aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorHans Bolinder <[email protected]>2015-10-22 14:26:12 +0200
committerHans Bolinder <[email protected]>2016-05-09 08:27:22 +0200
commitee802105708818a7d9a2ea05b400168574268319 (patch)
tree6aae716215a4a4cdbb5bed3e7dd04f1bdbcd4746 /lib
parentc9b719d7f6a34959c9ce7889c0036fe61404f97b (diff)
downloadotp-ee802105708818a7d9a2ea05b400168574268319.tar.gz
otp-ee802105708818a7d9a2ea05b400168574268319.tar.bz2
otp-ee802105708818a7d9a2ea05b400168574268319.zip
syntax_tools: Add support for types and specs
In particular, types and specs can be pretty-printed. There are issues with macros (left behind by epp_dodger). Typed record fields are handled. Fields are represented by triples instead of two-tuples, which is an incompatible change. Some attributes (-export_type, -spec, -type, &c) have been given meaning in recent time, but the set of wild attributes (see Barklund's spec) is not changed.
Diffstat (limited to 'lib')
-rw-r--r--lib/syntax_tools/src/erl_prettypr.erl322
-rw-r--r--lib/syntax_tools/src/erl_syntax.erl1348
-rw-r--r--lib/syntax_tools/src/erl_syntax_lib.erl181
3 files changed, 1776 insertions, 75 deletions
diff --git a/lib/syntax_tools/src/erl_prettypr.erl b/lib/syntax_tools/src/erl_prettypr.erl
index ae7811994d..9b6c5d977e 100644
--- a/lib/syntax_tools/src/erl_prettypr.erl
+++ b/lib/syntax_tools/src/erl_prettypr.erl
@@ -40,7 +40,7 @@
follow/3, empty/0]).
-import(erl_parse, [preop_prec/1, inop_prec/1, func_prec/0,
- max_prec/0]).
+ max_prec/0, type_inop_prec/1, type_preop_prec/1]).
-define(PADDING, 2).
-define(PAPER, 80).
@@ -52,7 +52,8 @@
| fun((erl_syntax:syntaxTree(), _, _) -> prettypr:document()).
-type clause_t() :: 'case_expr' | 'cond_expr' | 'fun_expr'
| 'if_expr' | 'receive_expr' | 'try_expr'
- | {'function', prettypr:document()}.
+ | {'function', prettypr:document()}
+ | 'spec'.
-record(ctxt, {prec = 0 :: integer(),
sub_indent = 2 :: non_neg_integer(),
@@ -537,9 +538,6 @@ lay_2(Node, Ctxt) ->
As = seq(erl_syntax:application_arguments(Node),
floating(text(",")), reset_prec(Ctxt),
fun lay/2),
-%% D1 = beside(D, beside(text("("),
-%% beside(par(As),
-%% floating(text(")"))))),
D1 = beside(D, beside(text("("),
beside(par(As),
floating(text(")"))))),
@@ -653,7 +651,7 @@ lay_2(Node, Ctxt) ->
beside(D1, beside(text(":"), D2));
%%
- %% The rest is in alphabetical order
+ %% The rest is in alphabetical order (except map and types)
%%
arity_qualifier ->
@@ -668,18 +666,67 @@ lay_2(Node, Ctxt) ->
%% a period. If the arguments is `none', we only output the
%% attribute name, without following parentheses.
