aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hipe/cerl
diff options
context:
space:
mode:
authorJosé Valim <[email protected]>2018-02-19 22:49:54 +0100
committerJosé Valim <[email protected]>2018-02-19 22:49:54 +0100
commit307e9297fc23ff0ce5fe5c17e769f81c4b322a8b (patch)
tree545fd50eaf834ad3d13c679e6f051646cd8f9756 /lib/hipe/cerl
parent7304c1e1deed6ac1fbddc88ea5c6d5138231dbf7 (diff)
downloadotp-307e9297fc23ff0ce5fe5c17e769f81c4b322a8b.tar.gz
otp-307e9297fc23ff0ce5fe5c17e769f81c4b322a8b.tar.bz2
otp-307e9297fc23ff0ce5fe5c17e769f81c4b322a8b.zip
Remove unused cerl_messagean module
Diffstat (limited to 'lib/hipe/cerl')
-rw-r--r--lib/hipe/cerl/Makefile2
-rw-r--r--lib/hipe/cerl/cerl_messagean.erl1095
2 files changed, 1 insertions, 1096 deletions
diff --git a/lib/hipe/cerl/Makefile b/lib/hipe/cerl/Makefile
index 9f50d6bf91..b6116c4276 100644
--- a/lib/hipe/cerl/Makefile
+++ b/lib/hipe/cerl/Makefile
@@ -44,7 +44,7 @@ RELSYSDIR = $(RELEASE_PATH)/lib/hipe-$(VSN)
# Target Specs
# ----------------------------------------------------
MODULES = cerl_cconv cerl_closurean cerl_hipeify cerl_lib \
- cerl_messagean cerl_pmatch cerl_prettypr cerl_to_icode \
+ cerl_pmatch cerl_prettypr cerl_to_icode \
cerl_typean erl_bif_types erl_types
HRL_FILES= cerl_hipe_primops.hrl
diff --git a/lib/hipe/cerl/cerl_messagean.erl b/lib/hipe/cerl/cerl_messagean.erl
deleted file mode 100644
index c79e045bd0..0000000000
--- a/lib/hipe/cerl/cerl_messagean.erl
+++ /dev/null
@@ -1,1095 +0,0 @@
-%% Licensed under the Apache License, Version 2.0 (the "License");
-%% you may not use this file except in compliance with the License.
-%% You may obtain a copy of the License at
-%%
-%% http://www.apache.org/licenses/LICENSE-2.0
-%%
-%% Unless required by applicable law or agreed to in writing, software
-%% distributed under the License is distributed on an "AS IS" BASIS,
-%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-%% See the License for the specific language governing permissions and
-%% limitations under the License.
-%%
-%% @copyright 2002 Richard Carlsson
-%% @author Richard Carlsson <[email protected]>
-%% @doc Message analysis of Core Erlang programs.
-
-%% TODO: might need a "top" (`any') element for any-length value lists.
-
--module(cerl_messagean).
-
--export([annotate/1]).
-
--import(cerl, [alias_pat/1, alias_var/1, ann_c_var/2, ann_c_fun/3,
- apply_args/1, apply_op/1, atom_val/1, bitstr_size/1,
- bitstr_val/1, binary_segments/1, c_letrec/2,
- ann_c_tuple/2, c_nil/0, call_args/1, call_module/1,
- call_name/1, case_arg/1, case_clauses/1, catch_body/1,
- clause_body/1, clause_guard/1, clause_pats/1, cons_hd/1,
- cons_tl/1, fun_body/1, fun_vars/1, get_ann/1, int_val/1,
- is_c_atom/1, is_c_int/1, let_arg/1, let_body/1,
- let_vars/1, letrec_body/1, letrec_defs/1, module_defs/1,
- module_defs/1, module_exports/1, pat_vars/1,
- primop_args/1, primop_name/1, receive_action/1,
- receive_clauses/1, receive_timeout/1, seq_arg/1,
- seq_body/1, set_ann/2, try_arg/1, try_body/1, try_vars/1,
- try_evars/1, try_handler/1, tuple_es/1, type/1,
- values_es/1]).
-
--import(cerl_trees, [get_label/1]).
-
--define(DEF_LIMIT, 4).
-
-%% -export([test/1, test1/1, ttest/1]).
-
-%% ttest(F) ->
-%% {T, _} = cerl_trees:label(user_default:read(F)),
-%% {Time0, _} = erlang:statistics(runtime),
-%% analyze(T),
-%% {Time1, _} = erlang:statistics(runtime),
-%% Time1 - Time0.
-
-%% test(F) ->
-%% {T, _} = cerl_trees:label(user_default:read(F)),
-%% {Time0, _} = erlang:statistics(runtime),
-%% {Esc, _Vars} = analyze(T),
-%% {Time1, _} = erlang:statistics(runtime),
-%% io:fwrite("messages: ~p.\n", [Esc]),
-%% Set = sets:from_list(Esc),
-%% H = fun (Node, Ctxt, Cont) ->
-%% Doc = case get_ann(Node) of
-%% [{label, L} | _] ->
-%% B = sets:is_element(L, Set),
-%% bf(Node, Ctxt, Cont, B);
-%% _ ->
-%% bf(Node, Ctxt, Cont, false)
-%% end,
-%% case type(Node) of
-%% cons -> color(Doc);
-%% tuple -> color(Doc);
-%% _ -> Doc
-%% end
-%% end,
-%% {ok, FD} = file:open("out.html",[write]),
-%% Txt = cerl_prettypr:format(T, [{hook, H},{user,false}]),
-%% io:put_chars(FD, "<pre>\n"),
-%% io:put_chars(FD, html(Txt)),
-%% io:put_chars(FD, "</pre>\n"),
-%% file:close(FD),
-%% {ok, Time1 - Time0}.
