diff options
author | Erlang/OTP <[email protected]> | 2009-11-20 14:54:40 +0000 |
---|---|---|
committer | Erlang/OTP <[email protected]> | 2009-11-20 14:54:40 +0000 |
commit | 84adefa331c4159d432d22840663c38f155cd4c1 (patch) | |
tree | bff9a9c66adda4df2106dfd0e5c053ab182a12bd /lib/wx/examples/sudoku/sudoku_game.erl | |
download | otp-84adefa331c4159d432d22840663c38f155cd4c1.tar.gz otp-84adefa331c4159d432d22840663c38f155cd4c1.tar.bz2 otp-84adefa331c4159d432d22840663c38f155cd4c1.zip |
The R13B03 release.OTP_R13B03
Diffstat (limited to 'lib/wx/examples/sudoku/sudoku_game.erl')
-rwxr-xr-x | lib/wx/examples/sudoku/sudoku_game.erl | 503 |
1 files changed, 503 insertions, 0 deletions
diff --git a/lib/wx/examples/sudoku/sudoku_game.erl b/lib/wx/examples/sudoku/sudoku_game.erl new file mode 100755 index 0000000000..470aee0e3b --- /dev/null +++ b/lib/wx/examples/sudoku/sudoku_game.erl @@ -0,0 +1,503 @@ +%% +%% %CopyrightBegin% +%% +%% Copyright Ericsson AB 2009. All Rights Reserved. +%% +%% The contents of this file are subject to the Erlang Public License, +%% Version 1.1, (the "License"); you may not use this file except in +%% compliance with the License. You should have received a copy of the +%% Erlang Public License along with this software. If not, it can be +%% retrieved online at http://www.erlang.org/. +%% +%% Software distributed under the License is distributed on an "AS IS" +%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +%% the License for the specific language governing rights and limitations +%% under the License. +%% +%% %CopyrightEnd% + +-module(sudoku_game). +-compile(export_all). +-include("sudoku.hrl"). + +init(GFX) -> + Empty = empty_table(#s{}), + Add = fun({Butt,Val},SN) -> + validate(rcm(Butt),Val,false,SN) + end, + + Game = test(), + GFX ! {init, Game}, + Self = self(), + Gen = spawn_opt(fun() -> create_games(levels(),Self) end, + [link, {priority,low}]), + loop(lists:foldl(Add,Empty#s{gfx=GFX, gen=Gen},Game)). + +%%%%%%%%%%%%%%%%%% Game Engine %%%%%%%%%%%%%%%%%% + +empty_table(S) -> + Nine = lists:seq(1,9), + D = gb_sets:from_ordset(Nine), + Mat = list_to_tuple([D || _ <- Nine]), + Poss = list_to_tuple([D || _ <- lists:seq(1,9*9)]), + Vals = list_to_tuple([0 || _ <- lists:seq(1,9*9)]), + Must = list_to_tuple([gb_sets:empty() || _ <- lists:seq(1,9*3)]), + S#s{p=Poss,m=Mat,mr=Must,mc=Must,v=Vals}. + +loop(S0 = #s{gfx = Gfx, v=Vs}) -> + receive + quit -> + halt; + {'EXIT', Gfx, Reason} -> + io:format("The GUI crashed: ~p~n", [Reason]); + {validate, Butt, Val} -> + Ix = indx(Butt), + case element(Ix,Vs) of + Val -> loop(S0); + 0 -> + S = validate(rcm(Butt),Val,true,S0), + loop(S); + _ -> + S1 = S0#s{v=setelement(Ix,Vs,0)}, + S2 = rebuild_all(rcm(Butt),S1), + S = validate(rcm(Butt),Val,true,S2), + loop(S) + end; + {loaded, Game} -> + S1 = empty_table(S0), + Add = fun({Butt,Val},SN) -> + validate(rcm(Butt),Val,true,SN) + end, + loop(lists:foldl(Add,S1,Game)); + {op,?EMPTY} -> + loop(empty_table(S0)); + {op,?NEW, Level} -> + case