diff options
author | Magnus Lång <[email protected]> | 2016-09-16 13:34:24 +0200 |
---|---|---|
committer | Magnus Lång <[email protected]> | 2017-03-16 20:49:42 +0100 |
commit | cf047293ecf6ea108a1e5a412743bfb5fe66e26f (patch) | |
tree | 5aa6af45b3d2e20179f4dfc05ad1136f8afa2a3a /lib/hipe/opt/hipe_bb_weights.erl | |
parent | cc115ebc67a465233c7740efb42e0bc9584ad352 (diff) | |
download | otp-cf047293ecf6ea108a1e5a412743bfb5fe66e26f.tar.gz otp-cf047293ecf6ea108a1e5a412743bfb5fe66e26f.tar.bz2 otp-cf047293ecf6ea108a1e5a412743bfb5fe66e26f.zip |
hipe: Add module computing basic blocks weights
hipe_bb_weights computes basic block weights by using the branch
probability predictions as the coefficients in a linear equation system.
This linear equation system is then solved using Gauss-Jordan
Elimination.
The equation system representation is picked to be efficient with highly
sparse data. During triangelisation, the remaining equations are
dynamically reordered in order to prevent the equations from growing in
the common case, preserving the benefit of the sparse equation
representation.
In the case that the input is very big, hipe_bb_weights automatically
falls back to a rough approximation in order to keep compile times under
control.
Diffstat (limited to 'lib/hipe/opt/hipe_bb_weights.erl')
-rw-r--r-- | lib/hipe/opt/hipe_bb_weights.erl | 449 |
1 files changed, 449 insertions, 0 deletions
diff --git a/lib/hipe/opt/hipe_bb_weights.erl b/lib/hipe/opt/hipe_bb_weights.erl new file mode 100644 index 0000000000..8ef113b94c --- /dev/null +++ b/lib/hipe/opt/hipe_bb_weights.erl @@ -0,0 +1,449 @@ +%% -*- erlang-indent-level: 2 -*- +%% +%% Licensed under the Apache License, Version 2.0 (the "License"); +%% you may not use this file except in compliance with the License. +%% You may obtain a copy of the License at +%% +%% http://www.apache.org/licenses/LICENSE-2.0 +%% +%% Unless required by applicable law or agreed to in writing, software +%% distributed under the License is distributed on an "AS IS" BASIS, +%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +%% See the License for the specific language governing permissions and +%% limitations under the License. +%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%@doc +%% BASIC BLOCK WEIGHTING +%% +%% Computes basic block weights by using branch probabilities as weights in a +%% linear equation system, that is then solved using Gauss-Jordan Elimination. +%% +%% The equation system representation is intentionally sparse, since most blocks +%% have at most two successors. +-module(hipe_bb_weights). +-export([compute/3, compute_fast/3, weight/2, call_exn_pred/0]). +-export_type([bb_weights/0]). + +-compile(inline). + +%%-define(DO_ASSERT,1). +%%-define(DEBUG,1). +-include("../main/hipe.hrl"). + +%% If the equation system is large, it might take too long to solve it exactly. +%% Thus, if there are more than ?HEUR_MAX_SOLVE labels, we use the iterative +%% approximation. +-define(HEUR_MAX_SOLVE, 10000). + +-opaque bb_weights() :: #{label() => float()}. + +-type cfg() :: any(). +-type target_module() :: module(). +-type target_context() :: any(). +-type target() :: {target_module(), target_context()}. + +-type label() :: integer(). +-type var() :: label(). +-type assignment() :: {var(), float()}. +-type eq_assoc() :: [{var(), key()}]. +-type solution() :: [assignment()]. + +%% Constant. Predicted probability of a call resulting in an exception. +-spec call_exn_pred() -> float(). +call_exn_pred() -> 0.01. + +-spec compute(cfg(), target_module(), target_context()) -> bb_weights(). +compute(CFG, TgtMod, TgtCtx) -> + Target = {TgtMod, TgtCtx}, + Labels = labels(CFG, Target), + if length(Labels) > ?HEUR_MAX_SOLVE -> + ?debug_msg("~w: Too many labels (~w), approximating.