Ctxt1 = reset_prec(Ctxt),
- N = erl_syntax:attribute_name(Node),
- D = case erl_syntax:attribute_arguments(Node) of
- none ->
+ Args = erl_syntax:attribute_arguments(Node),
+ N = erl_syntax:attribute_name(Node),
+ D = case attribute_type(Node) of
+ spec ->
+ [SpecTuple] = Args,
+ [FuncName, FuncTypes] =
+ erl_syntax:tuple_elements(SpecTuple),
+ Name =
+ case erl_syntax:type(FuncName) of
+ tuple ->
+ case erl_syntax:tuple_elements(FuncName) of
+ [F0, _] ->
+ F0;
+ [M0, F0, _] ->
+ erl_syntax:module_qualifier(M0,
+ F0);
+ _ ->
+ FuncName
+ end;
+ _ ->
+ FuncName
+ end,
+ Types = dodge_macros(FuncTypes),
+ D1 = lay_clauses(erl_syntax:concrete(Types),
+ spec, Ctxt1),
+ beside(follow(lay(N, Ctxt1),
+ lay(Name, Ctxt1),
+ Ctxt1#ctxt.break_indent),
+ D1);
+ type ->
+ [TypeTuple] = Args,
+ [Name, Type0, Elements] =
+ erl_syntax:tuple_elements(TypeTuple),
+ TypeName = dodge_macros(Name),
+ Type = dodge_macros(Type0),
+ As0 = dodge_macros(Elements),
+ As = erl_syntax:concrete(As0),
+ D1 = lay_type_application(TypeName, As, Ctxt1),
+ D2 = lay(erl_syntax:concrete(Type), Ctxt1),
+ beside(follow(lay(N, Ctxt1),
+ beside(D1, floating(text(" :: "))),
+ Ctxt1#ctxt.break_indent),
+ D2);
+ Tag when Tag =:= export_type;
+ Tag =:= optional_callbacks ->
+ [FuncNs] = Args,
+ FuncNames = erl_syntax:concrete(dodge_macros(FuncNs)),
+ As = unfold_function_names(FuncNames),
+ beside(lay(N, Ctxt1),
+ beside(text("("),
+ beside(lay(As, Ctxt1),
+ floating(text(")")))));
+ _ when Args =:= none ->
lay(N, Ctxt1);
- Args ->
- As = seq(Args, floating(text(",")), Ctxt1,
- fun lay/2),
+ _ ->
+ D1 = par(seq(Args, floating(text(",")), Ctxt1,
+ fun lay/2)),
beside(lay(N, Ctxt1),
beside(text("("),
- beside(par(As),
- floating(text(")")))))
- end,
+ beside(D1, floating(text(")")))))
+ end,
beside(floating(text("-")), beside(D, floating(text("."))));
binary ->
@@ -930,6 +977,16 @@ lay_2(Node, Ctxt) ->
text ->
text(erl_syntax:text_string(Node));
+ typed_record_field ->
+ {_, Prec, _} = type_inop_prec('::'),
+ Ctxt1 = reset_prec(Ctxt),
+ D1 = lay(erl_syntax:typed_record_field_body(Node), Ctxt1),
+ D2 = lay(erl_syntax:typed_record_field_type(Node),
+ set_prec(Ctxt, Prec)),
+ D3 = par([D1, floating(text(" ::")), D2],
+ Ctxt1#ctxt.break_indent),
+ maybe_parentheses(D3, Prec, Ctxt);
+
try_expr ->
Ctxt1 = reset_prec(Ctxt),
D1 = sep(seq(erl_syntax:try_expr_body(Node),
@@ -967,9 +1024,231 @@ lay_2(Node, Ctxt) ->
warning_marker ->
E = erl_syntax:warning_marker_info(Node),
beside(text("%% WARNING: "),
- lay_error_info(E, reset_prec(Ctxt)))
+ lay_error_info(E, reset_prec(Ctxt)));
+
+ %%
+ %% Types
+ %%
+
+ annotated_type ->
+ {_, Prec, _} = type_inop_prec('::'),
+ D1 = lay(erl_syntax:annotated_type_name(Node),
+ reset_prec(Ctxt)),
+ D2 = lay(erl_syntax:annotated_type_body(Node),
+ set_prec(Ctxt, Prec)),
+ D3 = follow(beside(D1, floating(text(" ::"))), D2,
+ Ctxt#ctxt.break_indent),
+ maybe_parentheses(D3, Prec, Ctxt);
+
+ type_application ->
+ Name = erl_syntax:type_application_name(Node),
+ Arguments = erl_syntax:type_application_arguments(Node),
+ %% Prefer shorthand notation.