find_game(Level,S0) of + {Game, S1} -> + S0#s.gen ! {gen_game, Level}, + Gfx ! {busy,start}, + Gfx ! {init, Game}; + false -> + S1 = S0, + Gfx ! {busy,start}, + Temp = new_game(S0), + Game = pick_shown(Temp,Level,Gfx), + S0#s.gen ! {gen_game, Level}, + Game + end, + S2 = empty_table(S1), + Add = fun({Butt,Val},SN) -> + validate(rcm(Butt),Val,false, SN) + end, + Gfx ! {init, Game}, + Gfx ! {busy,stop}, + loop(lists:foldl(Add,S2,Game)); + {solve, All} -> + Res = solve(S0, All), + [Gfx ! {set_val, Ind, Val} || {Ind,Val} <- element(2,Res)], + loop(S0); + {get_game, Pid} -> + Pid ! {game, get_known(S0)}, + loop(S0); + {game, Game} -> + loop(S0#s{games=[Game|S0#s.games]}); + CMD -> + io:format("Game loop got ~p~n", [CMD]), + ?MODULE:loop(S0) + end. + +validate({R,C,_M},0,Send,St = #s{gfx=Gfx}) -> + if Send -> Gfx ! {correct, {R,C}}; true -> ok end, + St; +validate(RCM={R,C,_M},Val,Send,St = #s{gfx=Gfx,v=Vs}) -> + S = poss(RCM,St), + case gb_sets:is_member(Val,S) of + true -> + if Send -> Gfx ! {correct, {R,C}}; true -> ok end, + add(RCM,Val,St); + false -> + if Send -> Gfx ! {wrong, {R,C}}; true -> ok end, + St#s{v=setelement(indx(R,C),Vs,Val)} + end. + +rebuild_all(_, S0) -> + Solved = get_known(S0), + S1 = empty_table(S0), + lists:foldl(fun({Indx,Val},Acc) -> + add(rcm(Indx),Val,Acc) + end, S1, Solved). + +is_ok({RI,CI,MI}, Vals) -> + [Ri,Ci,Mi] = all(RI,CI,MI), + case element(indx(RI,CI),Vals) of + 0 -> true; + Val -> + Vs = [[element(indx(R,C),Vals)||{R,C} <- Obs, + not ((R == RI) and (C == CI))] + || Obs <- [Ri,Ci,Mi]], + not lists:member(Val,lists:flatten(Vs)) + end. + +test() -> %% Known to solvable + [{{1,2},6}, {{1,4},1}, {{1,6},4}, {{1,8},5}, + {{2,3},8}, {{2,4},3}, {{2,6},5}, {{2,7},6}, + {{3,1},2}, {{3,9},1}, + {{4,1},8}, {{4,4},4}, {{4,6},7}, {{4,9},6}, + {{5,3},6}, {{5,7},3}, + {{6,1},7}, {{6,4},9}, {{6,6},1}, {{6,9},4}, + {{7,1},5}, {{7,9},2}, + {{8,3},7}, {{8,4},2}, {{8,6},6}, {{8,7},9}, + {{9,2},4}, {{9,4},5}, {{9,6},8}, {{9,8},7}]. + +new_game(S) -> + {X,Y,Z} = erlang:now(), + random:seed(Y,X,Z), + case new_game(1,1,gb_sets:empty(),empty_table(S#s{}),[], 0) of + stop -> new_game(S); + Game -> Game + end. + + +new_game(_,_,_,_St,_Acc,Cnt) when Cnt > 200 -> + %% Backtracked 200 times, Bad path lets start over + stop; +new_game(R,C,BT,St,Acc,Cnt) when R < 10, C < 10 -> + M = mat(R,C), + U = poss({R,C,M},St), + S = gb_sets:difference(U,BT), + case gb_sets:size(S) of + 0 -> + [{{BR,BC},BVal,BBT,BST}|BAcc] = Acc, + new_game(BR,BC,gb_sets:add(BVal,BBT),BST,BAcc,Cnt+1); + Size -> + Ind = random:uniform(Size), + V = lists:nth(Ind,gb_sets:to_list(S)), + new_game(R,C+1,gb_sets:empty(), + add({R,C,M},V,St), + [{{R,C},V,BT,St}|Acc], Cnt) + end; +new_game(R,_C,Bt,S,Acc,Cnt) when R < 10 -> + new_game(R+1,1,Bt,S,Acc,Cnt); +new_game(_,_,_,S,_Acc,_Cnt) -> +%% io:format("Backtracked ~p ~n",[_Cnt]), + S. + +pick_shown(S0, Level, Gfx) -> + Given = gb_sets:from_ordset([I || I <- lists:seq(1,9*9)]), + get_known(pick_shown(Given,Given,S0,level(Level),Gfx)). + +get_known(#s{v=Vals}) -> + lists:foldl(fun(Index,Acc) -> + case element(Index,Vals) of + 0 -> Acc; + Val -> + {R,C,_} = rcm(Index), + [{{R,C},Val}|Acc] + end + end, [], lists:seq(1,9*9)). + +pick_shown(Given,Left,S0,Level,Gfx) -> + LeftSz = gb_sets:size(Left), + GivenSz = gb_sets:size(Given), + if LeftSz == 0 -> + io:format("No left ~p~n", [GivenSz]), + S0; + GivenSz < Level -> + io:format("Below level ~p ~p~n", [GivenSz,Level]), + S0; + true -> + Ran = random:uniform(LeftSz), + V = lists:nth(Ran,gb_sets:to_list(Left)), + S1 = rebuild_all(rcm(V),S0#s{v=setelement(V,S0#s.v,0)}), + case solve(S1, true) of + {true, _, _} -> + catch Gfx ! {working, 100-LeftSz}, + pick_shown(gb_sets:delete(V,Given), + gb_sets:delete(V,Left), + S1, Level,Gfx); + {false,_,_} -> + pick_shown(Given,gb_sets:delete(V,Left), + S0, Level,Gfx) + end + end. + +solve(St=#s{v=Vals},All) -> + Unsolved = [I || I <- lists:seq(1,9*9), element(I,Vals) == 0], + solve(Unsolved, All, St, [], [], lists:reverse(Unsolved)). + +solve(Rem, false, _St, [Solved|_], Unsolved, _) -> {true, [Solved], Rem ++ Unsolved}; +solve([], _, _St, Solved, [], _) -> {true, Solved, []}; +solve([], _, _St, Solved, Unsolved, Unsolved) -> {false, Solved, Unsolved}; +solve([], _, St, Solved, Unsolved, _Orig) -> + solve(Unsolved,true,St,Solved,[],lists:reverse(Unsolved)); +solve([Index|Rest],All, St, S, US, Orig) -> + RCM = rcm(Index), + Poss = poss(RCM,St), + case gb_sets:size(Poss) of + 1 -> + %% io:format("S1 ~n",[]), + [Val] = gb_sets:to_list(Poss), + solve(Rest, All, add(RCM,Val,St), [{Index,Val}|S],US,Orig); + _ -> + case solve_1(RCM, Poss, St) of + false -> + solve(Rest, All, St, S, [Index|US],Orig); + Val -> + solve(Rest, All, add(RCM,Val,St), [{Index,Val}|S],US,Orig) + end + end. + +solve_1(RCM={R,C,_M}, Avail, St) -> + All = all(RCM), + Poss = fun({RI,CI},Acc) when (RI == R) and (CI == C) -> Acc; + ({RI,CI},Acc) -> gb_sets:union(poss(rcm({RI,CI}),St),Acc) + end, + D = fun({RI,CI},Acc) when (RI == R) and (CI == C) -> + io:format("~p:~p: ignore~n",[RI,CI]), + Acc; + ({RI,CI},Acc) -> + Res = gb_sets:union(poss(rcm({RI,CI}),St),Acc), + io:format("~p:~p: ~p => ~p ~n",[RI,CI,gb_sets:to_list(poss(rcm({RI,CI}),St)),gb_sets:to_list(Res)]), + Res + end, + solve_2(All,{Poss,D},Avail). + +solve_2([],_, _) -> false; +solve_2([First|R],{Poss,D},Avail) -> + All = lists:foldl(Poss, gb_sets:empty(), First), + Res = gb_sets:difference(Avail, All), + case gb_sets:size(Res) of + 1 -> + %% lists:foldl(D, gb_sets:empty(), First), + %% io:format("Poss: ~w~nA: ~p O:~p ~n",[First,gb_sets:to_list(Avail),gb_sets:to_list(All)]), + [Val] = gb_sets:to_list(Res), + Val; + _ -> + solve_2(R,{Poss,D},Avail) + end. + +all({RI,CI,MI}) -> all(RI,CI,MI). +all(RI,CI,MI) -> + MR = ((MI-1) div 3)*3, + MC = ((MI-1) rem 