aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hipe/llvm/hipe_rtl_to_llvm.erl
diff options
context:
space:
mode:
authorYiannis Tsiouris <[email protected]>2014-01-28 18:16:54 +0200
committerYiannis Tsiouris <[email protected]>2014-03-07 18:35:03 +0200
commit030fd3f190a44bef059e7490c4b9c615088287d8 (patch)
tree251e9cfbd442f33b37379e879862646430ec3a37 /lib/hipe/llvm/hipe_rtl_to_llvm.erl
parent7a490d5cff3f033901ab6cac6c0fc1fd7bcb22c7 (diff)
downloadotp-030fd3f190a44bef059e7490c4b9c615088287d8.tar.gz
otp-030fd3f190a44bef059e7490c4b9c615088287d8.tar.bz2
otp-030fd3f190a44bef059e7490c4b9c615088287d8.zip
Implement the LLVM backend
Diffstat (limited to 'lib/hipe/llvm/hipe_rtl_to_llvm.erl')
-rw-r--r--lib/hipe/llvm/hipe_rtl_to_llvm.erl1612
1 files changed, 1612 insertions, 0 deletions
diff --git a/lib/hipe/llvm/hipe_rtl_to_llvm.erl b/lib/hipe/llvm/hipe_rtl_to_llvm.erl
new file mode 100644
index 0000000000..ba76e1d815
--- /dev/null
+++ b/lib/hipe/llvm/hipe_rtl_to_llvm.erl
@@ -0,0 +1,1612 @@
+%% -*- erlang-indent-level: 2 -*-
+
+-module(hipe_rtl_to_llvm).
+-author("Chris Stavrakakis, Yiannis Tsiouris").
+
+-export([translate/2]). % the main function of this module
+-export([fix_mfa_name/1]). % a help function used in hipe_llvm_main
+
+-include("../rtl/hipe_rtl.hrl").
+-include("../rtl/hipe_literals.hrl").
+-include("hipe_llvm_arch.hrl").
+
+-define(WORD_WIDTH, (?bytes_to_bits(hipe_rtl_arch:word_size()))).
+-define(BRANCH_META_TAKEN, "0").
+-define(BRANCH_META_NOT_TAKEN, "1").
+
+%%------------------------------------------------------------------------------
+%% @doc Main function for translating an RTL function to LLVM Assembly. Takes as
+%% input the RTL code and the variable indexes of possible garbage
+%% collection roots and returns the corresponing LLVM, a dictionary with
+%% all the relocations in the code and a hipe_consttab() with informaton
+%% about data.
+%%------------------------------------------------------------------------------
+translate(RTL, Roots) ->
+ Fun = hipe_rtl:rtl_fun(RTL),
+ Params = hipe_rtl:rtl_params(RTL),
+ Data = hipe_rtl:rtl_data(RTL),
+ Code = hipe_rtl:rtl_code(RTL),
+ %% Init unique symbol generator and initialize the label counter to the last
+ %% RTL label.
+ hipe_gensym:init(llvm),
+ {_, MaxLabel} = hipe_rtl:rtl_label_range(RTL),
+ put({llvm,label_count}, MaxLabel + 1),
+ %% Put first label of RTL code in process dictionary
+ find_code_entry_label(Code),
+ %% Initialize relocations symbol dictionary
+ Relocs = dict:new(),
+ %% Print RTL to file
+ %% {ok, File_rtl} = file:open("rtl_" ++integer_to_list(random:uniform(2000))
+ %% ++ ".rtl", [write]),
+ %% hipe_rtl:pp(File_rtl, RTL),
+ %% file:close(File_rtl),
+
+ %% Pass on RTL code to handle exception handling and identify labels of Fail
+ %% Blocks
+ {Code1, FailLabels} = fix_code(Code),
+ %% Allocate stack slots for each virtual register and declare gc roots
+ AllocaStackCode = alloca_stack(Code1, Params, Roots),
+ %% Translate Code
+ {LLVM_Code1, Relocs1, NewData} =
+ translate_instr_list(Code1, [], Relocs, Data),
+ %% Create LLVM code to declare relocation symbols as external symbols along
+ %% with local variables in order to use them as just any other variable
+ {FinalRelocs, ExternalDecl, LocalVars} =
+ handle_relocations(Relocs1, Data, Fun),
+ %% Pass on LLVM code in order to create Fail blocks and a landingpad
+ %% instruction to each one
+ LLVM_Code2 = add_landingpads(LLVM_Code1, FailLabels),
+ %% Create LLVM Code for the compiled function
+ LLVM_Code3 = create_function_definition(Fun, Params, LLVM_Code2,
+ AllocaStackCode ++ LocalVars),
+ %% Final Code = CompiledFunction + External Declarations
+ FinalLLVMCode = [LLVM_Code3 | ExternalDecl],
+ {FinalLLVMCode, FinalRelocs, NewData}.
+
+find_code_entry_label([]) ->
+ exit({?MODULE, find_code_entry_label, "Empty code"});
+find_code_entry_label([I|_]) ->
+ case hipe_rtl:is_label(I) of
+ true ->
+ put(first_label, hipe_rtl:label_name(I));
+ false ->
+ exit({?MODULE, find_code_entry_label, "First instruction is not a label"})
+ end.
+
+%% @doc Create a stack slot for each virtual register. The stack slots
+%% that correspond to possible garbage collection roots must be
+%% marked as such.
+alloca_stack(Code, Params, Roots) ->
+ %% Find all assigned virtual registers
+ Destinations = collect_destinations(Code),
+ %% Declare virtual registers, and declare garbage collection roots
+ do_alloca_stack(Destinations++Params, Params, Roots).
+
+collect_destinations(Code) ->
+ lists:usort(lists:flatmap(fun insn_dst/1, Code)).
+
+do_alloca_stack(Destinations, Params, Roots) ->
+ do_alloca_stack(Destinations, Params, Roots, []).
+
+do_alloca_stack([], _, _, Acc) ->
+ Acc;
+do_alloca_stack([D|Ds], Params, Roots, Acc) ->
+ {Name, _I} = trans_dst(D),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
+ case hipe_rtl:is_var(D) of
+ true ->
+ Num = hipe_rtl:var_index(D),
+ I1 = hipe_llvm:mk_alloca(Name, WordTy, [], []),
+ case lists:member(Num, Roots) of
+ true -> %% Variable is a possible Root
+ T1 = mk_temp(),
+ BYTE_TYPE_PP = hipe_llvm:mk_pointer(ByteTyPtr),
+ I2 =
+ hipe_llvm:mk_conversion(T1, bitcast, WordTyPtr, Name, BYTE_TYPE_PP),
+ GcRootArgs = [{BYTE_TYPE_PP, T1}, {ByteTyPtr, "@gc_metadata"}],
+ I3 = hipe_llvm:mk_call([], false, [], [], hipe_llvm:mk_void(),
+ "@llvm.gcroot", GcRootArgs, []),
+ I4 = case lists:member(D, Params) of
+ false ->
+ hipe_llvm:mk_store(WordTy, "-5", WordTyPtr, Name,
+ [], [], false);
+ true -> []
+ end,
+ do_alloca_stack(Ds, Params, Roots, [I1, I2, I3, I4 | Acc]);
+ false ->
+ do_alloca_stack(Ds, Params, Roots, [I1|Acc])
+ end;
+ false ->
+ case hipe_rtl:is_reg(D) andalso isPrecoloured(D) of
+ true -> %% Precoloured registers are mapped to "special" stack slots
+ do_alloca_stack(Ds, Params, Roots, Acc);
+ false ->
+ I1 = case hipe_rtl:is_fpreg(D) of
+ true ->
+ FloatTy = hipe_llvm:mk_double(),
+ hipe_llvm:mk_alloca(Name, FloatTy, [], []);
+ false -> hipe_llvm:mk_alloca(Name, WordTy, [], [])
+ end,
+ do_alloca_stack(Ds, Params, Roots, [I1|Acc])
+ end
+ end.
+
+%%------------------------------------------------------------------------------
+%% @doc Translation of the linearized RTL Code. Each RTL instruction is
+%% translated to a list of LLVM Assembly instructions. The relocation
+%% dictionary is updated when needed.
+%%------------------------------------------------------------------------------
+translate_instr_list([], Acc, Relocs, Data) ->
+ {lists:reverse(lists:flatten(Acc)), Relocs, Data};
+translate_instr_list([I | Is], Acc, Relocs, Data) ->
+ {Acc1, NewRelocs, NewData} = translate_instr(I, Relocs, Data),
+ translate_instr_list(Is, [Acc1 | Acc], NewRelocs, NewData).
+
+translate_instr(I, Relocs, Data) ->
+ case I of
+ #alu{} ->
+ {I2, Relocs2} = trans_alu(I, Relocs),
+ {I2, Relocs2, Data};
+ #alub{} ->
+ {I2, Relocs2} = trans_alub(I, Relocs),
+ {I2, Relocs2, Data};
+ #branch{} ->
+ {I2, Relocs2} = trans_branch(I, Relocs),
+ {I2, Relocs2, Data};
+ #call{} ->
+ {I2, Relocs2} =
+ case hipe_rtl:call_fun(I) of
+ %% In AMD64 this instruction does nothing!
+ %% TODO: chech use of fwait in other architectures!