~n", + [?MODULE, length(Labels)]), + compute_fast(CFG, TgtMod, TgtCtx); + true -> + {EqSys, EqAssoc} = build_eq_system(CFG, Labels, Target), + case solve(EqSys, EqAssoc) of + {ok, Solution} -> + maps:from_list(Solution) + end + end. + +-spec build_eq_system(cfg(), [label()], target()) -> {eq_system(), eq_assoc()}. +build_eq_system(CFG, Labels, Target) -> + StartLb = hipe_gen_cfg:start_label(CFG), + EQS0 = eqs_new(), + {EQS1, Assoc} = build_eq_system(Labels, CFG, Target, [], EQS0), + {StartLb, StartKey} = lists:keyfind(StartLb, 1, Assoc), + StartRow0 = eqs_get(StartKey, EQS1), + StartRow = row_set_const(-1.0, StartRow0), % -1.0 since StartLb coef is -1.0 + EQS = eqs_put(StartKey, StartRow, EQS1), + {EQS, Assoc}. + +build_eq_system([], _CFG, _Target, Map, EQS) -> {EQS, lists:reverse(Map)}; +build_eq_system([L|Ls], CFG, Target, Map, EQS0) -> + PredProb = pred_prob(L, CFG, Target), + {Key, EQS} = eqs_insert(row_new([{L, -1.0}|PredProb], 0.0), EQS0), + build_eq_system(Ls, CFG, Target, [{L, Key}|Map], EQS). + +pred_prob(L, CFG, Target) -> + [begin + BB = bb(CFG, Pred, Target), + Ps = branch_preds(hipe_bb:last(BB), Target), + ?ASSERT(length(lists:ukeysort(1, Ps)) + =:= length(hipe_gen_cfg:succ(CFG, Pred))), + case lists:keyfind(L, 1, Ps) of + {L, Prob} when is_float(Prob) -> {Pred, Prob} + end + end || Pred <- hipe_gen_cfg:pred(CFG, L)]. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +-spec triangelise(eq_system(), eq_assoc()) -> {eq_system(), eq_assoc()}. +triangelise(EQS, VKs) -> + triangelise_1(mk_triix(EQS, VKs), []). + +triangelise_1(TIX0, Acc) -> + case triix_is_empty(TIX0) of + true -> {triix_eqs(TIX0), lists:reverse(Acc)}; + false -> + {V,Key,TIX1} = triix_pop_smallest(TIX0), + Row0 = triix_get(Key, TIX1), + case row_get(V, Row0) of + Coef when Coef > -0.0001, Coef < 0.0001 -> + throw(error); + _ -> + Row = row_normalise(V, Row0), + TIX2 = triix_put(Key, Row, TIX1), + TIX = eliminate_triix(V, Key, Row, TIX2), + triangelise_1(TIX, [{V,Key}|Acc]) + end + end. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Triangelisation maintains its own index, outside of eqs. This index is +%% essentially a BST (used as a heap) of all equations by size, with {Key,Var} +%% as the values and only containing a subset of all the keys in the whole +%% equation system. The key operation is triix_pop_smallest/1, which pops a +%% {Key,Var} from the heap corresponding to one of the smallest equations. This +%% is critical in order to prevent the equations from growing during +%% triangelisation, which would make the algorithm O(n^2) in the common case. +-type tri_eq_system() :: {eq_system(), + gb_trees:tree(non_neg_integer(), + gb_trees:tree(key(), var()))}. + +triix_eqs({EQS, _}) -> EQS. +triix_get(Key, {EQS, _}) -> eqs_get(Key, EQS). +triix_is_empty({_, Tree}) -> gb_trees:is_empty(Tree). +triix_lookup(V, {EQS, _}) -> eqs_lookup(V, EQS). + +mk_triix(EQS, VKs) -> + {EQS, + lists:foldl(fun({V,Key}, Tree) -> + Size = row_size(eqs_get(Key, EQS)), + sitree_insert(Size, Key, V, Tree) + end, gb_trees:empty(), VKs)}. + +sitree_insert(Size, Key, V, SiTree) -> + SubTree1 = + case gb_trees:lookup(Size, SiTree) of + none -> gb_trees:empty(); + {value, SubTree0} -> SubTree0 + end, + SubTree = gb_trees:insert(Key, V, SubTree1), + gb_trees:enter(Size, SubTree, SiTree). + +sitree_update_subtree(Size, SubTree, SiTree) -> + case gb_trees:is_empty(SubTree) of + true -> gb_trees:delete(Size, SiTree); + false -> gb_trees:update(Size, SubTree, SiTree) + end. + +triix_put(Key, Row, {EQS, Tree0}) -> + OldSize = row_size(eqs_get(Key, EQS)), + case row_size(Row) of + OldSize -> {eqs_put(Key, Row, EQS), Tree0}; + Size -> + Tree = + case gb_trees:lookup(OldSize, Tree0) of + none -> Tree0; + {value, SubTree0} -> + case gb_trees:lookup(Key, SubTree0) of + none -> Tree0; + {value, V} -> + SubTree = gb_trees:delete(Key, SubTree0), + Tree1 = sitree_update_subtree(OldSize, SubTree, Tree0), + sitree_insert(Size, Key, V, Tree1) + end + end, + {eqs_put(Key, Row, EQS), Tree} + end. + +triix_pop_smallest({EQS, Tree}) -> + {Size, SubTree0} = gb_trees:smallest(Tree), + {Key, V, SubTree} = gb_trees:take_smallest(SubTree0), + {V, Key, {EQS, sitree_update_subtree(Size, SubTree, Tree)}}. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +row_normalise(Var, Row) -> + %% Normalise v's coef to 1.0 + %% row_set_coef ensures the coef is exactly 1.0 (no rounding errors) + row_set_coef(Var, 1.0, row_scale(Row, 1.0/row_get(Var, Row))). + +%% Precondition: Row must be normalised; i.e. Vars coef must be 1.0 (mod +%% rounding errors) +-spec eliminate(var(), key(), row(), eq_system()) -> eq_system(). +eliminate(Var, Key, Row, TIX0) -> + eliminate_abstr(Var, Key, Row, TIX0, + fun eqs_get/2, fun eqs_lookup/2, fun eqs_put/3). + +-spec eliminate_triix(var(), key(), row(), tri_eq_system()) -> tri_eq_system(). +eliminate_triix(Var, Key, Row, TIX0) -> + eliminate_abstr(Var, Key, Row, TIX0, + fun triix_get/2, fun triix_lookup/2, fun triix_put/3). + +%% The same function implemented for two data types, eqs and triix. +-compile({inline, eliminate_abstr/7}). +-spec eliminate_abstr(var(), key(), row(), ADT, fun((key(), ADT) -> row()), + fun((var(), ADT) -> [key()]), + fun((key(), row(), ADT) -> ADT)) -> ADT. +eliminate_abstr(Var, Key, Row, ADT0, GetFun, LookupFun, PutFun) -> + ?ASSERT(1.0 =:= row_get(Var, Row)), + ADT = + lists:foldl(fun(RK, ADT1) when RK =:= Key -> ADT1; + (RK, ADT1) -> + R = GetFun(RK, ADT1), + PutFun(RK, row_addmul(R, Row, -row_get(Var, R)), ADT1) + end, ADT0, LookupFun(Var, ADT0)), + [Key] = LookupFun(Var, ADT), + ADT. + +-spec solve(eq_system(), eq_assoc()) -> error | {ok, solution()}. +solve(EQS0, EqAssoc0) -> + try triangelise(EQS0, EqAssoc0) + of {EQS1, EqAssoc} -> + {ok, solve_1(EqAssoc, maps:from_list(EqAssoc), EQS1, [])} + catch error -> error + end. + +solve_1([], _VarEqs, _EQS, Acc) -> Acc; +solve_1([{V,K}|Ps], VarEqs, EQS0, Acc0) -> + Row0 = eqs_get(K, EQS0), + VarsToKill = [Var || {Var, _} <- row_coefs(Row0), Var =/= V], + Row1 = kill_vars(VarsToKill, VarEqs, EQS0, Row0), + [{V,_}] = row_coefs(Row1), % assertion + Row = row_normalise(V, Row1), + [{V,1.0}] = row_coefs(Row), % assertion + EQS = eliminate(V, K, Row, EQS0), + [K] = eqs_lookup(V, EQS), + solve_1(Ps, VarEqs, eqs_remove(K, EQS), [{V, row_const(Row)}|Acc0]). + +kill_vars([], _VarEqs, _EQS, Row) -> Row; +kill_vars([V|Vs], VarEqs, EQS, Row0) -> + VRow0 = eqs_get(maps:get(V, VarEqs), EQS), + VRow = row_normalise(V, VRow0), + ?ASSERT(1.0 =:= row_get(V, VRow)), + Row = row_addmul(Row0, VRow, -row_get(V, Row0)), + ?ASSERT(0.0 =:= row_get(V, Row)), % V has been killed + kill_vars(Vs, VarEqs, EQS, Row). + +-spec