aboutsummaryrefslogtreecommitdiffstats
path: root/lib/wx/examples/sudoku/sudoku_game.erl
diff options
context:
space:
mode:
authorErlang/OTP <[email protected]>2009-11-20 14:54:40 +0000
committerErlang/OTP <[email protected]>2009-11-20 14:54:40 +0000
commit84adefa331c4159d432d22840663c38f155cd4c1 (patch)
treebff9a9c66adda4df2106dfd0e5c053ab182a12bd /lib/wx/examples/sudoku/sudoku_game.erl
downloadotp-84adefa331c4159d432d22840663c38f155cd4c1.tar.gz
otp-84adefa331c4159d432d22840663c38f155cd4c1.tar.bz2
otp-84adefa331c4159d432d22840663c38f155cd4c1.zip
The R13B03 release.OTP_R13B03
Diffstat (limited to 'lib/wx/examples/sudoku/sudoku_game.erl')
-rwxr-xr-xlib/wx/examples/sudoku/sudoku_game.erl503
1 files changed, 503 insertions, 0 deletions
diff --git a/lib/wx/examples/sudoku/sudoku_game.erl b/lib/wx/examples/sudoku/sudoku_game.erl
new file mode 100755
index 0000000000..470aee0e3b
--- /dev/null
+++ b/lib/wx/examples/sudoku/sudoku_game.erl
@@ -0,0 +1,503 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2009. All Rights Reserved.
+%%
+%% The contents of this file are subject to the Erlang Public License,
+%% Version 1.1, (the "License"); you may not use this file except in
+%% compliance with the License. You should have received a copy of the
+%% Erlang Public License along with this software. If not, it can be
+%% retrieved online at http://www.erlang.org/.
+%%
+%% Software distributed under the License is distributed on an "AS IS"
+%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
+%% the License for the specific language governing rights and limitations
+%% under the License.
+%%
+%% %CopyrightEnd%
+
+-module(sudoku_game).
+-compile(export_all).
+-include("sudoku.hrl").
+
+init(GFX) ->
+ Empty = empty_table(#s{}),
+ Add = fun({Butt,Val},SN) ->
+ validate(rcm(Butt),Val,false,SN)
+ end,
+
+ Game = test(),
+ GFX ! {init, Game},
+ Self = self(),
+ Gen = spawn_opt(fun() -> create_games(levels(),Self) end,
+ [link, {priority,low}]),
+ loop(lists:foldl(Add,Empty#s{gfx=GFX, gen=Gen},Game)).
+
+%%%%%%%%%%%%%%%%%% Game Engine %%%%%%%%%%%%%%%%%%
+
+empty_table(S) ->
+ Nine = lists:seq(1,9),
+ D = gb_sets:from_ordset(Nine),
+ Mat = list_to_tuple([D || _ <- Nine]),
+ Poss = list_to_tuple([D || _ <- lists:seq(1,9*9)]),
+ Vals = list_to_tuple([0 || _ <- lists:seq(1,9*9)]),
+ Must = list_to_tuple([gb_sets:empty() || _ <- lists:seq(1,9*3)]),
+ S#s{p=Poss,m=Mat,mr=Must,mc=Must,v=Vals}.