+ case erl_syntax_lib:analyze_type_application(Node) of
+ {nil, 0} ->
+ text("[]");
+ {list, 1} ->
+ [A] = Arguments,
+ D1 = lay(A, reset_prec(Ctxt)),
+ beside(text("["), beside(D1, text("]")));
+ {nonempty_list, 1} ->
+ [A] = Arguments,
+ D1 = lay(A, reset_prec(Ctxt)),
+ beside(text("["), beside(D1, text(", ...]")));
+ _ ->
+ lay_type_application(Name, Arguments, Ctxt)
+ end;
+
+ bitstring_type ->
+ Ctxt1 = set_prec(Ctxt, max_prec()),
+ M = erl_syntax:bitstring_type_m(Node),
+ N = erl_syntax:bitstring_type_n(Node),
+ D1 = [beside(text("_:"), lay(M, Ctxt1)) ||
+ (erl_syntax:type(M) =/= integer orelse
+ erl_syntax:integer_value(M) =/= 0)],
+ D2 = [beside(text("_:_*"), lay(N, Ctxt1)) ||
+ (erl_syntax:type(N) =/= integer orelse
+ erl_syntax:integer_value(N) =/= 0)],
+ F = fun(D, _) -> D end,
+ D = seq(D1 ++ D2, floating(text(",")), Ctxt1, F),
+ beside(floating(text("<<")),
+ beside(par(D), floating(text(">>"))));
+
+ fun_type ->
+ text("fun()");
+
+ constrained_function_type ->
+ Ctxt1 = reset_prec(Ctxt),
+ D1 = lay(erl_syntax:constrained_function_type_body(Node),
+ Ctxt1),
+ D2 = lay(erl_syntax:constrained_function_type_argument(Node),
+ Ctxt1),
+ beside(D1,
+ beside(floating(text(" when ")), D2));
+
+ function_type ->
+ {Before, After} = case Ctxt#ctxt.clause of
+ spec ->
+ {"", ""};
+ _ ->
+ {"fun(", ")"}
+ end,
+ Ctxt1 = reset_prec(Ctxt),
+ D1 = case erl_syntax:function_type_arguments(Node) of
+ any_arity ->
+ text("(...)");
+ Arguments ->
+ As = seq(Arguments,
+ floating(text(",")), Ctxt1,
+ fun lay/2),
+ beside(text("("),
+ beside(par(As),
+ floating(text(")"))))
+ end,
+ D2 = lay(erl_syntax:function_type_return(Node), Ctxt1),
+ beside(floating(text(Before)),
+ beside(D1,
+ beside(floating(text(" -> ")),
+ beside(D2, floating(text(After))))));
+
+ constraint ->
+ Name = erl_syntax:constraint_argument(Node),
+ Args = erl_syntax:constraint_body(Node),
+ case is_subtype(Name, Args) of
+ true ->
+ [Var, Type] = Args,
+ {PrecL, Prec, PrecR} = type_inop_prec('::'),
+ D1 = lay(Var, set_prec(Ctxt, PrecL)),
+ D2 = lay(Type, set_prec(Ctxt, PrecR)),
+ D3 = follow(beside(D1, floating(text(" ::"))), D2,
+ Ctxt#ctxt.break_indent),
+ maybe_parentheses(D3, Prec, Ctxt);
+ false ->
+ lay_type_application(Name, Args, Ctxt)
+ end;
+
+ map_type ->
+ case erl_syntax:map_type_fields(Node) of
+ any_size ->
+ text("map()");
+ Fs ->
+ {Prec, _PrecR} = type_preop_prec('#'),
+ Es = seq(Fs,
+ floating(text(",")), reset_prec(Ctxt),
+ fun lay/2),
+ D = beside(floating(text("#{")),
+ beside(par(Es),
+ floating(text("}")))),
+ maybe_parentheses(D, Prec, Ctxt)
+ end;
+
+ map_type_pair ->
+ Ctxt1 = reset_prec(Ctxt),
+ D1 = lay(erl_syntax:map_type_pair_key(Node), Ctxt1),
+ D2 = lay(erl_syntax:map_type_pair_value(Node), Ctxt1),
+ par([D1, floating(text("=>")), D2], Ctxt1#ctxt.break_indent);
+
+ integer_range_type ->
+ {PrecL, Prec, PrecR} = type_inop_prec('..'),
+ D1 = lay(erl_syntax:integer_range_type_low(Node),
+ set_prec(Ctxt, PrecL)),
+ D2 = lay(erl_syntax:integer_range_type_high(Node),
+ set_prec(Ctxt, PrecR)),
+ D3 = beside(D1, beside(text(".."), D2)),
+ maybe_parentheses(D3, Prec, Ctxt);
+
+ record_type ->
+ {Prec, _PrecR} = type_preop_prec('#'),
+ D1 = beside(text("#"),
+ lay(erl_syntax:record_type_name(Node),
+ reset_prec(Ctxt))),
+ Es = seq(erl_syntax:record_type_fields(Node),
+ floating(text(",")), reset_prec(Ctxt),
+ fun lay/2),
+ D2 = beside(D1,
+ beside(text("{"),
+ beside(par(Es),
+ floating(text("}"))))),
+ maybe_parentheses(D2, Prec, Ctxt);
+
+ record_type_field ->
+ Ctxt1 = reset_prec(Ctxt),
+ D1 = lay(erl_syntax:record_type_field_name(Node), Ctxt1),
+ D2 = lay(erl_syntax:record_type_field_type(Node), Ctxt1),
+ par([D1, floating(text("::")), D2], Ctxt1#ctxt.break_indent);
+
+ tuple_type ->
+ case erl_syntax:tuple_type_elements(Node) of
+ any_size ->
+ text("tuple()");
+ Elements ->
+ Es = seq(Elements,
+ floating(text(",")), reset_prec(Ctxt),
+ fun lay/2),
+ beside(floating(text("{")),
+ beside(par(Es), floating(text("}"))))
+ end;
+
+ type_union ->
+ {_, Prec, PrecR} = type_inop_prec('|'),
+ Es = par(seq(erl_syntax:type_union_types(Node),
+ floating(text(" |")), set_prec(Ctxt, PrecR),
+ fun lay/2)),
+ maybe_parentheses(Es, Prec, Ctxt);
+
+ user_type_application ->
+ lay_type_application(erl_syntax:user_type_application_name(Node),
+ erl_syntax:user_type_application_arguments(Node),
+ Ctxt)
+
+ end.