-
-%% test1(F) ->
-%% {T, _} = cerl_trees:label(user_default:read(F)),
-%% {Time0, _} = erlang:statistics(runtime),
-%% {T1, Esc, Vars} = annotate(T),
-%% {Time1, _} = erlang:statistics(runtime),
-%% io:fwrite("messages: ~p.\n", [Esc]),
-%% %%% io:fwrite("vars: ~p.\n", [[X || X <- dict:to_list(Vars)]]),
-%% T2 = hhl_transform:transform(T1, Vars),
-%% Set = sets:from_list(Esc),
-%% H = fun (Node, Ctxt, Cont) ->
-%% case get_ann(Node) of
-%% [{label, L} | _] ->
-%% B = sets:is_element(L, Set),
-%% bf(Node, Ctxt, Cont, B);
-%% _ ->
-%% bf(Node, Ctxt, Cont, false)
-%% end
-%% end,
-%% {ok, FD} = file:open("out.html",[write]),
-%% Txt = cerl_prettypr:format(T2, [{hook, H},{user,false}]),
-%% io:put_chars(FD, "<pre>\n"),
-%% io:put_chars(FD, html(Txt)),
-%% io:put_chars(FD, "</pre>\n"),
-%% file:close(FD),
-%% {ok, Time1 - Time0}.
-
-%% html(Cs) ->
-%% html(Cs, []).
-
-%% html([$#, $< | Cs], As) ->
-%% html_1(Cs, [$< | As]);
-%% html([$< | Cs], As) ->
-%% html(Cs, ";tl&" ++ As);
-%% html([$> | Cs], As) ->
-%% html(Cs, ";tg&" ++ As);
-%% html([$& | Cs], As) ->
-%% html(Cs, ";pma&" ++ As);
-%% html([C | Cs], As) ->
-%% html(Cs, [C | As]);
-%% html([], As) ->
-%% lists:reverse(As).
-
-%% html_1([$> | Cs], As) ->
-%% html(Cs, [$> | As]);
-%% html_1([C | Cs], As) ->
-%% html_1(Cs, [C | As]).
-
-%% bf(Node, Ctxt, Cont, B) ->
-%% B0 = cerl_prettypr:get_ctxt_user(Ctxt),
-%% if B /= B0 ->
-%% Ctxt1 = cerl_prettypr:set_ctxt_user(Ctxt, B),
-%% Doc = Cont(Node, Ctxt1),
-%% case B of
-%% true ->
-%% Start = "<b>",
-%% End = "</b>";
-%% false ->
-%% Start = "</b>",
-%% End = "<b>"
-%% end,
-%% markup(Doc, Start, End);
-%% true ->
-%% Cont(Node, Ctxt)
-%% end.
-
-%% color(Doc) ->
-%% % Doc.
-%% markup(Doc, "<font color=blue>", "</font>").
-
-%% markup(Doc, Start, End) ->
-%% prettypr:beside(
-%% prettypr:null_text([$# | Start]),
-%% prettypr:beside(Doc,
-%% prettypr:null_text([$# | End]))).
-
-
-%% =====================================================================
-%% annotate(Tree) -> {Tree1, Escapes, Vars}
-%%
-%% Tree = cerl:cerl()
-%%
-%% Analyzes `Tree' (see `analyze') and appends a term 'escapes', to
-%% the annotation list of each constructor expression node and of
-%% `Tree', corresponding to the escape information derived by the
-%% analysis. Any previous such annotations are removed from `Tree'.
-%% `Tree1' is the modified tree; for details on `OutList',
-%% `Outputs' , `Dependencies', `Escapes' and `Parents', see
-%% `analyze'.
-%%
-%% Note: `Tree' must be annotated with labels in order to use this
-%% function; see `analyze' for details.
-
--type label() :: integer() | 'external' | 'top'.
--type ordset(X) :: [X]. % XXX: TAKE ME OUT
-
--spec annotate(cerl:cerl()) -> {cerl:cerl(), ordset(label()), dict:dict()}.
-
-annotate(Tree) ->
- {Esc0, Vars} = analyze(Tree),
- Esc = sets:from_list(Esc0),
- F = fun (T) ->
- case type(T) of
- literal -> T;
-%%% var ->
-%%% L = get_label(T),
-%%% T1 = ann_escape(T, L, Esc),
-%%% X = dict:fetch(L, Vars),
-%%% set_ann(T1, append_ann({s,X}, get_ann(T1)));
- _ ->
- L = get_label(T),
- ann_escape(T, L, Esc)
- end
- end,
- {cerl_trees:map(F, Tree), Esc0, Vars}.
-
-ann_escape(T, L, Esc) ->
- case sets:is_element(L, Esc) of
- true ->
- set_ann(T, append_ann(escapes, get_ann(T)));
- false ->
- T
- end.
-
-append_ann(Tag, [X | Xs]) ->
- if tuple_size(X) >= 1, element(1, X) =:= Tag ->
- append_ann(Tag, Xs);
- true ->
- [X | append_ann(Tag, Xs)]
- end;
-append_ann(Tag, []) ->
- [Tag].
-
-
-%% =====================================================================
-%% analyze(Tree) -> Escapes
-%%
-%% Tree = cerl:cerl()
-%% Escapes = ordset(Label)
-%% Label = integer() | external | top
-%%
-%% Analyzes a module or an expression represented by `Tree'.
-%%
-%% `Escapes' is the set of labels of constructor expressions in
-%% `Tree' such that the created values may be accessed from outside
-%% `Tree'.
-%%
-%% Note: `Tree' must be annotated with labels (as done by the
-%% function `cerl_trees:label/1') in order to use this function.
