aboutsummaryrefslogtreecommitdiffstats
path: root/lib/stdlib/doc/src/gb_trees.xml
diff options
context:
space:
mode:
authorHans Bolinder <[email protected]>2011-05-13 14:08:25 +0200
committerHans Bolinder <[email protected]>2011-05-13 14:08:59 +0200
commit0ccc57b1e3772deaf5650077808a38a52b1133b9 (patch)
treeed98a14e3cda51c344a04c85db7843b274dfe56a /lib/stdlib/doc/src/gb_trees.xml
parent22f3c9720cb7d19a3aafac613f03aede91d6283f (diff)
parent229d0d8ca88bc344bed89e46541b325c1d267996 (diff)
downloadotp-0ccc57b1e3772deaf5650077808a38a52b1133b9.tar.gz
otp-0ccc57b1e3772deaf5650077808a38a52b1133b9.tar.bz2
otp-0ccc57b1e3772deaf5650077808a38a52b1133b9.zip
Merge branch 'hb/stdlib/doc_specs/OTP-9271' into dev
* hb/stdlib/doc_specs/OTP-9271: Use Erlang specs and types for documentation Conflicts: lib/stdlib/doc/src/timer.xml
Diffstat (limited to 'lib/stdlib/doc/src/gb_trees.xml')
-rw-r--r--lib/stdlib/doc/src/gb_trees.xml216
1 files changed, 67 insertions, 149 deletions
diff --git a/lib/stdlib/doc/src/gb_trees.xml b/lib/stdlib/doc/src/gb_trees.xml
index 94f40c28bd..65c866efbe 100644
--- a/lib/stdlib/doc/src/gb_trees.xml
+++ b/lib/stdlib/doc/src/gb_trees.xml
@@ -4,7 +4,7 @@
<erlref>
<header>
<copyright>
- <year>2001</year><year>2010</year>
+ <year>2001</year><year>2011</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
@@ -57,20 +57,22 @@
trees. Behaviour is logarithmic (as it should be).</p>
</section>
- <section>
- <title>DATA TYPES</title>
- <code type="none">
-gb_tree() = a GB tree</code>
- </section>
+ <datatypes>
+ <datatype>
+ <name><marker id="type-gb_tree">gb_tree()</marker></name>
+ <desc><p>A GB tree.</p></desc>
+ </datatype>
+ <datatype>
+ <name name="iter"/>
+ <desc><p>A GB tree iterator.</p></desc>
+ </datatype>
+ </datatypes>
<funcs>
<func>
- <name>balance(Tree1) -> Tree2</name>
+ <name name="balance" arity="1"/>
<fsummary>Rebalance a tree</fsummary>
- <type>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
<desc>
- <p>Rebalances <c>Tree1</c>. Note that this is rarely necessary,
+ <p>Rebalances <c><anno>Tree1</anno></c>. Note that this is rarely necessary,
but may be motivated when a large number of nodes have been
deleted from the tree without further insertions. Rebalancing
could then be forced in order to minimise lookup times, since
@@ -78,139 +80,97 @@ gb_tree() = a GB tree</code>
</desc>
</func>
<func>
- <name>delete(Key, Tree1) -> Tree2</name>
+ <name name="delete" arity="2"/>
<fsummary>Remove a node from a tree</fsummary>
- <type>
- <v>Key = term()</v>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
<desc>
- <p>Removes the node with key <c>Key</c> from <c>Tree1</c>;
+ <p>Removes the node with key <c><anno>Key</anno></c> from <c><anno>Tree1</anno></c>;
returns new tree. Assumes that the key is present in the tree,
crashes otherwise.</p>
</desc>
</func>
<func>
- <name>delete_any(Key, Tree1) -> Tree2</name>
+ <name name="delete_any" arity="2"/>
<fsummary>Remove a (possibly non-existing) node from a tree</fsummary>
- <type>
- <v>Key = term()</v>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
<desc>
- <p>Removes the node with key <c>Key</c> from <c>Tree1</c> if
+ <p>Removes the node with key <c><anno>Key</anno></c> from <c><anno>Tree1</anno></c> if
the key is present in the tree, otherwise does nothing;
returns new tree.</p>
</desc>
</func>
<func>
- <name>empty() -> Tree</name>
+ <name name="empty" arity="0"/>
<fsummary>Return an empty tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
<p>Returns a new empty tree</p>
</desc>
</func>
<func>
- <name>enter(Key, Val, Tree1) -> Tree2</name>
+ <name name="enter" arity="3"/>
<fsummary>Insert or update key with value in a tree</fsummary>
- <type>
- <v>Key = Val = term()</v>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
