diff options
author | Erlang/OTP <[email protected]> | 2009-11-20 14:54:40 +0000 |
---|---|---|
committer | Erlang/OTP <[email protected]> | 2009-11-20 14:54:40 +0000 |
commit | 84adefa331c4159d432d22840663c38f155cd4c1 (patch) | |
tree | bff9a9c66adda4df2106dfd0e5c053ab182a12bd /lib/stdlib/src/digraph_utils.erl | |
download | otp-84adefa331c4159d432d22840663c38f155cd4c1.tar.gz otp-84adefa331c4159d432d22840663c38f155cd4c1.tar.bz2 otp-84adefa331c4159d432d22840663c38f155cd4c1.zip |
The R13B03 release.OTP_R13B03
Diffstat (limited to 'lib/stdlib/src/digraph_utils.erl')
-rw-r--r-- | lib/stdlib/src/digraph_utils.erl | 338 |
1 files changed, 338 insertions, 0 deletions
diff --git a/lib/stdlib/src/digraph_utils.erl b/lib/stdlib/src/digraph_utils.erl new file mode 100644 index 0000000000..080cae4742 --- /dev/null +++ b/lib/stdlib/src/digraph_utils.erl @@ -0,0 +1,338 @@ +%% +%% %CopyrightBegin% +%% +%% Copyright Ericsson AB 1999-2009. All Rights Reserved. +%% +%% The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved online at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% %CopyrightEnd% +%% +-module(digraph_utils). + +%%% Operations on directed (and undirected) graphs. +%%% +%%% Implementation based on Launchbury, John: Graph Algorithms with a +%%% Functional Flavour, in Jeuring, Johan, and Meijer, Erik (Eds.): +%%% Advanced Functional Programming, Lecture Notes in Computer +%%% Science 925, Springer Verlag, 1995. + +-export([components/1, strong_components/1, cyclic_strong_components/1, + reachable/2, reachable_neighbours/2, + reaching/2, reaching_neighbours/2, + topsort/1, is_acyclic/1, + arborescence_root/1, is_arborescence/1, is_tree/1, + loop_vertices/1, + subgraph/2, subgraph/3, condensation/1, + preorder/1, postorder/1]). + +%% +%% A convenient type alias +%% + +-type vertices() :: [digraph:vertex()]. + +%% +%% Exported functions +%% + +-spec components(digraph()) -> vertices(). + +components(G) -> + forest(G, fun inout/3). + +-spec strong_components(digraph()) -> vertices(). + +strong_components(G) -> + forest(G, fun in/3, revpostorder(G)). + +-spec cyclic_strong_components(digraph()) -> vertices(). + +cyclic_strong_components(G) -> + remove_singletons(strong_components(G), G, []). + +-spec reachable(vertices(), digraph()) -> vertices(). + +reachable(Vs, G) when is_list(Vs) -> + lists:append(forest(G, fun out/3, Vs, first)). + +-spec reachable_neighbours(vertices(), digraph()) -> vertices(). + +reachable_neighbours(Vs, G) when is_list(Vs) -> + lists:append(forest(G, fun out/3, Vs, not_first)). + +-spec reaching(vertices(), digraph()) -> vertices(). + +reaching(Vs, G) when is_list(Vs) -> + lists:append(forest(G, fun in/3, Vs, first)). + +-spec reaching_neighbours(vertices(), digraph()) -> vertices(). + +reaching_neighbours(Vs, G) when is_list(Vs) -> + lists:append(forest(G, fun in/3, Vs, not_first)). + +-spec topsort(digraph()) -> vertices() | 'false'. + +topsort(G) -> + L = revpostorder(G), + case length(forest(G, fun in/3, L)) =:= length(digraph:vertices(G)) of + true -> L; + false -> false + end. + +-spec is_acyclic(digraph()) -> boolean(). + +is_acyclic(G) -> + loop_vertices(G) =:= [] andalso topsort(G) =/= false. + +-spec arborescence_root(digraph()) -> 'no' | {'yes', digraph:vertex()}. + +arborescence_root(G) -> + case digraph:no_edges(G) =:= digraph:no_vertices(G) - 1 of + true -> + try + F = fun(V, Z) -> + case digraph:in_degree(G, V) of + 1 -> Z; + 0 when Z =:= [] -> [V] + end + end, + [Root] = lists:foldl(F, [], digraph:vertices(G)), + {yes, Root} + catch _:_ -> + no + end; + false -> + no + end. + +-spec is_arborescence(digraph()) -> boolean(). + +is_arborescence(G) -> + arborescence_root(G) =/= no. + +-spec is_tree(digraph()) -> boolean(). + +is_tree(G) -> + (digraph:no_edges(G) =:= digraph:no_vertices(G) - 1) + andalso (length(components(G)) =:= 1). + +-spec loop_vertices(digraph()) -> vertices(). + +loop_vertices(G) -> + [V || V <- digraph:vertices(G), is_reflexive_vertex(V, G)]. + +-spec subgraph(digraph(), vertices()) -> digraph(). + +subgraph(G, Vs) -> + try + subgraph_opts(G, Vs, []) + catch + throw:badarg -> + erlang:error(badarg) + end. + +-type option() :: {'type', 'inherit' | [digraph:d_type()]} + | {'keep_labels', boolean()}. + +-spec subgraph(digraph(), vertices(), [option()]) -> digraph(). + +subgraph(G, Vs, Opts) -> + try + subgraph_opts(G, Vs, Opts) + catch + throw:badarg -> + erlang:error(badarg) + end. + +-spec condensation(digraph()) -> digraph(). + +condensation(G) -> + SCs = strong_components(G), + %% Each component is assigned a number. + %% V2I: from vertex to number. + %% I2C: from number to component. + V2I = ets:new(condensation, []), + I2C = ets:new(condensation, []), + CFun = fun(SC, N) -> lists:foreach(fun(V) -> + true = ets:insert(V2I, {V,N}) + end, + SC), + true = ets:insert(I2C, {N, SC}), + N + 1 + end, + lists:foldl(CFun, 1, SCs), + SCG = subgraph_opts(G, [], []), + lists:foreach(fun(SC) -> condense(SC, G, SCG, V2I, I2C) end, SCs), + ets:delete(V2I), + ets:delete(I2C), + SCG. + +-spec preorder(digraph()) -> vertices(). + +preorder(G) -> + lists:reverse(revpreorder(G)). + +-spec postorder(digraph()) -> vertices(). + +postorder(G) -> + lists:reverse(revpostorder(G)). + +%% +%% Local functions +%% + +forest(G, SF) -> + forest(G, SF, digraph:vertices(G)). + +forest(G, SF, Vs) -> + forest(G, SF, Vs, first). + +forest(G, SF, Vs, HandleFirst) -> + T = ets:new(forest, [set]), + F = fun(V, LL) -> pretraverse(HandleFirst, V, SF, G, T, LL) end, + LL = lists:foldl(F, [], Vs), + ets:delete(T), + LL. + +pretraverse(first, V, SF, G, T, LL) -> + ptraverse([V], SF, G, T, [], LL); +pretraverse(not_first, V, SF, G, T, LL) -> + case ets:member(T, V) of + false -> ptraverse(SF(G, V, []), SF, G, T, [], LL); + true -> LL + end. + +ptraverse([V | Vs], SF, G, T, Rs, LL) -> + case ets:member(T, V) of + false -> + ets:insert(T, {V}), + ptraverse(SF(G, V, Vs), SF, G, T, [V | Rs], LL); + true -> + ptraverse(Vs, SF, G, T, Rs, LL) + end; +ptraverse([], _SF, _G, _T, [], LL) -> + LL; +ptraverse([], _SF, _G, _T, Rs, LL) -> + [Rs | LL]. + +revpreorder(G) -> + lists:append(forest(G, fun