+
+loop(S0 = #s{gfx = Gfx, v=Vs}) ->
+ receive
+ quit ->
+ halt;
+ {'EXIT', Gfx, Reason} ->
+ io:format("The GUI crashed: ~p~n", [Reason]);
+ {validate, Butt, Val} ->
+ Ix = indx(Butt),
+ case element(Ix,Vs) of
+ Val -> loop(S0);
+ 0 ->
+ S = validate(rcm(Butt),Val,true,S0),
+ loop(S);
+ _ ->
+ S1 = S0#s{v=setelement(Ix,Vs,0)},
+ S2 = rebuild_all(rcm(Butt),S1),
+ S = validate(rcm(Butt),Val,true,S2),
+ loop(S)
+ end;
+ {loaded, Game} ->
+ S1 = empty_table(S0),
+ Add = fun({Butt,Val},SN) ->
+ validate(rcm(Butt),Val,true,SN)
+ end,
+ loop(lists:foldl(Add,S1,Game));
+ {op,?EMPTY} ->
+ loop(empty_table(S0));
+ {op,?NEW, Level} ->
+ case find_game(Level,S0) of
+ {Game, S1} ->
+ S0#s.gen ! {gen_game, Level},
+ Gfx ! {busy,start},
+ Gfx ! {init, Game};
+ false ->
+ S1 = S0,
+ Gfx ! {busy,start},
+ Temp = new_game(S0),
+ Game = pick_shown(Temp,Level,Gfx),
+ S0#s.gen ! {gen_game, Level},
+ Game
+ end,
+ S2 = empty_table(S1),
+ Add = fun({Butt,Val},SN) ->
+ validate(rcm(Butt),Val,false, SN)
+ end,
+ Gfx ! {init, Game},
+ Gfx ! {busy,stop},
+ loop(lists:foldl(Add,S2,Game));
+ {solve, All} ->
+ Res = solve(S0, All),
+ [Gfx ! {set_val, Ind, Val} || {Ind,Val} <- element(2,Res)],
+ loop(S0);
+ {get_game, Pid} ->
+ Pid ! {game, get_known(S0)},
+ loop(S0);
+ {game, Game} ->
+ loop(S0#s{games=[Game|S0#s.games]});
+ CMD ->
+ io:format("Game loop got ~p~n", [CMD]),
+ ?MODULE:loop(S0)
+ end.
+
+validate({R,C,_M},0,Send,St = #s{gfx=Gfx}) ->
+ if Send -> Gfx ! {correct, {R,C}}; true -> ok end,
+ St;
+validate(RCM={R,C,_M},Val,Send,St = #s{gfx=Gfx,v=Vs}) ->
+ S = poss(RCM,St),
+ case gb_sets:is_member(Val,S) of
+ true ->
+ if Send -> Gfx ! {correct, {R,C}}; true -> ok end,
+ add(RCM,Val,St);
+ false ->
+ if Send -> Gfx ! {wrong, {R,C}}; true -> ok end,
+ St#s{v=setelement(indx(R,C),Vs,Val)}
+ end.
+
+rebuild_all(_, S0) ->
+ Solved = get_known(S0),
+ S1 = empty_table(S0),
+ lists:foldl(fun({Indx,Val},Acc) ->
+ add(rcm(Indx),Val,Acc)
+ end, S1, Solved).
+
+is_ok({RI,CI,MI}, Vals) ->
+ [Ri,Ci,Mi] = all(RI,CI,MI),
+ case element(indx(RI,CI),Vals) of
+ 0 -> true;
+ Val ->
+ Vs = [[element(indx(R,C),Vals)||{R,C} <- Obs,
+ not ((R == RI) and (C == CI))]
+ || Obs <- [Ri,Ci,Mi]],
+ not lists:member(Val,lists:flatten(Vs))
+ end.
+
+test() -> %% Known to solvable
+ [{{1,2},6}, {{1,4},1}, {{1,6},4}, {{1,8},5},
+ {{2,3},8}, {{2,4},3}, {{2,6},5}, {{2,7},6},
+ {{3,1},2}, {{3,9},1},
+ {{4,1},8}, {{4,4},4}, {{4,6},7}, {{4,9},6},
+ {{5,3},6}, {{5,7},3},
+ {{6,1},7}, {{6,4},9}, {{6,6},1}, {{6,9},4},
+ {{7,1},5}, {{7,9},2},
+ {{8,3},7}, {{8,4},2}, {{8,6},6}, {{8,7},9},
+ {{9,2},4}, {{9,4},5}, {{9,6},8}, {{9,8},7}].
+
+new_game(S) ->
+ {X,Y,Z} = erlang:now(),
+ random:seed(Y,X,Z),
+ case new_game(1,1,gb_sets:empty(),empty_table(S#s{}),[], 0) of
+ stop -> new_game(S);
+ Game -> Game
+ end.