+ fwait ->
+ {[], Relocs};
+ _ ->
+ trans_call(I, Relocs)
+ end,
+ {I2, Relocs2, Data};
+ #comment{} ->
+ {I2, Relocs2} = trans_comment(I, Relocs),
+ {I2, Relocs2, Data};
+ #enter{} ->
+ {I2, Relocs2} = trans_enter(I, Relocs),
+ {I2, Relocs2, Data};
+ #fconv{} ->
+ {I2, Relocs2} = trans_fconv(I, Relocs),
+ {I2, Relocs2, Data};
+ #fload{} ->
+ {I2, Relocs2} = trans_fload(I, Relocs),
+ {I2, Relocs2, Data};
+ #fmove{} ->
+ {I2, Relocs2} = trans_fmove(I, Relocs),
+ {I2, Relocs2, Data};
+ #fp{} ->
+ {I2, Relocs2} = trans_fp(I, Relocs),
+ {I2, Relocs2, Data};
+ #fp_unop{} ->
+ {I2, Relocs2} = trans_fp_unop(I, Relocs),
+ {I2, Relocs2, Data};
+ #fstore{} ->
+ {I2, Relocs2} = trans_fstore(I, Relocs),
+ {I2, Relocs2, Data};
+ #goto{} ->
+ {I2, Relocs2} = trans_goto(I, Relocs),
+ {I2, Relocs2, Data};
+ #label{} ->
+ {I2, Relocs2} = trans_label(I, Relocs),
+ {I2, Relocs2, Data};
+ #load{} ->
+ {I2, Relocs2} = trans_load(I, Relocs),
+ {I2, Relocs2, Data};
+ #load_address{} ->
+ {I2, Relocs2} = trans_load_address(I, Relocs),
+ {I2, Relocs2, Data};
+ #load_atom{} ->
+ {I2, Relocs2} = trans_load_atom(I, Relocs),
+ {I2, Relocs2, Data};
+ #move{} ->
+ {I2, Relocs2} = trans_move(I, Relocs),
+ {I2, Relocs2, Data};
+ #return{} ->
+ {I2, Relocs2} = trans_return(I, Relocs),
+ {I2, Relocs2, Data};
+ #store{} ->
+ {I2, Relocs2} = trans_store(I, Relocs),
+ {I2, Relocs2, Data};
+ #switch{} -> %% Only switch instruction updates Data
+ {I2, Relocs2, NewData} = trans_switch(I, Relocs, Data),
+ {I2, Relocs2, NewData};
+ Other ->
+ exit({?MODULE, translate_instr, {"Unknown RTL instruction", Other}})
+ end.
+
+%%
+%% alu
+%%
+trans_alu(I, Relocs) ->
+ RtlDst = hipe_rtl:alu_dst(I),
+ TmpDst = mk_temp(),
+ {Src1, I1} = trans_src(hipe_rtl:alu_src1(I)),
+ {Src2, I2} = trans_src(hipe_rtl:alu_src2(I)),
+ Op = trans_op(hipe_rtl:alu_op(I)),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ I3 = hipe_llvm:mk_operation(TmpDst, Op, WordTy, Src1, Src2, []),
+ I4 = store_stack_dst(TmpDst, RtlDst),
+ {[I4, I3, I2, I1], Relocs}.
+
+%%
+%% alub
+%%
+trans_alub(I, Relocs) ->
+ case hipe_rtl:alub_cond(I) of
+ Op when Op =:= overflow orelse Op =:= not_overflow ->
+ trans_alub_overflow(I, signed, Relocs);
+ ltu -> %% ltu means unsigned overflow
+ trans_alub_overflow(I, unsigned, Relocs);
+ _ ->
+ trans_alub_no_overflow(I, Relocs)
+ end.
+
+trans_alub_overflow(I, Sign, Relocs) ->
+ {Src1, I1} = trans_src(hipe_rtl:alub_src1(I)),
+ {Src2, I2} = trans_src(hipe_rtl:alub_src2(I)),
+ RtlDst = hipe_rtl:alub_dst(I),
+ TmpDst = mk_temp(),
+ Name = trans_alub_op(I, Sign),
+ NewRelocs = relocs_store(Name, {call, {llvm, Name, 2}}, Relocs),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ ReturnType = hipe_llvm:mk_struct([WordTy, hipe_llvm:mk_int(1)]),
+ T1 = mk_temp(),
+ I3 = hipe_llvm:mk_call(T1, false, [], [], ReturnType, "@" ++ Name,
+ [{WordTy, Src1}, {WordTy, Src2}], []),
+ %% T1{0}: result of the operation
+ I4 = hipe_llvm:mk_extractvalue(TmpDst, ReturnType, T1 , "0", []),
+ I5 = store_stack_dst(TmpDst, RtlDst),
+ T2 = mk_temp(),
+ %% T1{1}: Boolean variable indicating overflow
+ I6 = hipe_llvm:mk_extractvalue(T2, ReturnType, T1, "1", []),
+ case hipe_rtl:alub_cond(I) of
+ Op when Op =:= overflow orelse Op =:= ltu ->
+ True_label = mk_jump_label(hipe_rtl:alub_true_label(I)),
+ False_label = mk_jump_label(hipe_rtl:alub_false_label(I)),
+ MetaData = branch_metadata(hipe_rtl:alub_pred(I));
+ not_overflow ->
+ True_label = mk_jump_label(hipe_rtl:alub_false_label(I)),
+ False_label = mk_jump_label(hipe_rtl:alub_true_label(I)),
+ MetaData = branch_metadata(1 - hipe_rtl:alub_pred(I))
+ end,
+ I7 = hipe_llvm:mk_br_cond(T2, True_label, False_label, MetaData),
+ {[I7, I6, I5, I4, I3, I2, I1], NewRelocs}.
+
+trans_alub_op(I, Sign) ->
+ Name =
+ case Sign of
+ signed ->
+ case hipe_rtl:alub_op(I) of
+ add -> "llvm.sadd.with.overflow.";
+ mul -> "llvm.smul.with.overflow.";
+ sub -> "llvm.ssub.with.overflow.";
+ Op -> exit({?MODULE, trans_alub_op, {"Unknown alub operator", Op}})
+ end;
+ unsigned ->
+ case hipe_rtl:alub_op(I) of
+ add -> "llvm.uadd.with.overflow.";
+ mul -> "llvm.umul.with.overflow.";
+ sub -> "llvm.usub.with.overflow.";
+ Op -> exit({?MODULE, trans_alub_op, {"Unknown alub operator", Op}})
+ end
+ end,
+ Type =
+ case hipe_rtl_arch:word_size() of
+ 4 -> "i32";
+ 8 -> "i64"
+ %% Other -> exit({?MODULE, trans_alub_op, {"Unknown type", Other}})
+ end,
+ Name ++ Type.
+
+trans_alub_no_overflow(I, Relocs) ->
+ %% alu
+ T = hipe_rtl:mk_alu(hipe_rtl:alub_dst(I), hipe_rtl:alub_src1(I),
+ hipe_rtl:alub_op(I), hipe_rtl:alub_src2(I)),
+ %% A trans_alu instruction cannot change relocations
+ {I1, _} = trans_alu(T, Relocs),
+ %% icmp
+ %% Translate destination as src, to match with the semantics of instruction
+ {Dst, I2} = trans_src(hipe_rtl:alub_dst(I)),
+ Cond = trans_rel_op(hipe_rtl:alub_cond(I)),
+ T3 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ I5 = hipe_llvm:mk_icmp(T3, Cond, WordTy, Dst, "0"),
+ %% br
+ Metadata = branch_metadata(hipe_rtl:alub_pred(I)),
+ True_label = mk_jump_label(hipe_rtl:alub_true_label(I)),
+ False_label = mk_jump_label(hipe_rtl:alub_false_label(I)),
+ I6 = hipe_llvm:mk_br_cond(T3, True_label, False_label, Metadata),
+ {[I6, I5, I2, I1], Relocs}.
+
+%%
+%% branch
+%%
+trans_branch(I, Relocs) ->
+ {Src1, I1} = trans_src(hipe_rtl:branch_src1(I)),
+ {Src2, I2} = trans_src(hipe_rtl:branch_src2(I)),
+ Cond = trans_rel_op(hipe_rtl:branch_cond(I)),
+ %% icmp
+ T1 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ I3 = hipe_llvm:mk_icmp(T1, Cond, WordTy, Src1, Src2),
+ %% br
+ True_label = mk_jump_label(hipe_rtl:branch_true_label(I)),
+ False_label = mk_jump_label(hipe_rtl:branch_false_label(I)),
+ Metadata = branch_metadata(hipe_rtl:branch_pred(I)),
+ I4 = hipe_llvm:mk_br_cond(T1, True_label, False_label, Metadata),
+ {[I4, I3, I2, I1], Relocs}.
+
+branch_metadata(X) when X =:= 0.5 -> [];
+branch_metadata(X) when X > 0.5 -> ?BRANCH_META_TAKEN;
+branch_metadata(X) when X < 0.5 -> ?BRANCH_META_NOT_TAKEN.
