diff options
author | Ingela Anderton Andin <[email protected]> | 2013-05-15 10:17:21 +0200 |
---|---|---|
committer | Ingela Anderton Andin <[email protected]> | 2013-05-20 08:41:52 +0200 |
commit | 7e47d5082b573e3fc535b0252662813647770e66 (patch) | |
tree | f131655906c1c2ce57f456704e5bac5930bd057c /lib/ssl/test | |
parent | 2f46744041f9d86a3e9205ce3d0b64cedcb64f71 (diff) | |
download | otp-7e47d5082b573e3fc535b0252662813647770e66.tar.gz otp-7e47d5082b573e3fc535b0252662813647770e66.tar.bz2 otp-7e47d5082b573e3fc535b0252662813647770e66.zip |
ssl, public_key & inets: Remove use of deprecated crypto functions from
test code
Diffstat (limited to 'lib/ssl/test')
-rw-r--r-- | lib/ssl/test/erl_make_certs.erl | 42 |
1 files changed, 23 insertions, 19 deletions
diff --git a/lib/ssl/test/erl_make_certs.erl b/lib/ssl/test/erl_make_certs.erl index 723ccf4496..be1253bfb8 100644 --- a/lib/ssl/test/erl_make_certs.erl +++ b/lib/ssl/test/erl_make_certs.erl @@ -391,13 +391,14 @@ gen_dsa2(LSize, NSize) -> error -> gen_dsa2(LSize, NSize); P -> - G = crypto:mod_exp(2, (P-1) div Q, P), % Choose G a number whose multiplicative order modulo p is q. + G = crypto:mod_pow(2, (P-1) div Q, P), % Choose G a number whose multiplicative order modulo p is q. %% such that This may be done by setting g = h^(p-1)/q mod p, commonly h=2 is used. X = prime(20), %% Choose x by some random method, where 0 < x < q. - Y = crypto:mod_exp(G, X, P), %% Calculate y = g^x mod p. + Y = crypto:mod_pow(G, X, P), %% Calculate y = g^x mod p. - #'DSAPrivateKey'{version=0, p=P, q=Q, g=G, y=Y, x=X} + #'DSAPrivateKey'{version=0, p = P, q = Q, + g = crypto:binary_to_integer(G), y = crypto:binary_to_integer(Y), x = X} end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -419,7 +420,7 @@ gen_ec2(CurveId) -> %% See fips_186-3.pdf dsa_search(T, P0, Q, Iter) when Iter > 0 -> P = 2*T*Q*P0 + 1, - case is_prime(crypto:mpint(P), 50) of + case is_prime(P, 50) of true -> P; false -> dsa_search(T+1, P0, Q, Iter-1) end; @@ -430,38 +431,40 @@ dsa_search(_,_,_,_) -> %%%%%%% Crypto Math %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% prime(ByteSize) -> Rand = odd_rand(ByteSize), - crypto:erlint(prime_odd(Rand, 0)). + prime_odd(Rand, 0). prime_odd(Rand, N) -> case is_prime(Rand, 50) of true -> Rand; false -> - NotPrime = crypto:erlint(Rand), - prime_odd(crypto:mpint(NotPrime+2), N+1) + prime_odd(Rand+2, N+1) end. %% see http://en.wikipedia.org/wiki/Fermat_primality_test is_prime(_, 0) -> true; is_prime(Candidate, Test) -> - CoPrime = odd_rand(<<0,0,0,4, 10000:32>>, Candidate), - case crypto:mod_exp(CoPrime, Candidate, Candidate) of - CoPrime -> is_prime(Candidate, Test-1); - _ -> false - end. + CoPrime = odd_rand(10000, Candidate), + Result = crypto:mod_pow(CoPrime, Candidate, Candidate) , + is_prime(CoPrime, crypto:binary_to_integer(Result), Candidate, Test). + +is_prime(CoPrime, CoPrime, Candidate, Test) -> + is_prime(Candidate, Test-1); +is_prime(_,_,_,_) -> + false. odd_rand(Size) -> Min = 1 bsl (Size*8-1), Max = (1 bsl (Size*8))-1, - odd_rand(crypto:mpint(Min), crypto:mpint(Max)). + odd_rand(Min, Max). odd_rand(Min,Max) -> - Rand = <<Sz:32, _/binary>> = crypto:rand_uniform(Min,Max), - BitSkip = (Sz+4)*8-1, - case Rand of - Odd = <<_:BitSkip, 1:1>> -> Odd; - Even = <<_:BitSkip, 0:1>> -> - crypto:mpint(crypto:erlint(Even)+1) + Rand = crypto:rand_uniform(Min,Max), + case Rand rem 2 of + 0 -> + Rand + 1; + _ -> + Rand end. extended_gcd(A, B) -> @@ -480,3 +483,4 @@ pem_to_der(File) -> der_to_pem(File, Entries) -> PemBin = public_key:pem_encode(Entries), file:write_file(File, PemBin). + |