+
+
+new_game(_,_,_,_St,_Acc,Cnt) when Cnt > 200 ->
+ %% Backtracked 200 times, Bad path lets start over
+ stop;
+new_game(R,C,BT,St,Acc,Cnt) when R < 10, C < 10 ->
+ M = mat(R,C),
+ U = poss({R,C,M},St),
+ S = gb_sets:difference(U,BT),
+ case gb_sets:size(S) of
+ 0 ->
+ [{{BR,BC},BVal,BBT,BST}|BAcc] = Acc,
+ new_game(BR,BC,gb_sets:add(BVal,BBT),BST,BAcc,Cnt+1);
+ Size ->
+ Ind = random:uniform(Size),
+ V = lists:nth(Ind,gb_sets:to_list(S)),
+ new_game(R,C+1,gb_sets:empty(),
+ add({R,C,M},V,St),
+ [{{R,C},V,BT,St}|Acc], Cnt)
+ end;
+new_game(R,_C,Bt,S,Acc,Cnt) when R < 10 ->
+ new_game(R+1,1,Bt,S,Acc,Cnt);
+new_game(_,_,_,S,_Acc,_Cnt) ->
+%% io:format("Backtracked ~p ~n",[_Cnt]),
+ S.
+
+pick_shown(S0, Level, Gfx) ->
+ Given = gb_sets:from_ordset([I || I <- lists:seq(1,9*9)]),
+ get_known(pick_shown(Given,Given,S0,level(Level),Gfx)).
+
+get_known(#s{v=Vals}) ->
+ lists:foldl(fun(Index,Acc) ->
+ case element(Index,Vals) of
+ 0 -> Acc;
+ Val ->
+ {R,C,_} = rcm(Index),
+ [{{R,C},Val}|Acc]
+ end
+ end, [], lists:seq(1,9*9)).
+
+pick_shown(Given,Left,S0,Level,Gfx) ->
+ LeftSz = gb_sets:size(Left),
+ GivenSz = gb_sets:size(Given),
+ if LeftSz == 0 ->
+ io:format("No left ~p~n", [GivenSz]),
+ S0;
+ GivenSz < Level ->
+ io:format("Below level ~p ~p~n", [GivenSz,Level]),
+ S0;
+ true ->
+ Ran = random:uniform(LeftSz),
+ V = lists:nth(Ran,gb_sets:to_list(Left)),
+ S1 = rebuild_all(rcm(V),S0#s{v=setelement(V,S0#s.v,0)}),
+ case solve(S1, true) of
+ {true, _, _} ->
+ catch Gfx ! {working, 100-LeftSz},
+ pick_shown(gb_sets:delete(V,Given),
+ gb_sets:delete(V,Left),
+ S1, Level,Gfx);
+ {false,_,_} ->
+ pick_shown(Given,gb_sets:delete(V,Left),
+ S0, Level,Gfx)
+ end
+ end.
+
+solve(St=#s{v=Vals},All) ->
+ Unsolved = [I || I <- lists:seq(1,9*9), element(I,Vals) == 0],
+ solve(Unsolved, All, St, [], [], lists:reverse(Unsolved)).
+
+solve(Rem, false, _St, [Solved|_], Unsolved, _) -> {true, [Solved], Rem ++ Unsolved};
+solve([], _, _St, Solved, [], _) -> {true, Solved, []};
+solve([], _, _St, Solved, Unsolved, Unsolved) -> {false, Solved, Unsolved};
+solve([], _, St, Solved, Unsolved, _Orig) ->
+ solve(Unsolved,true,St,Solved,[],lists:reverse(Unsolved));
+solve([Index|Rest],All, St, S, US, Orig) ->
+ RCM = rcm(Index),
+ Poss = poss(RCM,St),
+ case gb_sets:size(Poss) of
+ 1 ->
+ %% io:format("S1 ~n",[]),
+ [Val] = gb_sets:to_list(Poss),
+ solve(Rest, All, add(RCM,Val,St), [{Index,Val}|S],US,Orig);
+ _ ->
+ case solve_1(RCM, Poss, St) of
+ false ->
+ solve(Rest, All, St, S, [Index|US],Orig);
+ Val ->
+ solve(Rest, All, add(RCM,Val,St), [{Index,Val}|S],US,Orig)
+ end
+ end.
