diff options
author | Hans Bolinder <[email protected]> | 2011-05-06 15:58:09 +0200 |
---|---|---|
committer | Hans Bolinder <[email protected]> | 2011-05-12 08:03:42 +0200 |
commit | 229d0d8ca88bc344bed89e46541b325c1d267996 (patch) | |
tree | 74fec344df8596c868c36cec5ac08102008cacf3 /lib/stdlib/doc/src/gb_trees.xml | |
parent | 68fe6a14539b82250373ef114d6576e74e1b8f2e (diff) | |
download | otp-229d0d8ca88bc344bed89e46541b325c1d267996.tar.gz otp-229d0d8ca88bc344bed89e46541b325c1d267996.tar.bz2 otp-229d0d8ca88bc344bed89e46541b325c1d267996.zip |
r
Use Erlang specs and types for documentation
Diffstat (limited to 'lib/stdlib/doc/src/gb_trees.xml')
-rw-r--r-- | lib/stdlib/doc/src/gb_trees.xml | 216 |
1 files changed, 67 insertions, 149 deletions
diff --git a/lib/stdlib/doc/src/gb_trees.xml b/lib/stdlib/doc/src/gb_trees.xml index 94f40c28bd..65c866efbe 100644 --- a/lib/stdlib/doc/src/gb_trees.xml +++ b/lib/stdlib/doc/src/gb_trees.xml @@ -4,7 +4,7 @@ <erlref> <header> <copyright> - <year>2001</year><year>2010</year> + <year>2001</year><year>2011</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -57,20 +57,22 @@ trees. Behaviour is logarithmic (as it should be).</p> </section> - <section> - <title>DATA TYPES</title> - <code type="none"> -gb_tree() = a GB tree</code> - </section> + <datatypes> + <datatype> + <name><marker id="type-gb_tree">gb_tree()</marker></name> + <desc><p>A GB tree.</p></desc> + </datatype> + <datatype> + <name name="iter"/> + <desc><p>A GB tree iterator.</p></desc> + </datatype> + </datatypes> <funcs> <func> - <name>balance(Tree1) -> Tree2</name> + <name name="balance" arity="1"/> <fsummary>Rebalance a tree</fsummary> - <type> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> <desc> - <p>Rebalances <c>Tree1</c>. Note that this is rarely necessary, + <p>Rebalances <c><anno>Tree1</anno></c>. Note that this is rarely necessary, but may be motivated when a large number of nodes have been deleted from the tree without further insertions. Rebalancing could then be forced in order to minimise lookup times, since @@ -78,139 +80,97 @@ gb_tree() = a GB tree</code> </desc> </func> <func> - <name>delete(Key, Tree1) -> Tree2</name> + <name name="delete" arity="2"/> <fsummary>Remove a node from a tree</fsummary> - <type> - <v>Key = term()</v> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> <desc> - <p>Removes the node with key <c>Key</c> from <c>Tree1</c>; + <p>Removes the node with key <c><anno>Key</anno></c> from <c><anno>Tree1</anno></c>; returns new tree. Assumes that the key is present in the tree, crashes otherwise.</p> </desc> </func> <func> - <name>delete_any(Key, Tree1) -> Tree2</name> + <name name="delete_any" arity="2"/> <fsummary>Remove a (possibly non-existing) node from a tree</fsummary> - <type> - <v>Key = term()</v> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> <desc> - <p>Removes the node with key <c>Key</c> from <c>Tree1</c> if + <p>Removes the node with key <c><anno>Key</anno></c> from <c><anno>Tree1</anno></c> if the key is present in the tree, otherwise does nothing; returns new tree.</p> </desc> </func> <func> - <name>empty() -> Tree</name> + <name name="empty" arity="0"/> <fsummary>Return an empty tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - </type> <desc> <p>Returns a new empty tree</p> </desc> </func> <func> - <name>enter(Key, Val, Tree1) -> Tree2</name> + <name name="enter" arity="3"/> <fsummary>Insert or update key with value in a tree</fsummary> - <type> - <v>Key = Val = term()</v> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> <desc> - <p>Inserts <c>Key</c> with value <c>Val</c> into <c>Tree1</c> if + <p>Inserts <c><anno>Key</anno></c> with value <c><anno>Val</anno></c> into <c><anno>Tree1</anno></c> if the key is not present in the tree, otherwise updates - <c>Key</c> to value <c>Val</c> in <c>Tree1</c>. Returns the + <c><anno>Key</anno></c> to value <c><anno>Val</anno></c> in <c><anno>Tree1</anno></c>. Returns the new tree.</p> </desc> </func> <func> - <name>from_orddict(List) -> Tree</name> + <name name="from_orddict" arity="1"/> <fsummary>Make a tree from an orddict</fsummary> - <type> - <v>List = [{Key, Val}]</v> - <v> Key = Val = term()</v> - <v>Tree = gb_tree()</v> - </type> <desc> - <p>Turns an ordered list <c>List</c> of key-value tuples into a + <p>Turns an ordered list <c><anno>List</anno></c> of key-value tuples into a tree. The list must not contain duplicate keys.