weight(label(), bb_weights()) -> float(). +weight(Lbl, Weights) -> + maps:get(Lbl, Weights). + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Row datatype +%% Invariant: No 0.0 coefficiets! +-spec row_empty() -> row(). +row_empty() -> {orddict:new(), 0.0}. + +-spec row_new([{var(), float()}], float()) -> row(). +row_new(Coefs, Const) when is_float(Const) -> + row_ensure_invar({row_squash_multiples(lists:keysort(1, Coefs)), Const}). + +row_squash_multiples([{K, C1},{K, C2}|Ps]) -> + row_squash_multiples([{K,C1+C2}|Ps]); +row_squash_multiples([P|Ps]) -> [P|row_squash_multiples(Ps)]; +row_squash_multiples([]) -> []. + +row_ensure_invar({Coef, Const}) -> + {orddict:filter(fun(_, 0.0) -> false; (_, F) when is_float(F) -> true end, + Coef), Const}. + +row_const({_, Const}) -> Const. +row_coefs({Coefs, _}) -> orddict:to_list(Coefs). +row_size({Coefs, _}) -> orddict:size(Coefs). + +row_get(Var, {Coefs, _}) -> + case lists:keyfind(Var, 1, Coefs) of + false -> 0.0; + {_, Coef} -> Coef + end. + +row_set_coef(Var, 0.0, {Coefs, Const}) -> + {orddict:erase(Var, Coefs), Const}; +row_set_coef(Var, Coef, {Coefs, Const}) -> + {orddict:store(Var, Coef, Coefs), Const}. + +row_set_const(Const, {Coefs, _}) -> {Coefs, Const}. + +%% Lhs + Rhs*Factor +-spec row_addmul(row(), row(), float()) -> row(). +row_addmul({LhsCoefs, LhsConst}, {RhsCoefs, RhsConst}, Factor) + when is_float(Factor) -> + Coefs = row_addmul_coefs(LhsCoefs, RhsCoefs, Factor), + Const = LhsConst + RhsConst * Factor, + {Coefs, Const}. + +row_addmul_coefs(Ls, [], Factor) when is_float(Factor) -> Ls; +row_addmul_coefs([], Rs, Factor) when is_float(Factor) -> + row_scale_coefs(Rs, Factor); +row_addmul_coefs([L={LV, _}|Ls], Rs=[{RV,_}|_], Factor) + when LV < RV, is_float(Factor) -> + [L|row_addmul_coefs(Ls, Rs, Factor)]; +row_addmul_coefs(Ls=[{LV, _}|_], [{RV, RC}|Rs], Factor) + when LV > RV, is_float(RC), is_float(Factor) -> + [{RV, RC*Factor}|row_addmul_coefs(Ls, Rs, Factor)]; +row_addmul_coefs([{V, LC}|Ls], [{V, RC}|Rs], Factor) + when is_float(LC), is_float(RC), is_float(Factor) -> + case LC + RC * Factor of + 0.0 -> row_addmul_coefs(Ls, Rs, Factor); + C -> [{V,C}|row_addmul_coefs(Ls, Rs, Factor)] + end. + +row_scale(_, 0.0) -> row_empty(); +row_scale({RowCoefs, RowConst}, Factor) when is_float(Factor) -> + {row_scale_coefs(RowCoefs, Factor), RowConst * Factor}. + +row_scale_coefs([{V,C}|Cs], Factor) when is_float(Factor), is_float(C) -> + [{V,C*Factor}|row_scale_coefs(Cs, Factor)]; +row_scale_coefs([], Factor) when is_float(Factor) -> + []. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Equation system ADT +%% +%% Stores a linear equation system, allowing for efficient updates and efficient +%% queries for all equations mentioning a variable. +%% +%% It is sort of like a "database" table of {Primary, Terms, Const} indexed both +%% on Primary as well as the vars (map keys) in Terms. +-type row() :: {Terms :: orddict:orddict(var(), float()), + Const :: float()}. +-type key() :: non_neg_integer(). +-type rev_index() :: #{var() => ordsets:ordset(key())}. +-record(eq_system, { + rows = #{} :: #{key() => row()}, + revidx = revidx_empty() :: rev_index(), + next_key = 0 :: key() + }). +-type eq_system() :: #eq_system{}. + +eqs_new() -> #eq_system{}. + +-spec eqs_insert(row(), eq_system()) -> {key(), eq_system()}. +eqs_insert(Row, EQS=#eq_system{next_key=NextKey0}) -> + Key = NextKey0, + NextKey = NextKey0 + 