diff options
author | Hans Bolinder <[email protected]> | 2011-05-13 14:08:25 +0200 |
---|---|---|
committer | Hans Bolinder <[email protected]> | 2011-05-13 14:08:59 +0200 |
commit | 0ccc57b1e3772deaf5650077808a38a52b1133b9 (patch) | |
tree | ed98a14e3cda51c344a04c85db7843b274dfe56a /lib/stdlib/doc/src/gb_sets.xml | |
parent | 22f3c9720cb7d19a3aafac613f03aede91d6283f (diff) | |
parent | 229d0d8ca88bc344bed89e46541b325c1d267996 (diff) | |
download | otp-0ccc57b1e3772deaf5650077808a38a52b1133b9.tar.gz otp-0ccc57b1e3772deaf5650077808a38a52b1133b9.tar.bz2 otp-0ccc57b1e3772deaf5650077808a38a52b1133b9.zip |
Merge branch 'hb/stdlib/doc_specs/OTP-9271' into dev
* hb/stdlib/doc_specs/OTP-9271:
Use Erlang specs and types for documentation
Conflicts:
lib/stdlib/doc/src/timer.xml
Diffstat (limited to 'lib/stdlib/doc/src/gb_sets.xml')
-rw-r--r-- | lib/stdlib/doc/src/gb_sets.xml | 288 |
1 files changed, 94 insertions, 194 deletions
diff --git a/lib/stdlib/doc/src/gb_sets.xml b/lib/stdlib/doc/src/gb_sets.xml index 60d8bcbfa3..38de51322f 100644 --- a/lib/stdlib/doc/src/gb_sets.xml +++ b/lib/stdlib/doc/src/gb_sets.xml @@ -4,7 +4,7 @@ <erlref> <header> <copyright> - <year>2001</year><year>2010</year> + <year>2001</year><year>2011</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -114,34 +114,32 @@ </list> </section> - <section> - <title>DATA TYPES</title> - <code type="none"> -gb_set() = a GB set</code> - </section> + <datatypes> + <datatype> + <name><marker id="type-gb_set">gb_set()</marker></name> + <desc><p>A GB set.</p></desc> + </datatype> + <datatype> + <name name="iter"/> + <desc><p>A GB set iterator.</p></desc> + </datatype> + </datatypes> <funcs> <func> - <name>add(Element, Set1) -> Set2</name> - <name>add_element(Element, Set1) -> Set2</name> + <name name="add" arity="2"/> + <name name="add_element" arity="2"/> <fsummary>Add a (possibly existing) element to a gb_set</fsummary> - <type> - <v>Element = term()</v> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Returns a new gb_set formed from <c>Set1</c> with - <c>Element</c> inserted. If <c>Element</c> is already an - element in <c>Set1</c>, nothing is changed.</p> + <p>Returns a new gb_set formed from <c><anno>Set1</anno></c> with + <c><anno>Element</anno></c> inserted. If <c><anno>Element</anno></c> is already an + element in <c><anno>Set1</anno></c>, nothing is changed.</p> </desc> </func> <func> - <name>balance(Set1) -> Set2</name> + <name name="balance" arity="1"/> <fsummary>Rebalance tree representation of a gb_set</fsummary> - <type> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Rebalances the tree representation of <c>Set1</c>. Note that + <p>Rebalances the tree representation of <c><anno>Set1</anno></c>. Note that this is rarely necessary, but may be motivated when a large number of elements have been deleted from the tree without further insertions. Rebalancing could then be forced in order @@ -150,208 +148,144 @@ gb_set() = a GB set</code> </desc> </func> <func> - <name>delete(Element, Set1) -> Set2</name> + <name name="delete" arity="2"/> <fsummary>Remove an element from a gb_set</fsummary> - <type> - <v>Element = term()</v> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Returns a new gb_set formed from <c>Set1</c> with - <c>Element</c> removed. Assumes that <c>Element</c> is present - in <c>Set1</c>.</p> + <p>Returns a new gb_set formed from <c><anno>Set1</anno></c> with + <c><anno>Element</anno></c> removed. Assumes that <c><anno>Element</anno></c> is present + in <c><anno>Set1</anno></c>.</p> </desc> </func> <func> - <name>delete_any(Element, Set1) -> Set2</name> - <name>del_element(Element, Set1) -> Set2</name> + <name name="delete_any" arity="2"/> + <name name="del_element" arity="2"/> <fsummary>Remove a (possibly non-existing) element from a gb_set</fsummary> - <type> - <v>Element = term()</v> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Returns a new gb_set formed from <c>Set1</c> with - <c>Element</c> removed. If <c>Element</c> is not an element - in <c>Set1</c>, nothing is changed.