aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ssl/src/tls_v1.erl
diff options
context:
space:
mode:
authorIngela Anderton Andin <[email protected]>2013-06-18 12:30:38 +0200
committerIngela Anderton Andin <[email protected]>2013-09-10 09:37:29 +0200
commitb9a31f24053c84d9a7ffa4281bc11f47b3be5905 (patch)
treee0698a95d56b1fd6070d916033cd07f098d3b5ed /lib/ssl/src/tls_v1.erl
parentfb6ac178ac437fcc04f1675df75b0583c1d24ad7 (diff)
downloadotp-b9a31f24053c84d9a7ffa4281bc11f47b3be5905.tar.gz
otp-b9a31f24053c84d9a7ffa4281bc11f47b3be5905.tar.bz2
otp-b9a31f24053c84d9a7ffa4281bc11f47b3be5905.zip
ssl: DTLS record handling
Also refactor so that TLS and DTLS can have common functions when possible.
Diffstat (limited to 'lib/ssl/src/tls_v1.erl')
-rw-r--r--lib/ssl/src/tls_v1.erl432
1 files changed, 432 insertions, 0 deletions
diff --git a/lib/ssl/src/tls_v1.erl b/lib/ssl/src/tls_v1.erl
new file mode 100644
index 0000000000..2395e98642
--- /dev/null
+++ b/lib/ssl/src/tls_v1.erl
@@ -0,0 +1,432 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2007-2013. All Rights Reserved.
+%%
+%% The contents of this file are subject to the Erlang Public License,
+%% Version 1.1, (the "License"); you may not use this file except in
+%% compliance with the License. You should have received a copy of the
+%% Erlang Public License along with this software. If not, it can be
+%% retrieved online at http://www.erlang.org/.
+%%
+%% Software distributed under the License is distributed on an "AS IS"
+%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
+%% the License for the specific language governing rights and limitations
+%% under the License.
+%%
+%% %CopyrightEnd%
+%%
+
+%%
+%%----------------------------------------------------------------------
+%% Purpose: Handles tls1 encryption.
+%%----------------------------------------------------------------------
+
+-module(tls_v1).
+
+-include("ssl_cipher.hrl").
+-include("ssl_internal.hrl").
+-include("ssl_record.hrl").
+
+-export([master_secret/4, finished/5, certificate_verify/3, mac_hash/7,
+ setup_keys/8, suites/1, prf/5,
+ ecc_curves/1, oid_to_enum/1, enum_to_oid/1]).
+
+%%====================================================================
+%% Internal application API
+%%====================================================================
+
+-spec master_secret(integer(), binary(), binary(), binary()) -> binary().
+
+master_secret(PrfAlgo, PreMasterSecret, ClientRandom, ServerRandom) ->
+ %% RFC 2246 & 4346 && RFC 5246 - 8.1 %% master_secret = PRF(pre_master_secret,
+ %% "master secret", ClientHello.random +
+ %% ServerHello.random)[0..47];
+
+ prf(PrfAlgo, PreMasterSecret, <<"master secret">>,
+ [ClientRandom, ServerRandom], 48).
+
+-spec finished(client | server, integer(), integer(), binary(), [binary()]) -> binary().
+
+finished(Role, Version, PrfAlgo, MasterSecret, Handshake)
+ when Version == 1; Version == 2; PrfAlgo == ?MD5SHA ->
+ %% RFC 2246 & 4346 - 7.4.9. Finished
+ %% struct {
+ %% opaque verify_data[12];
+ %% } Finished;
+ %%
+ %% verify_data
+ %% PRF(master_secret, finished_label, MD5(handshake_messages) +
+ %% SHA-1(handshake_messages)) [0..11];
+ MD5 = crypto:hash(md5, Handshake),
+ SHA = crypto:hash(sha, Handshake),
+ prf(?MD5SHA, MasterSecret, finished_label(Role), [MD5, SHA], 12);
+
+finished(Role, Version, PrfAlgo, MasterSecret, Handshake)
+ when Version == 3 ->
+ %% RFC 5246 - 7.4.9. Finished
+ %% struct {
+ %% opaque verify_data[12];
+ %% } Finished;
+ %%
+ %% verify_data
+ %% PRF(master_secret, finished_label, Hash(handshake_messages)) [0..11];
+ Hash = crypto:hash(mac_algo(PrfAlgo), Handshake),
+ prf(PrfAlgo, MasterSecret, finished_label(Role), Hash, 12).