+
+%%
+%% call
+%%
+trans_call(I, Relocs) ->
+ RtlCallArgList= hipe_rtl:call_arglist(I),
+ RtlCallName = hipe_rtl:call_fun(I),
+ {I0, Relocs1} = expose_closure(RtlCallName, RtlCallArgList, Relocs),
+ TmpDst = mk_temp(),
+ {CallArgs, I1} = trans_call_args(RtlCallArgList),
+ FixedRegs = fixed_registers(),
+ {LoadedFixedRegs, I2} = load_fixed_regs(FixedRegs),
+ FinalArgs = fix_reg_args(LoadedFixedRegs) ++ CallArgs,
+ {Name, I3, Relocs2} =
+ trans_call_name(RtlCallName, Relocs1, CallArgs, FinalArgs),
+ T1 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ I4 =
+ case hipe_rtl:call_fail(I) of
+ %% Normal Call
+ [] ->
+ hipe_llvm:mk_call(T1, false, "cc 11", [], FunRetTy, Name, FinalArgs,
+ []);
+ %% Call With Exception
+ FailLabelNum ->
+ TrueLabel = "L" ++ integer_to_list(hipe_rtl:call_normal(I)),
+ FailLabel = "%FL" ++ integer_to_list(FailLabelNum),
+ II1 =
+ hipe_llvm:mk_invoke(T1, "cc 11", [], FunRetTy, Name, FinalArgs, [],
+ "%" ++ TrueLabel, FailLabel),
+ II2 = hipe_llvm:mk_label(TrueLabel),
+ [II2, II1]
+ end,
+ I5 = store_fixed_regs(FixedRegs, T1),
+ I6 =
+ case hipe_rtl:call_dstlist(I) of
+ [] -> []; %% No return value
+ [Destination] ->
+ II3 =
+ hipe_llvm:mk_extractvalue(TmpDst, FunRetTy, T1,
+ integer_to_list(?NR_PINNED_REGS), []),
+ II4 = store_stack_dst(TmpDst, Destination),
+ [II4, II3]
+ end,
+ I7 =
+ case hipe_rtl:call_continuation(I) of
+ [] -> []; %% No continuation
+ CC ->
+ {II5, _} = trans_goto(hipe_rtl:mk_goto(CC), Relocs2),
+ II5
+ end,
+ {[I7, I6, I5, I4, I3, I2, I1, I0], Relocs2}.
+
+%% In case of call to a register (closure call) with more than ?NR_ARG_REGS
+%% arguments we must track the offset this call in the code, in order to
+%% to correct the stack descriptor. So, we insert a new Label and add this label
+%% to the "table_closures"
+%% --------------------------------|--------------------------------------------
+%% Old Code | New Code
+%% --------------------------------|--------------------------------------------
+%% | br %ClosureLabel
+%% call %reg(Args) | ClosureLabel:
+%% | call %reg(Args)
+expose_closure(CallName, CallArgs, Relocs) ->
+ CallArgsNr = length(CallArgs),
+ case hipe_rtl:is_reg(CallName) andalso CallArgsNr > ?NR_ARG_REGS of
+ true ->
+ LabelNum = hipe_gensym:new_label(llvm),
+ ClosureLabel = hipe_llvm:mk_label(mk_label(LabelNum)),
+ JumpIns = hipe_llvm:mk_br(mk_jump_label(LabelNum)),
+ Relocs1 =
+ relocs_store({CallName, LabelNum},
+ {closure_label, LabelNum, CallArgsNr - ?NR_ARG_REGS},
+ Relocs),
+ {[ClosureLabel, JumpIns], Relocs1};
+ false ->
+ {[], Relocs}
+ end.
+
+trans_call_name(RtlCallName, Relocs, CallArgs, FinalArgs) ->
+ case RtlCallName of
+ PrimOp when is_atom(PrimOp) ->
+ LlvmName = trans_prim_op(PrimOp),
+ Relocs1 = relocs_store(LlvmName, {call, {bif, PrimOp, length(CallArgs)}},
+ Relocs),
+ {"@" ++ LlvmName, [], Relocs1};
+ {M, F, A} when is_atom(M), is_atom(F), is_integer(A) ->
+ LlvmName = trans_mfa_name({M,F,A}),
+ Relocs1 = relocs_store(LlvmName, {call, {M,F,A}}, Relocs),
+ {"@" ++ LlvmName, [], Relocs1};
+ Reg ->
+ case hipe_rtl:is_reg(Reg) of
+ true ->
+ %% In case of a closure call, the register holding the address
+ %% of the closure must be converted to function type in
+ %% order to make the call
+ TT1 = mk_temp(),
+ {RegName, II1} = trans_src(Reg),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ II2 =
+ hipe_llvm:mk_conversion(TT1, inttoptr, WordTy, RegName, WordTyPtr),
+ TT2 = mk_temp(),
+ ArgsTypeList = lists:duplicate(length(FinalArgs), WordTy),
+ FunRetTy =
+ hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ FunType = hipe_llvm:mk_fun(FunRetTy, ArgsTypeList),
+ FunTypeP = hipe_llvm:mk_pointer(FunType),
+ II3 = hipe_llvm:mk_conversion(TT2, bitcast, WordTyPtr, TT1, FunTypeP),
+ {TT2, [II3, II2, II1], Relocs};
+ false ->
+ exit({?MODULE, trans_call, {"Unimplemented call to", RtlCallName}})
+ end
+ end.
+
+%%
+trans_call_args(ArgList) ->
+ {Args, I} = lists:unzip(trans_args(ArgList)),
+ %% Reverse arguments that are passed to stack to match with the Erlang
+ %% calling convention. (Propably not needed in prim calls.)
+ ReversedArgs =
+ case erlang:length(Args) > ?NR_ARG_REGS of
+ false ->
+ Args;
+ true ->
+ {ArgsInRegs, ArgsInStack} = lists:split(?NR_ARG_REGS, Args),
+ ArgsInRegs ++ lists:reverse(ArgsInStack)
+ end,
+ %% Reverse I, because some of the arguments may go out of scope and
+ %% should be killed(store -5). When two or more arguments are they
+ %% same, then order matters!
+ {ReversedArgs, lists:reverse(I)}.
+
+%%
+%% trans_comment
+%%
+trans_comment(I, Relocs) ->
+ I1 = hipe_llvm:mk_comment(hipe_rtl:comment_text(I)),
+ {I1, Relocs}.
+
+%%
+%% enter
+%%
+trans_enter(I, Relocs) ->
+ {CallArgs, I0} = trans_call_args(hipe_rtl:enter_arglist(I)),
+ FixedRegs = fixed_registers(),
+ {LoadedFixedRegs, I1} = load_fixed_regs(FixedRegs),
+ FinalArgs = fix_reg_args(LoadedFixedRegs) ++ CallArgs,
+ {Name, I2, NewRelocs} =
+ trans_call_name(hipe_rtl:enter_fun(I), Relocs, CallArgs, FinalArgs),
+ T1 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ I3 = hipe_llvm:mk_call(T1, true, "cc 11", [], FunRetTy, Name, FinalArgs, []),
+ I4 = hipe_llvm:mk_ret([{FunRetTy, T1}]),
+ {[I4, I3, I2, I1, I0], NewRelocs}.
+
+%%
+%% fconv
+%%
+trans_fconv(I, Relocs) ->
+ %% XXX: Can a fconv destination be a precoloured reg?
+ RtlDst = hipe_rtl:fconv_dst(I),
+ TmpDst = mk_temp(),
+ {Src, I1} = trans_float_src(hipe_rtl:fconv_src(I)),
+ FloatTy = hipe_llvm:mk_double(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ I2 = hipe_llvm:mk_conversion(TmpDst, sitofp, WordTy, Src, FloatTy),
+ I3 = store_float_stack(TmpDst, RtlDst),
+ {[I3, I2, I1], Relocs}.
+
+
+%% TODO: fload, fstore, fmove, and fp are almost the same with load, store, move
+%% and alu. Maybe we should join them.
+
+%%
+%% fload
+%%
+trans_fload(I, Relocs) ->
+ RtlDst = hipe_rtl:fload_dst(I),
+ RtlSrc = hipe_rtl:fload_src(I),
+ _Offset = hipe_rtl:fload_offset(I),
+ TmpDst = mk_temp(),
+ {Src, I1} = trans_float_src(RtlSrc),
+ {Offset, I2} = trans_float_src(_Offset),
+ T1 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ FloatTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_double()),
+ I3 = hipe_llvm:mk_operation(T1, add, WordTy, Src, Offset, []),
+ T2 = mk_temp(),
+ I4 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, FloatTyPtr),
+ I5 = hipe_llvm:mk_load(TmpDst, FloatTyPtr, T2, [], [], false),
+ I6 = store_float_stack(TmpDst, RtlDst),
+ {[I6, I5, I4, I3, I2, I1], Relocs}.
+
+%%
+%% fmove
+%%
+trans_fmove(I, Relocs) ->
+ RtlDst = hipe_rtl:fmove_dst(I),
+ RtlSrc = hipe_rtl:fmove_src(I),
+ {Src, I1} = trans_float_src(RtlSrc),
+ I2 = store_float_stack(Src, RtlDst),
+ {[I2, I1], Relocs}.
+
+%%
+%% fp
+%%
+trans_fp(I, Relocs) ->
+ %% XXX: Just copied trans_alu...think again..