</p> + <p>Returns a new gb_set formed from <c><anno>Set1</anno></c> with + <c><anno>Element</anno></c> removed. If <c><anno>Element</anno></c> is not an element + in <c><anno>Set1</anno></c>, nothing is changed.</p> </desc> </func> <func> - <name>difference(Set1, Set2) -> Set3</name> - <name>subtract(Set1, Set2) -> Set3</name> + <name name="difference" arity="2"/> + <name name="subtract" arity="2"/> <fsummary>Return the difference of two gb_sets</fsummary> - <type> - <v>Set1 = Set2 = Set3 = gb_set()</v> - </type> <desc> - <p>Returns only the elements of <c>Set1</c> which are not also - elements of <c>Set2</c>.</p> + <p>Returns only the elements of <c><anno>Set1</anno></c> which are not also + elements of <c><anno>Set2</anno></c>.</p> </desc> </func> <func> - <name>empty() -> Set</name> - <name>new() -> Set</name> + <name name="empty" arity="0"/> + <name name="new" arity="0"/> <fsummary>Return an empty gb_set</fsummary> - <type> - <v>Set = gb_set()</v> - </type> <desc> <p>Returns a new empty gb_set.</p> </desc> </func> <func> - <name>filter(Pred, Set1) -> Set2</name> + <name name="filter" arity="2"/> <fsummary>Filter gb_set elements</fsummary> - <type> - <v>Pred = fun (E) -> bool()</v> - <v> E = term()</v> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Filters elements in <c>Set1</c> using predicate function - <c>Pred</c>.</p> + <p>Filters elements in <c><anno>Set1</anno></c> using predicate function + <c><anno>Pred</anno></c>.</p> </desc> </func> <func> - <name>fold(Function, Acc0, Set) -> Acc1</name> + <name name="fold" arity="3"/> <fsummary>Fold over gb_set elements</fsummary> - <type> - <v>Function = fun (E, AccIn) -> AccOut</v> - <v>Acc0 = Acc1 = AccIn = AccOut = term()</v> - <v> E = term()</v> - <v>Set = gb_set()</v> - </type> <desc> - <p>Folds <c>Function</c> over every element in <c>Set</c> + <p>Folds <c><anno>Function</anno></c> over every element in <c><anno>Set</anno></c> returning the final value of the accumulator.</p> </desc> </func> <func> - <name>from_list(List) -> Set</name> + <name name="from_list" arity="1"/> <fsummary>Convert a list into a gb_set</fsummary> - <type> - <v>List = [term()]</v> - <v>Set = gb_set()</v> - </type> <desc> - <p>Returns a gb_set of the elements in <c>List</c>, where - <c>List</c> may be unordered and contain duplicates.</p> + <p>Returns a gb_set of the elements in <c><anno>List</anno></c>, where + <c><anno>List</anno></c> may be unordered and contain duplicates.</p> </desc> </func> <func> - <name>from_ordset(List) -> Set</name> + <name name="from_ordset" arity="1"/> <fsummary>Make a gb_set from an ordset list</fsummary> - <type> - <v>List = [term()]</v> - <v>Set = gb_set()</v> - </type> <desc> - <p>Turns an ordered-set list <c>List</c> into a gb_set. The list + <p>Turns an ordered-set list <c><anno>List</anno></c> into a gb_set. The list must not contain duplicates.</p> </desc> </func> <func> - <name>insert(Element, Set1) -> Set2</name> + <name name="insert" arity="2"/> <fsummary>Add a new element to a gb_set</fsummary> - <type> - <v>Element = term()</v> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Returns a new gb_set formed from <c>Set1</c> with - <c>Element</c> inserted. Assumes that <c>Element</c> is not - present in <c>Set1</c>.</p> + <p>Returns a new gb_set formed from <c><anno>Set1</anno></c> with + <c><anno>Element</anno></c> inserted. Assumes that <c><anno>Element</anno></c> is not + present in <c><anno>Set1</anno></c>.</p> </desc> </func> <func> - <name>intersection(Set1, Set2) -> Set3</name> + <name name="intersection" arity="2"/> <fsummary>Return the intersection of two gb_sets</fsummary> - <type> - <v>Set1 = Set2 = Set3 = gb_set()</v> - </type> <desc> - <p>Returns the intersection of <c>Set1</c> and <c>Set2</c>.</p> + <p>Returns the intersection of <c><anno>Set1</anno></c> and <c><anno>Set2</anno></c>.