+
+-spec certificate_verify(md5sha | sha, integer(), [binary()]) -> binary().
+
+certificate_verify(md5sha, _Version, Handshake) ->
+ MD5 = crypto:hash(md5, Handshake),
+ SHA = crypto:hash(sha, Handshake),
+ <<MD5/binary, SHA/binary>>;
+
+certificate_verify(HashAlgo, _Version, Handshake) ->
+ crypto:hash(HashAlgo, Handshake).
+
+-spec setup_keys(integer(), integer(), binary(), binary(), binary(), integer(),
+ integer(), integer()) -> {binary(), binary(), binary(),
+ binary(), binary(), binary()}.
+
+setup_keys(Version, _PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
+ KeyMatLen, IVSize)
+ when Version == 1 ->
+ %% RFC 2246 - 6.3. Key calculation
+ %% key_block = PRF(SecurityParameters.master_secret,
+ %% "key expansion",
+ %% SecurityParameters.server_random +
+ %% SecurityParameters.client_random);
+ %% Then the key_block is partitioned as follows:
+ %% client_write_MAC_secret[SecurityParameters.hash_size]
+ %% server_write_MAC_secret[SecurityParameters.hash_size]
+ %% client_write_key[SecurityParameters.key_material_length]
+ %% server_write_key[SecurityParameters.key_material_length]
+ %% client_write_IV[SecurityParameters.IV_size]
+ %% server_write_IV[SecurityParameters.IV_size]
+ WantedLength = 2 * (HashSize + KeyMatLen + IVSize),
+ KeyBlock = prf(?MD5SHA, MasterSecret, "key expansion",
+ [ServerRandom, ClientRandom], WantedLength),
+ <<ClientWriteMacSecret:HashSize/binary,
+ ServerWriteMacSecret:HashSize/binary,
+ ClientWriteKey:KeyMatLen/binary, ServerWriteKey:KeyMatLen/binary,
+ ClientIV:IVSize/binary, ServerIV:IVSize/binary>> = KeyBlock,
+ {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
+ ServerWriteKey, ClientIV, ServerIV};
+
+%% TLS v1.1
+setup_keys(Version, _PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
+ KeyMatLen, IVSize)
+ when Version == 2 ->
+ %% RFC 4346 - 6.3. Key calculation
+ %% key_block = PRF(SecurityParameters.master_secret,
+ %% "key expansion",
+ %% SecurityParameters.server_random +
+ %% SecurityParameters.client_random);
+ %% Then the key_block is partitioned as follows:
+ %% client_write_MAC_secret[SecurityParameters.hash_size]
+ %% server_write_MAC_secret[SecurityParameters.hash_size]
+ %% client_write_key[SecurityParameters.key_material_length]
+ %% server_write_key[SecurityParameters.key_material_length]
+ %%
+ %% RFC 4346 is incomplete, the client and server IVs have to
+ %% be generated just like for TLS 1.0
+ WantedLength = 2 * (HashSize + KeyMatLen + IVSize),
+ KeyBlock = prf(?MD5SHA, MasterSecret, "key expansion",
+ [ServerRandom, ClientRandom], WantedLength),
+ <<ClientWriteMacSecret:HashSize/binary,
+ ServerWriteMacSecret:HashSize/binary,
+ ClientWriteKey:KeyMatLen/binary, ServerWriteKey:KeyMatLen/binary,
+ ClientIV:IVSize/binary, ServerIV:IVSize/binary>> = KeyBlock,
+ {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
+ ServerWriteKey, ClientIV, ServerIV};
+
+%% TLS v1.2
+setup_keys(Version, PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
+ KeyMatLen, IVSize)
+ when Version == 3 ->
+ %% RFC 5246 - 6.3. Key calculation
+ %% key_block = PRF(SecurityParameters.master_secret,
+ %% "key expansion",
+ %% SecurityParameters.server_random +
+ %% SecurityParameters.client_random);
+ %% Then the key_block is partitioned as follows:
+ %% client_write_MAC_secret[SecurityParameters.hash_size]
+ %% server_write_MAC_secret[SecurityParameters.hash_size]
+ %% client_write_key[SecurityParameters.key_material_length]
+ %% server_write_key[SecurityParameters.key_material_length]
+ %% client_write_IV[SecurityParameters.fixed_iv_length]
+ %% server_write_IV[SecurityParameters.fixed_iv_length]
+ WantedLength = 2 * (HashSize + KeyMatLen + IVSize),
+ KeyBlock = prf(PrfAlgo, MasterSecret, "key expansion",
+ [ServerRandom, ClientRandom], WantedLength),
+ <<ClientWriteMacSecret:HashSize/binary,
+ ServerWriteMacSecret:HashSize/binary,
+ ClientWriteKey:KeyMatLen/binary, ServerWriteKey:KeyMatLen/binary,
+ ClientIV:IVSize/binary, ServerIV:IVSize/binary>> = KeyBlock,
+ {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
+ ServerWriteKey, ClientIV, ServerIV}.