+ RtlDst = hipe_rtl:fp_dst(I),
+ RtlSrc1 = hipe_rtl:fp_src1(I),
+ RtlSrc2 = hipe_rtl:fp_src2(I),
+ %% Destination cannot be a precoloured register
+ FloatTy = hipe_llvm:mk_double(),
+ FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
+ TmpDst = mk_temp(),
+ {Src1, I1} = trans_float_src(RtlSrc1),
+ {Src2, I2} = trans_float_src(RtlSrc2),
+ Op = trans_fp_op(hipe_rtl:fp_op(I)),
+ I3 = hipe_llvm:mk_operation(TmpDst, Op, FloatTy, Src1, Src2, []),
+ I4 = store_float_stack(TmpDst, RtlDst),
+ %% Synchronization for floating point exceptions
+ I5 = hipe_llvm:mk_store(FloatTy, TmpDst, FloatTyPtr, "%exception_sync", [],
+ [], true),
+ T1 = mk_temp(),
+ I6 = hipe_llvm:mk_load(T1, FloatTyPtr, "%exception_sync", [], [], true),
+ {[I6, I5, I4, I3, I2, I1], Relocs}.
+
+%%
+%% fp_unop
+%%
+trans_fp_unop(I, Relocs) ->
+ RtlDst = hipe_rtl:fp_unop_dst(I),
+ RtlSrc = hipe_rtl:fp_unop_src(I),
+ %% Destination cannot be a precoloured register
+ TmpDst = mk_temp(),
+ {Src, I1} = trans_float_src(RtlSrc),
+ Op = trans_fp_op(hipe_rtl:fp_unop_op(I)),
+ FloatTy = hipe_llvm:mk_double(),
+ I2 = hipe_llvm:mk_operation(TmpDst, Op, FloatTy, "0.0", Src, []),
+ I3 = store_float_stack(TmpDst, RtlDst),
+ {[I3, I2, I1], Relocs}.
+%% TODO: Fix fp_unop in a way like the following. You must change trans_dest,
+%% in order to call float_to_list in a case of float constant. Maybe the type
+%% check is expensive...
+%% Dst = hipe_rtl:fp_unop_dst(I),
+%% Src = hipe_rtl:fp_unop_src(I),
+%% Op = hipe_rtl:fp_unop_op(I),
+%% Zero = hipe_rtl:mk_imm(0.0),
+%% I1 = hipe_rtl:mk_fp(Dst, Zero, Op, Src),
+%% trans_fp(I, Relocs1).
+
+%%
+%% fstore
+%%
+trans_fstore(I, Relocs) ->
+ Base = hipe_rtl:fstore_base(I),
+ case isPrecoloured(Base) of
+ true ->
+ trans_fstore_reg(I, Relocs);
+ false ->
+ exit({?MODULE, trans_fstore ,{"Not implemented yet", false}})
+ end.
+
+trans_fstore_reg(I, Relocs) ->
+ {Base, I0} = trans_reg(hipe_rtl:fstore_base(I), dst),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ FloatTy = hipe_llvm:mk_double(),
+ FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
+ T1 = mk_temp(),
+ I1 = hipe_llvm:mk_load(T1, WordTyPtr, Base, [], [], false),
+ {Offset, I2} = trans_src(hipe_rtl:fstore_offset(I)),
+ T2 = mk_temp(),
+ I3 = hipe_llvm:mk_operation(T2, add, WordTy, T1, Offset, []),
+ T3 = mk_temp(),
+ I4 = hipe_llvm:mk_conversion(T3, inttoptr, WordTy, T2, FloatTyPtr),
+ {Value, I5} = trans_src(hipe_rtl:fstore_src(I)),
+ I6 = hipe_llvm:mk_store(FloatTy, Value, FloatTyPtr, T3, [], [], false),
+ {[I6, I5, I4, I3, I2, I1, I0], Relocs}.
+
+%%
+%% goto
+%%
+trans_goto(I, Relocs) ->
+ I1 = hipe_llvm:mk_br(mk_jump_label(hipe_rtl:goto_label(I))),
+ {I1, Relocs}.
+
+%%
+%% label
+%%
+trans_label(I, Relocs) ->
+ Label = mk_label(hipe_rtl:label_name(I)),
+ I1 = hipe_llvm:mk_label(Label),
+ {I1, Relocs}.
+
+%%
+%% load
+%%
+trans_load(I, Relocs) ->
+ RtlDst = hipe_rtl:load_dst(I),
+ TmpDst = mk_temp(),
+ %% XXX: Why translate them independently? ------------------------
+ {Src, I1} = trans_src(hipe_rtl:load_src(I)),
+ {Offset, I2} = trans_src(hipe_rtl:load_offset(I)),
+ T1 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ I3 = hipe_llvm:mk_operation(T1, add, WordTy, Src, Offset, []),
+ %%----------------------------------------------------------------
+ I4 = case hipe_rtl:load_size(I) of
+ word ->
+ T2 = mk_temp(),
+ II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, WordTyPtr),
+ II2 = hipe_llvm:mk_load(TmpDst, WordTyPtr, T2, [], [], false),
+ [II2, II1];
+ Size ->
+ LoadType = llvm_type_from_size(Size),
+ LoadTypeP = hipe_llvm:mk_pointer(LoadType),
+ T2 = mk_temp(),
+ II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, LoadTypeP),
+ T3 = mk_temp(),
+ LoadTypePointer = hipe_llvm:mk_pointer(LoadType),
+ II2 = hipe_llvm:mk_load(T3, LoadTypePointer, T2, [], [], false),
+ Conversion =
+ case hipe_rtl:load_sign(I) of
+ signed -> sext;
+ unsigned -> zext
+ end,
+ II3 =
+ hipe_llvm:mk_conversion(TmpDst, Conversion, LoadType, T3, WordTy),
+ [II3, II2, II1]
+ end,
+ I5 = store_stack_dst(TmpDst, RtlDst),
+ {[I5, I4, I3, I2, I1], Relocs}.
+
+%%
+%% load_address
+%%
+trans_load_address(I, Relocs) ->
+ RtlDst = hipe_rtl:load_address_dst(I),
+ RtlAddr = hipe_rtl:load_address_addr(I),
+ {Addr, NewRelocs} =
+ case hipe_rtl:load_address_type(I) of
+ constant ->
+ {"%DL" ++ integer_to_list(RtlAddr) ++ "_var", Relocs};
+ closure ->
+ {{_, ClosureName, _}, _, _} = RtlAddr,
+ FixedClosureName = fix_closure_name(ClosureName),
+ Relocs1 = relocs_store(FixedClosureName, {closure, RtlAddr}, Relocs),
+ {"%" ++ FixedClosureName ++ "_var", Relocs1};
+ type ->
+ exit({?MODULE, trans_load_address,
+ {"Type not implemented in load_address", RtlAddr}})
+ end,
+ I1 = store_stack_dst(Addr, RtlDst),
+ {[I1], NewRelocs}.
+
+%%
+%% load_atom
+%%
+trans_load_atom(I, Relocs) ->
+ RtlDst = hipe_rtl:load_atom_dst(I),
+ RtlAtom = hipe_rtl:load_atom_atom(I),
+ AtomName = "atom_" ++ make_llvm_id(atom_to_list(RtlAtom)),
+ AtomVar = "%" ++ AtomName ++ "_var",
+ NewRelocs = relocs_store(AtomName, {atom, RtlAtom}, Relocs),
+ I1 = store_stack_dst(AtomVar, RtlDst),
+ {[I1], NewRelocs}.
+
+%%
+%% move
+%%
+trans_move(I, Relocs) ->
+ RtlDst = hipe_rtl:move_dst(I),
+ RtlSrc = hipe_rtl:move_src(I),
+ {Src, I1} = trans_src(RtlSrc),
+ I2 = store_stack_dst(Src, RtlDst),
+ {[I2, I1], Relocs}.
+
+%%
+%% return
+%%
+trans_return(I, Relocs) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ {VarRet, I1} =
+ case hipe_rtl:return_varlist(I) of
+ [] ->
+ {[], []};
+ [A] ->
+ {Name, II1} = trans_src(A),
+ {[{WordTy, Name}], II1}
+ end,
+ FixedRegs = fixed_registers(),
+ {LoadedFixedRegs, I2} = load_fixed_regs(FixedRegs),
+ FixedRet = [{WordTy, X} || X <- LoadedFixedRegs],
+ Ret = FixedRet ++ VarRet,
+ {RetTypes, _RetNames} = lists:unzip(Ret),
+ Type = hipe_llvm:mk_struct(RetTypes),
+ {RetStruct, I3} = mk_return_struct(Ret, Type),
+ I4 = hipe_llvm:mk_ret([{Type, RetStruct}]),
+ {[I4, I3, I2, I1], Relocs}.
+
+%% @doc Create a structure to hold the return value and the precoloured
+%% registers.
+mk_return_struct(RetValues, Type) ->
+ mk_return_struct(RetValues, Type, [], "undef", 0).
+
+mk_return_struct([], _, Acc, StructName, _) ->
+ {StructName, Acc};
+mk_return_struct([{ElemType, ElemName}|Rest], Type, Acc, StructName, Index) ->
+ T1 = mk_temp(),
+ I1 = hipe_llvm:mk_insertvalue(T1, Type, StructName, ElemType, ElemName,
+ integer_to_list(Index), []),
+ mk_return_struct(Rest, Type, [I1 | Acc], T1, Index+1).