1, + {Key, eqs_insert(Key, Row, EQS#eq_system{next_key=NextKey})}. + +eqs_insert(Key, Row, EQS=#eq_system{rows=Rows, revidx=RevIdx0}) -> + RevIdx = revidx_add(Key, Row, RevIdx0), + EQS#eq_system{rows=Rows#{Key => Row}, revidx=RevIdx}. + +eqs_put(Key, Row, EQS0) -> + eqs_insert(Key, Row, eqs_remove(Key, EQS0)). + +eqs_remove(Key, EQS=#eq_system{rows=Rows, revidx=RevIdx0}) -> + OldRow = maps:get(Key, Rows), + RevIdx = revidx_remove(Key, OldRow, RevIdx0), + EQS#eq_system{rows = maps:remove(Key, Rows), revidx=RevIdx}. + +-spec eqs_get(key(), eq_system()) -> row(). +eqs_get(Key, #eq_system{rows=Rows}) -> maps:get(Key, Rows). + +%% Keys of all equations containing a nonzero coefficient for Var +-spec eqs_lookup(var(), eq_system()) -> ordsets:ordset(key()). +eqs_lookup(Var, #eq_system{revidx=RevIdx}) -> maps:get(Var, RevIdx). + +%% eqs_rows(#eq_system{rows=Rows}) -> maps:to_list(Rows). + +%% eqs_print(EQS) -> +%% lists:foreach(fun({_, Row}) -> +%% row_print(Row) +%% end, lists:sort(eqs_rows(EQS))). + +%% row_print(Row) -> +%% CoefStrs = [io_lib:format("~wl~w", [Coef, Var]) +%% || {Var, Coef} <- row_coefs(Row)], +%% CoefStr = lists:join(" + ", CoefStrs), +%% io:format("~w = ~s~n", [row_const(Row), CoefStr]). + +revidx_empty() -> #{}. + +-spec revidx_add(key(), row(), rev_index()) -> rev_index(). +revidx_add(Key, Row, RevIdx0) -> + orddict:fold(fun(Var, _Coef, RevIdx1) -> + ?ASSERT(_Coef /= 0.0), + RevIdx1#{Var => ordsets:add_element( + Key, maps:get(Var, RevIdx1, ordsets:new()))} + end, RevIdx0, row_coefs(Row)). + +-spec revidx_remove(key(), row(), rev_index()) -> rev_index(). +revidx_remove(Key, {Coefs, _}, RevIdx0) -> + orddict:fold(fun(Var, _Coef, RevIdx1) -> + case RevIdx1 of + #{Var := Keys0} -> + case ordsets:del_element(Key, Keys0) of + [] -> maps:remove(Var, RevIdx1); + Keys -> RevIdx1#{Var := Keys} + end + end + end, RevIdx0, Coefs). + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +-define(FAST_ITERATIONS, 5). + +%% @doc Computes a rough approximation of BB weights. The approximation is +%% particularly poor (converges slowly) for recursive functions and loops. +-spec compute_fast(cfg(), target_module(), target_context()) -> bb_weights(). +compute_fast(CFG, TgtMod, TgtCtx) -> + Target = {TgtMod, TgtCtx}, + StartLb = hipe_gen_cfg:start_label(CFG), + RPO = reverse_postorder(CFG, Target), + PredProbs = [{L, pred_prob(L, CFG, Target)} || L <- RPO, L =/= StartLb], + Probs0 = (maps:from_list([{L, 0.0} || L <- RPO]))#{StartLb := 1.0}, + fast_iterate(?FAST_ITERATIONS, PredProbs, Probs0). + +fast_iterate(0, _Pred, Probs) -> Probs; +fast_iterate(Iters, Pred, Probs0) -> + fast_iterate(Iters-1, Pred, + fast_one(Pred, Probs0)). + +fast_one([{L, Pred}|Ls], Probs0) -> + Weight = fast_sum(Pred, Probs0, 0.0), + Probs = Probs0#{L => Weight}, + fast_one(Ls, Probs); +fast_one([], Probs) -> + Probs. + +fast_sum([{P,EWt}|Pred], Probs, Acc) when is_float(EWt), is_float(Acc) -> + case Probs of + #{P := PWt} when is_float(PWt) -> + fast_sum(Pred, Probs, Acc + PWt * EWt) + end; +fast_sum([], _Probs, Acc) when is_float(Acc) -> + Acc. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Target module interface functions +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +-define(TGT_IFACE_0(N), N( {M,C}) -> M:N( C)). +-define(TGT_IFACE_1(N), N(A1, {M,C}) -> M:N(A1, C)). +-define(TGT_IFACE_2(N), N(A1,A2, {M,C}) -> M:N(A1,A2, C)). +-define(TGT_IFACE_3(N), N(A1,A2,A3,{M,C}) -> M:N(A1,A2,A3,C)). + +?TGT_IFACE_2(bb). +?TGT_IFACE_1(branch_preds). +?TGT_IFACE_1(labels). +?TGT_IFACE_1(reverse_postorder). |