+
+-spec mac_hash(integer(), binary(), integer(), integer(), tls_version(),
+ integer(), binary()) -> binary().
+
+mac_hash(Method, Mac_write_secret, Seq_num, Type, {Major, Minor},
+ Length, Fragment) ->
+ %% RFC 2246 & 4346 - 6.2.3.1.
+ %% HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.type +
+ %% TLSCompressed.version + TLSCompressed.length +
+ %% TLSCompressed.fragment));
+ Mac = hmac_hash(Method, Mac_write_secret,
+ [<<?UINT64(Seq_num), ?BYTE(Type),
+ ?BYTE(Major), ?BYTE(Minor), ?UINT16(Length)>>,
+ Fragment]),
+ Mac.
+
+-spec suites(1|2|3) -> [cipher_suite()].
+
+suites(Minor) when Minor == 1; Minor == 2->
+ case sufficent_ec_support() of
+ true ->
+ all_suites(Minor);
+ false ->
+ no_ec_suites(Minor)
+ end;
+
+suites(Minor) when Minor == 3 ->
+ case sufficent_ec_support() of
+ true ->
+ all_suites(3) ++ all_suites(2);
+ false ->
+ no_ec_suites(3) ++ no_ec_suites(2)
+ end.
+
+all_suites(Minor) when Minor == 1; Minor == 2->
+ [
+ ?TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
+ ?TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
+ ?TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
+ ?TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
+ ?TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
+ ?TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
+ ?TLS_RSA_WITH_AES_256_CBC_SHA,
+
+ ?TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_RSA_WITH_3DES_EDE_CBC_SHA,
+
+ ?TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
+ ?TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
+ ?TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
+ ?TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
+ ?TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
+ ?TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
+ ?TLS_RSA_WITH_AES_128_CBC_SHA,
+
+ ?TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
+ ?TLS_ECDHE_RSA_WITH_RC4_128_SHA,
+ ?TLS_RSA_WITH_RC4_128_SHA,
+ ?TLS_RSA_WITH_RC4_128_MD5,
+ ?TLS_DHE_RSA_WITH_DES_CBC_SHA,
+ ?TLS_ECDH_ECDSA_WITH_RC4_128_SHA,
+ ?TLS_ECDH_RSA_WITH_RC4_128_SHA,
+
+ ?TLS_RSA_WITH_DES_CBC_SHA
+ ];
+all_suites(3) ->
+ [
+ ?TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
+ ?TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
+ ?TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,
+ ?TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,
+
+ ?TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
+ ?TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
+ ?TLS_RSA_WITH_AES_256_CBC_SHA256,
+
+ ?TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
+ ?TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
+ ?TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,
+ ?TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,
+
+ ?TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
+ ?TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
+ ?TLS_RSA_WITH_AES_128_CBC_SHA256
+ ].
