diff options
author | Hans Bolinder <[email protected]> | 2014-02-03 10:27:39 +0100 |
---|---|---|
committer | Hans Bolinder <[email protected]> | 2014-02-23 15:01:29 +0100 |
commit | b66e75c285cba469c5225f3394da149456d17d16 (patch) | |
tree | 3b11b80782cff70e478e8f11017bfc26745843cd /lib/stdlib/src/gb_sets.erl | |
parent | 85a5aca047ea4c3dcdeb1e47cdf523a48140bf18 (diff) | |
download | otp-b66e75c285cba469c5225f3394da149456d17d16.tar.gz otp-b66e75c285cba469c5225f3394da149456d17d16.tar.bz2 otp-b66e75c285cba469c5225f3394da149456d17d16.zip |
Deprecate pre-defined built-in types
The types array(), dict(), digraph(), gb_set(), gb_tree(), queue(),
set(), and tid() have been deprecated. They will be removed in OTP 18.0.
Instead the types array:array(), dict:dict(), digraph:graph(),
gb_set:set(), gb_tree:tree(), queue:queue(), sets:set(), and ets:tid()
can be used. (Note: it has always been necessary to use ets:tid().)
It is allowed in OTP 17.0 to locally re-define the types array(), dict(),
and so on.
New types array:array/1, dict:dict/2, gb_sets:set/1, gb_trees:tree/2,
queue:queue/1, and sets:set/1 have been added.
Diffstat (limited to 'lib/stdlib/src/gb_sets.erl')
-rw-r--r-- | lib/stdlib/src/gb_sets.erl | 167 |
1 files changed, 78 insertions, 89 deletions
diff --git a/lib/stdlib/src/gb_sets.erl b/lib/stdlib/src/gb_sets.erl index 237317ac94..0a26d0182d 100644 --- a/lib/stdlib/src/gb_sets.erl +++ b/lib/stdlib/src/gb_sets.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2001-2013. All Rights Reserved. +%% Copyright Ericsson AB 2001-2014. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -196,31 +196,32 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Some types. --export_type([iter/0]). +-export_type([set/0, set/1, iter/0, iter/1]). --type gb_set_node() :: 'nil' | {term(), _, _}. +-type gb_set_node(Element) :: 'nil' | {Element, _, _}. +-type gb_set_node() :: gb_set_node(_). +-opaque set(Element) :: {non_neg_integer(), gb_set_node(Element)}. +-opaque set() :: set(_). +-opaque iter(Element) :: [gb_set_node(Element)]. -opaque iter() :: [gb_set_node()]. -%% A declaration equivalent to the following is currently hard-coded -%% in erl_types.erl -%% -%% -opaque gb_set() :: {non_neg_integer(), gb_set_node()}. - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%% gb_sets:set() in OTP 17 only. + -spec empty() -> Set when - Set :: gb_set(). + Set :: gb_sets:set(). empty() -> {0, nil}. -spec new() -> Set when - Set :: gb_set(). + Set :: gb_sets:set(). new() -> empty(). -spec is_empty(Set) -> boolean() when - Set :: gb_set(). + Set :: gb_sets:set(). is_empty({0, nil}) -> true; @@ -228,27 +229,24 @@ is_empty(_) -> false. -spec size(Set) -> non_neg_integer() when - Set :: gb_set(). + Set :: gb_sets:set(). size({Size, _}) -> Size. --spec singleton(Element) -> gb_set() when - Element :: term(). +-spec singleton(Element) -> set(Element). singleton(Key) -> {1, {Key, nil, nil}}. -spec is_element(Element, Set) -> boolean() when - Element :: term(), - Set :: gb_set(). + Set :: set(Element). is_element(Key, S) -> is_member(Key, S). -spec is_member(Element, Set) -> boolean() when - Element :: term(), - Set :: gb_set(). + Set :: set(Element). is_member(Key, {_, T}) -> is_member_1(Key, T). @@ -263,9 +261,8 @@ is_member_1(_, nil) -> false. -spec insert(Element, Set1) -> Set2 when - Element :: term(), - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). insert(Key, {S, T}) -> S1 = S + 1, @@ -322,8 +319,8 @@ count(nil) -> {1, 0}. -spec balance(Set1) -> Set2 when - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). balance({S, T}) -> {S, balance(T, S)}. @@ -349,17 +346,15 @@ balance_list_1(L, 0) -> {nil, L}. -spec add_element(Element, Set1) -> Set2 when - Element :: term(), - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). add_element(X, S) -> add(X, S). -spec add(Element, Set1) -> Set2 when - Element :: term(), - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). add(X, S) -> case is_member(X, S) of @@ -370,32 +365,30 @@ add(X, S) -> end. -spec from_list(List) -> Set when - List :: [term()], - Set :: gb_set(). + List :: [Element], + Set :: set(Element). from_list(L) -> from_ordset(ordsets:from_list(L)). -spec from_ordset(List) -> Set when - List :: [term()], - Set :: gb_set(). + List :: [Element], + Set :: set(Element). from_ordset(L) -> S = length(L), {S, balance_list(L, S)}. -spec del_element(Element, Set1) -> Set2 when - Element :: term(), - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). del_element(Key, S) -> delete_any(Key, S). -spec delete_any(Element, Set1) -> Set2 when - Element :: term(), - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). delete_any(Key, S) -> case is_member(Key, S) of @@ -406,9 +399,8 @@ delete_any(Key, S) -> end. -spec delete(Element, Set1) -> Set2 when - Element :: term(), - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). delete(Key, {S, T}) -> {S - 1, delete_1(Key, T)}. @@ -431,9 +423,8 @@ merge(Smaller, Larger) -> {Key, Smaller, Larger1}. -spec take_smallest(Set1) -> {Element, Set2} when - Set1 :: gb_set(), - Set2 :: gb_set(), - Element :: term(). + Set1 :: set(Element), + Set2 :: set(Element). take_smallest({S, T}) -> {Key, Larger} = take_smallest1(T), @@ -445,8 +436,8 @@ take_smallest1({Key, Smaller, Larger}) -> {Key1, Smaller1} = take_smallest1(Smaller), {Key1, {Key, Smaller1, Larger}}. --spec smallest(Set) -> term() when - Set :: gb_set(). +-spec smallest(Set) -> Element when + Set :: set(Element). smallest({_, T}) -> smallest_1(T). @@ -457,9 +448,8 @@ smallest_1({_Key, Smaller, _Larger}) -> smallest_1(Smaller). -spec take_largest(Set1) -> {Element, Set2} when - Set1 :: gb_set(), - Set2 :: gb_set(), - Element :: term(). + Set1 :: set(Element), + Set2 :: set(Element). take_largest({S, T}) -> {Key, Smaller} = take_largest1(T), @@ -471,8 +461,8 @@ take_largest1({Key, Smaller, Larger}) -> {Key1, Larger1} = take_largest1(Larger), {Key1, {Key, Smaller, Larger1}}. --spec largest(Set) -> term() when - Set :: gb_set(). +-spec largest(Set) -> Element when + Set :: set(Element). largest({_, T}) -> largest_1(T). @@ -483,8 +473,8 @@ largest_1({_Key, _Smaller, Larger}) -> largest_1(Larger). -spec to_list(Set) -> List when - Set :: gb_set(), - List :: [term()]. + Set :: set(Element), + List :: [Element]. to_list({_, T}) -> to_list(T, []). @@ -496,8 +486,8 @@ to_list({Key, Small, Big}, L) -> to_list(nil, L) -> L. -spec iterator(Set) -> Iter when - Set :: gb_set(), - Iter :: iter(). + Set :: set(Element), + Iter :: iter(Element). iterator({_, T}) -> iterator(T, []). @@ -513,9 +503,8 @@ iterator(nil, As) -> As. -spec next(Iter1) -> {Element, Iter2} | 'none' when - Iter1 :: iter(), - Iter2 :: iter(), - Element :: term(). + Iter1 :: iter(Element), + Iter2 :: iter(Element). next([{X, _, T} | As]) -> {X, iterator(T, As)}; @@ -546,9 +535,9 @@ next([]) -> %% overhead. -spec union(Set1, Set2) -> Set3 when - Set1 :: gb_set(), - Set2 :: gb_set(), - Set3 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element), + Set3 :: set(Element). union({N1, T1}, {N2, T2}) when N2 < N1 -> union(to_list_1(T2), N2, T1, N1); @@ -570,7 +559,7 @@ union(L, N1, T2, N2) -> union_1(L, mk_set(N2, T2)) end. --spec mk_set(non_neg_integer(), gb_set_node()) -> gb_set(). +-spec mk_set(non_neg_integer(), gb_set_node(T)) -> set(T). mk_set(N, T) -> {N, T}. @@ -651,8 +640,8 @@ balance_revlist_1(L, 0) -> {nil, L}. -spec union(SetList) -> Set when - SetList :: [gb_set(),...], - Set :: gb_set(). + SetList :: [set(Element),...], + Set :: set(Element). union([S | Ss]) -> union_list(S, Ss); @@ -666,9 +655,9 @@ union_list(S, []) -> S. %% The rest is modelled on the above. -spec intersection(Set1, Set2) -> Set3 when - Set1 :: gb_set(), - Set2 :: gb_set(), - Set3 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element), + Set3 :: set(Element). intersection({N1, T1}, {N2, T2}) when N2 < N1 -> intersection(to_list_1(T2), N2, T1, N1); @@ -717,8 +706,8 @@ intersection_2(_, [], As, S) -> {S, balance_revlist(As, S)}. -spec intersection(SetList) -> Set when - SetList :: [gb_set(),...], - Set :: gb_set(). + SetList :: [set(Element),...], + Set :: set(Element). intersection([S | Ss]) -> intersection_list(S, Ss). @@ -728,8 +717,8 @@ intersection_list(S, [S1 | Ss]) -> intersection_list(S, []) -> S. -spec is_disjoint(Set1, Set2) -> boolean() when - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). is_disjoint({N1, T1}, {N2, T2}) when N1 < N2 -> is_disjoint_1(T1, T2); @@ -758,17 +747,17 @@ is_disjoint_1(_, nil) -> %% traverse the whole element list of the left operand. -spec subtract(Set1, Set2) -> Set3 when - Set1 :: gb_set(), - Set2 :: gb_set(), - Set3 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element), + Set3 :: set(Element). subtract(S1, S2) -> difference(S1, S2). -spec difference(Set1, Set2) -> Set3 when - Set1 :: gb_set(), - Set2 :: gb_set(), - Set3 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element), + Set3 :: set(Element). difference({N1, T1}, {N2, T2}) -> difference(to_list_1(T1), N1, T2, N2). @@ -817,8 +806,8 @@ difference_2(Xs, [], As, S) -> %% without the construction of a new set. -spec is_subset(Set1, Set2) -> boolean() when - Set1 :: gb_set(), - Set2 :: gb_set(). + Set1 :: set(Element), + Set2 :: set(Element). is_subset({N1, T1}, {N2, T2}) -> is_subset(to_list_1(T1), N1, T2, N2). @@ -867,20 +856,20 @@ is_set({N, {_, _, _}}) when is_integer(N), N >= 0 -> true; is_set(_) -> false. -spec filter(Pred, Set1) -> Set2 when - Pred :: fun((E :: term()) -> boolean()), - Set1 :: gb_set(), - Set2 :: gb_set(). + Pred :: fun((Element) -> boolean()), + Set1 :: set(Element), + Set2 :: set(Element). filter(F, S) -> from_ordset([X || X <- to_list(S), F(X)]). -spec fold(Function, Acc0, Set) -> Acc1 when - Function :: fun((E :: term(), AccIn) -> AccOut), - Acc0 :: term(), - Acc1 :: term(), - AccIn :: term(), - AccOut :: term(), - Set :: gb_set(). + Function :: fun((Element, AccIn) -> AccOut), + Acc0 :: Acc, + Acc1 :: Acc, + AccIn :: Acc, + AccOut :: Acc, + Set :: set(Element). fold(F, A, {_, T}) when is_function(F, 2) -> fold_1(F, A, T). |