-%% The label annotation `{label, L}' (where L should be an integer)
-%% must be the first element of the annotation list of each node in
-%% the tree. Instances of variables bound in `Tree' which denote
-%% the same variable must have the same label; apart from this,
-%% labels should be unique. Constant literals do not need to be
-%% labeled.
-
--record(state, {vars, out, dep, work, funs, k}).
-
-%% Note: We assume that all remote calls and primops return a single
-%% value.
-
-%% The analysis determines which objects (identified by the
-%% corresponding "cons-point" labels in the code) are likely to be
-%% passed in a message. (If so, we say that they "escape".) It is always
-%% safe to assume either case, because the send operation will assure
-%% that things are copied if necessary. This analysis tries to
-%% anticipate that copying will be done.
-%%
-%% Rules:
-%% 1) An object passed as message argument (or part of such an
-%% argument) to a known send-operation, will probably be a message.
-%% 2) A received value is always a message (safe).
-%% 3) The external function can return any object (unsafe).
-%% 4) A function called from the external function can receive any
-%% object (unsafe) as argument.
-%% 5) Unknown functions/operations can return any object (unsafe).
-
-%% We wrap the given syntax tree T in a fun-expression labeled `top',
-%% which is initially in the set of escaped labels. `top' will be
-%% visited at least once.
-%%
-%% We create a separate function labeled `external', defined as:
-%% "'external'/1 = fun () -> Any", which will represent any and all
-%% functions outside T, and which returns the 'unsafe' value.
-
-analyze(Tree) ->
- analyze(Tree, ?DEF_LIMIT).
-
-analyze(Tree, Limit) ->
- {_, _, Esc, Dep, _Par} = cerl_closurean:analyze(Tree),
-%%% io:fwrite("dependencies: ~w.\n", [dict:to_list(Dep)]),
- analyze(Tree, Limit, Dep, Esc).
-
-analyze(Tree, Limit, Dep0, Esc0) ->
- %% Note that we use different name spaces for variable labels and
- %% function/call site labels, so we can reuse some names here. We
- %% assume that the labeling of Tree only uses integers, not atoms.
- Any = ann_c_var([{label, any}], 'Any'),
- External = ann_c_var([{label, external}], {external, 1}),
- ExtFun = ann_c_fun([{label, external}], [], Any),
-%%% io:fwrite("external fun:\n~s.\n",
-%%% [cerl_prettypr:format(ExtFun, [noann, {paper, 80}])]),
- Top = ann_c_var([{label, top}], {top, 0}),
- TopFun = ann_c_fun([{label, top}], [], Tree),
-
- %% The "start fun" just makes the initialisation easier. It is not
- %% itself in the call graph.
- StartFun = ann_c_fun([{label, start}], [],
- c_letrec([{External, ExtFun}, {Top, TopFun}],
- c_nil())),
-%%% io:fwrite("start fun:\n~s.\n",
-%%% [cerl_prettypr:format(StartFun, [{paper, 80}])]),
-
- %% Initialise the Any and Escape variables. Gather a database of all
- %% fun-expressions in Tree and initialise their outputs and parameter
- %% variables. All escaping functions can receive any values as
- %% inputs. Bind all module- and letrec-defined variables to their
- %% corresponding labels.
- Esc = sets:from_list(Esc0),
- Unsafe = unsafe(),
- Empty = empty(),
- Funs0 = dict:new(),
- Vars0 = dict:store(escape, empty(),
- dict:store(any, Unsafe, dict:new())),
- Out0 = dict:new(),
- F = fun (T, S = {Fs, Vs, Os}) ->
- case type(T) of
- 'fun' ->
- L = get_label(T),
- As = fun_vars(T),
- X = case sets:is_element(L, Esc) of
- true -> Unsafe;
- false -> Empty
- end,
- {dict:store(L, T, Fs),
- bind_vars_single(As, X, Vs),
- dict:store(L, none, Os)};
- letrec ->
- {Fs, bind_defs(letrec_defs(T), Vs), Os};
- module ->
- {Fs, bind_defs(module_defs(T), Vs), Os};
- _ ->
- S
- end
- end,
- {Funs, Vars, Out} = cerl_trees:fold(F, {Funs0, Vars0, Out0}, StartFun),
-
- %% Add the dependency for the loop in 'external':
- Dep = add_dep(loop, external, Dep0),
-
- %% Enter the fixpoint iteration at the StartFun.
- St = loop(StartFun, start, #state{vars = Vars,
- out = Out,
- dep = Dep,
- work = init_work(),
- funs = Funs,
- k = Limit}),
- Ms = labels(dict:fetch(escape, St#state.vars)),
- {Ms, St#state.vars}.
-
-loop(T, L, St0) ->
-%%% io:fwrite("analyzing: ~w.\n",[L]),
-%%% io:fwrite("work: ~w.\n", [St0#state.work]),
- Xs0 = dict:fetch(L, St0#state.out),
- {Xs1, St1} = visit(fun_body(T), L, St0),
- Xs = limit(Xs1, St1#state.k),
- {W, M} = case equal(Xs0, Xs) of
- true ->
- {St1#state.work, St1#state.out};
- false ->
-%%% io:fwrite("out (~w) changed: ~w <- ~w.\n",
-%%% [L, Xs, Xs0]),
- M1 = dict:store(L, Xs, St1#state.out),
- case dict:find(L, St1#state.dep) of
- {ok, S} ->
- {add_work(set__to_list(S), St1#state.work),
- M1};
- error ->
- {St1#state.work, M1}
- end
- end,
- St2 = St1#state{out = M},
- case take_work(W) of
- {ok, L1, W1} ->
- T1 = dict:fetch(L1, St2#state.funs),
- loop(T1, L1, St2#state{work = W1});
- none ->
- St2
- end.
