by folding in the equality tests. + +uguard([], [], _, St) -> {[],St}; +uguard(Pg, [], Ks, St) -> + %% No guard, so fold together equality tests. + uguard(first(Pg), [last(Pg)], Ks, St); +uguard(Pg, Gs0, Ks, St0) -> + %% Gs0 must contain at least one element here. + {Gs3,St5} = foldr(fun (T, {Gs1,St1}) -> + {L,St2} = new_var(St1), + {R,St3} = new_var(St2), + {[#iset{var=L,arg=T}] ++ first(Gs1) ++ + [#iset{var=R,arg=last(Gs1)}, + #icall{anno=#a{}, %Must have an #a{} + module=#c_atom{val=erlang}, + name=#c_atom{val='and'}, + args=[L,R]}], + St3} + end, {Gs0,St0}, Pg), + %%ok = io:fwrite("core ~w: ~p~n", [?LINE,Gs3]), + uexprs(Gs3, Ks, St5). + +%% uexprs([Kexpr], [KnownVar], State) -> {[Kexpr],State}. + +uexprs([#imatch{anno=A,pat=P0,arg=Arg,fc=Fc}|Les], Ks, St0) -> + %% Optimise for simple set of unbound variable. + case upattern(P0, Ks, St0) of + {#c_var{},[],_Pvs,_Pus,_} -> + %% Throw our work away and just set to iset. + uexprs([#iset{var=P0,arg=Arg}|Les], Ks, St0); + _Other -> + %% Throw our work away and set to icase. + if + Les == [] -> + %% Need to explicitly return match "value", make + %% safe for efficiency. + {La,Lps,St1} = force_safe(Arg, St0), + Mc = #iclause{anno=A,pats=[P0],guard=[],body=[La]}, + uexprs(Lps ++ [#icase{anno=A, + args=[La],clauses=[Mc],fc=Fc}], Ks, St1); + true -> + Mc = #iclause{anno=A,pats=[P0],guard=[],body=Les}, + uexprs([#icase{anno=A,args=[Arg], + clauses=[Mc],fc=Fc}], Ks, St0) + end + end; +uexprs([Le0|Les0], Ks, St0) -> + {Le1,St1} = uexpr(Le0, Ks, St0), + {Les1,St2} = uexprs(Les0, union((core_lib:get_anno(Le1))#a.ns, Ks), St1), + {[Le1|Les1],St2}; +uexprs([], _, St) -> {[],St}. + +uexpr(#iset{anno=A,var=V,arg=A0}, Ks, St0) -> + {A1,St1} = uexpr(A0, Ks, St0), + {#iset{anno=A#a{us=del_element(V#c_var.name, (core_lib:get_anno(A1))#a.us), + ns=add_element(V#c_var.name, (core_lib:get_anno(A1))#a.ns)}, + var=V,arg=A1},St1}; +%% imatch done in uexprs. +uexpr(#iletrec{anno=A,defs=Fs0,body=B0}, Ks, St0) -> + %%ok = io:fwrite("~w: ~p~n", [?LINE,{Fs0,B0}]), + {Fs1,St1} = mapfoldl(fun ({Name,F0}, St0) -> + {F1,St1} = uexpr(F0, Ks, St0), + {{Name,F1},St1} + end, St0, Fs0), + {B1,St2} = uexprs(B0, Ks, St1), + Used = used_in_any(map(fun ({_,F}) -> F end, Fs1) ++ B1), + {#iletrec{anno=A#a{us=Used,ns=[]},defs=Fs1,body=B1},St2}; +uexpr(#icase{anno=A,args=As0,clauses=Cs0,fc=Fc0}, Ks, St0) -> + %% As0 will never generate new variables. + {As1,St1} = uexpr_list(As0, Ks, St0), + {Cs1,St2} = uclauses(Cs0, Ks, St1), + {Fc1,St3} = uclause(Fc0, Ks, St2), + Used = union(used_in_any(As1), used_in_any(Cs1)), + New = new_in_all(Cs1), + {#icase{anno=A#a{us=Used,ns=New},args=As1,clauses=Cs1,fc=Fc1},St3}; +uexpr(#ifun{anno=A,id=Id,vars=As,clauses=Cs0,fc=Fc0}, Ks0, St0) -> + Avs = lit_list_vars(As), + Ks1 = union(Avs, Ks0), + {Cs1,St1} = ufun_clauses(Cs0, Ks1, St0), + {Fc1,St2} = ufun_clause(Fc0, Ks1, St1), + Used = subtract(intersection(used_in_any(Cs1), Ks0), Avs), + {#ifun{anno=A#a{us=Used,ns=[]},id=Id,vars=As,clauses=Cs1,fc=Fc1},St2}; +uexpr(#iapply{anno=A,op=Op,args=As}, _, St) -> + Used = union(lit_vars(Op), lit_list_vars(As)), + {#iapply{anno=A#a{us=Used},op=Op,args=As},St}; +uexpr(#iprimop{anno=A,name=Name,args=As}, _, St) -> + Used = lit_list_vars(As), + {#iprimop{anno=A#a{us=Used},name=Name,args=As},St}; +uexpr(#icall{anno=A,module=Mod,name=Name,args=As}, _, St) -> + Used = union([lit_vars(Mod),lit_vars(Name),lit_list_vars(As)]), + {#icall{anno=A#a{us=Used},module=Mod,name=Name,args=As},St}; +uexpr(#itry{anno=A,args=As0,vars=Vs,body=Bs0,evars=Evs,handler=Hs0}, Ks, St0) -> + %% Note that we export only from body and exception. + {As1,St1} = uexprs(As0, Ks, St0), + {Bs1,St2} = uexprs(Bs0, Ks, St1), + {Hs1,St3} = uexprs(Hs0, Ks, St2), + Used = intersection(used_in_any(Bs1++Hs1++As1), Ks), + New = new_in_all(Bs1++Hs1), + {#itry{anno=A#a{us=Used,ns=New}, + args=As1,vars=Vs,body=Bs1,evars=Evs,handler=Hs1},St3}; +uexpr(#icatch{anno=A,body=Es0}, Ks, St0) -> + {Es1,St1} = uexprs(Es0, Ks, St0), + {#icatch{anno=A#a{us=used_in_any(Es1)},body=Es1},St1}; +uexpr(#ireceive1{anno=A,clauses=Cs0}, Ks, St0) -> + {Cs1,St1} = uclauses(Cs0, Ks, St0), + {#ireceive1{anno=A#a{us=used_in_any(Cs1),ns=new_in_all(Cs1)}, + clauses=Cs1},St1}; +uexpr(#ireceive2{anno=A,clauses=Cs0,timeout=Te0,action=Tes0}, Ks, St0) -> + %% Te0 will never generate new variables. + {Te1,St1} = uexpr(Te0, Ks, St0), + {Cs1,St2} = uclauses(Cs0, Ks, St1), + {Tes1,St3} = uexprs(Tes0, Ks, St2), + Used = union([used_in_any(Cs1),used_in_any(Tes1), + (core_lib:get_anno(Te1))#a.us]), + New = case Cs1 of + [] -> new_in_any(Tes1); + _ -> intersection(new_in_all(Cs1), new_in_any(Tes1)) + end, + {#ireceive2{anno=A#a{us=Used,ns=New}, + clauses=Cs1,timeout=Te1,action=Tes1},St3}; +uexpr(#iprotect{anno=A,body=Es0}, Ks, St0) -> + {Es1,St1} = uexprs(Es0, Ks, St0), + Used = used_in_any(Es1), + {#iprotect{anno=A#a{us=Used},body=Es1},St1}; %No new variables escape! +uexpr(#ibinary{anno=A,segments=Ss}, _, St) -> + Used = bitstr_vars(Ss), + {#ibinary{anno=A#a{us=Used},segments=Ss},St}; +uexpr(Lit, _, St) -> + true = core_lib:is_simple(Lit), %Sanity check! + Vs = lit_vars(Lit), + Anno = core_lib:get_anno(Lit), + {core_lib:set_anno(Lit, #a{us=Vs,anno=Anno}),St}. + +uexpr_list(Les0, Ks, St0) -> + mapfoldl(fun (Le, St) -> uexpr(Le, Ks, St) end, St0, Les0). + +%% ufun_clauses([Lclause], [KnownVar], State) -> {[Lclause],State}. + +ufun_clauses(Lcs, Ks, St0) -> + mapfoldl(fun (Lc, St) -> ufun_clause(Lc, Ks, St) end, St0, Lcs). + +%% ufun_clause(Lclause, [KnownVar], State) -> {Lclause,State}. + +ufun_clause(Cl0, Ks, St0) -> + {Cl1,Pvs,Used,_,St1} = uclause(Cl0, [], Ks, St0), + A0 = get_ianno(Cl1), + A = A0#a{us=subtract(intersection(Used, Ks), Pvs),ns=[]}, + {Cl1#iclause{anno=A},St1}. + +%% upattern(Pat, [KnownVar], State) -> +%% {Pat,[GuardTest],[NewVar],[UsedVar],State}. + +upattern(#c_var{name='_'}, _, St0) -> + {New,St1} = new_var_name(St0), + {#c_var{name=New},[],[New],[],St1}; +upattern(#c_var{name=V}=Var, Ks, St0) -> + case is_element(V, Ks) of + true -> + {N,St1} = new_var_name(St0), + New = #c_var{name=N}, + Test = #icall{anno=#a{us=add_element(N, [V])}, + module=#c_atom{val=erlang}, + name=#c_atom{val='=:='}, + args=[New,Var]}, + %% Test doesn't need protecting. + {New,[Test],[N],[],St1}; + false -> {Var,[],[V],[],St0} + end; +upattern(#c_cons{hd=H0,tl=T0}=Cons, Ks, St0) -> + {H1,Hg,Hv,Hu,St1} = upattern(H0, Ks, St0), + {T1,Tg,Tv,Tu,St2} = upattern(T0, union(Hv, Ks), St1), + {Cons#c_cons{hd=H1,tl=T1},Hg ++ Tg,union(Hv, Tv),union(Hu, Tu),St2}; +upattern(#c_tuple{es=Es0}=Tuple, Ks, St0) -> + {Es1,Esg,Esv,Eus,St1} = upattern_list(Es0, Ks, St0), + {Tuple#c_tuple{es=Es1},Esg,Esv,Eus,St1}; +upattern(#c_binary{segments=Es0}=Bin, Ks, St0) -> + {Es1,Esg,Esv,Eus,St1} = upat_bin(Es0, Ks, St0), + {Bin#c_binary{segments=Es1},Esg,Esv,Eus,St1}; +upattern(#c_alias{var=V0,pat=P0}=Alias, Ks, St0) -> + {V1,Vg,Vv,Vu,St1} = upattern(V0, Ks, St0), + {P1,Pg,Pv,Pu,St2} = upattern(P0, union(Vv, Ks), St1), + {Alias#c_alias{var=V1,pat=P1},Vg ++ Pg,union(Vv, Pv),union(Vu, Pu),St2}; +upattern(Other, _, St) -> {Other,[],[],[],St}. %Constants + +%% upattern_list([Pat], [KnownVar], State) -> +%% {[Pat],[GuardTest],[NewVar],[UsedVar],State}. + +upattern_list([P0|Ps0], Ks, St0) -> + {P1,Pg,Pv,Pu,St1} = upattern(P0, Ks, St0), + {Ps1,Psg,Psv,Psu,St2} = upattern_list(Ps0, union(Pv, Ks), St1), + {[P1|Ps1],Pg ++ Psg,union(Pv, Psv),union(Pu, Psu),St2}; +upattern_list([], _, St) -> {[],[],[],[],St}. + +%% upat_bin([Pat], [KnownVar], State) -> +%% {[Pat],[GuardTest],[NewVar],[UsedVar],State}. +upat_bin(Es0, Ks, St0) -> + upat_bin(Es0, Ks, [], St0). + +%% upat_bin([Pat], [KnownVar], [LocalVar], State) -> +%% {[Pat],[GuardTest],[NewVar],[UsedVar],State}. +upat_bin([P0|Ps0], Ks, Bs, St0) -> + {P1,Pg,Pv,Pu,Bs1,St1} = upat_element(P0, Ks, Bs, St0), + {Ps1,Psg,Psv,Psu,St2} = upat_bin(Ps0, union(Pv, Ks), Bs1, St1), + {[P1|Ps1],Pg ++ Psg,union(Pv, Psv),union(Pu, Psu),St2}; +upat_bin([], _, _, St) -> {[],[],[],[],St}. + + +%% upat_element(Segment, [KnownVar], [LocalVar], State) -> +%% {Segment,[GuardTest],[NewVar],[UsedVar],[LocalVar],State} +upat_element(#c_bitstr{val=H0,size=Sz}=Seg, Ks, Bs, St0) -> + {H1,Hg,Hv,[],St1} = upattern(H0, Ks, St0), + Bs1 = case H0 of + #c_var{name=Hname} -> + case H1 of + #c_var{name=Hname} -> + Bs; + #c_var{name=Other} -> + [{Hname, Other}|Bs] + end; + _ -> + Bs + end, + {Sz1, Us} = case Sz of + #c_var{name=Vname} -> + rename_bitstr_size(Vname, Bs); + _Other -> {Sz, []} + end, + {Seg#c_bitstr{val=H1, size=Sz1},Hg,Hv,Us,Bs1,St1}. + +rename_bitstr_size(V, [{V, N}|_]) -> + New = #c_var{name=N}, + {New, [N]}; +rename_bitstr_size(V, [_|Rest]) -> + rename_bitstr_size(V, Rest); +rename_bitstr_size(V, []) -> + Old = #c_var{name=V}, + {Old, [V]}. + +used_in_any(Les) -> + foldl(fun (Le, Ns) -> union((core_lib:get_anno(Le))#a.us, Ns) end, + [], Les). + +new_in_any(Les) -> + foldl(fun (Le, Ns) -> union((core_lib:get_anno(Le))#a.ns, Ns) end, + [], Les). + +new_in_all([Le|Les]) -> + foldl(fun (L, Ns) -> intersection((core_lib:get_anno(L))#a.ns, Ns) end, + (core_lib:get_anno(Le))#a.ns, Les); +new_in_all([]) -> []. + +%% The AfterVars are the variables which are used afterwards. We need +%% this to work out which variables are actually exported and used +%% from case/receive. In subblocks/clauses the AfterVars of the block +%% are just the exported variables. + +cbody(B0, St0) -> + {B1,_,_,St1} = cexpr(B0, [], St0), + {B1,St1}. + +%% cclause(Lclause, [AfterVar], State) -> {Cclause,State}. +%% The AfterVars are the exported variables. + +cclause(#iclause{anno=#a{anno=Anno},pats=Ps,guard=G0,body=B0}, Exp, St0) -> + {B1,_Us1,St1} = cexprs(B0, Exp, St0), + {G1,St2} = cguard(G0, St1), + {#c_clause{anno=Anno,pats=Ps,guard=G1,body=B1},St2}. + +cclauses(Lcs, Es, St0) -> + mapfoldl(fun (Lc, St) -> cclause(Lc, Es, St) end, St0, Lcs). + +cguard([], St) -> {#c_atom{val=true},St}; +cguard(Gs, St0) -> + {G,_,St1} = cexprs(Gs, [], St0), + {G,St1}. + +%% cexprs([Lexpr], [AfterVar], State) -> {Cexpr,[AfterVar],State}. +%% Must be sneaky here at the last expr when combining exports for the +%% whole sequence and exports for that expr. + +cexprs([#iset{var=#c_var{name=Name}=Var}=Iset], As, St) -> + %% Make return value explicit, and make Var true top level. + cexprs([Iset,Var#c_var{anno=#a{us=[Name]}}], As, St); +cexprs([Le], As, St0) -> + {Ce,Es,Us,St1} = cexpr(Le, As, St0), + Exp = make_vars(As), %The export variables + if + Es == [] -> {core_lib:make_values([Ce|Exp]),union(Us, As),St1}; + true -> + {R,St2} = new_var(St1), + {#c_let{anno=get_lineno_anno(Ce), + vars=[R|make_vars(Es)],arg=Ce, + body=core_lib:make_values([R|Exp])}, + union(Us, As),St2} + end; +cexprs([#iset{anno=#a{anno=A},var=V,arg=A0}|Les], As0, St0) -> + {Ces,As1,St1} = cexprs(Les, As0, St0), + {A1,Es,Us,St2} = cexpr(A0, As1, St1), + {#c_let{anno=A,vars=[V|make_vars(Es)],arg=A1,body=Ces}, + union(Us, As1),St2}; +cexprs([Le|Les], As0, St0) -> + {Ces,As1,St1} = cexprs(Les, As0, St0), + {Ce,Es,Us,St2} = cexpr(Le, As1, St1), + if + Es == [] -> + {#c_seq{arg=Ce,body=Ces},union(Us, As1),St2}; + true -> + {R,St3} = new_var(St2), + {#c_let{vars=[R|make_vars(Es)],arg=Ce,body=Ces}, + union(Us, As1),St3} + end. + +%% cexpr(Lexpr, [AfterVar], State) -> {Cexpr,[ExpVar],[UsedVar],State}. + +cexpr(#iletrec{anno=A,defs=Fs0,body=B0}, As, St0) -> + {Fs1,{_,St1}} = mapfoldl(fun ({Name,F0}, {Used,St0}) -> + {F1,[],Us,St1} = cexpr(F0, [], St0), + {#c_def{name=#c_fname{id=Name,arity=1}, + val=F1}, + {union(Us, Used),St1}} + end, {[],St0}, Fs0), + Exp = intersection(A#a.ns, As), + {B1,_Us,St2} = cexprs(B0, Exp, St1), + {#c_letrec{anno=A#a.anno,defs=Fs1,body=B1},Exp,A#a.us,St2}; +cexpr(#icase{anno=A,args=Largs,clauses=Lcs,fc=Lfc}, As, St0) -> + Exp = intersection(A#a.ns, As), %Exports + {Cargs,St1} = foldr(fun (La, {Cas,Sta}) -> + {Ca,[],_Us1,Stb} = cexpr(La, As, Sta), + {[Ca|Cas],Stb} + end, {[],St0}, Largs), + {Ccs,St2} = cclauses(Lcs, Exp, St1), + {Cfc,St3} = cclause(Lfc, [], St2), %Never exports + {#c_case{anno=A#a.anno, + arg=core_lib:make_values(Cargs),clauses=Ccs ++ [Cfc]}, + Exp,A#a.us,St3}; +cexpr(#ireceive1{anno=A,clauses=Lcs}, As, St0) -> + Exp = intersection(A#a.ns, As), %Exports + {Ccs,St1} = cclauses(Lcs, Exp, St0), + {#c_receive{anno=A#a.anno, + clauses=Ccs, + timeout=#c_atom{val=infinity},action=#c_atom{val=true}}, + Exp,A#a.us,St1}; +cexpr(#ireceive2{anno=A,clauses=Lcs,timeout=Lto,action=Les}, As, St0) -> + Exp = intersection(A#a.ns, As), %Exports + {Cto,[],_Us1,St1} = cexpr(Lto, As, St0), + {Ccs,St2} = cclauses(Lcs, Exp, St1), + {Ces,_Us2,St3} = cexprs(Les, Exp, St2), + {#c_receive{anno=A#a.anno, + clauses=Ccs,timeout=Cto,action=Ces}, + Exp,A#a.us,St3}; +cexpr(#itry{anno=A,args=La,vars=Vs,body=Lb,evars=Evs,handler=Lh}, As, St0) -> + Exp = intersection(A#a.ns, As), %Exports + {Ca,_Us1,St1} = cexprs(La, [], St0), + {Cb,_Us2,St2} = cexprs(Lb, Exp, St1), + {Ch,_Us3,St3} = cexprs(Lh, Exp, St2), + {#c_try{anno=A#a.anno,arg=Ca,vars=Vs,body=Cb,evars=Evs,handler=Ch}, + Exp,A#a.us,St3}; +cexpr(#icatch{anno=A,body=Les}, _As, St0) -> + {Ces,_Us1,St1} = cexprs(Les, [], St0), %Never export! + {#c_catch{body=Ces},[],A#a.us,St1}; +cexpr(#ifun{anno=A,id=Id,vars=Args,clauses=Lcs,fc=Lfc}, _As, St0) -> + {Ccs,St1} = cclauses(Lcs, [], St0), %NEVER export! + {Cfc,St2} = cclause(Lfc, [], St1), + Anno = A#a.anno, + {#c_fun{anno=Id++Anno,vars=Args, + body=#c_case{anno=Anno, + arg=core_lib:set_anno(core_lib:make_values(Args), Anno), + clauses=Ccs ++ [Cfc]}}, + [],A#a.us,St2}; +cexpr(#iapply{anno=A,op=Op,args=Args}, _As, St) -> + {#c_apply{anno=A#a.anno,op=Op,args=Args},[],A#a.us,St}; +cexpr(#icall{anno=A,module=Mod,name=Name,args=Args}, _As, St) -> + {#c_call{anno=A#a.anno,module=Mod,name=Name,args=Args},[],A#a.us,St}; +cexpr(#iprimop{anno=A,name=Name,args=Args}, _As, St) -> + {#c_primop{anno=A#a.anno,name=Name,args=Args},[],A#a.us,St}; +cexpr(#iprotect{anno=A,body=Es}, _As, St0) -> + {Ce,_,St1} = cexprs(Es, [], St0), + V = #c_var{name='Try'}, %The names are arbitrary + Vs = [#c_var{name='T'},#c_var{name='R'}], + {#c_try{anno=A#a.anno,arg=Ce,vars=[V],body=V, + evars=Vs,handler=#c_atom{val=false}}, + [],A#a.us,St1}; +cexpr(#ibinary{anno=#a{anno=Anno,us=Us},segments=Segs}, _As, St) -> + {#c_binary{anno=Anno,segments=Segs},[],Us,St}; +cexpr(Lit, _As, St) -> + true = core_lib:is_simple(Lit), %Sanity check! + Anno = core_lib:get_anno(Lit), + Vs = Anno#a.us, + %%Vs = lit_vars(Lit), + {core_lib:set_anno(Lit, Anno#a.anno),[],Vs,St}. + +%% lit_vars(Literal) -> [Var]. + +lit_vars(Lit) -> lit_vars(Lit, []). + +lit_vars(#c_cons{hd=H,tl=T}, Vs) -> lit_vars(H, lit_vars(T, Vs)); +lit_vars(#c_tuple{es=Es}, Vs) -> lit_list_vars(Es, Vs); +lit_vars(#c_var{name=V}, Vs) -> add_element(V, Vs); +lit_vars(_, Vs) -> Vs. %These are atomic + +% lit_bin_vars(Segs, Vs) -> +% foldl(fun (#c_bitstr{val=V,size=S}, Vs0) -> +% lit_vars(V, lit_vars(S, Vs0)) +% end, Vs, Segs). + +lit_list_vars(Ls) -> lit_list_vars(Ls, []). + +lit_list_vars(Ls, Vs) -> + foldl(fun (L, Vs0) -> lit_vars(L, Vs0) end, Vs, Ls). + +bitstr_vars(Segs) -> + bitstr_vars(Segs, []). + +bitstr_vars(Segs, Vs) -> + foldl(fun (#c_bitstr{val=V,size=S}, Vs0) -> + lit_vars(V, lit_vars(S, Vs0)) + end, Vs, Segs). + +get_ianno(Ce) -> + case core_lib:get_anno(Ce) of + #a{}=A -> A; + A when is_list(A) -> #a{anno=A} + end. + +get_lineno_anno(Ce) -> + case core_lib:get_anno(Ce) of + #a{anno=A} -> A; + A when is_list(A) -> A + end. + + +%%% +%%% Handling of warnings. +%%% + +format_error(nomatch) -> "pattern cannot possibly match". + +add_warning(Line, Term, #core{ws=Ws}=St) when Line >= 0 -> + St#core{ws=[{Line,?MODULE,Term}|Ws]}; +add_warning(_, _, St) -> St. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel.erl new file mode 100644 index 0000000000..d7c3e1add9 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel.erl @@ -0,0 +1,1567 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_kernel.erl,v 1.3 2010/03/04 13:54:20 maria Exp $ +%% +%% Purpose : Transform Core Erlang to Kernel Erlang + +%% Kernel erlang is like Core Erlang with a few significant +%% differences: +%% +%% 1. It is flat! There are no nested calls or sub-blocks. +%% +%% 2. All variables are unique in a function. There is no scoping, or +%% rather the scope is the whole function. +%% +%% 3. Pattern matching (in cases and receives) has been compiled. +%% +%% 4. The annotations contain variable usages. Seeing we have to work +%% this out anyway for funs we might as well pass it on for free to +%% later passes. +%% +%% 5. All remote-calls are to statically named m:f/a. Meta-calls are +%% passed via erlang:apply/3. +%% +%% The translation is done in two passes: +%% +%% 1. Basic translation, translate variable/function names, flatten +%% completely, pattern matching compilation. +%% +%% 2. Fun-lifting (lambda-lifting), variable usage annotation and +%% last-call handling. +%% +%% All new Kexprs are created in the first pass, they are just +%% annotated in the second. +%% +%% Functions and BIFs +%% +%% Functions are "call"ed or "enter"ed if it is a last call, their +%% return values may be ignored. BIFs are things which are known to +%% be internal by the compiler and can only be called, their return +%% values cannot be ignored. +%% +%% Letrec's are handled rather naively. All the functions in one +%% letrec are handled as one block to find the free variables. While +%% this is not optimal it reflects how letrec's often are used. We +%% don't have to worry about variable shadowing and nested letrec's as +%% this is handled in the variable/function name translation. There +%% is a little bit of trickery to ensure letrec transformations fit +%% into the scheme of things. +%% +%% To ensure unique variable names we use a variable substitution +%% table and keep the set of all defined variables. The nested +%% scoping of Core means that we must also nest the substitution +%% tables, but the defined set must be passed through to match the +%% flat structure of Kernel and to make sure variables with the same +%% name from different scopes get different substitutions. +%% +%% We also use these substitutions to handle the variable renaming +%% necessary in pattern matching compilation. +%% +%% The pattern matching compilation assumes that the values of +%% different types don't overlap. This means that as there is no +%% character type yet in the machine all characters must be converted +%% to integers! + +-module(v3_kernel). + +-export([module/2,format_error/1]). + +-import(lists, [map/2,foldl/3,foldr/3,mapfoldl/3,splitwith/2, + member/2,reverse/1,reverse/2]). +-import(ordsets, [add_element/2,del_element/2,union/2,union/1,subtract/2]). + +-include("core_parse.hrl"). +-include("v3_kernel.hrl"). + +%% These are not defined in v3_kernel.hrl. +get_kanno(Kthing) -> element(2, Kthing). +set_kanno(Kthing, Anno) -> setelement(2, Kthing, Anno). + +%% Internal kernel expressions and help functions. +%% N.B. the annotation field is ALWAYS the first field! + +-record(ivalues, {anno=[],args}). +-record(ifun, {anno=[],vars,body}). +-record(iset, {anno=[],vars,arg,body}). +-record(iletrec, {anno=[],defs}). +-record(ialias, {anno=[],vars,pat}). +-record(iclause, {anno=[],sub,pats,guard,body}). +-record(ireceive_accept, {anno=[],arg}). +-record(ireceive_next, {anno=[],arg}). + +%% State record for kernel translator. +-record(kern, {func, %Current function + vcount=0, %Variable counter + fcount=0, %Fun counter + ds=[], %Defined variables + funs=[], %Fun functions + free=[], %Free variables + ws=[], %Warnings. + extinstr=false}). %Generate extended instructions + +module(#c_module{anno=A,name=M,exports=Es,attrs=As,defs=Fs}, Options) -> + ExtInstr = not member(no_new_apply, Options), + {Kfs,St} = mapfoldl(fun function/2, #kern{extinstr=ExtInstr}, Fs), + Kes = map(fun (#c_fname{id=N,arity=Ar}) -> {N,Ar} end, Es), + Kas = map(fun (#c_def{name=#c_atom{val=N},val=V}) -> + {N,core_lib:literal_value(V)} end, As), + {ok,#k_mdef{anno=A,name=M#c_atom.val,exports=Kes,attributes=Kas, + body=Kfs ++ St#kern.funs},St#kern.ws}. + +function(#c_def{anno=Af,name=#c_fname{id=F,arity=Arity},val=Body}, St0) -> + %%ok = io:fwrite("kern: ~p~n", [{F,Arity}]), + St1 = St0#kern{func={F,Arity},vcount=0,fcount=0,ds=sets:new()}, + {#ifun{anno=Ab,vars=Kvs,body=B0},[],St2} = expr(Body, new_sub(), St1), + {B1,_,St3} = ubody(B0, return, St2), + %%B1 = B0, St3 = St2, %Null second pass + {#k_fdef{anno=#k{us=[],ns=[],a=Af ++ Ab}, + func=F,arity=Arity,vars=Kvs,body=B1},St3}. + +%% body(Cexpr, Sub, State) -> {Kexpr,[PreKepxr],State}. +%% Do the main sequence of a body. A body ends in an atomic value or +%% values. Must check if vector first so do expr. + +body(#c_values{anno=A,es=Ces}, Sub, St0) -> + %% Do this here even if only in bodies. + {Kes,Pe,St1} = atomic_list(Ces, Sub, St0), + %%{Kes,Pe,St1} = expr_list(Ces, Sub, St0), + {#ivalues{anno=A,args=Kes},Pe,St1}; +body(#ireceive_next{anno=A}, _, St) -> + {#k_receive_next{anno=A},[],St}; +body(Ce, Sub, St0) -> + expr(Ce, Sub, St0). + +%% guard(Cexpr, Sub, State) -> {Kexpr,State}. +%% We handle guards almost as bodies. The only special thing we +%% must do is to make the final Kexpr a #k_test{}. +%% Also, we wrap the entire guard in a try/catch which is +%% not strictly needed, but makes sure that every 'bif' instruction +%% will get a proper failure label. + +guard(G0, Sub, St0) -> + {G1,St1} = wrap_guard(G0, St0), + {Ge0,Pre,St2} = expr(G1, Sub, St1), + {Ge,St} = gexpr_test(Ge0, St2), + {pre_seq(Pre, Ge),St}. + +%% Wrap the entire guard in a try/catch if needed. + +wrap_guard(#c_try{}=Try, St) -> {Try,St}; +wrap_guard(Core, St0) -> + {VarName,St} = new_var_name(St0), + Var = #c_var{name=VarName}, + Try = #c_try{arg=Core,vars=[Var],body=Var,evars=[],handler=#c_atom{val=false}}, + {Try,St}. + +%% gexpr_test(Kexpr, State) -> {Kexpr,State}. +%% Builds the final boolean test from the last Kexpr in a guard test. +%% Must enter try blocks and isets and find the last Kexpr in them. +%% This must end in a recognised BEAM test! + +gexpr_test(#k_bif{anno=A,op=#k_remote{mod=#k_atom{val=erlang}, + name=#k_atom{val=is_boolean},arity=1}=Op, + args=Kargs}, St) -> + %% XXX Remove this clause in R11. For bootstrap purposes, we must + %% recognize erlang:is_boolean/1 here. + {#k_test{anno=A,op=Op,args=Kargs},St}; +gexpr_test(#k_bif{anno=A,op=#k_remote{mod=#k_atom{val=erlang}, + name=#k_atom{val=internal_is_record},arity=3}=Op, + args=Kargs}, St) -> + {#k_test{anno=A,op=Op,args=Kargs},St}; +gexpr_test(#k_bif{anno=A,op=#k_remote{mod=#k_atom{val=erlang}, + name=#k_atom{val=F},arity=Ar}=Op, + args=Kargs}=Ke, St) -> + %% Either convert to test if ok, or add test. + %% At this stage, erlang:float/1 is not a type test. (It should + %% have been converted to erlang:is_float/1.) + case erl_internal:new_type_test(F, Ar) orelse + erl_internal:comp_op(F, Ar) of + true -> {#k_test{anno=A,op=Op,args=Kargs},St}; + false -> gexpr_test_add(Ke, St) %Add equality test + end; +gexpr_test(#k_try{arg=B0,vars=[#k_var{name=X}],body=#k_var{name=X}, + handler=#k_atom{val=false}}=Try, St0) -> + {B,St} = gexpr_test(B0, St0), + %%ok = io:fwrite("~w: ~p~n", [?LINE,{B0,B}]), + {Try#k_try{arg=B},St}; +gexpr_test(#iset{body=B0}=Iset, St0) -> + {B1,St1} = gexpr_test(B0, St0), + {Iset#iset{body=B1},St1}; +gexpr_test(Ke, St) -> gexpr_test_add(Ke, St). %Add equality test + +gexpr_test_add(Ke, St0) -> + Test = #k_remote{mod=#k_atom{val='erlang'}, + name=#k_atom{val='=:='}, + arity=2}, + {Ae,Ap,St1} = force_atomic(Ke, St0), + {pre_seq(Ap, #k_test{anno=get_kanno(Ke), + op=Test,args=[Ae,#k_atom{val='true'}]}),St1}. + +%% expr(Cexpr, Sub, State) -> {Kexpr,[PreKexpr],State}. +%% Convert a Core expression, flattening it at the same time. + +expr(#c_var{anno=A,name=V}, Sub, St) -> + {#k_var{anno=A,name=get_vsub(V, Sub)},[],St}; +expr(#c_char{anno=A,val=C}, _Sub, St) -> + {#k_int{anno=A,val=C},[],St}; %Convert to integers! +expr(#c_int{anno=A,val=I}, _Sub, St) -> + {#k_int{anno=A,val=I},[],St}; +expr(#c_float{anno=A,val=F}, _Sub, St) -> + {#k_float{anno=A,val=F},[],St}; +expr(#c_atom{anno=A,val=At}, _Sub, St) -> + {#k_atom{anno=A,val=At},[],St}; +expr(#c_string{anno=A,val=S}, _Sub, St) -> + {#k_string{anno=A,val=S},[],St}; +expr(#c_nil{anno=A}, _Sub, St) -> + {#k_nil{anno=A},[],St}; +expr(#c_cons{anno=A,hd=Ch,tl=Ct}, Sub, St0) -> + %% Do cons in two steps, first the expressions left to right, then + %% any remaining literals right to left. + {Kh0,Hp0,St1} = expr(Ch, Sub, St0), + {Kt0,Tp0,St2} = expr(Ct, Sub, St1), + {Kt1,Tp1,St3} = force_atomic(Kt0, St2), + {Kh1,Hp1,St4} = force_atomic(Kh0, St3), + {#k_cons{anno=A,hd=Kh1,tl=Kt1},Hp0 ++ Tp0 ++ Tp1 ++ Hp1,St4}; +expr(#c_tuple{anno=A,es=Ces}, Sub, St0) -> + {Kes,Ep,St1} = atomic_list(Ces, Sub, St0), + {#k_tuple{anno=A,es=Kes},Ep,St1}; +expr(#c_binary{anno=A,segments=Cv}, Sub, St0) -> + case catch atomic_bin(Cv, Sub, St0, 0) of + {'EXIT',R} -> exit(R); + bad_element_size -> + Erl = #c_atom{val=erlang}, + Name = #c_atom{val=error}, + Args = [#c_atom{val=badarg}], + Fault = #c_call{module=Erl,name=Name,args=Args}, + expr(Fault, Sub, St0); + {Kv,Ep,St1} -> + {#k_binary{anno=A,segs=Kv},Ep,St1} + end; +expr(#c_fname{anno=A,arity=Ar}=Fname, Sub, St) -> + %% A local in an expression. + %% For now, these are wrapped into a fun by reverse + %% etha-conversion, but really, there should be exactly one + %% such "lambda function" for each escaping local name, + %% instead of one for each occurrence as done now. + Vs = [#c_var{name=list_to_atom("V" ++ integer_to_list(V))} || + V <- integers(1, Ar)], + Fun = #c_fun{anno=A,vars=Vs,body=#c_apply{op=Fname,args=Vs}}, + expr(Fun, Sub, St); +expr(#c_fun{anno=A,vars=Cvs,body=Cb}, Sub0, St0) -> + {Kvs,Sub1,St1} = pattern_list(Cvs, Sub0, St0), + %%ok = io:fwrite("~w: ~p~n", [?LINE,{{Cvs,Sub0,St0},{Kvs,Sub1,St1}}]), + {Kb,Pb,St2} = body(Cb, Sub1, St1), + {#ifun{anno=A,vars=Kvs,body=pre_seq(Pb, Kb)},[],St2}; +expr(#c_seq{arg=Ca,body=Cb}, Sub, St0) -> + {Ka,Pa,St1} = body(Ca, Sub, St0), + case is_exit_expr(Ka) of + true -> {Ka,Pa,St1}; + false -> + {Kb,Pb,St2} = body(Cb, Sub, St1), + {Kb,Pa ++ [Ka] ++ Pb,St2} + end; +expr(#c_let{anno=A,vars=Cvs,arg=Ca,body=Cb}, Sub0, St0) -> + %%ok = io:fwrite("~w: ~p~n", [?LINE,{Cvs,Sub0,St0}]), + {Ka,Pa,St1} = body(Ca, Sub0, St0), + case is_exit_expr(Ka) of + true -> {Ka,Pa,St1}; + false -> + {Kps,Sub1,St2} = pattern_list(Cvs, Sub0, St1), + %%ok = io:fwrite("~w: ~p~n", [?LINE,{Kps,Sub1,St1,St2}]), + %% Break known multiple values into separate sets. + Sets = case Ka of + #ivalues{args=Kas} -> + foldr2(fun (V, Val, Sb) -> + [#iset{vars=[V],arg=Val}|Sb] end, + [], Kps, Kas); + _Other -> + [#iset{anno=A,vars=Kps,arg=Ka}] + end, + {Kb,Pb,St3} = body(Cb, Sub1, St2), + {Kb,Pa ++ Sets ++ Pb,St3} + end; +expr(#c_letrec{anno=A,defs=Cfs,body=Cb}, Sub0, St0) -> + %% Make new function names and store substitution. + {Fs0,{Sub1,St1}} = + mapfoldl(fun (#c_def{name=#c_fname{id=F,arity=Ar},val=B}, {Sub,St0}) -> + {N,St1} = new_fun_name(atom_to_list(F) + ++ "/" ++ + integer_to_list(Ar), + St0), + {{N,B},{set_fsub(F, Ar, N, Sub),St1}} + end, {Sub0,St0}, Cfs), + %% Run translation on functions and body. + {Fs1,St2} = mapfoldl(fun ({N,Fd0}, St1) -> + {Fd1,[],St2} = expr(Fd0, Sub1, St1), + Fd = set_kanno(Fd1, A), + {{N,Fd},St2} + end, St1, Fs0), + {Kb,Pb,St3} = body(Cb, Sub1, St2), + {Kb,[#iletrec{anno=A,defs=Fs1}|Pb],St3}; +expr(#c_case{arg=Ca,clauses=Ccs}, Sub, St0) -> + {Ka,Pa,St1} = body(Ca, Sub, St0), %This is a body! + {Kvs,Pv,St2} = match_vars(Ka, St1), %Must have variables here! + {Km,St3} = kmatch(Kvs, Ccs, Sub, St2), + Match = flatten_seq(build_match(Kvs, Km)), + {last(Match),Pa ++ Pv ++ first(Match),St3}; +expr(#c_receive{anno=A,clauses=Ccs0,timeout=Ce,action=Ca}, Sub, St0) -> + {Ke,Pe,St1} = atomic_lit(Ce, Sub, St0), %Force this to be atomic! + {Rvar,St2} = new_var(St1), + %% Need to massage accept clauses and add reject clause before matching. + Ccs1 = map(fun (#c_clause{anno=Banno,body=B0}=C) -> + B1 = #c_seq{arg=#ireceive_accept{anno=A},body=B0}, + C#c_clause{anno=Banno,body=B1} + end, Ccs0), + {Mpat,St3} = new_var_name(St2), + Rc = #c_clause{anno=[compiler_generated|A], + pats=[#c_var{name=Mpat}],guard=#c_atom{anno=A,val=true}, + body=#ireceive_next{anno=A}}, + {Km,St4} = kmatch([Rvar], Ccs1 ++ [Rc], Sub, add_var_def(Rvar, St3)), + {Ka,Pa,St5} = body(Ca, Sub, St4), + {#k_receive{anno=A,var=Rvar,body=Km,timeout=Ke,action=pre_seq(Pa, Ka)}, + Pe,St5}; +expr(#c_apply{anno=A,op=Cop,args=Cargs}, Sub, St) -> + c_apply(A, Cop, Cargs, Sub, St); +expr(#c_call{anno=A,module=M0,name=F0,args=Cargs}, Sub, St0) -> + {[M1,F1|Kargs],Ap,St1} = atomic_list([M0,F0|Cargs], Sub, St0), + Ar = length(Cargs), + case {M1,F1} of + {#k_atom{val=Ma},#k_atom{val=Fa}} -> + Call = case is_remote_bif(Ma, Fa, Ar) of + true -> + #k_bif{anno=A, + op=#k_remote{mod=M1,name=F1,arity=Ar}, + args=Kargs}; + false -> + #k_call{anno=A, + op=#k_remote{mod=M1,name=F1,arity=Ar}, + args=Kargs} + end, + {Call,Ap,St1}; + _Other when St0#kern.extinstr == false -> %Old explicit apply + Call = #c_call{anno=A, + module=#c_atom{val=erlang}, + name=#c_atom{val=apply}, + args=[M0,F0,make_list(Cargs)]}, + expr(Call, Sub, St0); + _Other -> %New instruction in R10. + Call = #k_call{anno=A, + op=#k_remote{mod=M1,name=F1,arity=Ar}, + args=Kargs}, + {Call,Ap,St1} + end; +expr(#c_primop{anno=A,name=#c_atom{val=match_fail},args=Cargs}, Sub, St0) -> + %% This special case will disappear. + {Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0), + Ar = length(Cargs), + Call = #k_call{anno=A,op=#k_internal{name=match_fail,arity=Ar},args=Kargs}, + {Call,Ap,St1}; +expr(#c_primop{anno=A,name=#c_atom{val=N},args=Cargs}, Sub, St0) -> + {Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0), + Ar = length(Cargs), + {#k_bif{anno=A,op=#k_internal{name=N,arity=Ar},args=Kargs},Ap,St1}; +expr(#c_try{anno=A,arg=Ca,vars=Cvs,body=Cb,evars=Evs,handler=Ch}, Sub0, St0) -> + %% The normal try expression. The body and exception handler + %% variables behave as let variables. + {Ka,Pa,St1} = body(Ca, Sub0, St0), + {Kcvs,Sub1,St2} = pattern_list(Cvs, Sub0, St1), + {Kb,Pb,St3} = body(Cb, Sub1, St2), + {Kevs,Sub2,St4} = pattern_list(Evs, Sub0, St3), + {Kh,Ph,St5} = body(Ch, Sub2, St4), + {#k_try{anno=A,arg=pre_seq(Pa, Ka), + vars=Kcvs,body=pre_seq(Pb, Kb), + evars=Kevs,handler=pre_seq(Ph, Kh)},[],St5}; +expr(#c_catch{anno=A,body=Cb}, Sub, St0) -> + {Kb,Pb,St1} = body(Cb, Sub, St0), + {#k_catch{anno=A,body=pre_seq(Pb, Kb)},[],St1}; +%% Handle internal expressions. +expr(#ireceive_accept{anno=A}, _Sub, St) -> {#k_receive_accept{anno=A},[],St}. + +%% expr_list([Cexpr], Sub, State) -> {[Kexpr],[PreKexpr],State}. + +% expr_list(Ces, Sub, St) -> +% foldr(fun (Ce, {Kes,Esp,St0}) -> +% {Ke,Ep,St1} = expr(Ce, Sub, St0), +% {[Ke|Kes],Ep ++ Esp,St1} +% end, {[],[],St}, Ces). + +%% match_vars(Kexpr, State) -> {[Kvar],[PreKexpr],State}. +%% Force return from body into a list of variables. + +match_vars(#ivalues{args=As}, St) -> + foldr(fun (Ka, {Vs,Vsp,St0}) -> + {V,Vp,St1} = force_variable(Ka, St0), + {[V|Vs],Vp ++ Vsp,St1} + end, {[],[],St}, As); +match_vars(Ka, St0) -> + {V,Vp,St1} = force_variable(Ka, St0), + {[V],Vp,St1}. + +%% c_apply(A, Op, [Carg], Sub, State) -> {Kexpr,[PreKexpr],State}. +%% Transform application, detect which are guaranteed to be bifs. + +c_apply(A, #c_fname{anno=Ra,id=F0,arity=Ar}, Cargs, Sub, St0) -> + {Kargs,Ap,St1} = atomic_list(Cargs, Sub, St0), + F1 = get_fsub(F0, Ar, Sub), %Has it been rewritten + {#k_call{anno=A,op=#k_local{anno=Ra,name=F1,arity=Ar},args=Kargs}, + Ap,St1}; +c_apply(A, Cop, Cargs, Sub, St0) -> + {Kop,Op,St1} = variable(Cop, Sub, St0), + {Kargs,Ap,St2} = atomic_list(Cargs, Sub, St1), + {#k_call{anno=A,op=Kop,args=Kargs},Op ++ Ap,St2}. + +flatten_seq(#iset{anno=A,vars=Vs,arg=Arg,body=B}) -> + [#iset{anno=A,vars=Vs,arg=Arg}|flatten_seq(B)]; +flatten_seq(Ke) -> [Ke]. + +pre_seq([#iset{anno=A,vars=Vs,arg=Arg,body=B}|Ps], K) -> + B = undefined, %Assertion. + #iset{anno=A,vars=Vs,arg=Arg,body=pre_seq(Ps, K)}; +pre_seq([P|Ps], K) -> + #iset{vars=[],arg=P,body=pre_seq(Ps, K)}; +pre_seq([], K) -> K. + +%% atomic_lit(Cexpr, Sub, State) -> {Katomic,[PreKexpr],State}. +%% Convert a Core expression making sure the result is an atomic +%% literal. + +atomic_lit(Ce, Sub, St0) -> + {Ke,Kp,St1} = expr(Ce, Sub, St0), + {Ka,Ap,St2} = force_atomic(Ke, St1), + {Ka,Kp ++ Ap,St2}. + +force_atomic(Ke, St0) -> + case is_atomic(Ke) of + true -> {Ke,[],St0}; + false -> + {V,St1} = new_var(St0), + {V,[#iset{vars=[V],arg=Ke}],St1} + end. + +% force_atomic_list(Kes, St) -> +% foldr(fun (Ka, {As,Asp,St0}) -> +% {A,Ap,St1} = force_atomic(Ka, St0), +% {[A|As],Ap ++ Asp,St1} +% end, {[],[],St}, Kes). + +atomic_bin([#c_bitstr{anno=A,val=E0,size=S0,unit=U,type=T,flags=Fs}|Es0], + Sub, St0, B0) -> + {E,Ap1,St1} = atomic_lit(E0, Sub, St0), + {S1,Ap2,St2} = atomic_lit(S0, Sub, St1), + validate_bin_element_size(S1), + U0 = core_lib:literal_value(U), + Fs0 = core_lib:literal_value(Fs), + {B1,Fs1} = aligned(B0, S1, U0, Fs0), + {Es,Ap3,St3} = atomic_bin(Es0, Sub, St2, B1), + {#k_bin_seg{anno=A,size=S1, + unit=U0, + type=core_lib:literal_value(T), + flags=Fs1, + seg=E,next=Es}, + Ap1++Ap2++Ap3,St3}; +atomic_bin([], _Sub, St, _Bits) -> {#k_bin_end{},[],St}. + +validate_bin_element_size(#k_var{}) -> ok; +validate_bin_element_size(#k_int{val=V}) when V >= 0 -> ok; +validate_bin_element_size(#k_atom{val=all}) -> ok; +validate_bin_element_size(_) -> throw(bad_element_size). + +%% atomic_list([Cexpr], Sub, State) -> {[Kexpr],[PreKexpr],State}. + +atomic_list(Ces, Sub, St) -> + foldr(fun (Ce, {Kes,Esp,St0}) -> + {Ke,Ep,St1} = atomic_lit(Ce, Sub, St0), + {[Ke|Kes],Ep ++ Esp,St1} + end, {[],[],St}, Ces). + +%% is_atomic(Kexpr) -> boolean(). +%% Is a Kexpr atomic? Strings are NOT considered atomic! + +is_atomic(#k_int{}) -> true; +is_atomic(#k_float{}) -> true; +is_atomic(#k_atom{}) -> true; +%%is_atomic(#k_char{}) -> true; %No characters +%%is_atomic(#k_string{}) -> true; +is_atomic(#k_nil{}) -> true; +is_atomic(#k_var{}) -> true; +is_atomic(_) -> false. + +%% variable(Cexpr, Sub, State) -> {Kvar,[PreKexpr],State}. +%% Convert a Core expression making sure the result is a variable. + +variable(Ce, Sub, St0) -> + {Ke,Kp,St1} = expr(Ce, Sub, St0), + {Kv,Vp,St2} = force_variable(Ke, St1), + {Kv,Kp ++ Vp,St2}. + +force_variable(#k_var{}=Ke, St) -> {Ke,[],St}; +force_variable(Ke, St0) -> + {V,St1} = new_var(St0), + {V,[#iset{vars=[V],arg=Ke}],St1}. + +%% pattern(Cpat, Sub, State) -> {Kpat,Sub,State}. +%% Convert patterns. Variables shadow so rename variables that are +%% already defined. + +pattern(#c_var{anno=A,name=V}, Sub, St0) -> + case sets:is_element(V, St0#kern.ds) of + true -> + {New,St1} = new_var_name(St0), + {#k_var{anno=A,name=New}, + set_vsub(V, New, Sub), + St1#kern{ds=sets:add_element(New, St1#kern.ds)}}; + false -> + {#k_var{anno=A,name=V},Sub, + St0#kern{ds=sets:add_element(V, St0#kern.ds)}} + end; +pattern(#c_char{anno=A,val=C}, Sub, St) -> + {#k_int{anno=A,val=C},Sub,St}; %Convert to integers! +pattern(#c_int{anno=A,val=I}, Sub, St) -> + {#k_int{anno=A,val=I},Sub,St}; +pattern(#c_float{anno=A,val=F}, Sub, St) -> + {#k_float{anno=A,val=F},Sub,St}; +pattern(#c_atom{anno=A,val=At}, Sub, St) -> + {#k_atom{anno=A,val=At},Sub,St}; +pattern(#c_string{val=S}, Sub, St) -> + L = foldr(fun (C, T) -> #k_cons{hd=#k_int{val=C},tl=T} end, + #k_nil{}, S), + {L,Sub,St}; +pattern(#c_nil{anno=A}, Sub, St) -> + {#k_nil{anno=A},Sub,St}; +pattern(#c_cons{anno=A,hd=Ch,tl=Ct}, Sub0, St0) -> + {Kh,Sub1,St1} = pattern(Ch, Sub0, St0), + {Kt,Sub2,St2} = pattern(Ct, Sub1, St1), + {#k_cons{anno=A,hd=Kh,tl=Kt},Sub2,St2}; +pattern(#c_tuple{anno=A,es=Ces}, Sub0, St0) -> + {Kes,Sub1,St1} = pattern_list(Ces, Sub0, St0), + {#k_tuple{anno=A,es=Kes},Sub1,St1}; +pattern(#c_binary{anno=A,segments=Cv}, Sub0, St0) -> + {Kv,Sub1,St1} = pattern_bin(Cv, Sub0, St0), + {#k_binary{anno=A,segs=Kv},Sub1,St1}; +pattern(#c_alias{anno=A,var=Cv,pat=Cp}, Sub0, St0) -> + {Cvs,Cpat} = flatten_alias(Cp), + {Kvs,Sub1,St1} = pattern_list([Cv|Cvs], Sub0, St0), + {Kpat,Sub2,St2} = pattern(Cpat, Sub1, St1), + {#ialias{anno=A,vars=Kvs,pat=Kpat},Sub2,St2}. + +flatten_alias(#c_alias{var=V,pat=P}) -> + {Vs,Pat} = flatten_alias(P), + {[V|Vs],Pat}; +flatten_alias(Pat) -> {[],Pat}. + +pattern_bin(Es, Sub, St) -> pattern_bin(Es, Sub, St, 0). + +pattern_bin([#c_bitstr{anno=A,val=E0,size=S0,unit=U,type=T,flags=Fs}|Es0], + Sub0, St0, B0) -> + {S1,[],St1} = expr(S0, Sub0, St0), + U0 = core_lib:literal_value(U), + Fs0 = core_lib:literal_value(Fs), + %%ok= io:fwrite("~w: ~p~n", [?LINE,{B0,S1,U0,Fs0}]), + {B1,Fs1} = aligned(B0, S1, U0, Fs0), + {E,Sub1,St2} = pattern(E0, Sub0, St1), + {Es,Sub2,St3} = pattern_bin(Es0, Sub1, St2, B1), + {#k_bin_seg{anno=A,size=S1, + unit=U0, + type=core_lib:literal_value(T), + flags=Fs1, + seg=E,next=Es}, + Sub2,St3}; +pattern_bin([], Sub, St, _Bits) -> {#k_bin_end{},Sub,St}. + +%% pattern_list([Cexpr], Sub, State) -> {[Kexpr],Sub,State}. + +pattern_list(Ces, Sub, St) -> + foldr(fun (Ce, {Kes,Sub0,St0}) -> + {Ke,Sub1,St1} = pattern(Ce, Sub0, St0), + {[Ke|Kes],Sub1,St1} + end, {[],Sub,St}, Ces). + +%% new_sub() -> Subs. +%% set_vsub(Name, Sub, Subs) -> Subs. +%% subst_vsub(Name, Sub, Subs) -> Subs. +%% get_vsub(Name, Subs) -> SubName. +%% Add/get substitute Sub for Name to VarSub. Use orddict so we know +%% the format is a list {Name,Sub} pairs. When adding a new +%% substitute we fold substitute chains so we never have to search +%% more than once. + +new_sub() -> orddict:new(). + +get_vsub(V, Vsub) -> + case orddict:find(V, Vsub) of + {ok,Val} -> Val; + error -> V + end. + +set_vsub(V, S, Vsub) -> + orddict:store(V, S, Vsub). + +subst_vsub(V, S, Vsub0) -> + %% Fold chained substitutions. + Vsub1 = orddict:map(fun (_, V1) when V1 =:= V -> S; + (_, V1) -> V1 + end, Vsub0), + orddict:store(V, S, Vsub1). + +get_fsub(F, A, Fsub) -> + case orddict:find({F,A}, Fsub) of + {ok,Val} -> Val; + error -> F + end. + +set_fsub(F, A, S, Fsub) -> + orddict:store({F,A}, S, Fsub). + +new_fun_name(St) -> + new_fun_name("anonymous", St). + +%% new_fun_name(Type, State) -> {FunName,State}. + +new_fun_name(Type, #kern{func={F,Arity},fcount=C}=St) -> + Name = "-" ++ atom_to_list(F) ++ "/" ++ integer_to_list(Arity) ++ + "-" ++ Type ++ "-" ++ integer_to_list(C) ++ "-", + {list_to_atom(Name),St#kern{fcount=C+1}}. + +%% new_var_name(State) -> {VarName,State}. + +new_var_name(#kern{vcount=C}=St) -> + {list_to_atom("ker" ++ integer_to_list(C)),St#kern{vcount=C+1}}. + +%% new_var(State) -> {#k_var{},State}. + +new_var(St0) -> + {New,St1} = new_var_name(St0), + {#k_var{name=New},St1}. + +%% new_vars(Count, State) -> {[#k_var{}],State}. +%% Make Count new variables. + +new_vars(N, St) -> new_vars(N, St, []). + +new_vars(N, St0, Vs) when N > 0 -> + {V,St1} = new_var(St0), + new_vars(N-1, St1, [V|Vs]); +new_vars(0, St, Vs) -> {Vs,St}. + +make_vars(Vs) -> [ #k_var{name=V} || V <- Vs ]. + +add_var_def(V, St) -> + St#kern{ds=sets:add_element(V#k_var.name, St#kern.ds)}. + +%%add_vars_def(Vs, St) -> +%% Ds = foldl(fun (#k_var{name=V}, Ds) -> add_element(V, Ds) end, +%% St#kern.ds, Vs), +%% St#kern{ds=Ds}. + +%% is_remote_bif(Mod, Name, Arity) -> true | false. +%% Test if function is really a BIF. + +is_remote_bif(erlang, is_boolean, 1) -> + %% XXX Remove this clause in R11. For bootstrap purposes, we must + %% recognize erlang:is_boolean/1 here. + true; +is_remote_bif(erlang, internal_is_record, 3) -> true; +is_remote_bif(erlang, get, 1) -> true; +is_remote_bif(erlang, N, A) -> + case erl_internal:guard_bif(N, A) of + true -> true; + false -> + case erl_internal:type_test(N, A) of + true -> true; + false -> + case catch erl_internal:op_type(N, A) of + arith -> true; + bool -> true; + comp -> true; + _Other -> false %List, send or not an op + end + end + end; +is_remote_bif(_, _, _) -> false. + +%% bif_vals(Name, Arity) -> integer(). +%% bif_vals(Mod, Name, Arity) -> integer(). +%% Determine how many return values a BIF has. Provision for BIFs to +%% return multiple values. Only used in bodies where a BIF may be +%% called for effect only. + +bif_vals(dsetelement, 3) -> 0; +bif_vals(_, _) -> 1. + +bif_vals(_, _, _) -> 1. + +%% foldr2(Fun, Acc, List1, List2) -> Acc. +%% Fold over two lists. + +foldr2(Fun, Acc0, [E1|L1], [E2|L2]) -> + Acc1 = Fun(E1, E2, Acc0), + foldr2(Fun, Acc1, L1, L2); +foldr2(_, Acc, [], []) -> Acc. + +%% first([A]) -> [A]. +%% last([A]) -> A. + +last([L]) -> L; +last([_|T]) -> last(T). + +first([_]) -> []; +first([H|T]) -> [H|first(T)]. + +%% This code implements the algorithm for an optimizing compiler for +%% pattern matching given "The Implementation of Functional +%% Programming Languages" by Simon Peyton Jones. The code is much +%% longer as the meaning of constructors is different from the book. +%% +%% In Erlang many constructors can have different values, e.g. 'atom' +%% or 'integer', whereas in the original algorithm thse would be +%% different constructors. Our view makes it easier in later passes to +%% handle indexing over each type. +%% +%% Patterns are complicated by having alias variables. The form of a +%% pattern is Pat | {alias,Pat,[AliasVar]}. This is hidden by access +%% functions to pattern arguments but the code must be aware of it. +%% +%% The compilation proceeds in two steps: +%% +%% 1. The patterns in the clauses to converted to lists of kernel +%% patterns. The Core clause is now hybrid, this is easier to work +%% with. Remove clauses with trivially false guards, this simplifies +%% later passes. Add local defined vars and variable subs to each +%% clause for later use. +%% +%% 2. The pattern matching is optimised. Variable substitutions are +%% added to the VarSub structure and new variables are made visible. +%% The guard and body are then converted to Kernel form. + +%% kmatch([Var], [Clause], Sub, State) -> {Kexpr,[PreExpr],State}. + +kmatch(Us, Ccs, Sub, St0) -> + {Cs,St1} = match_pre(Ccs, Sub, St0), %Convert clauses + %%Def = kernel_match_error, %The strict case + %% This should be a kernel expression from the first pass. + Def = #k_call{anno=[compiler_generated], + op=#k_remote{mod=#k_atom{val=erlang}, + name=#k_atom{val=exit}, + arity=1}, + args=[#k_atom{val=kernel_match_error}]}, + {Km,St2} = match(Us, Cs, Def, St1), %Do the match. + {Km,St2}. + +%% match_pre([Cclause], Sub, State) -> {[Clause],State}. +%% Must be careful not to generate new substitutions here now! +%% Remove clauses with trivially false guards which will never +%% succeed. + +match_pre(Cs, Sub0, St) -> + foldr(fun (#c_clause{anno=A,pats=Ps,guard=G,body=B}, {Cs0,St0}) -> + case is_false_guard(G) of + true -> {Cs0,St0}; + false -> + {Kps,Sub1,St1} = pattern_list(Ps, Sub0, St0), + {[#iclause{anno=A,sub=Sub1,pats=Kps,guard=G,body=B}| + Cs0],St1} + end + end, {[],St}, Cs). + +%% match([Var], [Clause], Default, State) -> {MatchExpr,State}. + +match([U|Us], Cs, Def, St0) -> + %%ok = io:format("match ~p~n", [Cs]), + Pcss = partition(Cs), + foldr(fun (Pcs, {D,St}) -> match_varcon([U|Us], Pcs, D, St) end, + {Def,St0}, Pcss); +match([], Cs, Def, St) -> + match_guard(Cs, Def, St). + +%% match_guard([Clause], Default, State) -> {IfExpr,State}. +%% Build a guard to handle guards. A guard *ALWAYS* fails if no +%% clause matches, there will be a surrounding 'alt' to catch the +%% failure. Drop redundant cases, i.e. those after a true guard. + +match_guard(Cs0, Def0, St0) -> + {Cs1,Def1,St1} = match_guard_1(Cs0, Def0, St0), + {build_alt(build_guard(Cs1), Def1),St1}. + +match_guard_1([#iclause{anno=A,sub=Sub,guard=G,body=B}|Cs0], Def0, St0) -> + case is_true_guard(G) of + true -> + %% The true clause body becomes the default. + {Kb,Pb,St1} = body(B, Sub, St0), + Line = get_line(A), + St2 = maybe_add_warning(Cs0, Line, St1), + St = maybe_add_warning(Def0, Line, St2), + {[],pre_seq(Pb, Kb),St}; + false -> + {Kg,St1} = guard(G, Sub, St0), + {Kb,Pb,St2} = body(B, Sub, St1), + {Cs1,Def1,St3} = match_guard_1(Cs0, Def0, St2), + {[#k_guard_clause{guard=Kg,body=pre_seq(Pb, Kb)}|Cs1], + Def1,St3} + end; +match_guard_1([], Def, St) -> {[],Def,St}. + +maybe_add_warning([C|_], Line, St) -> + maybe_add_warning(C, Line, St); +maybe_add_warning([], _Line, St) -> St; +maybe_add_warning(fail, _Line, St) -> St; +maybe_add_warning(Ke, MatchLine, St) -> + case get_kanno(Ke) of + [compiler_generated|_] -> St; + Anno -> + Line = get_line(Anno), + Warn = case MatchLine of + none -> nomatch_shadow; + _ -> {nomatch_shadow,MatchLine} + end, + add_warning(Line, Warn, St) + end. + +get_line([Line|_]) when is_integer(Line) -> Line; +get_line([_|T]) -> get_line(T); +get_line([]) -> none. + + +%% is_true_guard(Guard) -> boolean(). +%% is_false_guard(Guard) -> boolean(). +%% Test if a guard is either trivially true/false. This has probably +%% already been optimised away, but what the heck! + +is_true_guard(G) -> guard_value(G) == true. +is_false_guard(G) -> guard_value(G) == false. + +%% guard_value(Guard) -> true | false | unknown. + +guard_value(#c_atom{val=true}) -> true; +guard_value(#c_atom{val=false}) -> false; +guard_value(#c_call{module=#c_atom{val=erlang}, + name=#c_atom{val='not'}, + args=[A]}) -> + case guard_value(A) of + true -> false; + false -> true; + unknown -> unknown + end; +guard_value(#c_call{module=#c_atom{val=erlang}, + name=#c_atom{val='and'}, + args=[Ca,Cb]}) -> + case guard_value(Ca) of + true -> guard_value(Cb); + false -> false; + unknown -> + case guard_value(Cb) of + false -> false; + _Other -> unknown + end + end; +guard_value(#c_call{module=#c_atom{val=erlang}, + name=#c_atom{val='or'}, + args=[Ca,Cb]}) -> + case guard_value(Ca) of + true -> true; + false -> guard_value(Cb); + unknown -> + case guard_value(Cb) of + true -> true; + _Other -> unknown + end + end; +guard_value(#c_try{arg=E,vars=[#c_var{name=X}],body=#c_var{name=X}, + handler=#c_atom{val=false}}) -> + guard_value(E); +guard_value(_) -> unknown. + +%% partition([Clause]) -> [[Clause]]. +%% Partition a list of clauses into groups which either contain +%% clauses with a variable first argument, or with a "constructor". + +partition([C1|Cs]) -> + V1 = is_var_clause(C1), + {More,Rest} = splitwith(fun (C) -> is_var_clause(C) == V1 end, Cs), + [[C1|More]|partition(Rest)]; +partition([]) -> []. + +%% match_varcon([Var], [Clause], Def, [Var], Sub, State) -> +%% {MatchExpr,State}. + +match_varcon(Us, [C|_]=Cs, Def, St) -> + case is_var_clause(C) of + true -> match_var(Us, Cs, Def, St); + false -> match_con(Us, Cs, Def, St) + end. + +%% match_var([Var], [Clause], Def, State) -> {MatchExpr,State}. +%% Build a call to "select" from a list of clauses all containing a +%% variable as the first argument. We must rename the variable in +%% each clause to be the match variable as these clause will share +%% this variable and may have different names for it. Rename aliases +%% as well. + +match_var([U|Us], Cs0, Def, St) -> + Cs1 = map(fun (#iclause{sub=Sub0,pats=[Arg|As]}=C) -> + Vs = [arg_arg(Arg)|arg_alias(Arg)], + Sub1 = foldl(fun (#k_var{name=V}, Acc) -> + subst_vsub(V, U#k_var.name, Acc) + end, Sub0, Vs), + C#iclause{sub=Sub1,pats=As} + end, Cs0), + match(Us, Cs1, Def, St). + +%% match_con(Variables, [Clause], Default, State) -> {SelectExpr,State}. +%% Build call to "select" from a list of clauses all containing a +%% constructor/constant as first argument. Group the constructors +%% according to type, the order is really irrelevant but tries to be +%% smart. + +match_con([U|Us], Cs, Def, St0) -> + %% Extract clauses for different constructors (types). + %%ok = io:format("match_con ~p~n", [Cs]), + Ttcs = [ {T,Tcs} || T <- [k_cons,k_tuple,k_atom,k_float,k_int,k_nil, + k_binary,k_bin_end], + begin Tcs = select(T, Cs), + Tcs /= [] + end ] ++ select_bin_con(Cs), + %%ok = io:format("ttcs = ~p~n", [Ttcs]), + {Scs,St1} = + mapfoldl(fun ({T,Tcs}, St) -> + {[S|_]=Sc,S1} = match_value([U|Us], T, Tcs, fail, St), + %%ok = io:format("match_con type2 ~p~n", [T]), + Anno = get_kanno(S), + {#k_type_clause{anno=Anno,type=T,values=Sc},S1} end, + St0, Ttcs), + {build_alt_1st_no_fail(build_select(U, Scs), Def),St1}. + +%% select_bin_con([Clause]) -> [{Type,[Clause]}]. +%% Extract clauses for the k_bin_seg constructor. As k_bin_seg +%% matching can overlap, the k_bin_seg constructors cannot be +%% reordered, only grouped. + +select_bin_con(Cs0) -> + Cs1 = lists:filter(fun (C) -> + clause_con(C) == k_bin_seg + end, Cs0), + select_bin_con_1(Cs1). + +select_bin_con_1([C1|Cs]) -> + Con = clause_con(C1), + {More,Rest} = splitwith(fun (C) -> clause_con(C) == Con end, Cs), + [{Con,[C1|More]}|select_bin_con_1(Rest)]; +select_bin_con_1([]) -> []. + +%% select(Con, [Clause]) -> [Clause]. + +select(T, Cs) -> [ C || C <- Cs, clause_con(C) == T ]. + +%% match_value([Var], Con, [Clause], Default, State) -> {SelectExpr,State}. +%% At this point all the clauses have the same constructor, we must +%% now separate them according to value. + +match_value(_, _, [], _, St) -> {[],St}; +match_value(Us, T, Cs0, Def, St0) -> + Css = group_value(T, Cs0), + %%ok = io:format("match_value ~p ~p~n", [T, Css]), + {Css1,St1} = mapfoldl(fun (Cs, St) -> + match_clause(Us, Cs, Def, St) end, + St0, Css), + {Css1,St1}. + %%{#k_select_val{type=T,var=hd(Us),clauses=Css1},St1}. + +%% group_value([Clause]) -> [[Clause]]. +%% Group clauses according to value. Here we know that +%% 1. Some types are singled valued +%% 2. The clauses in bin_segs cannot be reordered only grouped +%% 3. Other types are disjoint and can be reordered + +group_value(k_cons, Cs) -> [Cs]; %These are single valued +group_value(k_nil, Cs) -> [Cs]; +group_value(k_binary, Cs) -> [Cs]; +group_value(k_bin_end, Cs) -> [Cs]; +group_value(k_bin_seg, Cs) -> + group_bin_seg(Cs); +group_value(_, Cs) -> + %% group_value(Cs). + Cd = foldl(fun (C, Gcs0) -> dict:append(clause_val(C), C, Gcs0) end, + dict:new(), Cs), + dict:fold(fun (_, Vcs, Css) -> [Vcs|Css] end, [], Cd). + +group_bin_seg([C1|Cs]) -> + V1 = clause_val(C1), + {More,Rest} = splitwith(fun (C) -> clause_val(C) == V1 end, Cs), + [[C1|More]|group_bin_seg(Rest)]; +group_bin_seg([]) -> []. + +%% Profiling shows that this quadratic implementation account for a big amount +%% of the execution time if there are many values. +% group_value([C|Cs]) -> +% V = clause_val(C), +% Same = [ Cv || Cv <- Cs, clause_val(Cv) == V ], %Same value +% Rest = [ Cv || Cv <- Cs, clause_val(Cv) /= V ], % and all the rest +% [[C|Same]|group_value(Rest)]; +% group_value([]) -> []. + +%% match_clause([Var], [Clause], Default, State) -> {Clause,State}. +%% At this point all the clauses have the same "value". Build one +%% select clause for this value and continue matching. Rename +%% aliases as well. + +match_clause([U|Us], [C|_]=Cs0, Def, St0) -> + Anno = get_kanno(C), + {Match0,Vs,St1} = get_match(get_con(Cs0), St0), + Match = sub_size_var(Match0, Cs0), + {Cs1,St2} = new_clauses(Cs0, U, St1), + {B,St3} = match(Vs ++ Us, Cs1, Def, St2), + {#k_val_clause{anno=Anno,val=Match,body=B},St3}. + +sub_size_var(#k_bin_seg{size=#k_var{name=Name}=Kvar}=BinSeg, [#iclause{sub=Sub}|_]) -> + BinSeg#k_bin_seg{size=Kvar#k_var{name=get_vsub(Name, Sub)}}; +sub_size_var(K, _) -> K. + +get_con([C|_]) -> arg_arg(clause_arg(C)). %Get