</p> </desc> </func> <func> - <name>get(Key, Tree) -> Val</name> + <name name="get" arity="2"/> <fsummary>Look up a key in a tree, if present</fsummary> - <type> - <v>Key = Val = term()</v> - <v>Tree = gb_tree()</v> - </type> <desc> - <p>Retrieves the value stored with <c>Key</c> in <c>Tree</c>. + <p>Retrieves the value stored with <c><anno>Key</anno></c> in <c><anno>Tree</anno></c>. Assumes that the key is present in the tree, crashes otherwise.</p> </desc> </func> <func> - <name>lookup(Key, Tree) -> {value, Val} | none</name> + <name name="lookup" arity="2"/> <fsummary>Look up a key in a tree</fsummary> - <type> - <v>Key = Val = term()</v> - <v>Tree = gb_tree()</v> - </type> <desc> - <p>Looks up <c>Key</c> in <c>Tree</c>; returns - <c>{value, Val}</c>, or <c>none</c> if <c>Key</c> is not + <p>Looks up <c><anno>Key</anno></c> in <c><anno>Tree</anno></c>; returns + <c>{value, <anno>Val</anno>}</c>, or <c>none</c> if <c><anno>Key</anno></c> is not present.</p> </desc> </func> <func> - <name>insert(Key, Val, Tree1) -> Tree2</name> + <name name="insert" arity="3"/> <fsummary>Insert a new key and value in a tree</fsummary> - <type> - <v>Key = Val = term()</v> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> <desc> - <p>Inserts <c>Key</c> with value <c>Val</c> into <c>Tree1</c>; + <p>Inserts <c><anno>Key</anno></c> with value <c><anno>Val</anno></c> into <c><anno>Tree1</anno></c>; returns the new tree. Assumes that the key is not present in the tree, crashes otherwise.</p> </desc> </func> <func> - <name>is_defined(Key, Tree) -> bool()</name> + <name name="is_defined" arity="2"/> <fsummary>Test for membership of a tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - </type> <desc> - <p>Returns <c>true</c> if <c>Key</c> is present in <c>Tree</c>, + <p>Returns <c>true</c> if <c><anno>Key</anno></c> is present in <c><anno>Tree</anno></c>, otherwise <c>false</c>.</p> </desc> </func> <func> - <name>is_empty(Tree) -> bool()</name> + <name name="is_empty" arity="1"/> <fsummary>Test for empty tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - </type> <desc> - <p>Returns <c>true</c> if <c>Tree</c> is an empty tree, and + <p>Returns <c>true</c> if <c><anno>Tree</anno></c> is an empty tree, and <c>false</c> otherwise.</p> </desc> </func> <func> - <name>iterator(Tree) -> Iter</name> + <name name="iterator" arity="1"/> <fsummary>Return an iterator for a tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - <v>Iter = term()</v> - </type> <desc> <p>Returns an iterator that can be used for traversing the - entries of <c>Tree</c>; see <c>next/1</c>. The implementation + entries of <c><anno>Tree</anno></c>; see <c>next/1</c>. The implementation of this is very efficient; traversing the whole tree using <c>next/1</c> is only slightly slower than getting the list of all elements using <c>to_list/1</c> and traversing that. @@ -220,141 +180,99 @@ gb_tree() = a GB tree</code> </desc> </func> <func> - <name>keys(Tree) -> [Key]</name> + <name name="keys" arity="1"/> <fsummary>Return a list of the keys in a tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - <v>Key = term()</v> - </type> <desc> - <p>Returns the keys in <c>Tree</c> as an ordered list.</p> + <p>Returns the keys in <c><anno>Tree</anno></c> as an ordered list.</p> </desc> </func> <func> - <name>largest(Tree) -> {Key, Val}</name> + <name name="largest" arity="1"/> <fsummary>Return largest key and value</fsummary> - <type> - <v>Tree = gb_tree()</v> - <v>Key = Val = term()</v> - </type> <desc> - <p>Returns <c>{Key, Val}</c>, where <c>Key</c> is the largest - key in <c>Tree</c>, and <c>Val</c> is the value associated + <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>}</c>, where <c><anno>Key</anno></c> is the largest + key in <c><anno>Tree</anno></c>, and <c><anno>Val</anno></c> is the value associated with this key. Assumes that the tree is nonempty.</p> </desc> </func> <func> - <name>map(Function, Tree1) -> Tree2</name> + <name name="map" arity="2"/> <fsummary>Return largest key and value</fsummary> - <type> - <v>Function = fun(K, V1) -> V2</v> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> - <desc><p>maps the function F(K, V1) -> V2 to all key-value pairs - of the tree Tree1 and returns a new tree Tree2 with the same set of keys - as Tree1 and the new set of values V2.</p> + <desc><p>Maps the function F(<anno>K</anno>, <anno>V1</anno>) -> <anno>V2</anno> to all key-value pairs + of the tree <c><anno>Tree1</anno></c> and returns a new tree <c><anno>Tree2</anno></c> with the same set of keys + as <c><anno>Tree1</anno></c> and the new set of values <c><anno>V2</anno></c>.