+
+solve_1(RCM={R,C,_M}, Avail, St) ->
+ All = all(RCM),
+ Poss = fun({RI,CI},Acc) when (RI == R) and (CI == C) -> Acc;
+ ({RI,CI},Acc) -> gb_sets:union(poss(rcm({RI,CI}),St),Acc)
+ end,
+ D = fun({RI,CI},Acc) when (RI == R) and (CI == C) ->
+ io:format("~p:~p: ignore~n",[RI,CI]),
+ Acc;
+ ({RI,CI},Acc) ->
+ Res = gb_sets:union(poss(rcm({RI,CI}),St),Acc),
+ io:format("~p:~p: ~p => ~p ~n",[RI,CI,gb_sets:to_list(poss(rcm({RI,CI}),St)),gb_sets:to_list(Res)]),
+ Res
+ end,
+ solve_2(All,{Poss,D},Avail).
+
+solve_2([],_, _) -> false;
+solve_2([First|R],{Poss,D},Avail) ->
+ All = lists:foldl(Poss, gb_sets:empty(), First),
+ Res = gb_sets:difference(Avail, All),
+ case gb_sets:size(Res) of
+ 1 ->
+ %% lists:foldl(D, gb_sets:empty(), First),
+ %% io:format("Poss: ~w~nA: ~p O:~p ~n",[First,gb_sets:to_list(Avail),gb_sets:to_list(All)]),
+ [Val] = gb_sets:to_list(Res),
+ Val;
+ _ ->
+ solve_2(R,{Poss,D},Avail)
+ end.
+
+all({RI,CI,MI}) -> all(RI,CI,MI).
+all(RI,CI,MI) ->
+ MR = ((MI-1) div 3)*3,
+ MC = ((MI-1) rem 3)*3,
+ Ri = [{RI,N} || N <- lists:seq(1,9)],
+ Ci = [{N,CI} || N <- lists:seq(1,9)],
+ Mi = [{1+MR,1+MC},{1+MR,2+MC},{1+MR,3+MC},
+ {2+MR,1+MC},{2+MR,2+MC},{2+MR,3+MC},
+ {3+MR,1+MC},{3+MR,2+MC},{3+MR,3+MC}],
+ [Ri,Ci,Mi].
+
+other_mats(N) ->
+ if N < 4 -> P1=3, P2= 6;
+ N < 7 -> P1=-3,P2= 3;
+ true -> P1=-6,P2=-3
+ end,
+ case (N-1) rem 3 of
+ 0 -> [N+1,N+2,N+P1,N+P2];
+ 1 -> [N-1,N+1,N+P1,N+P2];
+ 2 -> [N-2,N-1,N+P1,N+P2]
+ end.
+
+check_must(S=#s{p=Poss,m=MS,mr=MR0,mc=MC0}) ->
+ List = lists:seq(1,9),
+ {MR,MC} = lists:foldl(fun(Val,{MRT,MCT}) ->
+ check_must2(List,Val,Poss,MS,MRT,MCT)
+ end, {MR0,MC0}, List),
+ S#s{mr=MR,mc=MC}.
+
+check_must2([M|Rest],Val,Poss,Ms,MR0,MC0) ->
+ case gb_sets:is_member(Val, element(M,Ms)) of
+ true ->
+ {Rows,Cols} = rc_in_mat(M),
+ MR1 = check_must3(Rows,Val,Poss,row,MR0),
+ MC1 = check_must3(Cols,Val,Poss,col,MC0),
+ check_must2(Rest,Val,Poss,Ms,MR1,MC1);
+ false ->
+ check_must2(Rest,Val,Poss,Ms,MR0,MC0)
+ end;
+check_must2([],_,_,_,MR,MC) -> {MR,MC}.