<desc>
- <p>Inserts <c>Key</c> with value <c>Val</c> into <c>Tree1</c> if
+ <p>Inserts <c><anno>Key</anno></c> with value <c><anno>Val</anno></c> into <c><anno>Tree1</anno></c> if
the key is not present in the tree, otherwise updates
- <c>Key</c> to value <c>Val</c> in <c>Tree1</c>. Returns the
+ <c><anno>Key</anno></c> to value <c><anno>Val</anno></c> in <c><anno>Tree1</anno></c>. Returns the
new tree.</p>
</desc>
</func>
<func>
- <name>from_orddict(List) -> Tree</name>
+ <name name="from_orddict" arity="1"/>
<fsummary>Make a tree from an orddict</fsummary>
- <type>
- <v>List = [{Key, Val}]</v>
- <v>&nbsp;Key = Val = term()</v>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
- <p>Turns an ordered list <c>List</c> of key-value tuples into a
+ <p>Turns an ordered list <c><anno>List</anno></c> of key-value tuples into a
tree. The list must not contain duplicate keys.</p>
</desc>
</func>
<func>
- <name>get(Key, Tree) -> Val</name>
+ <name name="get" arity="2"/>
<fsummary>Look up a key in a tree, if present</fsummary>
- <type>
- <v>Key = Val = term()</v>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
- <p>Retrieves the value stored with <c>Key</c> in <c>Tree</c>.
+ <p>Retrieves the value stored with <c><anno>Key</anno></c> in <c><anno>Tree</anno></c>.
Assumes that the key is present in the tree, crashes
otherwise.</p>
</desc>
</func>
<func>
- <name>lookup(Key, Tree) -> {value, Val} | none</name>
+ <name name="lookup" arity="2"/>
<fsummary>Look up a key in a tree</fsummary>
- <type>
- <v>Key = Val = term()</v>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
- <p>Looks up <c>Key</c> in <c>Tree</c>; returns
- <c>{value, Val}</c>, or <c>none</c> if <c>Key</c> is not
+ <p>Looks up <c><anno>Key</anno></c> in <c><anno>Tree</anno></c>; returns
+ <c>{value, <anno>Val</anno>}</c>, or <c>none</c> if <c><anno>Key</anno></c> is not
present.</p>
</desc>
</func>
<func>
- <name>insert(Key, Val, Tree1) -> Tree2</name>
+ <name name="insert" arity="3"/>
<fsummary>Insert a new key and value in a tree</fsummary>
- <type>
- <v>Key = Val = term()</v>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
<desc>
- <p>Inserts <c>Key</c> with value <c>Val</c> into <c>Tree1</c>;
+ <p>Inserts <c><anno>Key</anno></c> with value <c><anno>Val</anno></c> into <c><anno>Tree1</anno></c>;
returns the new tree. Assumes that the key is not present in
the tree, crashes otherwise.</p>
</desc>
</func>
<func>
- <name>is_defined(Key, Tree) -> bool()</name>
+ <name name="is_defined" arity="2"/>
<fsummary>Test for membership of a tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
- <p>Returns <c>true</c> if <c>Key</c> is present in <c>Tree</c>,
+ <p>Returns <c>true</c> if <c><anno>Key</anno></c> is present in <c><anno>Tree</anno></c>,
otherwise <c>false</c>.</p>
</desc>
</func>
<func>
- <name>is_empty(Tree) -> bool()</name>
+ <name name="is_empty" arity="1"/>
<fsummary>Test for empty tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
- <p>Returns <c>true</c> if <c>Tree</c> is an empty tree, and
+ <p>Returns <c>true</c> if <c><anno>Tree</anno></c> is an empty tree, and
<c>false</c> otherwise.</p>
</desc>
</func>
<func>
- <name>iterator(Tree) -> Iter</name>
+ <name name="iterator" arity="1"/>
<fsummary>Return an iterator for a tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- <v>Iter = term()</v>
- </type>
<desc>
<p>Returns an iterator that can be used for traversing the
- entries of <c>Tree</c>; see <c>next/1</c>. The implementation
+ entries of <c><anno>Tree</anno></c>; see <c>next/1</c>. The implementation
of this is very efficient; traversing the whole tree using
<c>next/1</c> is only slightly slower than getting the list
of all elements using <c>to_list/1</c> and traversing that.