-
-visit(T, L, St) ->
-%%% io:fwrite("visiting: ~w.\n",[type(T)]),
- case type(T) of
- literal ->
- %% This is (or should be) a constant, even if it's compound,
- %% so it's bugger all whether it is sent or not.
- case cerl:concrete(T) of
- [] -> {[empty()], St};
- X when is_atom(X) -> {[empty()], St};
- X when is_integer(X) -> {[empty()], St};
- X when is_float(X) -> {[empty()], St};
- _ ->
- exit({not_literal, T})
- end;
- var ->
- %% If a variable is not already in the store here, it must
- %% be free in the program.
- L1 = get_label(T),
- Vars = St#state.vars,
- case dict:find(L1, Vars) of
- {ok, X} ->
- {[X], St};
- error ->
-%%% io:fwrite("free var: ~w.\n",[L1]),
- X = unsafe(),
- St1 = St#state{vars = dict:store(L1, X, Vars)},
- {[X], St1}
- end;
- 'fun' ->
- %% Must revisit the fun also, because its environment might
- %% have changed. (We don't keep track of such dependencies.)
- L1 = get_label(T),
- St1 = St#state{work = add_work([L1], St#state.work)},
- %% Currently, lambda expressions can only be locally
- %% allocated, and therefore we have to force copying by
- %% treating them as "unsafe" for now.
- {[unsafe()], St1};
- %% {[singleton(L1)], St1};
- values ->
- visit_list(values_es(T), L, St);
- cons ->
- {[X1, X2], St1} = visit_list([cons_hd(T), cons_tl(T)], L, St),
- L1 = get_label(T),
- X = make_cons(L1, X1, X2),
- %% Also store the values of the elements.
- Hd = get_hd(X),
- Tl = get_tl(X),
- St2 = St1#state{vars = dict:store(L1, [Hd, Tl], St1#state.vars)},
- {[X], St2};
- tuple ->
- {Xs, St1} = visit_list(tuple_es(T), L, St),
- L1 = get_label(T),
- %% Also store the values of the elements.
- St2 = St1#state{vars = dict:store(L1, Xs, St1#state.vars)},
- {[struct(L1, Xs)], St2};
- 'let' ->
- {Xs, St1} = visit(let_arg(T), L, St),
- Vars = bind_vars(let_vars(T), Xs, St1#state.vars),
- visit(let_body(T), L, St1#state{vars = Vars});
- seq ->
- {_, St1} = visit(seq_arg(T), L, St),
- visit(seq_body(T), L, St1);
- apply ->
- {_F, St1} = visit(apply_op(T), L, St),
- {As, St2} = visit_list(apply_args(T), L, St1),
- L1 = get_label(T),
- Ls = get_deps(L1, St#state.dep),
- Out = St2#state.out,
- Xs1 = join_list([dict:fetch(X, Out) || X <- Ls]),
- {Xs1, call_site(Ls, As, St2)};
- call ->
- M = call_module(T),
- F = call_name(T),
- As = call_args(T),
- {_, St1} = visit(M, L, St),
- {_, St2} = visit(F, L, St1),
- {Xs, St3} = visit_list(As, L, St2),
- L1 = get_label(T),
- remote_call(M, F, Xs, As, L1, St3);
- primop ->
- As = primop_args(T),
- {Xs, St1} = visit_list(As, L, St),
- F = atom_val(primop_name(T)),
- primop_call(F, length(Xs), Xs, As, St1);
- 'case' ->
- {Xs, St1} = visit(case_arg(T), L, St),
- visit_clauses(Xs, case_clauses(T), L, St1);
- 'receive' ->
- %% The received value is of course a message, so it
- %% is 'empty()', not 'unsafe()'.
- X = empty(),
- {Xs1, St1} = visit_clauses([X], receive_clauses(T), L, St),
- {_, St2} = visit(receive_timeout(T), L, St1),
- {Xs2, St3} = visit(receive_action(T), L, St2),
- {join(Xs1, Xs2), St3};
- 'try' ->
- {Xs1, St1} = visit(try_arg(T), L, St),
- X = unsafe(),
- Vars = bind_vars(try_vars(T), Xs1, St1#state.vars),
- {Xs2, St2} = visit(try_body(T), L, St1#state{vars = Vars}),
- EVars = bind_vars(try_evars(T), [X, X, X], St2#state.vars),
- {Xs3, St3} = visit(try_handler(T), L, St2#state{vars = EVars}),
- {join(Xs2, Xs3), St3};
- 'catch' ->
- %% If we catch an exception, we can get unsafe data.
- {Xs, St1} = visit(catch_body(T), L, St),
- {join([unsafe()], Xs), St1};
- binary ->
- %% Binaries are heap objects, but we don't have special
- %% shared-heap allocation operators for them at the moment.
- %% They must therefore be treated as unsafe.
- {_, St1} = visit_list(binary_segments(T), L, St),
- {[unsafe()], St1};
- bitstr ->
- %% The other fields are constant literals.
- {_, St1} = visit(bitstr_val(T), L, St),
- {_, St2} = visit(bitstr_size(T), L, St1),
- {none, St2};
- letrec ->
- %% All the bound funs should be revisited, because the
- %% environment might have changed.
- Ls = [get_label(F) || {_, F} <- letrec_defs(T)],
- St1 = St#state{work = add_work(Ls, St#state.work)},
- visit(letrec_body(T), L, St1);
- module ->
- %% We regard a module as a tuple of function variables in
- %% the body of a `letrec'.