+
+check_must3({F1,F2,F3},Val,Check,Type,Must0) ->
+ R1 = not gb_sets:is_member(Val, get_poss(F1,Check,gb_sets:empty())),
+ R2 = not gb_sets:is_member(Val, get_poss(F2,Check,gb_sets:empty())),
+ R3 = not gb_sets:is_member(Val, get_poss(F3,Check,gb_sets:empty())),
+ %% io:format("M=~p ~p ~p ~p ~p~n",[M,[R1,R2,R3],gb_sets:to_list(element(F1,Check)),gb_sets:to_list(element(F2,Check)),gb_sets:to_list(element(F3,Check))]),
+ if R1,R2 -> update_must(Type,F3,Val,Must0);
+ R1,R3 -> update_must(Type,F2,Val,Must0);
+ R2,R3 -> update_must(Type,F1,Val,Must0);
+ true -> Must0
+ end.
+
+update_must(Type,[Indx|_],Val,Must) ->
+ N = mindx(Type, Indx),
+ %% io:format("~p ~p ~p must contain ~p~n",[Type,N,rcm(Indx),Val]),
+ Set = element(N,Must),
+ setelement(N,Must, gb_sets:add(Val,Set)).
+
+add(RCM={R,C,M},Val,S=#s{p=P0,m=MS,v=Vals,mr=MR0,mc=MC0}) ->
+ Ri = mindx(R,M),
+ Ci = mindx(M,C),
+ MR = delete(Val,Ri,MR0),
+ MC = delete(Val,Ci,MC0),
+ P1 = setelement(indx(RCM),P0,gb_sets:empty()),
+ check_must(S#s{p=delete(Val,lists:flatten(all(RCM)),P1),
+ m=delete(Val,M,MS),
+ mr=MR,mc=MC,
+ v=setelement(indx(RCM),Vals,Val)}).
+
+poss(RCM={R,C,M}, #s{p=P,v=Vals,mr=MR,mc=MC}) ->
+ I = indx(R,C),
+ case element(I, Vals) of
+ 0 ->
+ Rm = mindx(R,M),
+ Cm = mindx(M,C),
+ T1 = gb_sets:intersection(element(Rm,MR),element(Cm,MC)),
+ case gb_sets:size(T1) of
+ 1 -> T1;
+ _ ->
+ Not = get_nots(RCM,MR,MC),
+ gb_sets:difference(element(I,P),Not)
+ end;
+ _ ->
+ gb_sets:empty()
+ end.
+
+get_nots({R,C,M},MR,MC) ->
+ [RM1,RM2,CM1,CM2] = other_mats(M),
+ R1 = get_poss([mindx(R,RM1),mindx(R,RM2)],MR,gb_sets:empty()),
+ R2 = get_poss([mindx(CM1,C),mindx(CM2,C)],MC,R1),
+ %% io:format("~p:~p:~p ~p ~p~n",
+ %% [C,CM1,CM2,
+ %% gb_sets:to_list(element(mindx(CM1,C),MC)),
+ %% gb_sets:to_list(element(mindx(CM2,C),MC))]),
+ R2.
+
+get_poss([],_,Tot) -> Tot;
+get_poss([H|R],What,Tot) ->
+ %% io:format("~p~n",[H]),
+ get_poss(R,What, gb_sets:union(element(H,What),Tot)).
+
+r2rs(R) ->
+ R0 = (R-1)*3,
+ [R0+1,R0+2,R0+3].
+
+c2cs(C) ->
+ C0 = (C-1) rem 9,
+ [C0+1, C0+10, C0+19].
+
+mindx(row,Indx) ->
+ {R,_C,M} = rcm(Indx),
+ mindx(R,M);
+mindx(col,Indx) ->
+ {_R,C,M} = rcm(Indx),
+ mindx(M,C);
+
+mindx(R,M) ->
+ 1+(R-1)*3 + (M-1) rem 3.
+
+rcm(Indx) when is_integer(Indx) ->
+ rcm({((Indx-1) div 9)+1, (Indx-1) rem 9+1});
+rcm({R,C}) ->
+ M = mat(R,C),
+ {R,C,M}.