</p> </desc> </func> <func> - <name>intersection(SetList) -> Set</name> + <name name="intersection" arity="1"/> <fsummary>Return the intersection of a list of gb_sets</fsummary> - <type> - <v>SetList = [gb_set()]</v> - <v>Set = gb_set()</v> - </type> <desc> <p>Returns the intersection of the non-empty list of gb_sets.</p> </desc> </func> <func> - <name>is_disjoint(Set1, Set2) -> bool()</name> + <name name="is_disjoint" arity="2"/> <fsummary>Check whether two gb_sets are disjoint</fsummary> - <type> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Returns <c>true</c> if <c>Set1</c> and - <c>Set2</c> are disjoint (have no elements in common), + <p>Returns <c>true</c> if <c><anno>Set1</anno></c> and + <c><anno>Set2</anno></c> are disjoint (have no elements in common), and <c>false</c> otherwise.</p> </desc> </func> <func> - <name>is_empty(Set) -> bool()</name> + <name name="is_empty" arity="1"/> <fsummary>Test for empty gb_set</fsummary> - <type> - <v>Set = gb_set()</v> - </type> <desc> - <p>Returns <c>true</c> if <c>Set</c> is an empty set, and + <p>Returns <c>true</c> if <c><anno>Set</anno></c> is an empty set, and <c>false</c> otherwise.</p> </desc> </func> <func> - <name>is_member(Element, Set) -> bool()</name> - <name>is_element(Element, Set) -> bool()</name> + <name name="is_member" arity="2"/> + <name name="is_element" arity="2"/> <fsummary>Test for membership of a gb_set</fsummary> - <type> - <v>Element = term()</v> - <v>Set = gb_set()</v> - </type> <desc> - <p>Returns <c>true</c> if <c>Element</c> is an element of - <c>Set</c>, otherwise <c>false</c>.</p> + <p>Returns <c>true</c> if <c><anno>Element</anno></c> is an element of + <c><anno>Set</anno></c>, otherwise <c>false</c>.</p> </desc> </func> <func> - <name>is_set(Term) -> bool()</name> + <name name="is_set" arity="1"/> <fsummary>Test for a gb_set</fsummary> - <type> - <v>Term = term()</v> - </type> <desc> - <p>Returns <c>true</c> if <c>Set</c> appears to be a gb_set, + <p>Returns <c>true</c> if <c><anno>Term</anno></c> appears to be a gb_set, otherwise <c>false</c>.</p> </desc> </func> <func> - <name>is_subset(Set1, Set2) -> bool()</name> + <name name="is_subset" arity="2"/> <fsummary>Test for subset</fsummary> - <type> - <v>Set1 = Set2 = gb_set()</v> - </type> <desc> - <p>Returns <c>true</c> when every element of <c>Set1</c> is - also a member of <c>Set2</c>, otherwise <c>false</c>.</p> + <p>Returns <c>true</c> when every element of <c><anno>Set1</anno></c> is + also a member of <c><anno>Set2</anno></c>, otherwise <c>false</c>.</p> </desc> </func> <func> - <name>iterator(Set) -> Iter</name> + <name name="iterator" arity="1"/> <fsummary>Return an iterator for a gb_set</fsummary> - <type> - <v>Set = gb_set()</v> - <v>Iter = term()</v> - </type> <desc> <p>Returns an iterator that can be used for traversing the - entries of <c>Set</c>; see <c>next/1</c>. The implementation + entries of <c><anno>Set</anno></c>; see <c>next/1</c>. The implementation of this is very efficient; traversing the whole set using <c>next/1</c> is only slightly slower than getting the list of all elements using <c>to_list/1</c> and traversing that. @@ -361,118 +295,84 @@ gb_set() = a GB set</code> </desc> </func> <func> - <name>largest(Set) -> term()</name> + <name name="largest" arity="1"/> <fsummary>Return largest element</fsummary> - <type> - <v>Set = gb_set()</v> - </type> <desc> - <p>Returns the largest element in <c>Set</c>. Assumes that - <c>Set</c> is nonempty.</p> + <p>Returns the largest element in <c><anno>Set</anno></c>. Assumes that + <c><anno>Set</anno></c> is nonempty.</p> </desc> </func> <func> - <name>next(Iter1) -> {Element, Iter2} | none</name> + <name name="next" arity="1"/> <fsummary>Traverse a gb_set with an iterator</fsummary> - <type> - <v>Iter1 = Iter2 = Element = term()</v> - </type> <desc> - <p>Returns <c>{Element, Iter2}</c> where <c>Element</c> is the - smallest element referred to by the iterator <c>Iter1</c>, - and <c>Iter2</c> is the new iterator to be used for + <p>Returns <c>{<anno>Element</anno>, <anno>Iter2</anno>}</c> where <c><anno>Element</anno></c> is the + smallest element referred to by the iterator <c><anno>Iter1</anno></c>, + and <c><anno>Iter2</anno></c> is the new iterator to be used for traversing the remaining elements, or the atom <c>none</c> if no elements remain.