- visit(c_letrec(module_defs(T),
- ann_c_tuple([{label, get_label(T)}],
- module_exports(T))),
- L, St)
- end.
-
-visit_clause(T, Xs, L, St) ->
- Vars = bind_pats(clause_pats(T), Xs, St#state.vars),
- {_, St1} = visit(clause_guard(T), L, St#state{vars = Vars}),
- visit(clause_body(T), L, St1).
-
-%% We assume correct value-list typing.
-
-visit_list([T | Ts], L, St) ->
- {Xs, St1} = visit(T, L, St),
- {Xs1, St2} = visit_list(Ts, L, St1),
- X = case Xs of
- [X1] -> X1;
- _ -> empty()
- end,
- {[X | Xs1], St2};
-visit_list([], _L, St) ->
- {[], St}.
-
-visit_clauses(Xs, [T | Ts], L, St) ->
- {Xs1, St1} = visit_clause(T, Xs, L, St),
- {Xs2, St2} = visit_clauses(Xs, Ts, L, St1),
- {join(Xs1, Xs2), St2};
-visit_clauses(_, [], _L, St) ->
- {none, St}.
-
-bind_defs([{V, F} | Ds], Vars) ->
- bind_defs(Ds, dict:store(get_label(V), singleton(get_label(F)), Vars));
-bind_defs([], Vars) ->
- Vars.
-
-bind_pats(Ps, none, Vars) ->
- bind_pats_single(Ps, empty(), Vars);
-bind_pats(Ps, Xs, Vars) ->
- if length(Xs) =:= length(Ps) ->
- bind_pats_list(Ps, Xs, Vars);
- true ->
- bind_pats_single(Ps, empty(), Vars)
- end.
-
-%% The lists might not be of the same length.
-
-bind_pats_list([P | Ps], [X | Xs], Vars) ->
- bind_pats_list(Ps, Xs, bind_pat_vars(P, X, Vars));
-bind_pats_list(Ps, [], Vars) ->
- bind_pats_single(Ps, empty(), Vars);
-bind_pats_list([], _, Vars) ->
- Vars.
-
-bind_pats_single([P | Ps], X, Vars) ->
- bind_pats_single(Ps, X, bind_pat_vars(P, X, Vars));
-bind_pats_single([], _X, Vars) ->
- Vars.
-
-bind_pat_vars(P, X, Vars) ->
- case type(P) of
- var ->
- dict:store(get_label(P), X, Vars);
- literal ->
- Vars;
- cons ->
- bind_pats_list([cons_hd(P), cons_tl(P)],
- [get_hd(X), get_tl(X)], Vars);
- tuple ->
- case elements(X) of
- none ->
- bind_vars_single(pat_vars(P), X, Vars);
- Xs ->
- bind_pats_list(tuple_es(P), Xs, Vars)
- end;
- binary ->
- %% See the handling of binary-expressions.
- bind_pats_single(binary_segments(P), unsafe(), Vars);
- bitstr ->
- %% See the handling of binary-expressions.
- bind_pats_single([bitstr_val(P), bitstr_size(P)],
- unsafe(), Vars);
- alias ->
- P1 = alias_pat(P),
- Vars1 = bind_pat_vars(P1, X, Vars),
- dict:store(get_label(alias_var(P)), X, Vars1)
- end.
-
-%%% %% This is the "exact" version of list representation, which simply
-%%% %% mimics the actual cons, head and tail operations.
-%%% make_cons(L, X1, X2) ->
-%%% struct(L1, [X1, X2]).
-%%% get_hd(X) ->
-%%% case elements(X) of
-%%% none -> X;
-%%% [X1 | _] -> X1;
-%%% _ -> empty()
-%%% end.
-%%% get_tl(X) ->
-%%% case elements(X) of
-%%% none -> X;
-%%% [_, X2 | _] -> X2;
-%%% _ -> empty()
-%%% end.
-
-%% This version does not unnecessarily confuse spine labels with element
-%% labels, and is safe. However, it loses precision if cons cells are
-%% used for other things than proper lists.
-
-make_cons(L, X1, X2) ->
- %% join subtypes and cons locations
- join_single(struct(L, [X1]), X2).
-
-get_hd(X) ->
- case elements(X) of
- none -> X;
- [X1 | _] -> X1; % First element represents list subtype.
- _ -> empty()
- end.
-
-get_tl(X) -> X. % Tail of X has same type as X.
-
-bind_vars(Vs, none, Vars) ->
- bind_vars_single(Vs, empty(), Vars);
-bind_vars(Vs, Xs, Vars) ->
- if length(Vs) =:= length(Xs) ->
- bind_vars_list(Vs, Xs, Vars);
- true ->
- bind_vars_single(Vs, empty(), Vars)
- end.
-
-bind_vars_list([V | Vs], [X | Xs], Vars) ->
- bind_vars_list(Vs, Xs, dict:store(get_label(V), X, Vars));
-bind_vars_list([], [], Vars) ->
- Vars.
-
-bind_vars_single([V | Vs], X, Vars) ->
- bind_vars_single(Vs, X, dict:store(get_label(V), X, Vars));
-bind_vars_single([], _X, Vars) ->
- Vars.
-
-%% This handles a call site, updating parameter variables with respect
-%% to the actual parameters. The 'external' function is handled
-%% specially, since it can get an arbitrary number of arguments. For our
-%% purposes here, calls to the external function can be ignored.
-
-call_site(Ls, Xs, St) ->
-%%% io:fwrite("call site: ~w -> ~w (~w).\n", [L, Ls, Xs]),
- {W, V} = call_site(Ls, Xs, St#state.work, St#state.vars,
- St#state.funs, St#state.k),
- St#state{work = W, vars = V}.