+
+%%
+%% store
+%%
+trans_store(I, Relocs) ->
+ {Base, I1} = trans_src(hipe_rtl:store_base(I)),
+ {Offset, I2} = trans_src(hipe_rtl:store_offset(I)),
+ {Value, I3} = trans_src(hipe_rtl:store_src(I)),
+ T1 = mk_temp(),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ I4 = hipe_llvm:mk_operation(T1, add, WordTy, Base, Offset, []),
+ I5 =
+ case hipe_rtl:store_size(I) of
+ word ->
+ T2 = mk_temp(),
+ II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, WordTyPtr),
+ II2 = hipe_llvm:mk_store(WordTy, Value, WordTyPtr, T2, [], [],
+ false),
+ [II2, II1];
+ Size ->
+ %% XXX: Is always trunc correct ?
+ LoadType = llvm_type_from_size(Size),
+ LoadTypePointer = hipe_llvm:mk_pointer(LoadType),
+ T2 = mk_temp(),
+ II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, LoadTypePointer),
+ T3 = mk_temp(),
+ II2 = hipe_llvm:mk_conversion(T3, 'trunc', WordTy, Value, LoadType),
+ II3 = hipe_llvm:mk_store(LoadType, T3, LoadTypePointer, T2, [], [], false),
+ [II3, II2, II1]
+ end,
+ {[I5, I4, I3, I2, I1], Relocs}.
+
+%%
+%% switch
+%%
+trans_switch(I, Relocs, Data) ->
+ RtlSrc = hipe_rtl:switch_src(I),
+ {Src, I1} = trans_src(RtlSrc),
+ Labels = hipe_rtl:switch_labels(I),
+ JumpLabels = [mk_jump_label(L) || L <- Labels],
+ SortOrder = hipe_rtl:switch_sort_order(I),
+ NrLabels = length(Labels),
+ ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
+ TableType = hipe_llvm:mk_array(NrLabels, ByteTyPtr),
+ TableTypeP = hipe_llvm:mk_pointer(TableType),
+ TypedJumpLabels = [{hipe_llvm:mk_label_type(), X} || X <- JumpLabels],
+ T1 = mk_temp(),
+ {Src2, []} = trans_dst(RtlSrc),
+ TableName = "table_" ++ tl(Src2),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ I2 = hipe_llvm:mk_getelementptr(T1, TableTypeP, "@"++TableName,
+ [{WordTy, "0"}, {WordTy, Src}], false),
+ T2 = mk_temp(),
+ BYTE_TYPE_PP = hipe_llvm:mk_pointer(ByteTyPtr),
+ I3 = hipe_llvm:mk_load(T2, BYTE_TYPE_PP, T1, [], [], false),
+ I4 = hipe_llvm:mk_indirectbr(ByteTyPtr, T2, TypedJumpLabels),
+ LMap = [{label, L} || L <- Labels],
+ %% Update data with the info for the jump table
+ {NewData, JTabLab} =
+ case hipe_rtl:switch_sort_order(I) of
+ [] ->
+ hipe_consttab:insert_block(Data, word, LMap);
+ SortOrder ->
+ hipe_consttab:insert_sorted_block(Data, word, LMap, SortOrder)
+ end,
+ Relocs2 = relocs_store(TableName, {switch, {TableType, Labels, NrLabels,
+ SortOrder}, JTabLab}, Relocs),
+ {[I4, I3, I2, I1], Relocs2, NewData}.
+
+%% @doc Pass on RTL code in order to fix invoke and closure calls.
+fix_code(Code) ->
+ fix_calls(Code).
+
+%% @doc Fix invoke calls and closure calls with more than ?NR_ARG_REGS
+%% arguments.
+fix_calls(Code) ->
+ fix_calls(Code, [], []).
+
+fix_calls([], Acc, FailLabels) ->
+ {lists:reverse(Acc), FailLabels};
+fix_calls([I | Is], Acc, FailLabels) ->
+ case hipe_rtl:is_call(I) of
+ true ->
+ {NewCall, NewFailLabels} =
+ case hipe_rtl:call_fail(I) of
+ [] ->
+ {I, FailLabels};
+ FailLabel ->
+ fix_invoke_call(I, FailLabel, FailLabels)
+ end,
+ fix_calls(Is, [NewCall|Acc], NewFailLabels);
+ false ->
+ fix_calls(Is, [I|Acc], FailLabels)
+ end.
+
+%% @doc When a call has a fail continuation label it must be extended with a
+%% normal continuation label to go with the LLVM's invoke instruction.
+%% FailLabels is the list of labels of all fail blocks, which are needed to
+%% be declared as landing pads. Furtermore, we must add to fail labels a
+%% call to hipe_bifs:llvm_fix_pinned_regs/0 in order to avoid reloading old
+%% values of pinned registers. This may happen because the result of an
+%% invoke instruction is not available at fail-labels, and, thus, we cannot
+%% get the correct values of pinned registers. Finally, the stack needs to
+%% be re-adjusted when there are stack arguments.
+fix_invoke_call(I, FailLabel, FailLabels) ->
+ NewLabel = hipe_gensym:new_label(llvm),
+ NewCall1 = hipe_rtl:call_normal_update(I, NewLabel),
+ SpAdj = find_sp_adj(hipe_rtl:call_arglist(I)),
+ case lists:keyfind(FailLabel, 1, FailLabels) of
+ %% Same fail label with same Stack Pointer adjustment
+ {FailLabel, NewFailLabel, SpAdj} ->
+ NewCall2 = hipe_rtl:call_fail_update(NewCall1, NewFailLabel),
+ {NewCall2, FailLabels};
+ %% Same fail label but with different Stack Pointer adjustment
+ {_, _, _} ->
+ NewFailLabel = hipe_gensym:new_label(llvm),
+ NewCall2 = hipe_rtl:call_fail_update(NewCall1, NewFailLabel),
+ {NewCall2, [{FailLabel, NewFailLabel, SpAdj} | FailLabels]};
+ %% New Fail label
+ false ->
+ NewFailLabel = hipe_gensym:new_label(llvm),
+ NewCall2 = hipe_rtl:call_fail_update(NewCall1, NewFailLabel),
+ {NewCall2, [{FailLabel, NewFailLabel, SpAdj} | FailLabels]}
+ end.
+
+find_sp_adj(ArgList) ->
+ NrArgs = length(ArgList),
+ case NrArgs > ?NR_ARG_REGS of
+ true ->
+ (NrArgs - ?NR_ARG_REGS) * hipe_rtl_arch:word_size();
+ false ->
+ 0
+ end.
+
+%% @doc Add landingpad instruction in Fail Blocks.
+add_landingpads(LLVM_Code, FailLabels) ->
+ FailLabels2 = [convert_label(T) || T <- FailLabels],
+ add_landingpads(LLVM_Code, FailLabels2, []).
+
+add_landingpads([], _, Acc) ->
+ lists:reverse(Acc);
+add_landingpads([I | Is], FailLabels, Acc) ->
+ case hipe_llvm:is_label(I) of
+ true ->
+ Label = hipe_llvm:label_label(I),
+ Ins = create_fail_blocks(Label, FailLabels),
+ add_landingpads(Is, FailLabels, [I | Ins] ++ Acc);
+ false ->
+ add_landingpads(Is, FailLabels, [I | Acc])
+ end.
+
+convert_label({X,Y,Z}) ->
+ {"L" ++ integer_to_list(X), "FL" ++ integer_to_list(Y), Z}.
+
+%% @doc Create a fail block wich.
+create_fail_blocks(_, []) -> [];
+create_fail_blocks(Label, FailLabels) ->
+ create_fail_blocks(Label, FailLabels, []).
+
+create_fail_blocks(Label, FailLabels, Acc) ->
+ case lists:keytake(Label, 1, FailLabels) of
+ false ->
+ Acc;
+ {value, {Label, FailLabel, SpAdj}, RestFailLabels} ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ I1 = hipe_llvm:mk_label(FailLabel),
+ LP = hipe_llvm:mk_landingpad(),
+ I2 =
+ case SpAdj > 0 of
+ true ->
+ StackPointer = ?ARCH_REGISTERS:reg_name(?ARCH_REGISTERS:sp()),
+ hipe_llvm:mk_adj_stack(integer_to_list(SpAdj), StackPointer,
+ WordTy);
+ false -> []
+ end,
+ T1 = mk_temp(),
+ FixedRegs = fixed_registers(),
+ FunRetTy =
+ hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ I3 = hipe_llvm:mk_call(T1, false, "cc 11", [], FunRetTy,
+ "@hipe_bifs.llvm_fix_pinned_regs.0", [], []),
+ I4 = store_fixed_regs(FixedRegs, T1),
+ I5 = hipe_llvm:mk_br("%" ++ Label),
+ Ins = lists:flatten([I5, I4, I3, I2, LP,I1]),
+ create_fail_blocks(Label, RestFailLabels, Ins ++ Acc)
+ end.
+
+%%------------------------------------------------------------------------------
+%% Miscellaneous Functions
+%%------------------------------------------------------------------------------
+
+%% @doc Convert RTL argument list to LLVM argument list.
+trans_args(ArgList) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ MakeArg =
+ fun(A) ->
+ {Name, I1} = trans_src(A),
+ {{WordTy, Name}, I1}
+ end,
+ [MakeArg(A) || A <- ArgList].
+
+%% @doc Convert a list of Precoloured registers to LLVM argument list.