@@ -220,141 +180,99 @@ gb_tree() = a GB tree</code>
</desc>
</func>
<func>
- <name>keys(Tree) -> [Key]</name>
+ <name name="keys" arity="1"/>
<fsummary>Return a list of the keys in a tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- <v>Key = term()</v>
- </type>
<desc>
- <p>Returns the keys in <c>Tree</c> as an ordered list.</p>
+ <p>Returns the keys in <c><anno>Tree</anno></c> as an ordered list.</p>
</desc>
</func>
<func>
- <name>largest(Tree) -> {Key, Val}</name>
+ <name name="largest" arity="1"/>
<fsummary>Return largest key and value</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- <v>Key = Val = term()</v>
- </type>
<desc>
- <p>Returns <c>{Key, Val}</c>, where <c>Key</c> is the largest
- key in <c>Tree</c>, and <c>Val</c> is the value associated
+ <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>}</c>, where <c><anno>Key</anno></c> is the largest
+ key in <c><anno>Tree</anno></c>, and <c><anno>Val</anno></c> is the value associated
with this key. Assumes that the tree is nonempty.</p>
</desc>
</func>
<func>
- <name>map(Function, Tree1) -> Tree2</name>
+ <name name="map" arity="2"/>
<fsummary>Return largest key and value</fsummary>
- <type>
- <v>Function = fun(K, V1) -> V2</v>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
- <desc><p>maps the function F(K, V1) -> V2 to all key-value pairs
- of the tree Tree1 and returns a new tree Tree2 with the same set of keys
- as Tree1 and the new set of values V2.</p>
+ <desc><p>Maps the function F(<anno>K</anno>, <anno>V1</anno>) -> <anno>V2</anno> to all key-value pairs
+ of the tree <c><anno>Tree1</anno></c> and returns a new tree <c><anno>Tree2</anno></c> with the same set of keys
+ as <c><anno>Tree1</anno></c> and the new set of values <c><anno>V2</anno></c>.</p>
</desc>
</func>
<func>
- <name>next(Iter1) -> {Key, Val, Iter2} | none</name>
+ <name name="next" arity="1"/>
<fsummary>Traverse a tree with an iterator</fsummary>
- <type>
- <v>Iter1 = Iter2 = Key = Val = term()</v>
- </type>
<desc>
- <p>Returns <c>{Key, Val, Iter2}</c> where <c>Key</c> is the
- smallest key referred to by the iterator <c>Iter1</c>, and
- <c>Iter2</c> is the new iterator to be used for
+ <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>, <anno>Iter2</anno>}</c> where <c><anno>Key</anno></c> is the
+ smallest key referred to by the iterator <c><anno>Iter1</anno></c>, and
+ <c><anno>Iter2</anno></c> is the new iterator to be used for
traversing the remaining nodes, or the atom <c>none</c> if no
nodes remain.</p>
</desc>
</func>
<func>
- <name>size(Tree) -> int()</name>
+ <name name="size" arity="1"/>
<fsummary>Return the number of nodes in a tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- </type>
<desc>
- <p>Returns the number of nodes in <c>Tree</c>.</p>
+ <p>Returns the number of nodes in <c><anno>Tree</anno></c>.</p>
</desc>
</func>
<func>
- <name>smallest(Tree) -> {Key, Val}</name>
+ <name name="smallest" arity="1"/>
<fsummary>Return smallest key and value</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- <v>Key = Val = term()</v>
- </type>
<desc>
- <p>Returns <c>{Key, Val}</c>, where <c>Key</c> is the smallest