-
-call_site([external | Ls], Xs, W, V, Fs, Limit) ->
- call_site(Ls, Xs, W, V, Fs, Limit);
-call_site([L | Ls], Xs, W, V, Fs, Limit) ->
- Vs = fun_vars(dict:fetch(L, Fs)),
- case bind_args(Vs, Xs, V, Limit) of
- {V1, true} ->
- call_site(Ls, Xs, add_work([L], W), V1, Fs, Limit);
- {V1, false} ->
- call_site(Ls, Xs, W, V1, Fs, Limit)
- end;
-call_site([], _, W, V, _, _) ->
- {W, V}.
-
-add_dep(Source, Target, Deps) ->
- case dict:find(Source, Deps) of
- {ok, X} ->
- case set__is_member(Target, X) of
- true ->
- Deps;
- false ->
-%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
- dict:store(Source, set__add(Target, X), Deps)
- end;
- error ->
-%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
- dict:store(Source, set__singleton(Target), Deps)
- end.
-
-%% If the arity does not match the call, nothing is done here.
-
-bind_args(Vs, Xs, Vars, Limit) ->
- if length(Vs) =:= length(Xs) ->
- bind_args(Vs, Xs, Vars, Limit, false);
- true ->
- {Vars, false}
- end.
-
-bind_args([V | Vs], [X | Xs], Vars, Limit, Ch) ->
- L = get_label(V),
- {Vars1, Ch1} = bind_arg(L, X, Vars, Limit, Ch),
- bind_args(Vs, Xs, Vars1, Limit, Ch1);
-bind_args([], [], Vars, _Limit, Ch) ->
- {Vars, Ch}.
-
-%% bind_arg(L, X, Vars, Limit) ->
-%% bind_arg(L, X, Vars, Limit, false).
-
-bind_arg(L, X, Vars, Limit, Ch) ->
- X0 = dict:fetch(L, Vars),
- X1 = limit_single(join_single(X, X0), Limit),
- case equal_single(X0, X1) of
- true ->
- {Vars, Ch};
- false ->
-%%% io:fwrite("arg (~w) changed: ~w <- ~w + ~w.\n",
-%%% [L, X1, X0, X]),
- {dict:store(L, X1, Vars), true}
- end.
-
-%% This handles escapes from things like primops and remote calls.
-
-escape(Xs, Ns, St) ->
- escape(Xs, Ns, 1, St).
-
-escape([_ | Xs], Ns=[N1 | _], N, St) when is_integer(N1), N1 > N ->
- escape(Xs, Ns, N + 1, St);
-escape([X | Xs], [N | Ns], N, St) ->
- Vars = St#state.vars,
- X0 = dict:fetch(escape, Vars),
- X1 = join_single(X, X0),
- case equal_single(X0, X1) of
- true ->
- escape(Xs, Ns, N + 1, St);
- false ->
-%%% io:fwrite("escape changed: ~w <- ~w + ~w.\n", [X1, X0, X]),
- Vars1 = dict:store(escape, X1, Vars),
- escape(Xs, Ns, N + 1, St#state{vars = Vars1})
- end;
-escape(Xs, [_ | Ns], N, St) ->
- escape(Xs, Ns, N + 1, St);
-escape(_, _, _, St) ->
- St.
-
-%% Handle primop calls: (At present, we assume that all unknown calls
-%% yield exactly one value. This might have to be changed.)
-
-primop_call(F, A, Xs, _As, St0) ->
- %% St1 = case is_escape_op(F, A) of
- %% [] -> St0;
- %% Ns -> escape(Xs, Ns, St0)
- %% end,
- St1 = St0,
- case is_imm_op(F, A) of
- true ->
- {[empty()], St1};
- false ->
- call_unknown(Xs, St1)
- end.
-
-%% Handle remote-calls: (At present, we assume that all unknown calls
-%% yield exactly one value. This might have to be changed.)
-
-remote_call(M, F, Xs, As, L, St) ->
- case is_c_atom(M) andalso is_c_atom(F) of
- true ->
- remote_call_1(atom_val(M), atom_val(F), length(Xs),
- Xs, As, L, St);
- false ->
- %% Unknown function
- call_unknown(Xs, St)
- end.
-
-%% When calling an unknown function, we assume that the result does
-%% *not* contain any of the constructors in its arguments (but it could
-%% return locally allocated data that we don't know about). Note that
-%% even a "pure" function can still cons up new data.
-
-call_unknown(_Xs, St) ->
- {[unsafe()], St}.
-
-%% We need to handle some important standard functions in order to get
-%% decent precision.
-%% TODO: foldl, map, mapfoldl
-
-remote_call_1(erlang, hd, 1, [X], _As, _L, St) ->
- {[get_hd(X)], St};
-remote_call_1(erlang, tl, 1, [X], _As, _L, St) ->
- {[get_tl(X)], St};
-remote_call_1(erlang, element, 2, [_,X], [N|_], _L, St) ->
- case elements(X) of
- none -> {[X], St};
- Xs ->
- case is_c_int(N) of
- true ->
- N1 = int_val(N),
- if is_integer(N1), 1 =< N1, N1 =< length(Xs) ->
- {[nth(N1, Xs)], St};
- true ->
- {none, St}
- end;
- false ->
- %% Even if we don't know which element is selected,
- %% we know that the top level is never part of the
- %% returned value.
- {[join_single_list(Xs)], St}
- end
- end;
-remote_call_1(erlang, setelement, 3, [_,X, Y], [N|_], L, St) ->
- %% The constructor gets the label of the call operation.