+
+no_ec_suites(Minor) when Minor == 1; Minor == 2->
+ [
+ ?TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
+ ?TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
+ ?TLS_RSA_WITH_AES_256_CBC_SHA,
+ ?TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_RSA_WITH_3DES_EDE_CBC_SHA,
+ ?TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
+ ?TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
+ ?TLS_RSA_WITH_AES_128_CBC_SHA,
+ ?TLS_RSA_WITH_RC4_128_SHA,
+ ?TLS_RSA_WITH_RC4_128_MD5,
+ ?TLS_DHE_RSA_WITH_DES_CBC_SHA,
+ ?TLS_RSA_WITH_DES_CBC_SHA
+ ];
+no_ec_suites(3) ->
+ [
+ ?TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
+ ?TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
+ ?TLS_RSA_WITH_AES_256_CBC_SHA256,
+ ?TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
+ ?TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
+ ?TLS_RSA_WITH_AES_128_CBC_SHA256
+ ].
+
+%%--------------------------------------------------------------------
+%%% Internal functions
+%%--------------------------------------------------------------------
+%%%% HMAC and the Pseudorandom Functions RFC 2246 & 4346 - 5.%%%%
+hmac_hash(?NULL, _, _) ->
+ <<>>;
+hmac_hash(Alg, Key, Value) ->
+ crypto:hmac(mac_algo(Alg), Key, Value).
+
+mac_algo(?MD5) -> md5;
+mac_algo(?SHA) -> sha;
+mac_algo(?SHA256) -> sha256;
+mac_algo(?SHA384) -> sha384;
+mac_algo(?SHA512) -> sha512.
+
+% First, we define a data expansion function, P_hash(secret, data) that
+% uses a single hash function to expand a secret and seed into an
+% arbitrary quantity of output:
+%% P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
+%% HMAC_hash(secret, A(2) + seed) +
+%% HMAC_hash(secret, A(3) + seed) + ...
+
+p_hash(Secret, Seed, WantedLength, Method) ->
+ p_hash(Secret, Seed, WantedLength, Method, 0, []).
+
+p_hash(_Secret, _Seed, WantedLength, _Method, _N, [])
+ when WantedLength =< 0 ->
+ [];
+p_hash(_Secret, _Seed, WantedLength, _Method, _N, [Last | Acc])
+ when WantedLength =< 0 ->
+ Keep = byte_size(Last) + WantedLength,
+ <<B:Keep/binary, _/binary>> = Last,
+ list_to_binary(lists:reverse(Acc, [B]));
+p_hash(Secret, Seed, WantedLength, Method, N, Acc) ->
+ N1 = N+1,
+ Bin = hmac_hash(Method, Secret, [a(N1, Secret, Seed, Method), Seed]),
+ p_hash(Secret, Seed, WantedLength - byte_size(Bin), Method, N1, [Bin|Acc]).
+
+
+%% ... Where A(0) = seed
+%% A(i) = HMAC_hash(secret, A(i-1))
+%% a(0, _Secret, Seed, _Method) ->
+%% Seed.
+%% a(N, Secret, Seed, Method) ->
+%% hmac_hash(Method, Secret, a(N-1, Secret, Seed, Method)).
+a(0, _Secret, Seed, _Method) ->
+ Seed;
+a(N, Secret, Seed0, Method) ->
+ Seed = hmac_hash(Method, Secret, Seed0),
+ a(N-1, Secret, Seed, Method).
+
+split_secret(BinSecret) ->
+ %% L_S = length in bytes of secret;
+ %% L_S1 = L_S2 = ceil(L_S / 2);
+ %% The secret is partitioned into two halves (with the possibility of
+ %% one shared byte) as described above, S1 taking the first L_S1 bytes,
+ %% and S2 the last L_S2 bytes.
+ Length = byte_size(BinSecret),
+ Div = Length div 2,
+ EvenLength = Length - Div,
+ <<Secret1:EvenLength/binary, _/binary>> = BinSecret,
+ <<_:Div/binary, Secret2:EvenLength/binary>> = BinSecret,
+ {Secret1, Secret2}.