</p> </desc> </func> <func> - <name>singleton(Element) -> gb_set()</name> + <name name="singleton" arity="1"/> <fsummary>Return a gb_set with one element</fsummary> - <type> - <v>Element = term()</v> - </type> <desc> - <p>Returns a gb_set containing only the element <c>Element</c>.</p> + <p>Returns a gb_set containing only the element <c><anno>Element</anno></c>.</p> </desc> </func> <func> - <name>size(Set) -> int()</name> + <name name="size" arity="1"/> <fsummary>Return the number of elements in a gb_set</fsummary> - <type> - <v>Set = gb_set()</v> - </type> <desc> - <p>Returns the number of elements in <c>Set</c>.</p> + <p>Returns the number of elements in <c><anno>Set</anno></c>.</p> </desc> </func> <func> - <name>smallest(Set) -> term()</name> + <name name="smallest" arity="1"/> <fsummary>Return smallest element</fsummary> - <type> - <v>Set = gb_set()</v> - </type> <desc> - <p>Returns the smallest element in <c>Set</c>. Assumes that - <c>Set</c> is nonempty.</p> + <p>Returns the smallest element in <c><anno>Set</anno></c>. Assumes that + <c><anno>Set</anno></c> is nonempty.</p> </desc> </func> <func> - <name>take_largest(Set1) -> {Element, Set2}</name> + <name name="take_largest" arity="1"/> <fsummary>Extract largest element</fsummary> - <type> - <v>Set1 = Set2 = gb_set()</v> - <v>Element = term()</v> - </type> <desc> - <p>Returns <c>{Element, Set2}</c>, where <c>Element</c> is the - largest element in <c>Set1</c>, and <c>Set2</c> is this set - with <c>Element</c> deleted. Assumes that <c>Set1</c> is + <p>Returns <c>{<anno>Element</anno>, <anno>Set2</anno>}</c>, where <c><anno>Element</anno></c> is the + largest element in <c><anno>Set1</anno></c>, and <c><anno>Set2</anno></c> is this set + with <c><anno>Element</anno></c> deleted. Assumes that <c><anno>Set1</anno></c> is nonempty.</p> </desc> </func> <func> - <name>take_smallest(Set1) -> {Element, Set2}</name> + <name name="take_smallest" arity="1"/> <fsummary>Extract smallest element</fsummary> - <type> - <v>Set1 = Set2 = gb_set()</v> - <v>Element = term()</v> - </type> <desc> - <p>Returns <c>{Element, Set2}</c>, where <c>Element</c> is the - smallest element in <c>Set1</c>, and <c>Set2</c> is this set - with <c>Element</c> deleted. Assumes that <c>Set1</c> is + <p>Returns <c>{<anno>Element</anno>, <anno>Set2</anno>}</c>, where <c><anno>Element</anno></c> is the + smallest element in <c><anno>Set1</anno></c>, and <c><anno>Set2</anno></c> is this set + with <c><anno>Element</anno></c> deleted. Assumes that <c><anno>Set1</anno></c> is nonempty.</p> </desc> </func> <func> - <name>to_list(Set) -> List</name> + <name name="to_list" arity="1"/> <fsummary>Convert a gb_set into a list</fsummary> - <type> - <v>Set = gb_set()</v> - <v>List = [term()]</v> - </type> <desc> - <p>Returns the elements of <c>Set</c> as a list.</p> + <p>Returns the elements of <c><anno>Set</anno></c> as a list.</p> </desc> </func> <func> - <name>union(Set1, Set2) -> Set3</name> + <name name="union" arity="2"/> <fsummary>Return the union of two gb_sets</fsummary> - <type> - <v>Set1 = Set2 = Set3 = gb_set()</v> - </type> <desc> - <p>Returns the merged (union) gb_set of <c>Set1</c> and - <c>Set2</c>.</p> + <p>Returns the merged (union) gb_set of <c><anno>Set1</anno></c> and + <c><anno>Set2</anno></c>.</p> </desc> </func> <func> - <name>union(SetList) -> Set</name> + <name name="union" arity="1"/> <fsummary>Return the union of a list of gb_sets</fsummary> - <type> - <v>SetList = [gb_set()]</v> - <v>Set = gb_set()</v> - </type> <desc> <p>Returns the merged (union) gb_set of the list of gb_sets.</p> </desc> |