+fix_reg_args(ArgList) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ [{WordTy, A} || A <- ArgList].
+
+%% @doc Load Precoloured registers.
+load_fixed_regs(RegList) ->
+ Names = [mk_temp_reg(R) || R <- RegList],
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ Fun1 =
+ fun (X, Y) ->
+ hipe_llvm:mk_load(X, WordTyPtr, "%" ++ Y ++ "_reg_var", [], [], false)
+ end,
+ Ins = lists:zipwith(Fun1, Names, RegList),
+ {Names, Ins}.
+
+%% @doc Store Precoloured registers.
+store_fixed_regs(RegList, Name) ->
+ Names = [mk_temp_reg(R) || R <- RegList],
+ Indexes = lists:seq(0, erlang:length(RegList) - 1),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ Fun1 =
+ fun(X,Y) ->
+ hipe_llvm:mk_extractvalue(X, FunRetTy, Name, integer_to_list(Y), [])
+ end,
+ I1 = lists:zipwith(Fun1, Names, Indexes),
+ Fun2 =
+ fun (X, Y) ->
+ hipe_llvm:mk_store(WordTy, X, WordTyPtr, "%" ++ Y ++ "_reg_var", [], [],
+ false)
+ end,
+ I2 = lists:zipwith(Fun2, Names, RegList),
+ [I2, I1].
+
+%%------------------------------------------------------------------------------
+%% Translation of Names
+%%------------------------------------------------------------------------------
+
+%% @doc Fix F in MFA tuple to acceptable LLVM identifier (case of closure).
+-spec fix_mfa_name(mfa()) -> mfa().
+fix_mfa_name({Mod_Name, Closure_Name, Arity}) ->
+ Fun_Name = list_to_atom(fix_closure_name(Closure_Name)),
+ {Mod_Name, Fun_Name, Arity}.
+
+%% @doc Make an acceptable LLVM identifier for a closure name.
+fix_closure_name(ClosureName) ->
+ make_llvm_id(atom_to_list(ClosureName)).
+
+%% @doc Create an acceptable LLVM identifier.
+make_llvm_id(Name) ->
+ case Name of
+ "" -> "Empty";
+ Other -> lists:flatten([llvm_id(C) || C <- Other])
+ end.
+
+llvm_id(C) when C=:=46; C>47 andalso C<58; C>64 andalso C<91; C=:=95;
+ C>96 andalso C<123 ->
+ C;
+llvm_id(C) ->
+ io_lib:format("_~2.16.0B_",[C]).
+
+%% @doc Create an acceptable LLVM identifier for an MFA.
+trans_mfa_name({M,F,A}) ->
+ N = atom_to_list(M) ++ "." ++ atom_to_list(F) ++ "." ++ integer_to_list(A),
+ make_llvm_id(N).
+
+%%------------------------------------------------------------------------------
+%% Creation of Labels and Temporaries
+%%------------------------------------------------------------------------------
+mk_label(N) ->
+ "L" ++ integer_to_list(N).
+
+mk_jump_label(N) ->
+ "%L" ++ integer_to_list(N).
+
+mk_temp() ->
+ "%t" ++ integer_to_list(hipe_gensym:new_var(llvm)).
+
+mk_temp_reg(Name) ->
+ "%" ++ Name ++ integer_to_list(hipe_gensym:new_var(llvm)).
+
+%%----------------------------------------------------------------------------
+%% Translation of Operands
+%%----------------------------------------------------------------------------
+
+store_stack_dst(TempDst, Dst) ->
+ {Dst2, II1} = trans_dst(Dst),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ II2 = hipe_llvm:mk_store(WordTy, TempDst, WordTyPtr, Dst2, [], [], false),
+ [II2, II1].
+
+store_float_stack(TempDst, Dst) ->
+ {Dst2, II1} = trans_dst(Dst),
+ FloatTy = hipe_llvm:mk_double(),
+ FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
+ II2 = hipe_llvm:mk_store(FloatTy, TempDst, FloatTyPtr, Dst2, [], [], false),
+ [II2, II1].
+
+trans_float_src(Src) ->
+ case hipe_rtl:is_const_label(Src) of
+ true ->
+ Name = "@DL" ++ integer_to_list(hipe_rtl:const_label_label(Src)),
+ T1 = mk_temp(),
+ %% XXX: Hardcoded offset
+ ByteTy = hipe_llvm:mk_int(8),
+ ByteTyPtr = hipe_llvm:mk_pointer(ByteTy),
+ I1 = hipe_llvm:mk_getelementptr(T1, ByteTyPtr, Name,
+ [{ByteTy, integer_to_list(?FLOAT_OFFSET)}], true),
+ T2 = mk_temp(),
+ FloatTy = hipe_llvm:mk_double(),
+ FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
+ I2 = hipe_llvm:mk_conversion(T2, bitcast, ByteTyPtr, T1, FloatTyPtr),
+ T3 = mk_temp(),
+ I3 = hipe_llvm:mk_load(T3, FloatTyPtr, T2, [], [], false),
+ {T3, [I3, I2, I1]};
+ false ->
+ trans_src(Src)
+ end.
+
+trans_src(A) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ case hipe_rtl:is_imm(A) of
+ true ->
+ Value = integer_to_list(hipe_rtl:imm_value(A)),
+ {Value, []};
+ false ->
+ case hipe_rtl:is_reg(A) of
+ true ->
+ case isPrecoloured(A) of
+ true -> trans_reg(A, src);
+ false ->
+ {Name, []} = trans_reg(A, src),
+ T1 = mk_temp(),
+ I1 = hipe_llvm:mk_load(T1, WordTyPtr, Name, [], [], false),
+ {T1, [I1]}
+ end;
+ false ->
+ case hipe_rtl:is_var(A) of
+ true ->
+ RootName = "%vr" ++ integer_to_list(hipe_rtl:var_index(A)),
+ T1 = mk_temp(),
+ I1 = hipe_llvm:mk_load(T1, WordTyPtr, RootName, [], [], false),
+ I2 =
+ case hipe_rtl:var_liveness(A) of
+ live ->
+ [];
+ dead ->
+ NilValue = hipe_tagscheme:mk_nil(),
+ hipe_llvm:mk_store(WordTy, integer_to_list(NilValue), WordTyPtr, RootName,
+ [], [], false)
+ end,
+ {T1, [I2, I1]};
+ false ->
+ case hipe_rtl:is_fpreg(A) of
+ true ->
+ {Name, []} = trans_dst(A),
+ T1 = mk_temp(),
+ FloatTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_double()),
+ I1 = hipe_llvm:mk_load(T1, FloatTyPtr, Name, [], [], false),
+ {T1, [I1]};
+ false -> trans_dst(A)
+ end
+ end
+ end
+ end.
+
+trans_dst(A) ->
+ case hipe_rtl:is_reg(A) of
+ true ->
+ trans_reg(A, dst);
+ false ->
+ Name = case hipe_rtl:is_var(A) of
+ true ->
+ "%vr" ++ integer_to_list(hipe_rtl:var_index(A));
+ false ->
+ case hipe_rtl:is_fpreg(A) of
+ true -> "%fr" ++ integer_to_list(hipe_rtl:fpreg_index(A));
+ false ->
+ case hipe_rtl:is_const_label(A) of
+ true ->
+ "%DL" ++ integer_to_list(hipe_rtl:const_label_label(A)) ++ "_var";
+ false ->
+ exit({?MODULE, trans_dst, {"Bad RTL argument",A}})
+ end
+ end
+ end,
+ {Name, []}
+ end.
+
+%% @doc Translate a register. If it is precoloured it must be mapped to the
+%% correct stack slot that holds the precoloured register value.
+trans_reg(Arg, Position) ->
+ Index = hipe_rtl:reg_index(Arg),
+ case isPrecoloured(Arg) of
+ true ->
+ Name = map_precoloured_reg(Index),
+ case Position of
+ src -> fix_reg_src(Name);
+ dst -> fix_reg_dst(Name)
+ end;
+ false ->
+ {hipe_rtl_arch:reg_name(Index), []}
+ end.
+
+map_precoloured_reg(Index) ->
+ case hipe_rtl_arch:reg_name(Index) of
+ "%r15" -> "%hp_reg_var";
+ "%rbp" -> "%p_reg_var";
+ "%esi" -> "%hp_reg_var";
+ "%ebp" -> "%p_reg_var";
+ "%fcalls" ->
+ {"%p_reg_var", ?ARCH_REGISTERS:proc_offset(?ARCH_REGISTERS:fcalls())};
+ "%hplim" ->
+ {"%p_reg_var", ?ARCH_REGISTERS:proc_offset(?ARCH_REGISTERS:heap_limit())};
+ _ ->
+ exit({?MODULE, map_precoloured_reg, {"Register not mapped yet", Index}})
+ end.
+
+%% @doc Load precoloured dst register.
+fix_reg_dst(Register) ->
+ case Register of
+ {Name, Offset} -> %% Case of %fcalls, %hplim
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ pointer_from_reg(Name, WordTy, Offset);
+ Name -> %% Case of %p and %hp
+ {Name, []}
+ end.
+
+%% @doc Load precoloured src register.