- case elements(X) of
- none -> {[join_single(singleton(L), join_single(X, Y))], St};
- Xs ->
- case is_c_int(N) of
- true ->
- N1 = int_val(N),
- if is_integer(N1), 1 =< N1, N1 =< length(Xs) ->
- Xs1 = set_nth(N1, Y, Xs),
- {[struct(L, Xs1)], St};
- true ->
- {none, St}
- end;
- false ->
- %% Even if we don't know which element is selected,
- %% we know that the top level is never part of the
- %% returned value (a new tuple is always created).
- Xs1 = [join_single(Y, X1) || X1 <- Xs],
- {[struct(L, Xs1)], St}
- end
- end;
-remote_call_1(erlang, '++', 2, [X1,X2], _As, _L, St) ->
- %% Note: this is unsafe for non-proper lists! (See make_cons/3).
- %% No safe version is implemented.
- {[join_single(X1, X2)], St};
-remote_call_1(erlang, '--', 2, [X1,_X2], _As, _L, St) ->
- {[X1], St};
-remote_call_1(lists, append, 2, Xs, As, L, St) ->
- remote_call_1(erlang, '++', 2, Xs, As, L, St);
-remote_call_1(lists, subtract, 2, Xs, As, L, St) ->
- remote_call_1(erlang, '--', 2, Xs, As, L, St);
-remote_call_1(M, F, A, Xs, _As, _L, St0) ->
- St1 = case is_escape_op(M, F, A) of
- [] -> St0;
- Ns -> escape(Xs, Ns, St0)
- end,
- case is_imm_op(M, F, A) of
- true ->
- {[empty()], St1};
- false ->
- call_unknown(Xs, St1)
- end.
-
-%% 1-based n:th-element list selector and update function.
-
-nth(1, [X | _Xs]) -> X;
-nth(N, [_X | Xs]) when N > 1 -> nth(N - 1, Xs).
-
-set_nth(1, Y, [_X | Xs]) -> [Y | Xs];
-set_nth(N, Y, [X | Xs]) when N > 1 -> [X | set_nth(N - 1, Y, Xs)].
-
-%% Domain: none | [V], where V = {S, none} | {S, [V]}, S = set(integer()).
-
-join(none, Xs2) -> Xs2;
-join(Xs1, none) -> Xs1;
-join(Xs1, Xs2) ->
- if length(Xs1) =:= length(Xs2) ->
- join_1(Xs1, Xs2);
- true ->
- none
- end.
-
-join_1([X1 | Xs1], [X2 | Xs2]) ->
- [join_single(X1, X2) | join_1(Xs1, Xs2)];
-join_1([], []) ->
- [].
-
-join_list([Xs | Xss]) ->
- join(Xs, join_list(Xss));
-join_list([]) ->
- none.
-
-empty() -> {set__new(), []}.
-
-singleton(X) -> {set__singleton(X), []}.
-
-struct(X, Xs) -> {set__singleton(X), Xs}.
-
-elements({_, Xs}) -> Xs.
-
-unsafe() -> {set__singleton(unsafe), none}.
-
-equal(none, none) -> true;
-equal(none, _) -> false;
-equal(_, none) -> false;
-equal(X1, X2) -> equal_1(X1, X2).
-
-equal_1([X1 | Xs1], [X2 | Xs2]) ->
- equal_single(X1, X2) andalso equal_1(Xs1, Xs2);
-equal_1([], []) -> true;
-equal_1(_, _) -> false.
-
-equal_single({S1, none}, {S2, none}) ->
- set__equal(S1, S2);
-equal_single({_, none}, _) ->
- false;
-equal_single(_, {_, none}) ->
- false;
-equal_single({S1, Vs1}, {S2, Vs2}) ->
- set__equal(S1, S2) andalso equal_single_lists(Vs1, Vs2).
-
-equal_single_lists([X1 | Xs1], [X2 | Xs2]) ->
- equal_single(X1, X2) andalso equal_single_lists(Xs1, Xs2);
-equal_single_lists([], []) ->
- true;
-equal_single_lists(_, _) ->
- false.
-
-join_single({S, none}, V) ->
- {set__union(S, labels(V)), none};
-join_single(V, {S, none}) ->
- {set__union(S, labels(V)), none};
-join_single({S1, Vs1}, {S2, Vs2}) ->
- {set__union(S1, S2), join_single_lists(Vs1, Vs2)}.
-
-join_single_list([V | Vs]) ->
- join_single(V, join_single_list(Vs));
-join_single_list([]) ->
- empty().
-
-%% If one list has more elements that the other, and N is the length of
-%% the longer list, then the result has N elements.
-
-join_single_lists([V1], [V2]) ->
- [join_single(V1, V2)];
-join_single_lists([V1 | Vs1], [V2 | Vs2]) ->
- [join_single(V1, V2) | join_single_lists(Vs1, Vs2)];
-join_single_lists([], Vs) -> Vs;
-join_single_lists(Vs, []) -> Vs.
-
-collapse(V) ->
- {labels(V), none}.
-
-%% collapse_list([]) ->
-%% empty();
-%% collapse_list(Vs) ->
-%% {labels_list(Vs), none}.
-
-labels({S, none}) -> S;
-labels({S, []}) -> S;
-labels({S, Vs}) -> set__union(S, labels_list(Vs)).
-
-labels_list([V]) ->
- labels(V);
-labels_list([V | Vs]) ->
- set__union(labels(V), labels_list(Vs)).
-
-limit(none, _K) -> none;
-limit(X, K) -> limit_list(X, K).
-
-limit_list([X | Xs], K) ->
- [limit_single(X, K) | limit_list(Xs, K)];
-limit_list([], _) ->
- [].