- key in <c>Tree</c>, and <c>Val</c> is the value associated
+ <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>}</c>, where <c><anno>Key</anno></c> is the smallest
+ key in <c><anno>Tree</anno></c>, and <c><anno>Val</anno></c> is the value associated
with this key. Assumes that the tree is nonempty.</p>
</desc>
</func>
<func>
- <name>take_largest(Tree1) -> {Key, Val, Tree2}</name>
+ <name name="take_largest" arity="1"/>
<fsummary>Extract largest key and value</fsummary>
- <type>
- <v>Tree1 = Tree2 = gb_tree()</v>
- <v>Key = Val = term()</v>
- </type>
<desc>
- <p>Returns <c>{Key, Val, Tree2}</c>, where <c>Key</c> is the
- largest key in <c>Tree1</c>, <c>Val</c> is the value
- associated with this key, and <c>Tree2</c> is this tree with
+ <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>, <anno>Tree2</anno>}</c>, where <c><anno>Key</anno></c> is the
+ largest key in <c><anno>Tree1</anno></c>, <c><anno>Val</anno></c> is the value
+ associated with this key, and <c><anno>Tree2</anno></c> is this tree with
the corresponding node deleted. Assumes that the tree is
nonempty.</p>
</desc>
</func>
<func>
- <name>take_smallest(Tree1) -> {Key, Val, Tree2}</name>
+ <name name="take_smallest" arity="1"/>
<fsummary>Extract smallest key and value</fsummary>
- <type>
- <v>Tree1 = Tree2 = gb_tree()</v>
- <v>Key = Val = term()</v>
- </type>
<desc>
- <p>Returns <c>{Key, Val, Tree2}</c>, where <c>Key</c> is the
- smallest key in <c>Tree1</c>, <c>Val</c> is the value
- associated with this key, and <c>Tree2</c> is this tree with
+ <p>Returns <c>{<anno>Key</anno>, <anno>Val</anno>, <anno>Tree2</anno>}</c>, where <c><anno>Key</anno></c> is the
+ smallest key in <c><anno>Tree1</anno></c>, <c><anno>Val</anno></c> is the value
+ associated with this key, and <c><anno>Tree2</anno></c> is this tree with
the corresponding node deleted. Assumes that the tree is
nonempty.</p>
</desc>
</func>
<func>
- <name>to_list(Tree) -> [{Key, Val}]</name>
+ <name name="to_list" arity="1"/>
<fsummary>Convert a tree into a list</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- <v>Key = Val = term()</v>
- </type>
<desc>
<p>Converts a tree into an ordered list of key-value tuples.</p>
</desc>
</func>
<func>
- <name>update(Key, Val, Tree1) -> Tree2</name>
+ <name name="update" arity="3"/>
<fsummary>Update a key to new value in a tree</fsummary>
- <type>
- <v>Key = Val = term()</v>
- <v>Tree1 = Tree2 = gb_tree()</v>
- </type>
<desc>
- <p>Updates <c>Key</c> to value <c>Val</c> in <c>Tree1</c>;
+ <p>Updates <c><anno>Key</anno></c> to value <c><anno>Val</anno></c> in <c><anno>Tree1</anno></c>;
returns the new tree. Assumes that the key is present in the
tree.</p>
</desc>
</func>
<func>
- <name>values(Tree) -> [Val]</name>
+ <name name="values" arity="1"/>
<fsummary>Return a list of the values in a tree</fsummary>
- <type>
- <v>Tree = gb_tree()</v>
- <v>Val = term()</v>
- </type>
<desc>
- <p>Returns the values in <c>Tree</c> as an ordered list, sorted
+ <p>Returns the values in <c><anno>Tree</anno></c> as an ordered list, sorted
by their corresponding keys. Duplicates are not removed.</p>
</desc>
</func>