+fix_reg_src(Register) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ case Register of
+ {Name, Offset} -> %% Case of %fcalls, %hplim
+ {T1, I1} = pointer_from_reg(Name, WordTy, Offset),
+ T2 = mk_temp(),
+ I2 = hipe_llvm:mk_load(T2, WordTyPtr, T1, [], [] , false),
+ {T2, [I2, I1]};
+ Name -> %% Case of %p and %hp
+ T1 = mk_temp(),
+ {T1, hipe_llvm:mk_load(T1, WordTyPtr, Name, [], [], false)}
+ end.
+
+%% @doc Load %fcalls and %hplim.
+pointer_from_reg(RegName, Type, Offset) ->
+ PointerType = hipe_llvm:mk_pointer(Type),
+ T1 = mk_temp(),
+ I1 = hipe_llvm:mk_load(T1, PointerType, RegName, [], [] ,false),
+ T2 = mk_temp(),
+ I2 = hipe_llvm:mk_conversion(T2, inttoptr, Type, T1, PointerType),
+ T3 = mk_temp(),
+ %% XXX: Offsets should be a power of 2.
+ I3 = hipe_llvm:mk_getelementptr(T3, PointerType, T2,
+ [{Type, integer_to_list(Offset div hipe_rtl_arch:word_size())}], true),
+ {T3, [I3, I2, I1]}.
+
+isPrecoloured(X) ->
+ hipe_rtl_arch:is_precoloured(X).
+
+%%------------------------------------------------------------------------------
+%% Translation of operators
+%%------------------------------------------------------------------------------
+
+trans_op(Op) ->
+ case Op of
+ add -> add;
+ sub -> sub;
+ 'or' -> 'or';
+ 'and' -> 'and';
+ 'xor' -> 'xor';
+ sll -> shl;
+ srl -> lshr;
+ sra -> ashr;
+ mul -> mul;
+ 'fdiv' -> fdiv;
+ 'sdiv' -> sdiv;
+ 'srem' -> srem;
+ Other -> exit({?MODULE, trans_op, {"Unknown RTL operator", Other}})
+ end.
+
+trans_rel_op(Op) ->
+ case Op of
+ eq -> eq;
+ ne -> ne;
+ gtu -> ugt;
+ geu -> uge;
+ ltu -> ult;
+ leu -> ule;
+ gt -> sgt;
+ ge -> sge;
+ lt -> slt;
+ le -> sle
+ end.
+
+trans_prim_op(Op) ->
+ case Op of
+ '+' -> "bif_add";
+ '-' -> "bif_sub";
+ '*' -> "bif_mul";
+ 'div' -> "bif_div";
+ '/' -> "bif_div";
+ Other -> atom_to_list(Other)
+ end.
+
+trans_fp_op(Op) ->
+ case Op of
+ fadd -> fadd;
+ fsub -> fsub;
+ fdiv -> fdiv;
+ fmul -> fmul;
+ fchs -> fsub;
+ Other -> exit({?MODULE, trans_fp_op, {"Unknown RTL float operator",Other}})
+ end.
+
+%% Misc.
+insn_dst(I) ->
+ case I of
+ #alu{} ->
+ [hipe_rtl:alu_dst(I)];
+ #alub{} ->
+ [hipe_rtl:alub_dst(I)];
+ #call{} ->
+ case hipe_rtl:call_dstlist(I) of
+ [] -> [];
+ [Dst] -> [Dst]
+ end;
+ #load{} ->
+ [hipe_rtl:load_dst(I)];
+ #load_address{} ->
+ [hipe_rtl:load_address_dst(I)];
+ #load_atom{} ->
+ [hipe_rtl:load_atom_dst(I)];
+ #move{} ->
+ [hipe_rtl:move_dst(I)];
+ #phi{} ->
+ [hipe_rtl:phi_dst(I)];
+ #fconv{} ->
+ [hipe_rtl:fconv_dst(I)];
+ #fload{} ->
+ [hipe_rtl:fload_dst(I)];
+ #fmove{} ->
+ [hipe_rtl:fmove_dst(I)];
+ #fp{} ->
+ [hipe_rtl:fp_dst(I)];
+ #fp_unop{} ->
+ [hipe_rtl:fp_unop_dst(I)];
+ _ ->
+ []
+ end.
+
+llvm_type_from_size(Size) ->
+ case Size of
+ byte -> hipe_llvm:mk_int(8);
+ int16 -> hipe_llvm:mk_int(16);
+ int32 -> hipe_llvm:mk_int(32);
+ word -> hipe_llvm:mk_int(64)
+ end.
+
+%% @doc Create definition for the compiled function. The parameters that are
+%% passed to the stack must be reversed to match with the CC. Also
+%% precoloured registers that are passed as arguments must be stored to
+%% the corresonding stack slots.
+create_function_definition(Fun, Params, Code, LocalVars) ->
+ FunctionName = trans_mfa_name(Fun),
+ FixedRegs = fixed_registers(),
+ %% Reverse parameters to match with the Erlang calling convention
+ ReversedParams =
+ case erlang:length(Params) > ?NR_ARG_REGS of
+ false ->
+ Params;
+ true ->
+ {ParamsInRegs, ParamsInStack} = lists:split(?NR_ARG_REGS, Params),
+ ParamsInRegs ++ lists:reverse(ParamsInStack)
+ end,
+ Args = header_regs(FixedRegs) ++ header_params(ReversedParams),
+ EntryLabel = hipe_llvm:mk_label("Entry"),
+ FloatTy = hipe_llvm:mk_double(),
+ ExceptionSync = hipe_llvm:mk_alloca("%exception_sync", FloatTy, [], []),
+ I2 = load_regs(FixedRegs),
+ I3 = hipe_llvm:mk_br(mk_jump_label(get(first_label))),
+ StoredParams = store_params(Params),
+ EntryBlock =
+ lists:flatten([EntryLabel, ExceptionSync, I2, LocalVars, StoredParams, I3]),
+ Final_Code = EntryBlock ++ Code,
+ FunctionOptions = [nounwind, noredzone, list_to_atom("gc \"erlang\"")],
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ hipe_llvm:mk_fun_def([], [], "cc 11", [], FunRetTy, FunctionName, Args,
+ FunctionOptions, [], Final_Code).
+
+header_params(Params) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ [{WordTy, "%v" ++ integer_to_list(hipe_rtl:var_index(P))} || P <- Params].
+
+store_params(Params) ->
+ Fun1 =
+ fun(X) ->
+ Index = hipe_rtl:var_index(X),
+ {Name, _} = trans_dst(X),
+ ParamName = "%v" ++ integer_to_list(Index),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ hipe_llvm:mk_store(WordTy, ParamName, WordTyPtr, Name, [], [], false)
+ end,
+ lists:map(Fun1, Params).
+
+fixed_registers() ->
+ case get(hipe_target_arch) of
+ x86 ->
+ ["hp", "p"];
+ amd64 ->
+ ["hp", "p"];
+ Other ->
+ exit({?MODULE, map_registers, {"Unknown architecture", Other}})
+ end.
+
+header_regs(Registers) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ [{WordTy, "%" ++ X ++ "_in"} || X <- Registers].
+
+load_regs(Registers) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ Fun1 =
+ fun(X) ->
+ I1 = hipe_llvm:mk_alloca("%" ++ X ++ "_reg_var", WordTy, [], []),
+ I2 = hipe_llvm:mk_store(WordTy, "%" ++ X ++ "_in", WordTyPtr,
+ "%" ++ X ++ "_reg_var", [], [], false),
+ [I1, I2]
+ end,
+ lists:map(Fun1, Registers).
+
+%%------------------------------------------------------------------------------
+%% Relocation-specific Stuff
+%%------------------------------------------------------------------------------
+
+relocs_store(Key, Value, Relocs) ->
+ dict:store(Key, Value, Relocs).
+
+relocs_to_list(Relocs) ->
+ dict:to_list(Relocs).
+
+%% @doc This function is responsible for the actions needed to handle
+%% relocations:
+%% 1) Updates relocations with constants and switch jump tables.
+%% 2) Creates LLVM code to declare relocations as external
+%% functions/constants.
+%% 3) Creates LLVM code in order to create local variables for the external
+%% constants/labels.