</p> </desc> </func> <func> - <name>next(Iter1) -> {Key, Val, Iter2} | none</name> + <name name="next" arity="1"/> <fsummary>Traverse a tree with an iterator</fsummary> - <type> - <v>Iter1 = Iter2 = Key = Val = term()</v> - </type> <desc> - <p>Returns <c>{Key, Val, Iter2}</c> where <c>Key</c> is the - smallest key referred to by the iterator <c>Iter1</c>, and - <c>Iter2</c> is the new iterator to be used for + <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>, <anno>Iter2</anno>}</c> where <c><anno>Key</anno></c> is the + smallest key referred to by the iterator <c><anno>Iter1</anno></c>, and + <c><anno>Iter2</anno></c> is the new iterator to be used for traversing the remaining nodes, or the atom <c>none</c> if no nodes remain.</p> </desc> </func> <func> - <name>size(Tree) -> int()</name> + <name name="size" arity="1"/> <fsummary>Return the number of nodes in a tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - </type> <desc> - <p>Returns the number of nodes in <c>Tree</c>.</p> + <p>Returns the number of nodes in <c><anno>Tree</anno></c>.</p> </desc> </func> <func> - <name>smallest(Tree) -> {Key, Val}</name> + <name name="smallest" arity="1"/> <fsummary>Return smallest key and value</fsummary> - <type> - <v>Tree = gb_tree()</v> - <v>Key = Val = term()</v> - </type> <desc> - <p>Returns <c>{Key, Val}</c>, where <c>Key</c> is the smallest - key in <c>Tree</c>, and <c>Val</c> is the value associated + <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>}</c>, where <c><anno>Key</anno></c> is the smallest + key in <c><anno>Tree</anno></c>, and <c><anno>Val</anno></c> is the value associated with this key. Assumes that the tree is nonempty.</p> </desc> </func> <func> - <name>take_largest(Tree1) -> {Key, Val, Tree2}</name> + <name name="take_largest" arity="1"/> <fsummary>Extract largest key and value</fsummary> - <type> - <v>Tree1 = Tree2 = gb_tree()</v> - <v>Key = Val = term()</v> - </type> <desc> - <p>Returns <c>{Key, Val, Tree2}</c>, where <c>Key</c> is the - largest key in <c>Tree1</c>, <c>Val</c> is the value - associated with this key, and <c>Tree2</c> is this tree with + <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>, <anno>Tree2</anno>}</c>, where <c><anno>Key</anno></c> is the + largest key in <c><anno>Tree1</anno></c>, <c><anno>Val</anno></c> is the value + associated with this key, and <c><anno>Tree2</anno></c> is this tree with the corresponding node deleted. Assumes that the tree is nonempty.</p> </desc> </func> <func> - <name>take_smallest(Tree1) -> {Key, Val, Tree2}</name> + <name name="take_smallest" arity="1"/> <fsummary>Extract smallest key and value</fsummary> - <type> - <v>Tree1 = Tree2 = gb_tree()</v> - <v>Key = Val = term()</v> - </type> <desc> - <p>Returns <c>{Key, Val, Tree2}</c>, where <c>Key</c> is the - smallest key in <c>Tree1</c>, <c>Val</c> is the value - associated with this key, and <c>Tree2</c> is this tree with + <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>, <anno>Tree2</anno>}</c>, where <c><anno>Key</anno></c> is the + smallest key in <c><anno>Tree1</anno></c>, <c><anno>Val</anno></c> is the value + associated with this key, and <c><anno>Tree2</anno></c> is this tree with the corresponding node deleted. Assumes that the tree is nonempty.</p> </desc> </func> <func> - <name>to_list(Tree) -> [{Key, Val}]</name> + <name name="to_list" arity="1"/> <fsummary>Convert a tree into a list</fsummary> - <type> - <v>Tree = gb_tree()</v> - <v>Key = Val = term()</v> - </type> <desc> <p>Converts a tree into an ordered list of key-value tuples.</p> </desc> </func> <func> - <name>update(Key, Val, Tree1) -> Tree2</name> + <name name="update" arity="3"/> <fsummary>Update a key to new value in a tree</fsummary> - <type> - <v>Key = Val = term()</v> - <v>Tree1 = Tree2 = gb_tree()</v> - </type> <desc> - <p>Updates <c>Key</c> to value <c>Val</c> in <c>Tree1</c>; + <p>Updates <c><anno>Key</anno></c> to value <c><anno>Val</anno></c> in <c><anno>Tree1</anno></c>; returns the new tree. Assumes that the key is present in the tree.</p> </desc> </func> <func> - <name>values(Tree) -> [Val]</name> + <name name="values" arity="1"/> <fsummary>Return a list of the values in a tree</fsummary> - <type> - <v>Tree = gb_tree()</v> - <v>Val = term()</v> - </type> <desc> - <p>Returns the values in <c>Tree</c> as an ordered list, sorted + <p>Returns the values in <c><anno>Tree</anno></c> as an ordered list, sorted by their corresponding keys. Duplicates are not removed.</p> </desc> </func> |