+mat(R,C) ->
+ 1+(C-1) div 3 + ((R-1) div 3)*3.
+
+rc_in_mat(M) ->
+ R1 = 1+3*((M-1) div 3),
+ C1 = 1+3*((M-1) rem 3),
+ {{[indx({R1+0,C1+0}),indx({R1+0,C1+1}),indx({R1+0,C1+2})],
+ [indx({R1+1,C1+0}),indx({R1+1,C1+1}),indx({R1+1,C1+2})],
+ [indx({R1+2,C1+0}),indx({R1+2,C1+1}),indx({R1+2,C1+2})]},
+
+ {[indx({R1+0,C1+0}),indx({R1+1,C1+0}),indx({R1+2,C1+0})],
+ [indx({R1+0,C1+1}),indx({R1+1,C1+1}),indx({R1+2,C1+1})],
+ [indx({R1+0,C1+2}),indx({R1+1,C1+2}),indx({R1+2,C1+2})]}}.
+
+indx(Indx) when is_integer(Indx) -> Indx;
+indx({Row, Col}) ->
+ indx(Row,Col);
+indx({Row, Col,_}) ->
+ indx(Row,Col).
+indx(Row, Col) ->
+ (Row-1)*9+Col.
+
+delete(_Val,[],S0) -> S0;
+delete(Val,[I1|R],S0) ->
+ I = if is_integer(I1) -> I1;
+ true -> indx(I1)
+ end,
+ S = setelement(I,S0,gb_sets:delete_any(Val, element(I,S0))),
+ delete(Val,R,S);
+delete(Val,I,S) ->
+ setelement(I,S,gb_sets:delete_any(Val, element(I,S))).
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%% Pre generate games on low priority
+create_games(Levels,Engine) ->
+ gen_loop(Levels, Engine, 5).
+
+gen_loop([], Engine,_) ->
+ receive
+ {gen_game, Level} ->
+ gen_loop([Level], Engine,5)
+ end;
+gen_loop([Level|Ls], Engine, N) when N > 0 ->
+ Empty = empty_table(#s{}),
+ Temp = new_game(Empty),
+ Game = pick_shown(Temp,Level,undefined),
+ ResLev = length(Game),
+ Engine ! {game, {ResLev, Game}},
+ case ResLev =< level(Level) of
+ true ->
+ gen_loop(Ls,Engine, 5);
+ false ->
+ gen_loop([Level|Ls],Engine, N-1)
+ end;
+gen_loop([_|Ls],Engine, _) ->
+ gen_loop(Ls,Engine, 5).
+
+find_game(_, #s{games=[]}) -> false;
+find_game(hardest, S = #s{games=Gs0}) ->
+ Hard = level(hard),
+ case lists:sort(Gs0) of
+ [{Level,G}|Gs] when Level < (Hard-5) ->
+ {G, S#s{games=Gs}};
+ _ -> false
+ end;
+find_game(Level, S = #s{games=Gs0}) ->
+ case find_game2(level(Level), lists:reverse(lists:sort(Gs0)), []) of
+ false -> false;
+ {Game, Gs} -> {Game,S#s{games=Gs}}
+ end.
+
+find_game2(Hard, [{Level,G}|Gs], Acc) when Level =< Hard, Level > (Hard-5) ->
+ {G, Gs ++ Acc};
+find_game2(Hard, [G|Gs], Acc) ->
+ find_game2(Hard, Gs, [G|Acc]);
+find_game2(_Hard, [], _ ) -> false.
+
+levels() ->
+ [trivial,easy,normal,hard,hardest].
+
+level(Level) when is_atom(Level) ->
+ case Level of
+ all -> 100;
+ trivial -> 40;
+ easy -> 35;
+ normal -> 30;
+ hard -> 25;
+ hardest -> 0
+ end;
+level(Int) when is_integer(Int) ->
+ if
+ Int =< 20 -> hardest;
+ Int =< 25 -> hard;
+ Int =< 30 -> normal;
+ Int =< 35 -> easy;
+ true -> trivial
+ end.
+
+
+