+handle_relocations(Relocs, Data, Fun) ->
+ RelocsList = relocs_to_list(Relocs),
+ %% Seperate Relocations according to their type
+ {CallList, AtomList, ClosureList, ClosureLabels, SwitchList} =
+ seperate_relocs(RelocsList),
+ %% Create code to declare atoms
+ AtomDecl = [declare_atom(A) || A <- AtomList],
+ %% Create code to create local name for atoms
+ AtomLoad = [load_atom(A) || A <- AtomList],
+ %% Create code to declare closures
+ ClosureDecl = [declare_closure(C) || C <- ClosureList],
+ %% Create code to create local name for closures
+ ClosureLoad = [load_closure(C) || C <- ClosureList],
+ %% Find function calls
+ IsExternalCall = fun (X) -> is_external_call(X, Fun) end,
+ ExternalCallList = lists:filter(IsExternalCall, CallList),
+ %% Create code to declare external function
+ FunDecl = fixed_fun_decl() ++ [call_to_decl(C) || C <- ExternalCallList],
+ %% Extract constant labels from Constant Map (remove duplicates)
+ ConstLabels = hipe_consttab:labels(Data),
+ %% Create code to declare constants
+ ConstDecl = [declare_constant(C) || C <- ConstLabels],
+ %% Create code to create local name for constants
+ ConstLoad = [load_constant(C) || C <- ConstLabels],
+ %% Create code to create jump tables
+ SwitchDecl = declare_switches(SwitchList, Fun),
+ %% Create code to create a table with the labels of all closure calls
+ {ClosureLabelDecl, Relocs1} =
+ declare_closure_labels(ClosureLabels, Relocs, Fun),
+ %% Enter constants to relocations
+ Relocs2 = lists:foldl(fun const_to_dict/2, Relocs1, ConstLabels),
+ %% Temporary Store inc_stack and llvm_fix_pinned_regs to Dictionary
+ %% TODO: Remove this
+ Relocs3 = dict:store("inc_stack_0", {call, {bif, inc_stack_0, 0}}, Relocs2),
+ Relocs4 = dict:store("hipe_bifs.llvm_fix_pinned_regs.0",
+ {call, {hipe_bifs, llvm_fix_pinned_regs, 0}}, Relocs3),
+ BranchMetaData = [
+ hipe_llvm:mk_branch_meta(?BRANCH_META_TAKEN, "99", "1")
+ , hipe_llvm:mk_branch_meta(?BRANCH_META_NOT_TAKEN, "1", "99")
+ ],
+ ExternalDeclarations = AtomDecl ++ ClosureDecl ++ ConstDecl ++ FunDecl ++
+ ClosureLabelDecl ++ SwitchDecl ++ BranchMetaData,
+ LocalVariables = AtomLoad ++ ClosureLoad ++ ConstLoad,
+ {Relocs4, ExternalDeclarations, LocalVariables}.
+
+%% @doc Seperate relocations according to their type.
+seperate_relocs(Relocs) ->
+ seperate_relocs(Relocs, [], [], [], [], []).
+
+seperate_relocs([], CallAcc, AtomAcc, ClosureAcc, LabelAcc, JmpTableAcc) ->
+ {CallAcc, AtomAcc, ClosureAcc, LabelAcc, JmpTableAcc};
+seperate_relocs([R|Rs], CallAcc, AtomAcc, ClosureAcc, LabelAcc, JmpTableAcc) ->
+ case R of
+ {_, {call, _}} ->
+ seperate_relocs(Rs, [R | CallAcc], AtomAcc, ClosureAcc, LabelAcc,
+ JmpTableAcc);
+ {_, {atom, _}} ->
+ seperate_relocs(Rs, CallAcc, [R | AtomAcc], ClosureAcc, LabelAcc,
+ JmpTableAcc);
+ {_, {closure, _}} ->
+ seperate_relocs(Rs, CallAcc, AtomAcc, [R | ClosureAcc], LabelAcc,
+ JmpTableAcc);
+ {_, {switch, _, _}} ->
+ seperate_relocs(Rs, CallAcc, AtomAcc, ClosureAcc, LabelAcc,
+ [R | JmpTableAcc]);
+ {_, {closure_label, _, _}} ->
+ seperate_relocs(Rs, CallAcc, AtomAcc, ClosureAcc, [R | LabelAcc],
+ JmpTableAcc)
+ end.
+
+%% @doc External declaration of an atom.
+declare_atom({AtomName, _}) ->
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ hipe_llvm:mk_const_decl("@" ++ AtomName, "external constant", WordTy, "").
+
+%% @doc Creation of local variable for an atom.
+load_atom({AtomName, _}) ->
+ Dst = "%" ++ AtomName ++ "_var",
+ Name = "@" ++ AtomName,
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ WordTyPtr = hipe_llvm:mk_pointer(WordTy),
+ hipe_llvm:mk_conversion(Dst, ptrtoint, WordTyPtr, Name, WordTy).
+
+%% @doc External declaration of a closure.
+declare_closure({ClosureName, _})->
+ ByteTy = hipe_llvm:mk_int(8),
+ hipe_llvm:mk_const_decl("@" ++ ClosureName, "external constant", ByteTy, "").
+
+%% @doc Creation of local variable for a closure.
+load_closure({ClosureName, _})->
+ Dst = "%" ++ ClosureName ++ "_var",
+ Name = "@" ++ ClosureName,
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
+ hipe_llvm:mk_conversion(Dst, ptrtoint, ByteTyPtr, Name, WordTy).
+
+%% @doc Declaration of a local variable for a switch jump table.
+declare_switches(JumpTableList, Fun) ->
+ FunName = trans_mfa_name(Fun),
+ [declare_switch_table(X, FunName) || X <- JumpTableList].
+
+declare_switch_table({Name, {switch, {TableType, Labels, _, _}, _}}, FunName) ->
+ LabelList = [mk_jump_label(L) || L <- Labels],
+ Fun1 = fun(X) -> "i8* blockaddress(@" ++ FunName ++ ", " ++ X ++ ")" end,
+ List2 = lists:map(Fun1, LabelList),
+ List3 = string:join(List2, ",\n"),
+ List4 = "[\n" ++ List3 ++ "\n]\n",
+ hipe_llvm:mk_const_decl("@" ++ Name, "constant", TableType, List4).
+
+%% @doc Declaration of a variable for a table with the labels of all closure
+%% calls in the code.
+declare_closure_labels([], Relocs, _Fun) ->
+ {[], Relocs};
+declare_closure_labels(ClosureLabels, Relocs, Fun) ->
+ FunName = trans_mfa_name(Fun),
+ {LabelList, ArityList} =
+ lists:unzip([{mk_jump_label(Label), A} ||
+ {_, {closure_label, Label, A}} <- ClosureLabels]),
+ Relocs1 = relocs_store("table_closures", {table_closures, ArityList}, Relocs),
+ List2 =
+ ["i8* blockaddress(@" ++ FunName ++ ", " ++ L ++ ")" || L <- LabelList],
+ List3 = string:join(List2, ",\n"),
+ List4 = "[\n" ++ List3 ++ "\n]\n",
+ NrLabels = length(LabelList),
+ ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
+ TableType = hipe_llvm:mk_array(NrLabels, ByteTyPtr),
+ ConstDecl =
+ hipe_llvm:mk_const_decl("@table_closures", "constant", TableType, List4),
+ {[ConstDecl], Relocs1}.
+
+%% @doc A call is treated as non external only in a case of a recursive
+%% function.
+is_external_call({_, {call, Fun}}, Fun) -> false;
+is_external_call(_, _) -> true.
+
+%% @doc External declaration of a function.
+call_to_decl({Name, {call, MFA}}) ->
+ {M, _F, A} = MFA,
+ CConv = "cc 11",
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ {Type, Args} =
+ case M of
+ llvm ->
+ {hipe_llvm:mk_struct([WordTy, hipe_llvm:mk_int(1)]), [1, 2]};
+ %% +precoloured regs
+ _ ->
+ {FunRetTy, lists:seq(1, A + ?NR_PINNED_REGS)}
+ end,
+ ArgsTypes = lists:duplicate(length(Args), WordTy),
+ hipe_llvm:mk_fun_decl([], [], CConv, [], Type, "@" ++ Name, ArgsTypes, []).
+
+%% @doc These functions are always declared, even if not used.
+fixed_fun_decl() ->
+ ByteTy = hipe_llvm:mk_int(8),
+ ByteTyPtr = hipe_llvm:mk_pointer(ByteTy),
+ LandPad = hipe_llvm:mk_fun_decl([], [], [], [], hipe_llvm:mk_int(32),
+ "@__gcc_personality_v0", [hipe_llvm:mk_int(32), hipe_llvm:mk_int(64),
+ ByteTyPtr, ByteTyPtr], []),
+ GCROOTDecl = hipe_llvm:mk_fun_decl([], [], [], [], hipe_llvm:mk_void(),
+ "@llvm.gcroot", [hipe_llvm:mk_pointer(ByteTyPtr), ByteTyPtr], []),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
+ FixPinnedRegs = hipe_llvm:mk_fun_decl([], [], [], [], FunRetTy,
+ "@hipe_bifs.llvm_fix_pinned_regs.0", [], []),
+ GcMetadata = hipe_llvm:mk_const_decl("@gc_metadata", "external constant",
+ ByteTy, ""),
+ [LandPad, GCROOTDecl, FixPinnedRegs, GcMetadata].
+
+%% @doc Declare an External Consant. We declare all constants as i8 in order to
+%% be able to calcucate pointers of the form DL+6, with the getelementptr
+%% instruction. Otherwise we have to convert constants form pointers to
+%% values, add the offset and convert them again to pointers.
+declare_constant(Label) ->
+ Name = "@DL" ++ integer_to_list(Label),
+ ByteTy = hipe_llvm:mk_int(8),
+ hipe_llvm:mk_const_decl(Name, "external constant", ByteTy, "").
+
+%% @doc Load a constant is achieved by converting a pointer to an integer of
+%% the correct width.
+load_constant(Label) ->
+ Dst = "%DL" ++ integer_to_list(Label) ++ "_var",
+ Name = "@DL" ++ integer_to_list(Label),
+ WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
+ ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
+ hipe_llvm:mk_conversion(Dst, ptrtoint, ByteTyPtr, Name, WordTy).
+
+%% @doc Store external constants and calls to dictionary.
+const_to_dict(Elem, Dict) ->
+ Name = "DL" ++ integer_to_list(Elem),
+ dict:store(Name, {'constant', Elem}, Dict).