-
-limit_single({_, none} = V, _K) ->
- V;
-limit_single({_, []} = V, _K) ->
- V;
-limit_single({S, Vs}, K) when K > 0 ->
- {S, limit_list(Vs, K - 1)};
-limit_single(V, _K) ->
- collapse(V).
-
-%% Set abstraction for label sets in the domain.
-
-%% set__is_empty([]) -> true;
-%% set__is_empty(_) -> false.
-
-set__new() -> [].
-
-set__singleton(X) -> [X].
-
-set__to_list(S) -> S.
-
-%% set__from_list(S) -> ordsets:from_list(S).
-
-set__union(X, Y) -> ordsets:union(X, Y).
-
-set__add(X, S) -> ordsets:add_element(X, S).
-
-set__is_member(X, S) -> ordsets:is_element(X, S).
-
-%% set__subtract(X, Y) -> ordsets:subtract(X, Y).
-
-set__equal(X, Y) -> X =:= Y.
-
-%% A simple but efficient functional queue.
-
-queue__new() -> {[], []}.
-
-queue__put(X, {In, Out}) -> {[X | In], Out}.
-
-queue__get({In, [X | Out]}) -> {ok, X, {In, Out}};
-queue__get({[], _}) -> empty;
-queue__get({In, _}) ->
- [X | In1] = lists:reverse(In),
- {ok, X, {[], In1}}.
-
-%% The work list - a queue without repeated elements.
-
-init_work() ->
- {queue__new(), sets:new()}.
-
-add_work(Ls, {Q, Set}) ->
- add_work(Ls, Q, Set).
-
-%% Note that the elements are enqueued in order.
-
-add_work([L | Ls], Q, Set) ->
- case sets:is_element(L, Set) of
- true ->
- add_work(Ls, Q, Set);
- false ->
- add_work(Ls, queue__put(L, Q), sets:add_element(L, Set))
- end;
-add_work([], Q, Set) ->
- {Q, Set}.
-
-take_work({Queue0, Set0}) ->
- case queue__get(Queue0) of
- {ok, L, Queue1} ->
- Set1 = sets:del_element(L, Set0),
- {ok, L, {Queue1, Set1}};
- empty ->
- none
- end.
-
-get_deps(L, Dep) ->
- case dict:find(L, Dep) of
- {ok, Ls} -> Ls;
- error -> []
- end.
-
-%% Escape operators may let their arguments escape. For this analysis,
-%% only send-operations are considered as causing escapement, and only
-%% in specific arguments.
-
-%% is_escape_op(_F, _A) -> [].
-
--spec is_escape_op(atom(), atom(), arity()) -> [arity()].
-
-is_escape_op(erlang, '!', 2) -> [2];
-is_escape_op(erlang, send, 2) -> [2];
-is_escape_op(erlang, spawn, 1) -> [1];
-is_escape_op(erlang, spawn, 3) -> [3];
-is_escape_op(erlang, spawn, 4) -> [4];
-is_escape_op(erlang, spawn_link, 3) -> [3];
-is_escape_op(erlang, spawn_link, 4) -> [4];
-is_escape_op(_M, _F, _A) -> [].
-
-%% "Immediate" operators will never return heap allocated data. This is
-%% of course true for operators that never return, like 'exit/1'. (Note
-%% that floats are always heap allocated objects, and that most integer
-%% arithmetic can return a bignum on the heap.)
-
--spec is_imm_op(atom(), arity()) -> boolean().
-
-is_imm_op(match_fail, 1) -> true;
-is_imm_op(_, _) -> false.
-
--spec is_imm_op(atom(), atom(), arity()) -> boolean().
-
-is_imm_op(erlang, self, 0) -> true;
-is_imm_op(erlang, '=:=', 2) -> true;
-is_imm_op(erlang, '==', 2) -> true;
-is_imm_op(erlang, '=/=', 2) -> true;
-is_imm_op(erlang, '/=', 2) -> true;
-is_imm_op(erlang, '<', 2) -> true;
-is_imm_op(erlang, '=<', 2) -> true;
-is_imm_op(erlang, '>', 2) -> true;
-is_imm_op(erlang, '>=', 2) -> true;
-is_imm_op(erlang, 'and', 2) -> true;
-is_imm_op(erlang, 'or', 2) -> true;
-is_imm_op(erlang, 'xor', 2) -> true;
-is_imm_op(erlang, 'not', 1) -> true;
-is_imm_op(erlang, is_alive, 0) -> true;
-is_imm_op(erlang, is_atom, 1) -> true;
-is_imm_op(erlang, is_binary, 1) -> true;
-is_imm_op(erlang, is_builtin, 3) -> true;
-is_imm_op(erlang, is_float, 1) -> true;
-is_imm_op(erlang, is_function, 1) -> true;
-is_imm_op(erlang, is_integer, 1) -> true;
-is_imm_op(erlang, is_list, 1) -> true;
-is_imm_op(erlang, is_number, 1) -> true;
-is_imm_op(erlang, is_pid, 1) -> true;
-is_imm_op(erlang, is_port, 1) -> true;
-is_imm_op(erlang, is_process_alive, 1) -> true;
-is_imm_op(erlang, is_reference, 1) -> true;
-is_imm_op(erlang, is_tuple, 1) -> true;
-is_imm_op(erlang, length, 1) -> true; % never a bignum
-is_imm_op(erlang, list_to_atom, 1) -> true;
-is_imm_op(erlang, node, 0) -> true;
-is_imm_op(erlang, node, 1) -> true;
-is_imm_op(erlang, throw, 1) -> true;
-is_imm_op(erlang, exit, 1) -> true;
-is_imm_op(erlang, error, 1) -> true;
-is_imm_op(erlang, error, 2) -> true;
-is_imm_op(_M, _F, _A) -> false.