the constructor + +get_match(#k_cons{}, St0) -> + {[H,T],St1} = new_vars(2, St0), + {#k_cons{hd=H,tl=T},[H,T],St1}; +get_match(#k_binary{}, St0) -> + {[V]=Mes,St1} = new_vars(1, St0), + {#k_binary{segs=V},Mes,St1}; +get_match(#k_bin_seg{}=Seg, St0) -> + {[S,N]=Mes,St1} = new_vars(2, St0), + {Seg#k_bin_seg{seg=S,next=N},Mes,St1}; +get_match(#k_tuple{es=Es}, St0) -> + {Mes,St1} = new_vars(length(Es), St0), + {#k_tuple{es=Mes},Mes,St1}; +get_match(M, St) -> + {M,[],St}. + +new_clauses(Cs0, U, St) -> + Cs1 = map(fun (#iclause{sub=Sub0,pats=[Arg|As]}=C) -> + Head = case arg_arg(Arg) of + #k_cons{hd=H,tl=T} -> [H,T|As]; + #k_tuple{es=Es} -> Es ++ As; + #k_binary{segs=E} -> [E|As]; + #k_bin_seg{seg=S,next=N} -> + [S,N|As]; + _Other -> As + end, + Vs = arg_alias(Arg), + Sub1 = foldl(fun (#k_var{name=V}, Acc) -> + subst_vsub(V, U#k_var.name, Acc) + end, Sub0, Vs), + C#iclause{sub=Sub1,pats=Head} + end, Cs0), + {Cs1,St}. + +%% build_guard([GuardClause]) -> GuardExpr. + +build_guard([]) -> fail; +build_guard(Cs) -> #k_guard{clauses=Cs}. + +%% build_select(Var, [ConClause]) -> SelectExpr. + +build_select(V, [Tc|_]=Tcs) -> + Anno = get_kanno(Tc), + #k_select{anno=Anno,var=V,types=Tcs}. + +%% build_alt(First, Then) -> AltExpr. +%% Build an alt, attempt some simple optimisation. + +build_alt(fail, Then) -> Then; +build_alt(First,Then) -> build_alt_1st_no_fail(First, Then). + +build_alt_1st_no_fail(First, fail) -> First; +build_alt_1st_no_fail(First, Then) -> #k_alt{first=First,then=Then}. + +%% build_match([MatchVar], MatchExpr) -> Kexpr. +%% Build a match expr if there is a match. + +build_match(Us, #k_alt{}=Km) -> #k_match{vars=Us,body=Km}; +build_match(Us, #k_select{}=Km) -> #k_match{vars=Us,body=Km}; +build_match(Us, #k_guard{}=Km) -> #k_match{vars=Us,body=Km}; +build_match(_, Km) -> Km. + +%% clause_arg(Clause) -> FirstArg. +%% clause_con(Clause) -> Constructor. +%% clause_val(Clause) -> Value. +%% is_var_clause(Clause) -> boolean(). + +clause_arg(#iclause{pats=[Arg|_]}) -> Arg. + +clause_con(C) -> arg_con(clause_arg(C)). + +clause_val(C) -> arg_val(clause_arg(C)). + +is_var_clause(C) -> clause_con(C) == k_var. + +%% arg_arg(Arg) -> Arg. +%% arg_alias(Arg) -> Aliases. +%% arg_con(Arg) -> Constructor. +%% arg_val(Arg) -> Value. +%% These are the basic functions for obtaining fields in an argument. + +arg_arg(#ialias{pat=Con}) -> Con; +arg_arg(Con) -> Con. + +arg_alias(#ialias{vars=As}) -> As; +arg_alias(_Con) -> []. + +arg_con(Arg) -> + case arg_arg(Arg) of + #k_int{} -> k_int; + #k_float{} -> k_float; + #k_atom{} -> k_atom; + #k_nil{} -> k_nil; + #k_cons{} -> k_cons; + #k_tuple{} -> k_tuple; + #k_binary{} -> k_binary; + #k_bin_end{} -> k_bin_end; + #k_bin_seg{} -> k_bin_seg; + #k_var{} -> k_var + end. + +arg_val(Arg) -> + case arg_arg(Arg) of + #k_int{val=I} -> I; + #k_float{val=F} -> F; + #k_atom{val=A} -> A; + #k_nil{} -> 0; + #k_cons{} -> 2; + #k_tuple{es=Es} -> length(Es); + #k_bin_seg{size=S,unit=U,type=T,flags=Fs} -> + {set_kanno(S, []),U,T,Fs}; + #k_bin_end{} -> 0; + #k_binary{} -> 0 + end. + +%% ubody(Expr, Break, State) -> {Expr,[UsedVar],State}. +%% Tag the body sequence with its used variables. These bodies +%% either end with a #k_break{}, or with #k_return{} or an expression +%% which itself can return, #k_enter{}, #k_match{} ... . + +ubody(#iset{vars=[],arg=#iletrec{}=Let,body=B0}, Br, St0) -> + %% An iletrec{} should never be last. + St1 = iletrec_funs(Let, St0), + ubody(B0, Br, St1); +ubody(#iset{anno=A,vars=Vs,arg=E0,body=B0}, Br, St0) -> + {E1,Eu,St1} = uexpr(E0, {break,Vs}, St0), + {B1,Bu,St2} = ubody(B0, Br, St1), + Ns = lit_list_vars(Vs), + Used = union(Eu, subtract(Bu, Ns)), %Used external vars + {#k_seq{anno=#k{us=Used,ns=Ns,a=A},arg=E1,body=B1},Used,St2}; +ubody(#ivalues{anno=A,args=As}, return, St) -> + Au = lit_list_vars(As), + {#k_return{anno=#k{us=Au,ns=[],a=A},args=As},Au,St}; +ubody(#ivalues{anno=A,args=As}, {break,_Vbs}, St) -> + Au = lit_list_vars(As), + {#k_break{anno=#k{us=Au,ns=[],a=A},args=As},Au,St}; +ubody(E, return, St0) -> + %% Enterable expressions need no trailing return. + case is_enter_expr(E) of + true -> uexpr(E, return, St0); + false -> + {Ea,Pa,St1} = force_atomic(E, St0), + ubody(pre_seq(Pa, #ivalues{args=[Ea]}), return, St1) + end; +ubody(E, {break,Rs}, St0) -> + %%ok = io:fwrite("ubody ~w:~p~n", [?LINE,{E,Br}]), + %% Exiting expressions need no trailing break. + case is_exit_expr(E) of + true -> uexpr(E, return, St0); + false -> + {Ea,Pa,St1} = force_atomic(E, St0), + ubody(pre_seq(Pa, #ivalues{args=[Ea]}), {break,Rs}, St1) + end. + +iletrec_funs(#iletrec{defs=Fs}, St0) -> + %% Use union of all free variables. + %% First just work out free variables for all functions. + Free = foldl(fun ({_,#ifun{vars=Vs,body=Fb0}}, Free0) -> + {_,Fbu,_} = ubody(Fb0, return, St0), + Ns = lit_list_vars(Vs), + Free1 = subtract(Fbu, Ns), + union(Free1, Free0) + end, [], Fs), + FreeVs = make_vars(Free), + %% Add this free info to State. + St1 = foldl(fun ({N,#ifun{vars=Vs}}, Lst) -> + store_free(N, length(Vs), FreeVs, Lst) + end, St0, Fs), + %% Now regenerate local functions to use free variable information. + St2 = foldl(fun ({N,#ifun{anno=Fa,vars=Vs,body=Fb0}}, Lst0) -> + {Fb1,_,Lst1} = ubody(Fb0, return, Lst0), + Arity = length(Vs) + length(FreeVs), + Fun = #k_fdef{anno=#k{us=[],ns=[],a=Fa}, + func=N,arity=Arity, + vars=Vs ++ FreeVs,body=Fb1}, + Lst1#kern{funs=[Fun|Lst1#kern.funs]} + end, St1, Fs), + St2. + +%% is_exit_expr(Kexpr) -> boolean(). +%% Test whether Kexpr always exits and never returns. + +is_exit_expr(#k_call{op=#k_remote{mod=erlang,name=throw,arity=1}}) -> true; +is_exit_expr(#k_call{op=#k_remote{mod=erlang,name=exit,arity=1}}) -> true; +is_exit_expr(#k_call{op=#k_remote{mod=erlang,name=error,arity=1}}) -> true; +is_exit_expr(#k_call{op=#k_remote{mod=erlang,name=error,arity=2}}) -> true; +is_exit_expr(#k_call{op=#k_remote{mod=erlang,name=fault,arity=1}}) -> true; +is_exit_expr(#k_call{op=#k_remote{mod=erlang,name=fault,arity=2}}) -> true; +is_exit_expr(#k_call{op=#k_internal{name=match_fail,arity=1}}) -> true; +is_exit_expr(#k_bif{op=#k_internal{name=rethrow,arity=2}}) -> true; +is_exit_expr(#k_receive_next{}) -> true; +is_exit_expr(_) -> false. + +%% is_enter_expr(Kexpr) -> boolean(). +%% Test whether Kexpr is "enterable", i.e. can handle return from +%% within itself without extra #k_return{}. + +is_enter_expr(#k_call{}) -> true; +is_enter_expr(#k_match{}) -> true; +is_enter_expr(#k_receive{}) -> true; +is_enter_expr(#k_receive_next{}) -> true; +%%is_enter_expr(#k_try{}) -> true; %Soon +is_enter_expr(_) -> false. + +%% uguard(Expr, State) -> {Expr,[UsedVar],State}. +%% Tag the guard sequence with its used variables. + +uguard(#k_try{anno=A,arg=B0,vars=[#k_var{name=X}],body=#k_var{name=X}, + handler=#k_atom{val=false}}=Try, St0) -> + {B1,Bu,St1} = uguard(B0, St0), + {Try#k_try{anno=#k{us=Bu,ns=[],a=A},arg=B1},Bu,St1}; +uguard(T, St) -> + %%ok = io:fwrite("~w: ~p~n", [?LINE,T]), + uguard_test(T, St). + +%% uguard_test(Expr, State) -> {Test,[UsedVar],State}. +%% At this stage tests are just expressions which don't return any +%% values. + +uguard_test(T, St) -> uguard_expr(T, [], St). + +uguard_expr(#iset{anno=A,vars=Vs,arg=E0,body=B0}, Rs, St0) -> + Ns = lit_list_vars(Vs), + {E1,Eu,St1} = uguard_expr(E0, Vs, St0), + {B1,Bu,St2} = uguard_expr(B0, Rs, St1), + Used = union(Eu, subtract(Bu, Ns)), + {#k_seq{anno=#k{us=Used,ns=Ns,a=A},arg=E1,body=B1},Used,St2}; +uguard_expr(#k_try{anno=A,arg=B0,vars=[#k_var{name=X}],body=#k_var{name=X}, + handler=#k_atom{val=false}}=Try, Rs, St0) -> + {B1,Bu,St1} = uguard_expr(B0, Rs, St0), + {Try#k_try{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A},arg=B1,ret=Rs}, + Bu,St1}; +uguard_expr(#k_test{anno=A,op=Op,args=As}=Test, Rs, St) -> + [] = Rs, %Sanity check + Used = union(op_vars(Op), lit_list_vars(As)), + {Test#k_test{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A}}, + Used,St}; +uguard_expr(#k_bif{anno=A,op=Op,args=As}=Bif, Rs, St) -> + Used = union(op_vars(Op), lit_list_vars(As)), + {Bif#k_bif{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},ret=Rs}, + Used,St}; +uguard_expr(#ivalues{anno=A,args=As}, Rs, St) -> + Sets = foldr2(fun (V, Arg, Rhs) -> + #iset{anno=A,vars=[V],arg=Arg,body=Rhs} + end, #k_atom{val=true}, Rs, As), + uguard_expr(Sets, [], St); +uguard_expr(#k_match{anno=A,vars=Vs,body=B0}, Rs, St0) -> + %% Experimental support for andalso/orelse in guards. + Br = case Rs of + [] -> return; + _ -> {break,Rs} + end, + {B1,Bu,St1} = umatch(B0, Br, St0), + {#k_match{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A}, + vars=Vs,body=B1,ret=Rs},Bu,St1}; +uguard_expr(Lit, Rs, St) -> + %% Transform literals to puts here. + Used = lit_vars(Lit), + {#k_put{anno=#k{us=Used,ns=lit_list_vars(Rs),a=get_kanno(Lit)}, + arg=Lit,ret=Rs},Used,St}. + +%% uexpr(Expr, Break, State) -> {Expr,[UsedVar],State}. +%% Tag an expression with its used variables. +%% Break = return | {break,[RetVar]}. + +uexpr(#k_call{anno=A,op=#k_local{name=F,arity=Ar}=Op,args=As0}=Call, Br, St) -> + Free = get_free(F, Ar, St), + As1 = As0 ++ Free, %Add free variables LAST! + Used = lit_list_vars(As1), + {case Br of + {break,Rs} -> + Call#k_call{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A}, + op=Op#k_local{arity=Ar + length(Free)}, + args=As1,ret=Rs}; + return -> + #k_enter{anno=#k{us=Used,ns=[],a=A}, + op=Op#k_local{arity=Ar + length(Free)}, + args=As1} + end,Used,St}; +uexpr(#k_call{anno=A,op=Op,args=As}=Call, {break,Rs}, St) -> + Used = union(op_vars(Op), lit_list_vars(As)), + {Call#k_call{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A},ret=Rs}, + Used,St}; +uexpr(#k_call{anno=A,op=Op,args=As}, return, St) -> + Used = union(op_vars(Op), lit_list_vars(As)), + {#k_enter{anno=#k{us=Used,ns=[],a=A},op=Op,args=As}, + Used,St}; +uexpr(#k_bif{anno=A,op=Op,args=As}=Bif, {break,Rs}, St0) -> + Used = union(op_vars(Op), lit_list_vars(As)), + {Brs,St1} = bif_returns(Op, Rs, St0), + {Bif#k_bif{anno=#k{us=Used,ns=lit_list_vars(Brs),a=A},ret=Brs}, + Used,St1}; +uexpr(#k_match{anno=A,vars=Vs,body=B0}, Br, St0) -> + Rs = break_rets(Br), + {B1,Bu,St1} = umatch(B0, Br, St0), + {#k_match{anno=#k{us=Bu,ns=lit_list_vars(Rs),a=A}, + vars=Vs,body=B1,ret=Rs},Bu,St1}; +uexpr(#k_receive{anno=A,var=V,body=B0,timeout=T,action=A0}, Br, St0) -> + Rs = break_rets(Br), + Tu = lit_vars(T), %Timeout is atomic + {B1,Bu,St1} = umatch(B0, Br, St0), + {A1,Au,St2} = ubody(A0, Br, St1), + Used = del_element(V#k_var.name, union(Bu, union(Tu, Au))), + {#k_receive{anno=#k{us=Used,ns=lit_list_vars(Rs),a=A}, + var=V,body=B1,timeout=T,action=A1,ret=Rs}, + Used,St2}; +uexpr(#k_receive_accept{anno=A}, _, St) -> + {#k_receive_accept{anno=#k{us=[],ns=[],a=A}},[],St}; +uexpr(#k_receive_next{anno=A}, _, St) -> + {#k_receive_next{anno=#k{us=[],ns=[],a=A}},[],St}; +uexpr(#k_try{anno=A,arg=A0,vars=Vs,body=B0,evars=Evs,handler=H0}, + {break,Rs0}, St0) -> + {Avs,St1} = new_vars(length(Vs), St0), %Need dummy names here + {A1,Au,St2} = ubody(A0, {break,Avs}, St1), %Must break to clean up here! + {B1,Bu,St3} = ubody(B0, {break,Rs0}, St2), + {H1,Hu,St4} = ubody(H0, {break,Rs0}, St3), + %% Guarantee ONE return variable. + NumNew = if + Rs0 =:= [] -> 1; + true -> 0 + end, + {Ns,St5} = new_vars(NumNew, St4), + Rs1 = Rs0 ++ Ns, + Used = union([Au,subtract(Bu, lit_list_vars(Vs)), + subtract(Hu, lit_list_vars(Evs))]), + {#k_try{anno=#k{us=Used,ns=lit_list_vars(Rs1),a=A}, + arg=A1,vars=Vs,body=B1,evars=Evs,handler=H1,ret=Rs1}, + Used,St5}; +uexpr(#k_catch{anno=A,body=B0}, {break,Rs0}, St0) -> + {Rb,St1} = new_var(St0), + {B1,Bu,St2} = ubody(B0, {break,[Rb]}, St1), + %% Guarantee ONE return variable. + {Ns,St3} = new_vars(1 - length(Rs0), St2), + Rs1 = Rs0 ++ Ns, + {#k_catch{anno=#k{us=Bu,ns=lit_list_vars(Rs1),a=A},body=B1,ret=Rs1},Bu,St3}; +uexpr(#ifun{anno=A,vars=Vs,body=B0}=IFun, {break,Rs}, St0) -> + {B1,Bu,St1} = ubody(B0, return, St0), %Return out of new function + Ns = lit_list_vars(Vs), + Free = subtract(Bu, Ns), %Free variables in fun + Fvs = make_vars(Free), + Arity = length(Vs) + length(Free), + {{Index,Uniq,Fname}, St3} = + case lists:keysearch(id, 1, A) of + {value,{id,Id}} -> + {Id, St1}; + false -> + %% No id annotation. Must invent one. + I = St1#kern.fcount, + U = erlang:hash(IFun, (1 bsl 27)-1), + {N, St2} = new_fun_name(St1), + {{I,U,N}, St2} + end, + Fun = #k_fdef{anno=#k{us=[],ns=[],a=A},func=Fname,arity=Arity, + vars=Vs ++ Fvs,body=B1}, + {#k_bif{anno=#k{us=Free,ns=lit_list_vars(Rs),a=A}, + op=#k_internal{name=make_fun,arity=length(Free)+3}, + args=[#k_atom{val=Fname},#k_int{val=Arity}, + #k_int{val=Index},#k_int{val=Uniq}|Fvs], + ret=Rs}, +% {#k_call{anno=#k{us=Free,ns=lit_list_vars(Rs),a=A}, +% op=#k_internal{name=make_fun,arity=length(Free)+3}, +% args=[#k_atom{val=Fname},#k_int{val=Arity}, +% #k_int{val=Index},#k_int{val=Uniq}|Fvs], +% ret=Rs}, + Free,St3#kern{funs=[Fun|St3#kern.funs]}}; +uexpr(Lit, {break,Rs}, St) -> + %% Transform literals to puts here. + %%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,Lit]), + Used = lit_vars(Lit), + {#k_put{anno=#k{us=Used,ns=lit_list_vars(Rs),a=get_kanno(Lit)}, + arg=Lit,ret=Rs},Used,St}. + +%% get_free(Name, Arity, State) -> [Free]. +%% store_free(Name, Arity, [Free], State) -> State. + +get_free(F, A, St) -> + case orddict:find({F,A}, St#kern.free) of + {ok,Val} -> Val; + error -> [] + end. + +store_free(F, A, Free, St) -> + St#kern{free=orddict:store({F,A}, Free, St#kern.free)}. + +break_rets({break,Rs}) -> Rs; +break_rets(return) -> []. + +%% bif_returns(Op, [Ret], State) -> {[Ret],State}. + +bif_returns(#k_remote{mod=M,name=N,arity=Ar}, Rs, St0) -> + %%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,{M,N,Ar,Rs}]), + {Ns,St1} = new_vars(bif_vals(M, N, Ar) - length(Rs), St0), + {Rs ++ Ns,St1}; +bif_returns(#k_internal{name=N,arity=Ar}, Rs, St0) -> + %%ok = io:fwrite("uexpr ~w:~p~n", [?LINE,{N,Ar,Rs}]), + {Ns,St1} = new_vars(bif_vals(N, Ar) - length(Rs), St0), + {Rs ++ Ns,St1}. + +%% umatch(Match, Break, State) -> {Match,[UsedVar],State}. +%% Tag a match expression with its used variables. + +umatch(#k_alt{anno=A,first=F0,then=T0}, Br, St0) -> + {F1,Fu,St1} = umatch(F0, Br, St0), + {T1,Tu,St2} = umatch(T0, Br, St1), + Used = union(Fu, Tu), + {#k_alt{anno=#k{us=Used,ns=[],a=A},first=F1,then=T1}, + Used,St2}; +umatch(#k_select{anno=A,var=V,types=Ts0}, Br, St0) -> + {Ts1,Tus,St1} = umatch_list(Ts0, Br, St0), + Used = add_element(V#k_var.name, Tus), + {#k_select{anno=#k{us=Used,ns=[],a=A},var=V,types=Ts1},Used,St1}; +umatch(#k_type_clause{anno=A,type=T,values=Vs0}, Br, St0) -> + {Vs1,Vus,St1} = umatch_list(Vs0, Br, St0), + {#k_type_clause{anno=#k{us=Vus,ns=[],a=A},type=T,values=Vs1},Vus,St1}; +umatch(#k_val_clause{anno=A,val=P,body=B0}, Br, St0) -> + {U0,Ps} = pat_vars(P), + {B1,Bu,St1} = umatch(B0, Br, St0), + Used = union(U0, subtract(Bu, Ps)), + {#k_val_clause{anno=#k{us=Used,ns=[],a=A},val=P,body=B1}, + Used,St1}; +umatch(#k_guard{anno=A,clauses=Gs0}, Br, St0) -> + {Gs1,Gus,St1} = umatch_list(Gs0, Br, St0), + {#k_guard{anno=#k{us=Gus,ns=[],a=A},clauses=Gs1},Gus,St1}; +umatch(#k_guard_clause{anno=A,guard=G0,body=B0}, Br, St0) -> + %%ok = io:fwrite("~w: ~p~n", [?LINE,G0]), + {G1,Gu,St1} = uguard(G0, St0), + %%ok = io:fwrite("~w: ~p~n", [?LINE,G1]), + {B1,Bu,St2} = umatch(B0, Br, St1), + Used = union(Gu, Bu), + {#k_guard_clause{anno=#k{us=Used,ns=[],a=A},guard=G1,body=B1},Used,St2}; +umatch(B0, Br, St0) -> ubody(B0, Br, St0). + +umatch_list(Ms0, Br, St) -> + foldr(fun (M0, {Ms1,Us,Sta}) -> + {M1,Mu,Stb} = umatch(M0, Br, Sta), + {[M1|Ms1],union(Mu, Us),Stb} + end, {[],[],St}, Ms0). + +%% op_vars(Op) -> [VarName]. + +op_vars(#k_local{}) -> []; +op_vars(#k_remote{mod=Mod,name=Name}) -> + ordsets:from_list([V || #k_var{name=V} <- [Mod,Name]]); +op_vars(#k_internal{}) -> []; +op_vars(Atomic) -> lit_vars(Atomic). + +%% lit_vars(Literal) -> [VarName]. +%% Return the variables in a literal. + +lit_vars(#k_var{name=N}) -> [N]; +lit_vars(#k_int{}) -> []; +lit_vars(#k_float{}) -> []; +lit_vars(#k_atom{}) -> []; +%%lit_vars(#k_char{}) -> []; +lit_vars(#k_string{}) -> []; +lit_vars(#k_nil{}) -> []; +lit_vars(#k_cons{hd=H,tl=T}) -> + union(lit_vars(H), lit_vars(T)); +lit_vars(#k_binary{segs=V}) -> lit_vars(V); +lit_vars(#k_bin_end{}) -> []; +lit_vars(#k_bin_seg{size=Size,seg=S,next=N}) -> + union(lit_vars(Size), union(lit_vars(S), lit_vars(N))); +lit_vars(#k_tuple{es=Es}) -> + lit_list_vars(Es). + +lit_list_vars(Ps) -> + foldl(fun (P, Vs) -> union(lit_vars(P), Vs) end, [], Ps). + +%% pat_vars(Pattern) -> {[UsedVarName],[NewVarName]}. +%% Return variables in a pattern. All variables are new variables +%% except those in the size field of binary segments. + +pat_vars(#k_var{name=N}) -> {[],[N]}; +%%pat_vars(#k_char{}) -> {[],[]}; +pat_vars(#k_int{}) -> {[],[]}; +pat_vars(#k_float{}) -> {[],[]}; +pat_vars(#k_atom{}) -> {[],[]}; +pat_vars(#k_string{}) -> {[],[]}; +pat_vars(#k_nil{}) -> {[],[]}; +pat_vars(#k_cons{hd=H,tl=T}) -> + pat_list_vars([H,T]); +pat_vars(#k_binary{segs=V}) -> + pat_vars(V); +pat_vars(#k_bin_seg{size=Size,seg=S,next=N}) -> + {U1,New} = pat_list_vars([S,N]), + {[],U2} = pat_vars(Size), + {union(U1, U2),New}; +pat_vars(#k_bin_end{}) -> {[],[]}; +pat_vars(#k_tuple{es=Es}) -> + pat_list_vars(Es). + +pat_list_vars(Ps) -> + foldl(fun (P, {Used0,New0}) -> + {Used,New} = pat_vars(P), + {union(Used0, Used),union(New0, New)} end, + {[],[]}, Ps). + +%% aligned(Bits, Size, Unit, Flags) -> {Size,Flags} +%% Add 'aligned' to the flags if the current field is aligned. +%% Number of bits correct modulo 8. + +aligned(B, S, U, Fs) when B rem 8 =:= 0 -> + {incr_bits(B, S, U),[aligned|Fs]}; +aligned(B, S, U, Fs) -> + {incr_bits(B, S, U),Fs}. + +incr_bits(B, #k_int{val=S}, U) when integer(B) -> B + S*U; +incr_bits(_, #k_atom{val=all}, _) -> 0; %Always aligned +incr_bits(B, _, 8) -> B; +incr_bits(_, _, _) -> unknown. + +make_list(Es) -> + foldr(fun (E, Acc) -> #c_cons{hd=E,tl=Acc} end, #c_nil{}, Es). + +%% List of integers in interval [N,M]. Empty list if N > M. + +integers(N, M) when N =< M -> + [N|integers(N + 1, M)]; +integers(_, _) -> []. + +%%% +%%% Handling of warnings. +%%% + +format_error({nomatch_shadow,Line}) -> + M = io_lib:format("this clause cannot match because a previous clause at line ~p " + "always matches", [Line]), + lists:flatten(M); +format_error(nomatch_shadow) -> + "this clause cannot match because a previous clause always matches". + +add_warning(none, Term, #kern{ws=Ws}=St) -> + St#kern{ws=[{?MODULE,Term}|Ws]}; +add_warning(Line, Term, #kern{ws=Ws}=St) when Line >= 0 -> + St#kern{ws=[{Line,?MODULE,Term}|Ws]}; +add_warning(_, _, St) -> St. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel.hrl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel.hrl new file mode 100644 index 0000000000..6e97d4d66a --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel.hrl @@ -0,0 +1,77 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_kernel.hrl,v 1.1 2008/12/17 09:53:43 mikpe Exp $ +%% + +%% Purpose : Kernel Erlang as records. + +%% It would be nice to incorporate some generic functions as well but +%% this could make including this file difficult. +%% N.B. the annotation field is ALWAYS the first field! + +%% Kernel annotation record. +-record(k, {us, %Used variables + ns, %New variables + a}). %Core annotation + +%% Literals +%% NO CHARACTERS YET. +%%-record(k_char, {anno=[],val}). +-record(k_int, {anno=[],val}). +-record(k_float, {anno=[],val}). +-record(k_atom, {anno=[],val}). +-record(k_string, {anno=[],val}). +-record(k_nil, {anno=[]}). + +-record(k_tuple, {anno=[],es}). +-record(k_cons, {anno=[],hd,tl}). +-record(k_binary, {anno=[],segs}). +-record(k_bin_seg, {anno=[],size,unit,type,flags,seg,next}). +-record(k_bin_end, {anno=[]}). +-record(k_var, {anno=[],name}). + +-record(k_local, {anno=[],name,arity}). +-record(k_remote, {anno=[],mod,name,arity}). +-record(k_internal, {anno=[],name,arity}). + +-record(k_mdef, {anno=[],name,exports,attributes,body}). +-record(k_fdef, {anno=[],func,arity,vars,body}). + +-record(k_seq, {anno=[],arg,body}). +-record(k_put, {anno=[],arg,ret=[]}). +-record(k_bif, {anno=[],op,args,ret=[]}). +-record(k_test, {anno=[],op,args}). +-record(k_call, {anno=[],op,args,ret=[]}). +-record(k_enter, {anno=[],op,args}). +-record(k_receive, {anno=[],var,body,timeout,action,ret=[]}). +-record(k_receive_accept, {anno=[]}). +-record(k_receive_next, {anno=[]}). +-record(k_try, {anno=[],arg,vars,body,evars,handler,ret=[]}). +-record(k_catch, {anno=[],body,ret=[]}). + +-record(k_match, {anno=[],vars,body,ret=[]}). +-record(k_alt, {anno=[],first,then}). +-record(k_select, {anno=[],var,types}). +-record(k_type_clause, {anno=[],type,values}). +-record(k_val_clause, {anno=[],val,body}). +-record(k_guard, {anno=[],clauses}). +-record(k_guard_clause, {anno=[],guard,body}). + +-record(k_break, {anno=[],args=[]}). +-record(k_return, {anno=[],args=[]}). + +%%k_get_anno(Thing) -> element(2, Thing). +%%k_set_anno(Thing, Anno) -> setelement(2, Thing, Anno). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel_pp.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel_pp.erl new file mode 100644 index 0000000000..41f59b7a81 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_kernel_pp.erl @@ -0,0 +1,444 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_kernel_pp.erl,v 1.1 2008/12/17 09:53:43 mikpe Exp $ +%% +%% Purpose : Kernel Erlang (naive) prettyprinter + +-module(v3_kernel_pp). + +-include("v3_kernel.hrl"). + +-export([format/1]). + +%% These are "internal" structures in sys_kernel which are here for +%% debugging purposes. +-record(iset, {anno=[],vars,arg,body}). +-record(ifun, {anno=[],vars,body}). + +%% ====================================================================== %% +%% format(Node) -> Text +%% Node = coreErlang() +%% Text = string() | [Text] +%% +%% Prettyprint-formats (naively) an abstract Core Erlang syntax +%% tree. + +-record(ctxt, {indent = 0, + item_indent = 2, + body_indent = 2, + tab_width = 8}). + +canno(Cthing) -> element(2, Cthing). + +format(Node) -> format(Node, #ctxt{}). + +format(Node, Ctxt) -> + case canno(Node) of + [] -> + format_1(Node, Ctxt); + List -> + format_anno(List, Ctxt, fun (Ctxt1) -> format_1(Node, Ctxt1) end) + end. + +format_anno(Anno, Ctxt, ObjFun) -> + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + ["( ", + ObjFun(Ctxt1), + nl_indent(Ctxt1), + "-| ",io_lib:write(Anno), + " )"]. + +%% format_1(Kexpr, Context) -> string(). + +format_1(#k_atom{val=A}, _Ctxt) -> core_atom(A); +%%format_1(#k_char{val=C}, _Ctxt) -> io_lib:write_char(C); +format_1(#k_float{val=F}, _Ctxt) -> float_to_list(F); +format_1(#k_int{val=I}, _Ctxt) -> integer_to_list(I); +format_1(#k_nil{}, _Ctxt) -> "[]"; +format_1(#k_string{val=S}, _Ctxt) -> io_lib:write_string(S); +format_1(#k_var{name=V}, _Ctxt) -> + if atom(V) -> + case atom_to_list(V) of + [$_|Cs] -> "_X" ++ Cs; + [C|Cs] when C >= $A, C =< $Z -> [C|Cs]; + Cs -> [$_|Cs] + end; + integer(V) -> [$_|integer_to_list(V)] + end; +format_1(#k_cons{hd=H,tl=T}, Ctxt) -> + Txt = ["["|format(H, ctxt_bump_indent(Ctxt, 1))], + [Txt|format_list_tail(T, ctxt_bump_indent(Ctxt, width(Txt, Ctxt)))]; +format_1(#k_tuple{es=Es}, Ctxt) -> + [${, + format_hseq(Es, ",", ctxt_bump_indent(Ctxt, 1), fun format/2), + $} + ]; +format_1(#k_binary{segs=S}, Ctxt) -> + ["#<",format(S, ctxt_bump_indent(Ctxt, 2)),">#"]; +format_1(#k_bin_seg{}=S, Ctxt) -> + [format_bin_seg_1(S, Ctxt), + format_bin_seg(S#k_bin_seg.next, ctxt_bump_indent(Ctxt, 2))]; +format_1(#k_bin_end{}, _Ctxt) -> "#<>#"; +format_1(#k_local{name=N,arity=A}, Ctxt) -> + "local " ++ format_fa_pair({N,A}, Ctxt); +format_1(#k_remote{mod=M,name=N,arity=A}, _Ctxt) -> + %% This is for our internal translator. + io_lib:format("remote ~s:~s/~w", [format(M),format(N),A]); +format_1(#k_internal{name=N,arity=A}, Ctxt) -> + "internal " ++ format_fa_pair({N,A}, Ctxt); +format_1(#k_seq{arg=A,body=B}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + ["do", + nl_indent(Ctxt1), + format(A, Ctxt1), + nl_indent(Ctxt), + "then", + nl_indent(Ctxt) + | format(B, Ctxt) + ]; +format_1(#k_match{vars=Vs,body=Bs,ret=Rs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.item_indent), + ["match ", + format_hseq(Vs, ",", ctxt_bump_indent(Ctxt, 6), fun format/2), + nl_indent(Ctxt1), + format(Bs, Ctxt1), + nl_indent(Ctxt), + "end", + format_ret(Rs, Ctxt1) + ]; +format_1(#k_alt{first=O,then=T}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.item_indent), + ["alt", + nl_indent(Ctxt1), + format(O, Ctxt1), + nl_indent(Ctxt1), + format(T, Ctxt1)]; +format_1(#k_select{var=V,types=Cs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + ["select ", + format(V, Ctxt), + nl_indent(Ctxt1), + format_vseq(Cs, "", "", Ctxt1, fun format/2) + ]; +format_1(#k_type_clause{type=T,values=Cs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + ["type ", + io_lib:write(T), + nl_indent(Ctxt1), + format_vseq(Cs, "", "", Ctxt1, fun format/2) + ]; +format_1(#k_val_clause{val=Val,body=B}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + [format(Val, Ctxt), + " ->", + nl_indent(Ctxt1) + | format(B, Ctxt1) + ]; +format_1(#k_guard{clauses=Gs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, 5), + ["when ", + nl_indent(Ctxt1), + format_vseq(Gs, "", "", Ctxt1, fun format/2)]; +format_1(#k_guard_clause{guard=G,body=B}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + [format(G, Ctxt), + nl_indent(Ctxt), + "->", + nl_indent(Ctxt1) + | format(B, Ctxt1) + ]; +format_1(#k_call{op=Op,args=As,ret=Rs}, Ctxt) -> + Txt = ["call (",format(Op, ctxt_bump_indent(Ctxt, 6)),$)], + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + [Txt,format_args(As, Ctxt1), + format_ret(Rs, Ctxt1) + ]; +format_1(#k_enter{op=Op,args=As}, Ctxt) -> + Txt = ["enter (",format(Op, ctxt_bump_indent(Ctxt, 7)),$)], + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + [Txt,format_args(As, Ctxt1)]; +format_1(#k_bif{op=Op,args=As,ret=Rs}, Ctxt) -> + Txt = ["bif (",format(Op, ctxt_bump_indent(Ctxt, 5)),$)], + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + [Txt,format_args(As, Ctxt1), + format_ret(Rs, Ctxt1) + ]; +format_1(#k_test{op=Op,args=As}, Ctxt) -> + Txt = ["test (",format(Op, ctxt_bump_indent(Ctxt, 6)),$)], + Ctxt1 = ctxt_bump_indent(Ctxt, 2), + [Txt,format_args(As, Ctxt1)]; +format_1(#k_put{arg=A,ret=Rs}, Ctxt) -> + [format(A, Ctxt), + format_ret(Rs, ctxt_bump_indent(Ctxt, 1)) + ]; +format_1(#k_try{arg=A,vars=Vs,body=B,evars=Evs,handler=H,ret=Rs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + ["try", + nl_indent(Ctxt1), + format(A, Ctxt1), + nl_indent(Ctxt), + "of ", + format_hseq(Vs, ", ", ctxt_bump_indent(Ctxt, 3), fun format/2), + nl_indent(Ctxt1), + format(B, Ctxt1), + nl_indent(Ctxt), + "catch ", + format_hseq(Evs, ", ", ctxt_bump_indent(Ctxt, 6), fun format/2), + nl_indent(Ctxt1), + format(H, Ctxt1), + nl_indent(Ctxt), + "end", + format_ret(Rs, Ctxt1) + ]; +format_1(#k_catch{body=B,ret=Rs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + ["catch", + nl_indent(Ctxt1), + format(B, Ctxt1), + nl_indent(Ctxt), + "end", + format_ret(Rs, Ctxt1) + ]; +format_1(#k_receive{var=V,body=B,timeout=T,action=A,ret=Rs}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.item_indent), + ["receive ", + format(V, Ctxt), + nl_indent(Ctxt1), + format(B, Ctxt1), + nl_indent(Ctxt), + "after ", + format(T, ctxt_bump_indent(Ctxt, 6)), + " ->", + nl_indent(Ctxt1), + format(A, Ctxt1), + nl_indent(Ctxt), + "end", + format_ret(Rs, Ctxt1) + ]; +format_1(#k_receive_accept{}, _Ctxt) -> "receive_accept"; +format_1(#k_receive_next{}, _Ctxt) -> "receive_next"; +format_1(#k_break{args=As}, Ctxt) -> + ["<", + format_hseq(As, ",", ctxt_bump_indent(Ctxt, 1), fun format/2), + ">" + ]; +format_1(#k_return{args=As}, Ctxt) -> + ["<<", + format_hseq(As, ",", ctxt_bump_indent(Ctxt, 1), fun format/2), + ">>" + ]; +format_1(#k_fdef{func=F,arity=A,vars=Vs,body=B}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + ["fdef ", + format_fa_pair({F,A}, ctxt_bump_indent(Ctxt, 5)), + format_args(Vs, ctxt_bump_indent(Ctxt, 14)), + " =", + nl_indent(Ctxt1), + format(B, Ctxt1) + ]; +format_1(#k_mdef{name=N,exports=Es,attributes=As,body=B}, Ctxt) -> + ["module ", + format(#k_atom{val=N}, ctxt_bump_indent(Ctxt, 7)), + nl_indent(Ctxt), + "export [", + format_vseq(Es, + "", ",", + ctxt_bump_indent(Ctxt, 8), + fun format_fa_pair/2), + "]", + nl_indent(Ctxt), + "attributes [", + format_vseq(As, + "", ",", + ctxt_bump_indent(Ctxt, 12), + fun format_attribute/2), + "]", + nl_indent(Ctxt), + format_vseq(B, + "", "", + Ctxt, + fun format/2), + nl_indent(Ctxt) + | "end" + ]; +%% Internal sys_kernel structures. +format_1(#iset{vars=Vs,arg=A,body=B}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + ["set <", + format_hseq(Vs, ", ", ctxt_bump_indent(Ctxt, 5), fun format/2), + "> =", + nl_indent(Ctxt1), + format(A, Ctxt1), + nl_indent(Ctxt), + "in " + | format(B, ctxt_bump_indent(Ctxt, 2)) + ]; +format_1(#ifun{vars=Vs,body=B}, Ctxt) -> + Ctxt1 = ctxt_bump_indent(Ctxt, Ctxt#ctxt.body_indent), + ["fun ", + format_args(Vs, ctxt_bump_indent(Ctxt, 4)), + " ->", + nl_indent(Ctxt1) + | format(B, Ctxt1) + ]; +format_1(Type, _Ctxt) -> + ["** Unsupported type: ", + io_lib:write(Type) + | " **" + ]. + +%% format_ret([RetVar], Context) -> Txt. +%% Format the return vars of kexpr. + +format_ret(Rs, Ctxt) -> + [" >> ", + "<", + format_hseq(Rs, ",", ctxt_bump_indent(Ctxt, 5), fun format/2), + ">"]. + +%% format_args([Arg], Context) -> Txt. +%% Format arguments. + +format_args(As, Ctxt) -> + [$(,format_hseq(As, ", ", ctxt_bump_indent(Ctxt, 1), fun format/2),$)]. + +%% format_hseq([Thing], Separator, Context, Fun) -> Txt. +%% Format a sequence horizontally. + +format_hseq([H], _Sep, Ctxt, Fun) -> + Fun(H, Ctxt); +format_hseq([H|T], Sep, Ctxt, Fun) -> + Txt = [Fun(H, Ctxt)|Sep], + Ctxt1 = ctxt_bump_indent(Ctxt, width(Txt, Ctxt)), + [Txt|format_hseq(T, Sep, Ctxt1, Fun)]; +format_hseq([], _, _, _) -> "". + +%% format_vseq([Thing], LinePrefix, LineSuffix, Context, Fun) -> Txt. +%% Format a sequence vertically. + +format_vseq([H], _Pre, _Suf, Ctxt, Fun) -> + Fun(H, Ctxt); +format_vseq([H|T], Pre, Suf, Ctxt, Fun) -> + [Fun(H, Ctxt),Suf,nl_indent(Ctxt),Pre| + format_vseq(T, Pre, Suf, Ctxt, Fun)]; +format_vseq([], _, _, _, _) -> "". + +format_fa_pair({F,A}, _Ctxt) -> [core_atom(F),$/,integer_to_list(A)]. + +%% format_attribute({Name,Val}, Context) -> Txt. + +format_attribute({Name,Val}, Ctxt) when list(Val) -> + Txt = format(#k_atom{val=Name}, Ctxt), + Ctxt1 = ctxt_bump_indent(Ctxt, width(Txt,Ctxt)+4), + [Txt," = ", + $[,format_vseq(Val, "", ",", Ctxt1, + fun (A, _C) -> io_lib:write(A) end),$] + ]; +format_attribute({Name,Val}, Ctxt) -> + Txt = format(#k_atom{val=Name}, Ctxt), + [Txt," = ",io_lib:write(Val)]. + +format_list_tail(#k_nil{anno=[]}, _Ctxt) -> "]"; +format_list_tail(#k_cons{anno=[],hd=H,tl=T}, Ctxt) -> + Txt = [$,|format(H, Ctxt)], + Ctxt1 = ctxt_bump_indent(Ctxt, width(Txt, Ctxt)), + [Txt|format_list_tail(T, Ctxt1)]; +format_list_tail(Tail, Ctxt) -> + ["|",format(Tail, ctxt_bump_indent(Ctxt, 1)), "]"]. + +format_bin_seg(#k_bin_end{anno=[]}, _Ctxt) -> ""; +format_bin_seg(#k_bin_seg{anno=[],next=N}=Seg, Ctxt) -> + Txt = [$,|format_bin_seg_1(Seg, Ctxt)], + [Txt|format_bin_seg(N, ctxt_bump_indent(Ctxt, width(Txt, Ctxt)))]; +format_bin_seg(Seg, Ctxt) -> + ["|",format(Seg, ctxt_bump_indent(Ctxt, 2))]. + +format_bin_seg_1(#k_bin_seg{size=S,unit=U,type=T,flags=Fs,seg=Seg}, Ctxt) -> + [format(Seg, Ctxt), + ":",format(S, Ctxt),"*",io_lib:write(U), + ":",io_lib:write(T), + lists:map(fun (F) -> [$-,io_lib:write(F)] end, Fs) + ]. + +% format_bin_elements(#k_binary_cons{hd=H,tl=T,size=S,info=I}, Ctxt) -> +% A = canno(T), +% Fe = fun (Eh, Es, Ei, Ct) -> +% [format(Eh, Ct),":",format(Es, Ct),"/",io_lib:write(Ei)] +% end, +% case T of +% #k_zero_binary{} when A == [] -> +% Fe(H, S, I, Ctxt); +% #k_binary_cons{} when A == [] -> +% Txt = [Fe(H, S, I, Ctxt)|","], +% Ctxt1 = ctxt_bump_indent(Ctxt, width(Txt, Ctxt)), +% [Txt|format_bin_elements(T, Ctxt1)]; +% _ -> +% Txt = [Fe(H, S, I, Ctxt)|"|"], +% [Txt|format(T, ctxt_bump_indent(Ctxt, width(Txt, Ctxt)))] +% end. + +indent(Ctxt) -> indent(Ctxt#ctxt.indent, Ctxt). + +indent(N, _Ctxt) when N =< 0 -> ""; +indent(N, Ctxt) -> + T = Ctxt#ctxt.tab_width, + string:chars($\t, N div T, string:chars($\s, N rem T)). + +nl_indent(Ctxt) -> [$\n|indent(Ctxt)]. + + +unindent(T, Ctxt) -> + unindent(T, Ctxt#ctxt.indent, Ctxt, []). + +unindent(T, N, _Ctxt, C) when N =< 0 -> + [T|C]; +unindent([$\s|T], N, Ctxt, C) -> + unindent(T, N - 1, Ctxt, C); +unindent([$\t|T], N, Ctxt, C) -> + Tab = Ctxt#ctxt.tab_width, + if N >= Tab -> + unindent(T, N - Tab, Ctxt, C); + true -> + unindent([string:chars($\s, Tab - N)|T], 0, Ctxt, C) + end; +unindent([L|T], N, Ctxt, C) when list(L) -> + unindent(L, N, Ctxt, [T|C]); +unindent([H|T], _N, _Ctxt, C) -> + [H|[T|C]]; +unindent([], N, Ctxt, [H|T]) -> + unindent(H, N, Ctxt, T); +unindent([], _, _, []) -> []. + + +width(Txt, Ctxt) -> + width(Txt, 0, Ctxt, []). + +width([$\t|T], A, Ctxt, C) -> + width(T, A + Ctxt#ctxt.tab_width, Ctxt, C); +width([$\n|T], _A, Ctxt, C) -> + width(unindent([T|C], Ctxt), Ctxt); +width([H|T], A, Ctxt, C) when list(H) -> + width(H, A, Ctxt, [T|C]); +width([_|T], A, Ctxt, C) -> + width(T, A + 1, Ctxt, C); +width([], A, Ctxt, [H|T]) -> + width(H, A, Ctxt, T); +width([], A, _, []) -> A. + +ctxt_bump_indent(Ctxt, Dx) -> + Ctxt#ctxt{indent=Ctxt#ctxt.indent + Dx}. + +core_atom(A) -> io_lib:write_string(atom_to_list(A), $'). diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_life.erl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_life.erl new file mode 100644 index 0000000000..9579b5f46a --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_life.erl @@ -0,0 +1,448 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_life.erl,v 1.2 2010/03/04 13:54:20 maria Exp $ +%% +%% Purpose : Convert annotated kernel expressions to annotated beam format. + +%% This module creates beam format annotated with variable lifetime +%% information. Each thing is given an index and for each variable we +%% store the first and last index for its occurrence. The variable +%% database, VDB, attached to each thing is only relevant internally +%% for that thing. +%% +%% For nested things like matches the numbering continues locally and +%% the VDB for that thing refers to the variable usage within that +%% thing. Variables which live through a such a thing are internally +%% given a very large last index. Internally the indexes continue +%% after the index of that thing. This creates no problems as the +%% internal variable info never escapes and externally we only see +%% variable which are alive both before or after. +%% +%% This means that variables never "escape" from a thing and the only +%% way to get values from a thing is to "return" them, with 'break' or +%% 'return'. Externally these values become the return values of the +%% thing. This is no real limitation as most nested things have +%% multiple threads so working out a common best variable usage is +%% difficult. + +-module(v3_life). + +-export([module/2]). + +-export([vdb_find/2]). + +-import(lists, [map/2,foldl/3]). +-import(ordsets, [add_element/2,intersection/2,union/2,union/1]). + +-include("v3_kernel.hrl"). +-include("v3_life.hrl"). + +%% These are not defined in v3_kernel.hrl. +get_kanno(Kthing) -> element(2, Kthing). +%%set_kanno(Kthing, Anno) -> setelement(2, Kthing, Anno). + +module(#k_mdef{name=M,exports=Es,attributes=As,body=Fs0}, Opts) -> + put(?MODULE, Opts), + Fs1 = map(fun function/1, Fs0), + erase(?MODULE), + {ok,{M,Es,As,Fs1}}. + +%% function(Kfunc) -> Func. + +function(#k_fdef{func=F,arity=Ar,vars=Vs,body=Kb}) -> + %%ok = io:fwrite("life ~w: ~p~n", [?LINE,{F,Ar}]), + As = var_list(Vs), + Vdb0 = foldl(fun ({var,N}, Vdb) -> new_var(N, 0, Vdb) end, [], As), + %% Force a top-level match! + B0 = case Kb of + #k_match{} -> Kb; + _ -> + Ka = get_kanno(Kb), + #k_match{anno=#k{us=Ka#k.us,ns=[],a=Ka#k.a}, + vars=Vs,body=Kb,ret=[]} + end, + {B1,_,Vdb1} = body(B0, 1, Vdb0), + {function,F,Ar,As,B1,Vdb1}. + +%% body(Kbody, I, Vdb) -> {[Expr],MaxI,Vdb}. +%% Handle a body, need special cases for transforming match_fails. +%% We KNOW that they only occur last in a body. + +body(#k_seq{arg=#k_put{anno=Pa,arg=Arg,ret=[R]}, + body=#k_enter{anno=Ea,op=#k_internal{name=match_fail,arity=1}, + args=[R]}}, + I, Vdb0) -> + Vdb1 = use_vars(Pa#k.us, I, Vdb0), %All used here + {[match_fail(Arg, I, Pa#k.a ++ Ea#k.a)],I,Vdb1}; +body(#k_enter{anno=Ea,op=#k_internal{name=match_fail,arity=1},args=[Arg]}, + I, Vdb0) -> + Vdb1 = use_vars(Ea#k.us, I, Vdb0), + {[match_fail(Arg, I, Ea#k.a)],I,Vdb1}; +body(#k_seq{arg=Ke,body=Kb}, I, Vdb0) -> + %%ok = io:fwrite("life ~w:~p~n", [?LINE,{Ke,I,Vdb0}]), + A = get_kanno(Ke), + Vdb1 = use_vars(A#k.us, I, new_vars(A#k.ns, I, Vdb0)), + {Es,MaxI,Vdb2} = body(Kb, I+1, Vdb1), + E = expr(Ke, I, Vdb2), + {[E|Es],MaxI,Vdb2}; +body(Ke, I, Vdb0) -> + %%ok = io:fwrite("life ~w:~p~n", [?LINE,{Ke,I,Vdb0}]), + A = get_kanno(Ke), + Vdb1 = use_vars(A#k.us, I, new_vars(A#k.ns, I, Vdb0)), + E = expr(Ke, I, Vdb1), + {[E],I,Vdb1}. + +%% guard(Kguard, I, Vdb) -> Guard. + +guard(#k_try{anno=A,arg=Ts,vars=[#k_var{name=X}],body=#k_var{name=X}, + handler=#k_atom{val=false},ret=Rs}, I, Vdb) -> + %% Lock variables that are alive before try and used afterwards. + %% Don't lock variables that are only used inside the try expression. + Pdb0 = vdb_sub(I, I+1, Vdb), + {T,MaxI,Pdb1} = guard_body(Ts, I+1, Pdb0), + Pdb2 = use_vars(A#k.ns, MaxI+1, Pdb1), %Save "return" values + #l{ke={protected,T,var_list(Rs)},i=I,a=A#k.a,vdb=Pdb2}; +guard(#k_seq{}=G, I, Vdb0) -> + {Es,_,Vdb1} = guard_body(G, I, Vdb0), + #l{ke={block,Es},i=I,vdb=Vdb1,a=[]}; +guard(G, I, Vdb) -> guard_expr(G, I, Vdb). + +%% guard_body(Kbody, I, Vdb) -> {[Expr],MaxI,Vdb}. + +guard_body(#k_seq{arg=Ke,body=Kb}, I, Vdb0) -> + A = get_kanno(Ke), + Vdb1 = use_vars(A#k.us, I, new_vars(A#k.ns, I, Vdb0)), + {Es,MaxI,Vdb2} = guard_body(Kb, I+1, Vdb1), + E = guard_expr(Ke, I, Vdb2), + {[E|Es],MaxI,Vdb2}; +guard_body(Ke, I, Vdb0) -> + A = get_kanno(Ke), + Vdb1 = use_vars(A#k.us, I, new_vars(A#k.ns, I, Vdb0)), + E = guard_expr(Ke, I, Vdb1), + {[E],I,Vdb1}. + +%% guard_expr(Call, I, Vdb) -> Expr + +guard_expr(#k_test{anno=A,op=Op,args=As}, I, _Vdb) -> + #l{ke={test,test_op(Op),atomic_list(As)},i=I,a=A#k.a}; +guard_expr(#k_bif{anno=A,op=Op,args=As,ret=Rs}, I, _Vdb) -> + #l{ke={bif,bif_op(Op),atomic_list(As),var_list(Rs)},i=I,a=A#k.a}; +guard_expr(#k_put{anno=A,arg=Arg,ret=Rs}, I, _Vdb) -> + #l{ke={set,var_list(Rs),literal(Arg)},i=I,a=A#k.a}; +guard_expr(#k_match{anno=A,body=Kb,ret=Rs}, I, Vdb) -> + %% Experimental support for andalso/orelse in guards. + %% Work out imported variables which need to be locked. + Mdb = vdb_sub(I, I+1, Vdb), + M = match(Kb, A#k.us, I+1, Mdb), + #l{ke={match,M,var_list(Rs)},i=I,vdb=use_vars(A#k.us, I+1, Mdb),a=A#k.a}; +guard_expr(G, I, Vdb) -> guard(G, I, Vdb). + +%% expr(Kexpr, I, Vdb) -> Expr. + +expr(#k_call{anno=A,op=Op,args=As,ret=Rs}, I, _Vdb) -> + #l{ke={call,call_op(Op),atomic_list(As),var_list(Rs)},i=I,a=A#k.a}; +expr(#k_enter{anno=A,op=Op,args=As}, I, _Vdb) -> + #l{ke={enter,call_op(Op),atomic_list(As)},i=I,a=A#k.a}; +expr(#k_bif{anno=A,op=Op,args=As,ret=Rs}, I, _Vdb) -> + Bif = k_bif(A, Op, As, Rs), + #l{ke=Bif,i=I,a=A#k.a}; +expr(#k_match{anno=A,body=Kb,ret=Rs}, I, Vdb) -> + %% Work out imported variables which need to be locked. + Mdb = vdb_sub(I, I+1, Vdb), + M = match(Kb, A#k.us, I+1, Mdb), + #l{ke={match,M,var_list(Rs)},i=I,vdb=use_vars(A#k.us, I+1, Mdb),a=A#k.a}; +expr(#k_try{anno=A,arg=Ka,vars=Vs,body=Kb,evars=Evs,handler=Kh,ret=Rs}, I, Vdb) -> + %% Lock variables that are alive before the catch and used afterwards. + %% Don't lock variables that are only used inside the try. + Tdb0 = vdb_sub(I, I+1, Vdb), + %% This is the tricky bit. Lock variables in Arg that are used in + %% the body and handler. Add try tag 'variable'. + Ab = get_kanno(Kb), + Ah = get_kanno(Kh), + Tdb1 = use_vars(Ab#k.us, I+3, use_vars(Ah#k.us, I+3, Tdb0)), + Tdb2 = vdb_sub(I, I+2, Tdb1), + Vnames = fun (Kvar) -> Kvar#k_var.name end, %Get the variable names + {Aes,_,Adb} = body(Ka, I+2, add_var({catch_tag,I+1}, I+1, 1000000, Tdb2)), + {Bes,_,Bdb} = body(Kb, I+4, new_vars(map(Vnames, Vs), I+3, Tdb2)), + {Hes,_,Hdb} = body(Kh, I+4, new_vars(map(Vnames, Evs), I+3, Tdb2)), + #l{ke={'try',#l{ke={block,Aes},i=I+1,vdb=Adb,a=[]}, + var_list(Vs),#l{ke={block,Bes},i=I+3,vdb=Bdb,a=[]}, + var_list(Evs),#l{ke={block,Hes},i=I+3,vdb=Hdb,a=[]}, + var_list(Rs)}, + i=I,vdb=Tdb1,a=A#k.a}; +expr(#k_catch{anno=A,body=Kb,ret=[R]}, I, Vdb) -> + %% Lock variables that are alive before the catch and used afterwards. + %% Don't lock variables that are only used inside the catch. + %% Add catch tag 'variable'. + Cdb0 = vdb_sub(I, I+1, Vdb), + {Es,_,Cdb1} = body(Kb, I+1, add_var({catch_tag,I}, I, 1000000, Cdb0)), + #l{ke={'catch',Es,variable(R)},i=I,vdb=Cdb1,a=A#k.a}; +expr(#k_receive{anno=A,var=V,body=Kb,timeout=T,action=Ka,ret=Rs}, I, Vdb) -> + %% Work out imported variables which need to be locked. + Rdb = vdb_sub(I, I+1, Vdb), + M = match(Kb, add_element(V#k_var.name, A#k.us), I+1, + new_var(V#k_var.name, I, Rdb)), + {Tes,_,Adb} = body(Ka, I+1, Rdb), + #l{ke={receive_loop,atomic_lit(T),variable(V),M, + #l{ke=Tes,i=I+1,vdb=Adb,a=[]},var_list(Rs)}, + i=I,vdb=use_vars(A#k.us, I+1, Vdb),a=A#k.a}; +expr(#k_receive_accept{anno=A}, I, _Vdb) -> + #l{ke=receive_accept,i=I,a=A#k.a}; +expr(#k_receive_next{anno=A}, I, _Vdb) -> + #l{ke=receive_next,i=I,a=A#k.a}; +expr(#k_put{anno=A,arg=Arg,ret=Rs}, I, _Vdb) -> + #l{ke={set,var_list(Rs),literal(Arg)},i=I,a=A#k.a}; +expr(#k_break{anno=A,args=As}, I, _Vdb) -> + #l{ke={break,atomic_list(As)},i=I,a=A#k.a}; +expr(#k_return{anno=A,args=As}, I, _Vdb) -> + #l{ke={return,atomic_list(As)},i=I,a=A#k.a}. + +%% call_op(Op) -> Op. +%% bif_op(Op) -> Op. +%% test_op(Op) -> Op. +%% Do any necessary name translations here to munge into beam format. + +call_op(#k_local{name=N}) -> N; +call_op(#k_remote{mod=M,name=N}) -> {remote,atomic_lit(M),atomic_lit(N)}; +call_op(Other) -> variable(Other). + +bif_op(#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=N}}) -> N; +bif_op(#k_internal{name=N}) -> N. + +test_op(#k_remote{mod=#k_atom{val=erlang},name=#k_atom{val=N}}) -> N. + +%% k_bif(Anno, Op, [Arg], [Ret]) -> Expr. +%% Build bifs, do special handling of internal some calls. + +k_bif(_A, #k_internal{name=dsetelement,arity=3}, As, []) -> + {bif,dsetelement,atomic_list(As),[]}; +k_bif(_A, #k_internal{name=make_fun}, + [#k_atom{val=Fun},#k_int{val=Arity}, + #k_int{val=Index},#k_int{val=Uniq}|Free], + Rs) -> + {bif,{make_fun,Fun,Arity,Index,Uniq},var_list(Free),var_list(Rs)}; +k_bif(_A, Op, As, Rs) -> + %% The general case. + {bif,bif_op(Op),atomic_list(As),var_list(Rs)}. + +%% match(Kexpr, [LockVar], I, Vdb) -> Expr. +%% Convert match tree to old format. + +match(#k_alt{anno=A,first=Kf,then=Kt}, Ls, I, Vdb0) -> + Vdb1 = use_vars(union(A#k.us, Ls), I, Vdb0), + F = match(Kf, Ls, I+1, Vdb1), + T = match(Kt, Ls, I+1, Vdb1), + #l{ke={alt,F,T},i=I,vdb=Vdb1,a=A#k.a}; +match(#k_select{anno=A,var=V,types=Kts}, Ls0, I, Vdb0) -> + Ls1 = add_element(V#k_var.name, Ls0), + Vdb1 = use_vars(union(A#k.us, Ls1), I, Vdb0), + Ts = map(fun (Tc) -> type_clause(Tc, Ls1, I+1, Vdb1) end, Kts), + #l{ke={select,literal(V),Ts},i=I,vdb=Vdb1,a=A#k.a}; +match(#k_guard{anno=A,clauses=Kcs}, Ls, I, Vdb0) -> + Vdb1 = use_vars(union(A#k.us, Ls), I, Vdb0), + Cs = map(fun (G) -> guard_clause(G, Ls, I+1, Vdb1) end, Kcs), + #l{ke={guard,Cs},i=I,vdb=Vdb1,a=A#k.a}; +match(Other, Ls, I, Vdb0) -> + Vdb1 = use_vars(Ls, I, Vdb0), + {B,_,Vdb2} = body(Other, I+1, Vdb1), + #l{ke={block,B},i=I,vdb=Vdb2,a=[]}. + +type_clause(#k_type_clause{anno=A,type=T,values=Kvs}, Ls, I, Vdb0) -> + %%ok = io:format("life ~w: ~p~n", [?LINE,{T,Kvs}]), + Vdb1 = use_vars(union(A#k.us, Ls), I+1, Vdb0), + Vs = map(fun (Vc) -> val_clause(Vc, Ls, I+1, Vdb1) end, Kvs), + #l{ke={type_clause,type(T),Vs},i=I,vdb=Vdb1,a=A#k.a}. + +val_clause(#k_val_clause{anno=A,val=V,body=Kb}, Ls0, I, Vdb0) -> + {_Used,New} = match_pat_vars(V), + %% Not clear yet how Used should be used. + Bus = (get_kanno(Kb))#k.us, + %%ok = io:format("Ls0 = ~p, Used=~p\n New=~p, Bus=~p\n", [Ls0,Used,New,Bus]), + Ls1 = union(intersection(New, Bus), Ls0), %Lock for safety + Vdb1 = use_vars(union(A#k.us, Ls1), I+1, new_vars(New, I, Vdb0)), + B = match(Kb, Ls1, I+1, Vdb1), + #l{ke={val_clause,literal(V),B},i=I,vdb=use_vars(Bus, I+1, Vdb1),a=A#k.a}. + +guard_clause(#k_guard_clause{anno=A,guard=Kg,body=Kb}, Ls, I, Vdb0) -> + Vdb1 = use_vars(union(A#k.us, Ls), I+2, Vdb0), + Gdb = vdb_sub(I+1, I+2, Vdb1), + G = guard(Kg, I+1, Gdb), + B = match(Kb, Ls, I+2, Vdb1), + #l{ke={guard_clause,G,B}, + i=I,vdb=use_vars((get_kanno(Kg))#k.us, I+2, Vdb1), + a=A#k.a}. + +%% match_fail(FailValue, I, Anno) -> Expr. +%% Generate the correct match_fail instruction. N.B. there is no +%% generic case for when the fail value has been created elsewhere. + +match_fail(#k_tuple{es=[#k_atom{val=function_clause}|As]}, I, A) -> + #l{ke={match_fail,{function_clause,literal_list(As)}},i=I,a=A}; +match_fail(#k_tuple{es=[#k_atom{val=badmatch},Val]}, I, A) -> + #l{ke={match_fail,{badmatch,literal(Val)}},i=I,a=A}; +match_fail(#k_tuple{es=[#k_atom{val=case_clause},Val]}, I, A) -> + #l{ke={match_fail,{case_clause,literal(Val)}},i=I,a=A}; +match_fail(#k_atom{val=if_clause}, I, A) -> + #l{ke={match_fail,if_clause},i=I,a=A}; +match_fail(#k_tuple{es=[#k_atom{val=try_clause},Val]}, I, A) -> + #l{ke={match_fail,{try_clause,literal(Val)}},i=I,a=A}. + +%% type(Ktype) -> Type. + +type(k_int) -> integer; +type(k_char) -> integer; %Hhhmmm??? +type(k_float) -> float; +type(k_atom) -> atom; +type(k_nil) -> nil; +type(k_cons) -> cons; +type(k_tuple) -> tuple; +type(k_binary) -> binary; +type(k_bin_seg) -> bin_seg; +type(k_bin_end) -> bin_end. + +%% variable(Klit) -> Lit. +%% var_list([Klit]) -> [Lit]. + +variable(#k_var{name=N}) -> {var,N}. + +var_list(Ks) -> map(fun variable/1, Ks). + +%% atomic_lit(Klit) -> Lit. +%% atomic_list([Klit]) -> [Lit]. + +atomic_lit(#k_var{name=N}) -> {var,N}; +atomic_lit(#k_int{val=I}) -> {integer,I}; +atomic_lit(#k_float{val=F}) -> {float,F}; +atomic_lit(#k_atom{val=N}) -> {atom,N}; +%%atomic_lit(#k_char{val=C}) -> {char,C}; +%%atomic_lit(#k_string{val=S}) -> {string,S}; +atomic_lit(#k_nil{}) -> nil. + +atomic_list(Ks) -> map(fun atomic_lit/1, Ks). + +%% literal(Klit) -> Lit. +%% literal_list([Klit]) -> [Lit]. + +literal(#k_var{name=N}) -> {var,N}; +literal(#k_int{val=I}) -> {integer,I}; +literal(#k_float{val=F}) -> {float,F}; +literal(#k_atom{val=N}) -> {atom,N}; +%%literal(#k_char{val=C}) -> {char,C}; +literal(#k_string{val=S}) -> {string,S}; +literal(#k_nil{}) -> nil; +literal(#k_cons{hd=H,tl=T}) -> + {cons,[literal(H),literal(T)]}; +literal(#k_binary{segs=V}) -> + case proplists:get_bool(no_new_binaries, get(?MODULE)) of + true -> + {old_binary,literal(V)}; + false -> + {binary,literal(V)} + end; +literal(#k_bin_seg{size=S,unit=U,type=T,flags=Fs,seg=Seg,next=N}) -> + {bin_seg,literal(S),U,T,Fs,[literal(Seg),literal(N)]}; +literal(#k_bin_end{}) -> bin_end; +literal(#k_tuple{es=Es}) -> + {tuple,literal_list(Es)}. + +literal_list(Ks) -> map(fun literal/1, Ks). + +%% match_pat_vars(Pattern) -> {[UsedVarName],[NewVarName]}. + +match_pat_vars(#k_var{name=N}) -> {[],[N]}; +match_pat_vars(#k_int{}) -> {[],[]}; +match_pat_vars(#k_float{}) -> {[],[]}; +match_pat_vars(#k_atom{}) -> {[],[]}; +%%match_pat_vars(#k_char{}) -> {[],[]}; +match_pat_vars(#k_string{}) -> {[],[]}; +match_pat_vars(#k_nil{}) -> {[],[]}; +match_pat_vars(#k_cons{hd=H,tl=T}) -> + match_pat_list_vars([H,T]); +match_pat_vars(#k_binary{segs=V}) -> + match_pat_vars(V); +match_pat_vars(#k_bin_seg{size=S,seg=Seg,next=N}) -> + {U1,New1} = match_pat_vars(Seg), + {U2,New2} = match_pat_vars(N), + {[],U3} = match_pat_vars(S), + {union([U1,U2,U3]),union(New1, New2)}; +match_pat_vars(#k_bin_end{}) -> {[],[]}; +match_pat_vars(#k_tuple{es=Es}) -> + match_pat_list_vars(Es). + +match_pat_list_vars(Ps) -> + foldl(fun (P, {Used0,New0}) -> + {Used,New} = match_pat_vars(P), + {union(Used0, Used),union(New0, New)} end, + {[],[]}, Ps). + +%% new_var(VarName, I, Vdb) -> Vdb. +%% new_vars([VarName], I, Vdb) -> Vdb. +%% use_var(VarName, I, Vdb) -> Vdb. +%% use_vars([VarName], I, Vdb) -> Vdb. +%% add_var(VarName, F, L, Vdb) -> Vdb. + +new_var(V, I, Vdb) -> + case vdb_find(V, Vdb) of + {V,F,L} when I < F -> vdb_store(V, I, L, Vdb); + {V,_,_} -> Vdb; + error -> vdb_store(V, I, I, Vdb) + end. + +new_vars(Vs, I, Vdb0) -> + foldl(fun (V, Vdb) -> new_var(V, I, Vdb) end, Vdb0, Vs). + +use_var(V, I, Vdb) -> + case vdb_find(V, Vdb) of + {V,F,L} when I > L -> vdb_store(V, F, I, Vdb); + {V,_,_} -> Vdb; + error -> vdb_store(V, I, I, Vdb) + end. + +use_vars(Vs, I, Vdb0) -> + foldl(fun (V, Vdb) -> use_var(V, I, Vdb) end, Vdb0, Vs). + +add_var(V, F, L, Vdb) -> + use_var(V, L, new_var(V, F, Vdb)). + +vdb_find(V, Vdb) -> + %% Peformance note: Profiling shows that this function accounts for + %% a lot of the execution time when huge constants terms are built. + %% Using the BIF lists:keysearch/3 is a lot faster than the + %% original Erlang version. + case lists:keysearch(V, 1, Vdb) of + {value,Vd} -> Vd; + false -> error + end. + +%vdb_find(V, [{V1,F,L}=Vd|Vdb]) when V < V1 -> error; +%vdb_find(V, [{V1,F,L}=Vd|Vdb]) when V == V1 -> Vd; +%vdb_find(V, [{V1,F,L}=Vd|Vdb]) when V > V1 -> vdb_find(V, Vdb); +%vdb_find(V, []) -> error. + +vdb_store(V, F, L, [{V1,_,_}=Vd|Vdb]) when V > V1 -> + [Vd|vdb_store(V, F, L, Vdb)]; +vdb_store(V, F, L, [{V1,_,_}=Vd|Vdb]) when V < V1 -> [{V,F,L},Vd|Vdb]; +vdb_store(V, F, L, [{_V1,_,_}|Vdb]) -> [{V,F,L}|Vdb]; %V == V1 +vdb_store(V, F, L, []) -> [{V,F,L}]. + +%% vdb_sub(Min, Max, Vdb) -> Vdb. +%% Extract variables which are used before and after Min. Lock +%% variables alive after Max. + +vdb_sub(Min, Max, Vdb) -> + [ if L >= Max -> {V,F,1000000}; + true -> Vd + end || {V,F,L}=Vd <- Vdb, F < Min, L >= Min ]. diff --git a/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_life.hrl b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_life.hrl new file mode 100644 index 0000000000..4d183b7234 --- /dev/null +++ b/lib/dialyzer/test/options1_SUITE_data/src/compiler/v3_life.hrl @@ -0,0 +1,24 @@ +%% ``The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved via the world wide web at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% The Initial Developer of the Original Code is Ericsson Utvecklings AB. +%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings +%% AB. All Rights Reserved.'' +%% +%% $Id: v3_life.hrl,v 1.1 2008/12/17 09:53:43 mikpe Exp $ +%% +%% This record contains variable life-time annotation for a +%% kernel expression. Added by v3_life, used by v3_codegen. + +-record(l, {ke, %Kernel expression + i=0, %Op number + vdb=[], %Variable database + a}). %Core annotation |