3)*3, + Ri = [{RI,N} || N <- lists:seq(1,9)], + Ci = [{N,CI} || N <- lists:seq(1,9)], + Mi = [{1+MR,1+MC},{1+MR,2+MC},{1+MR,3+MC}, + {2+MR,1+MC},{2+MR,2+MC},{2+MR,3+MC}, + {3+MR,1+MC},{3+MR,2+MC},{3+MR,3+MC}], + [Ri,Ci,Mi]. + +other_mats(N) -> + if N < 4 -> P1=3, P2= 6; + N < 7 -> P1=-3,P2= 3; + true -> P1=-6,P2=-3 + end, + case (N-1) rem 3 of + 0 -> [N+1,N+2,N+P1,N+P2]; + 1 -> [N-1,N+1,N+P1,N+P2]; + 2 -> [N-2,N-1,N+P1,N+P2] + end. + +check_must(S=#s{p=Poss,m=MS,mr=MR0,mc=MC0}) -> + List = lists:seq(1,9), + {MR,MC} = lists:foldl(fun(Val,{MRT,MCT}) -> + check_must2(List,Val,Poss,MS,MRT,MCT) + end, {MR0,MC0}, List), + S#s{mr=MR,mc=MC}. + +check_must2([M|Rest],Val,Poss,Ms,MR0,MC0) -> + case gb_sets:is_member(Val, element(M,Ms)) of + true -> + {Rows,Cols} = rc_in_mat(M), + MR1 = check_must3(Rows,Val,Poss,row,MR0), + MC1 = check_must3(Cols,Val,Poss,col,MC0), + check_must2(Rest,Val,Poss,Ms,MR1,MC1); + false -> + check_must2(Rest,Val,Poss,Ms,MR0,MC0) + end; +check_must2([],_,_,_,MR,MC) -> {MR,MC}. + +check_must3({F1,F2,F3},Val,Check,Type,Must0) -> + R1 = not gb_sets:is_member(Val, get_poss(F1,Check,gb_sets:empty())), + R2 = not gb_sets:is_member(Val, get_poss(F2,Check,gb_sets:empty())), + R3 = not gb_sets:is_member(Val, get_poss(F3,Check,gb_sets:empty())), + %% io:format("M=~p ~p ~p ~p ~p~n",[M,[R1,R2,R3],gb_sets:to_list(element(F1,Check)),gb_sets:to_list(element(F2,Check)),gb_sets:to_list(element(F3,Check))]), + if R1,R2 -> update_must(Type,F3,Val,Must0); + R1,R3 -> update_must(Type,F2,Val,Must0); + R2,R3 -> update_must(Type,F1,Val,Must0); + true -> Must0 + end. + +update_must(Type,[Indx|_],Val,Must) -> + N = mindx(Type, Indx), + %% io:format("~p ~p ~p must contain ~p~n",[Type,N,rcm(Indx),Val]), + Set = element(N,Must), + setelement(N,Must, gb_sets:add(Val,Set)). + +add(RCM={R,C,M},Val,S=#s{p=P0,m=MS,v=Vals,mr=MR0,mc=MC0}) -> + Ri = mindx(R,M), + Ci = mindx(M,C), + MR = delete(Val,Ri,MR0), + MC = delete(Val,Ci,MC0), + P1 = setelement(indx(RCM),P0,gb_sets:empty()), + check_must(S#s{p=delete(Val,lists:flatten(all(RCM)),P1), + m=delete(Val,M,MS), + mr=MR,mc=MC, + v=setelement(indx(RCM),Vals,Val)}). + +poss(RCM={R,C,M}, #s{p=P,v=Vals,mr=MR,mc=MC}) -> + I = indx(R,C), + case element(I, Vals) of + 0 -> + Rm = mindx(R,M), + Cm = mindx(M,C), + T1 = gb_sets:intersection(element(Rm,MR),element(Cm,MC)), + case gb_sets:size(T1) of + 1 -> T1; + _ -> + Not = get_nots(RCM,MR,MC), + gb_sets:difference(element(I,P),Not) + end; + _ -> + gb_sets:empty() + end. + +get_nots({R,C,M},MR,MC) -> + [RM1,RM2,CM1,CM2] = other_mats(M), + R1 = get_poss([mindx(R,RM1),mindx(R,RM2)],MR,gb_sets:empty()), + R2 = get_poss([mindx(CM1,C),mindx(CM2,C)],MC,R1), + %% io:format("~p:~p:~p ~p ~p~n", + %% [C,CM1,CM2, + %% gb_sets:to_list(element(mindx(CM1,C),MC)), + %% gb_sets:to_list(element(mindx(CM2,C),MC))]), + R2. + +get_poss([],_,Tot) -> Tot; +get_poss([H|R],What,Tot) -> + %% io:format("~p~n",[H]), + get_poss(R,What, gb_sets:union(element(H,What),Tot)). + +r2rs(R) -> + R0 = (R-1)*3, + [R0+1,R0+2,R0+3]. + +c2cs(C) -> + C0 = (C-1) rem 9, + [C0+1, C0+10, C0+19]. + +mindx(row,Indx) -> + {R,_C,M} = rcm(Indx), + mindx(R,M); +mindx(col,Indx) -> + {_R,C,M} = rcm(Indx), + mindx(M,C); + +mindx(R,M) -> + 1+(R-1)*3 + (M-1) rem 3. + +rcm(Indx) when is_integer(Indx) -> + rcm({((Indx-1) div 9)+1, (Indx-1) rem 9+1}); +rcm({R,C}) -> + M = mat(R,C), + {R,C,M}. +mat(R,C) -> + 1+(C-1) div 3 + ((R-1) div 3)*3. + +rc_in_mat(M) -> + R1 = 1+3*((M-1) div 3), + C1 = 1+3*((M-1) rem 3), + {{[indx({R1+0,C1+0}),indx({R1+0,C1+1}),indx({R1+0,C1+2})], + [indx({R1+1,C1+0}),indx({R1+1,C1+1}),indx({R1+1,C1+2})], + [indx({R1+2,C1+0}),indx({R1+2,C1+1}),indx({R1+2,C1+2})]}, + + {[indx({R1+0,C1+0}),indx({R1+1,C1+0}),indx({R1+2,C1+0})], + [indx({R1+0,C1+1}),indx({R1+1,C1+1}),indx({R1+2,C1+1})], + [indx({R1+0,C1+2}),indx({R1+1,C1+2}),indx({R1+2,C1+2})]}}. + +indx(Indx) when is_integer(Indx) -> Indx; +indx({Row, Col}) -> + indx(Row,Col); +indx({Row, Col,_}) -> + indx(Row,Col). +indx(Row, Col) -> + (Row-1)*9+Col. + +delete(_Val,[],S0) -> S0; +delete(Val,[I1|R],S0) -> + I = if is_integer(I1) -> I1; + true -> indx(I1) + end, + S = setelement(I,S0,gb_sets:delete_any(Val, element(I,S0))), + delete(Val,R,S); +delete(Val,I,S) -> + setelement(I,S,gb_sets:delete_any(Val, element(I,S))). + +%%%%%%%%%%%%%%%%%%%%%%%%% + +%% Pre generate games on low priority +create_games(Levels,Engine) -> + gen_loop(Levels, Engine, 5). + +gen_loop([], Engine,_) -> + receive + {gen_game, Level} -> + gen_loop([Level], Engine,5) + end; +gen_loop([Level|Ls], Engine, N) when N > 0 -> + Empty = empty_table(#s{}), + Temp = new_game(Empty), + Game = pick_shown(Temp,Level,undefined), + ResLev = length(Game), + Engine ! {game, {ResLev, Game}}, + case ResLev =< level(Level) of + true -> + gen_loop(Ls,Engine, 5); + false -> + gen_loop([Level|Ls],Engine, N-1) + end; +gen_loop([_|Ls],Engine, _) -> + gen_loop(Ls,Engine, 5). + +find_game(_, #s{games=[]}) -> false; +find_game(hardest, S = #s{games=Gs0}) -> + Hard = level(hard), + case lists:sort(Gs0) of + [{Level,G}|Gs] when Level < (Hard-5) -> + {G, S#s{games=Gs}}; + _ -> false + end; +find_game(Level, S = #s{games=Gs0}) -> + case find_game2(level(Level), lists:reverse(lists:sort(Gs0)), []) of + false -> false; + {Game, Gs} -> {Game,S#s{games=Gs}} + end. + +find_game2(Hard, [{Level,G}|Gs], Acc) when Level =< Hard, Level > (Hard-5) -> + {G, Gs ++ Acc}; +find_game2(Hard, [G|Gs], Acc) -> + find_game2(Hard, Gs, [G|Acc]); +find_game2(_Hard, [], _ ) -> false. + +levels() -> + [trivial,easy,normal,hard,hardest]. + +level(Level) when is_atom(Level) -> + case Level of + all -> 100; + trivial -> 40; + easy -> 35; + normal -> 30; + hard -> 25; + hardest -> 0 + end; +level(Int) when is_integer(Int) -> + if + Int =< 20 -> hardest; + Int =< 25 -> hard; + Int =< 30 -> normal; + Int =< 35 -> easy; + true -> trivial + end. + + + |