+
+prf(?MD5SHA, Secret, Label, Seed, WantedLength) ->
+ %% PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
+ %% P_SHA-1(S2, label + seed);
+ {S1, S2} = split_secret(Secret),
+ LS = list_to_binary([Label, Seed]),
+ crypto:exor(p_hash(S1, LS, WantedLength, ?MD5),
+ p_hash(S2, LS, WantedLength, ?SHA));
+
+prf(MAC, Secret, Label, Seed, WantedLength) ->
+ %% PRF(secret, label, seed) = P_SHA256(secret, label + seed);
+ LS = list_to_binary([Label, Seed]),
+ p_hash(Secret, LS, WantedLength, MAC).
+
+%%%% Misc help functions %%%%
+
+finished_label(client) ->
+ <<"client finished">>;
+finished_label(server) ->
+ <<"server finished">>.
+
+%% list ECC curves in prefered order
+ecc_curves(_Minor) ->
+ [?sect571r1,?sect571k1,?secp521r1,?sect409k1,?sect409r1,
+ ?secp384r1,?sect283k1,?sect283r1,?secp256k1,?secp256r1,
+ ?sect239k1,?sect233k1,?sect233r1,?secp224k1,?secp224r1,
+ ?sect193r1,?sect193r2,?secp192k1,?secp192r1,?sect163k1,
+ ?sect163r1,?sect163r2,?secp160k1,?secp160r1,?secp160r2].
+
+%% ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005)
+oid_to_enum(?sect163k1) -> 1;
+oid_to_enum(?sect163r1) -> 2;
+oid_to_enum(?sect163r2) -> 3;
+oid_to_enum(?sect193r1) -> 4;
+oid_to_enum(?sect193r2) -> 5;
+oid_to_enum(?sect233k1) -> 6;
+oid_to_enum(?sect233r1) -> 7;
+oid_to_enum(?sect239k1) -> 8;
+oid_to_enum(?sect283k1) -> 9;
+oid_to_enum(?sect283r1) -> 10;
+oid_to_enum(?sect409k1) -> 11;
+oid_to_enum(?sect409r1) -> 12;
+oid_to_enum(?sect571k1) -> 13;
+oid_to_enum(?sect571r1) -> 14;
+oid_to_enum(?secp160k1) -> 15;
+oid_to_enum(?secp160r1) -> 16;
+oid_to_enum(?secp160r2) -> 17;
+oid_to_enum(?secp192k1) -> 18;
+oid_to_enum(?secp192r1) -> 19;
+oid_to_enum(?secp224k1) -> 20;
+oid_to_enum(?secp224r1) -> 21;
+oid_to_enum(?secp256k1) -> 22;
+oid_to_enum(?secp256r1) -> 23;
+oid_to_enum(?secp384r1) -> 24;
+oid_to_enum(?secp521r1) -> 25.
+
+enum_to_oid(1) -> ?sect163k1;
+enum_to_oid(2) -> ?sect163r1;
+enum_to_oid(3) -> ?sect163r2;
+enum_to_oid(4) -> ?sect193r1;
+enum_to_oid(5) -> ?sect193r2;
+enum_to_oid(6) -> ?sect233k1;
+enum_to_oid(7) -> ?sect233r1;
+enum_to_oid(8) -> ?sect239k1;
+enum_to_oid(9) -> ?sect283k1;
+enum_to_oid(10) -> ?sect283r1;
+enum_to_oid(11) -> ?sect409k1;
+enum_to_oid(12) -> ?sect409r1;
+enum_to_oid(13) -> ?sect571k1;
+enum_to_oid(14) -> ?sect571r1;
+enum_to_oid(15) -> ?secp160k1;
+enum_to_oid(16) -> ?secp160r1;
+enum_to_oid(17) -> ?secp160r2;
+enum_to_oid(18) -> ?secp192k1;
+enum_to_oid(19) -> ?secp192r1;
+enum_to_oid(20) -> ?secp224k1;
+enum_to_oid(21) -> ?secp224r1;
+enum_to_oid(22) -> ?secp256k1;
+enum_to_oid(23) -> ?secp256r1;
+enum_to_oid(24) -> ?secp384r1;
+enum_to_oid(25) -> ?secp521r1.
+
+sufficent_ec_support() ->
+ CryptoSupport = crypto:supports(),
+ proplists:get_bool(ecdh, proplists:get_value(public_keys, CryptoSupport)).