out/3)). + +revpostorder(G) -> + T = ets:new(forest, [set]), + L = posttraverse(digraph:vertices(G), G, T, []), + ets:delete(T), + L. + +posttraverse([V | Vs], G, T, L) -> + L1 = case ets:member(T, V) of + false -> + ets:insert(T, {V}), + [V | posttraverse(out(G, V, []), G, T, L)]; + true -> + L + end, + posttraverse(Vs, G, T, L1); +posttraverse([], _G, _T, L) -> + L. + +in(G, V, Vs) -> + digraph:in_neighbours(G, V) ++ Vs. + +out(G, V, Vs) -> + digraph:out_neighbours(G, V) ++ Vs. + +inout(G, V, Vs) -> + in(G, V, out(G, V, Vs)). + +remove_singletons([C=[V] | Cs], G, L) -> + case is_reflexive_vertex(V, G) of + true -> remove_singletons(Cs, G, [C | L]); + false -> remove_singletons(Cs, G, L) + end; +remove_singletons([C | Cs], G, L) -> + remove_singletons(Cs, G, [C | L]); +remove_singletons([], _G, L) -> + L. + +is_reflexive_vertex(V, G) -> + lists:member(V, digraph:out_neighbours(G, V)). + +subgraph_opts(G, Vs, Opts) -> + subgraph_opts(Opts, inherit, true, G, Vs). + +subgraph_opts([{type, Type} | Opts], _Type0, Keep, G, Vs) + when Type =:= inherit; is_list(Type) -> + subgraph_opts(Opts, Type, Keep, G, Vs); +subgraph_opts([{keep_labels, Keep} | Opts], Type, _Keep0, G, Vs) + when is_boolean(Keep) -> + subgraph_opts(Opts, Type, Keep, G, Vs); +subgraph_opts([], inherit, Keep, G, Vs) -> + Info = digraph:info(G), + {_, {_, Cyclicity}} = lists:keysearch(cyclicity, 1, Info), + {_, {_, Protection}} = lists:keysearch(protection, 1, Info), + subgraph(G, Vs, [Cyclicity, Protection], Keep); +subgraph_opts([], Type, Keep, G, Vs) -> + subgraph(G, Vs, Type, Keep); +subgraph_opts(_, _Type, _Keep, _G, _Vs) -> + throw(badarg). + +subgraph(G, Vs, Type, Keep) -> + try digraph:new(Type) of + SG -> + lists:foreach(fun(V) -> subgraph_vertex(V, G, SG, Keep) end, Vs), + EFun = fun(V) -> lists:foreach(fun(E) -> + subgraph_edge(E, G, SG, Keep) + end, + digraph:out_edges(G, V)) + end, + lists:foreach(EFun, digraph:vertices(SG)), + SG + catch + error:badarg -> + throw(badarg) + end. + +subgraph_vertex(V, G, SG, Keep) -> + case digraph:vertex(G, V) of + false -> ok; + _ when not Keep -> digraph:add_vertex(SG, V); + {_V, Label} when Keep -> digraph:add_vertex(SG, V, Label) + end. + +subgraph_edge(E, G, SG, Keep) -> + {_E, V1, V2, Label} = digraph:edge(G, E), + case digraph:vertex(SG, V2) of + false -> ok; + _ when not Keep -> digraph:add_edge(SG, E, V1, V2, []); + _ when Keep -> digraph:add_edge(SG, E, V1, V2, Label) + end. + +condense(SC, G, SCG, V2I, I2C) -> + T = ets:new(condense, []), + NFun = fun(Neighbour) -> + [{_V,I}] = ets:lookup(V2I, Neighbour), + ets:insert(T, {I}) + end, + VFun = fun(V) -> lists:foreach(NFun, digraph:out_neighbours(G, V)) end, + lists:foreach(VFun, SC), + digraph:add_vertex(SCG, SC), + condense(ets:first(T), T, SC, G, SCG, I2C), + ets:delete(T). + +condense('$end_of_table', _T, _SC, _G, _SCG, _I2C) -> + ok; +condense(I, T, SC, G, SCG, I2C) -> + [{_,C}] = ets:lookup(I2C, I), + digraph:add_vertex(SCG, C), + digraph:add_edge(SCG, SC, C), + condense(ets:next(T, I), T, SC, G, SCG, I2C). |