+
+attribute_type(Node) ->
+ N = erl_syntax:attribute_name(Node),
+ case catch erl_syntax:concrete(N) of
+ opaque ->
+ type;
+ spec ->
+ spec;
+ callback ->
+ spec;
+ type ->
+ type;
+ export_type ->
+ export_type;
+ optional_callbacks ->
+ optional_callbacks;
+ _ ->
+ N
end.
+is_subtype(Name, [Var, _]) ->
+ (erl_syntax:is_atom(Name, is_subtype) andalso
+ erl_syntax:type(Var) =:= variable);
+is_subtype(_, _) -> false.
+
+unfold_function_names(Ns) ->
+ F = fun ({Atom, Arity}) ->
+ erl_syntax:arity_qualifier(erl_syntax:atom(Atom),
+ erl_syntax:integer(Arity))
+ end,
+ erl_syntax:list([F(N) || N <- Ns]).
+
+%% Macros are not handled well.
+dodge_macros(Type) ->
+ F = fun (T) ->
+ case erl_syntax:type(T) of
+ macro ->
+ Var = erl_syntax:macro_name(T),
+ VarName0 = erl_syntax:variable_name(Var),
+ VarName = list_to_atom("?"++atom_to_list(VarName0)),
+ Atom = erl_syntax:atom(VarName),
+ Atom;
+ _ -> T
+ end
+ end,
+ erl_syntax_lib:map(F, Type).
+
lay_parentheses(D, _Ctxt) ->
beside(floating(text("(")), beside(D, floating(text(")")))).
@@ -1118,6 +1397,17 @@ lay_error_info(T, Ctxt) ->
lay_concrete(T, Ctxt) ->
lay(erl_syntax:abstract(T), Ctxt).
+lay_type_application(Name, Arguments, Ctxt) ->
+ {PrecL, Prec} = func_prec(), %
+ D1 = lay(Name, set_prec(Ctxt, PrecL)),
+ As = seq(Arguments,
+ floating(text(",")), reset_prec(Ctxt),
+ fun lay/2),
+ D = beside(D1, beside(text("("),
+ beside(par(As),
+ floating(text(")"))))),
+ maybe_parentheses(D, Prec, Ctxt).
+
seq([H | T], Separator, Ctxt, Fun) ->
case T of
[] ->
diff --git a/lib/syntax_tools/src/erl_syntax.erl b/lib/syntax_tools/src/erl_syntax.erl
index 97b5797b06..8ca4a8e727 100644
--- a/lib/syntax_tools/src/erl_syntax.erl
+++ b/lib/syntax_tools/src/erl_syntax.erl
@@ -120,6 +120,9 @@
normalize_list/1,
compact_list/1,
+ annotated_type/2,
+ annotated_type_name/1,
+ annotated_type_body/1,
application/2,
application/3,
application_arguments/1,
@@ -150,6 +153,9 @@
binary_generator/2,
binary_generator_body/1,
binary_generator_pattern/1,
+ bitstring_type/2,
+ bitstring_type_m/1,
+ bitstring_type_n/1,
block_expr/1,
block_expr_body/1,
case_expr/2,
@@ -175,6 +181,12 @@
cond_expr_clauses/1,
conjunction/1,
conjunction_body/1,
+ constrained_function_type/2,
+ constrained_function_type_body/1,
+ constrained_function_type_argument/1,
+ constraint/2,
+ constraint_argument/1,
+ constraint_body/1,
disjunction/1,
disjunction_body/1,
eof_marker/0,
@@ -188,10 +200,15 @@
fun_expr/1,
fun_expr_arity/1,
fun_expr_clauses/1,
+ fun_type/0,
function/2,
function_arity/1,
function_clauses/1,
function_name/1,
+ function_type/1,
+ function_type/2,
+ function_type_arguments/1,
+ function_type_return/1,
generator/2,
generator_body/1,
generator_pattern/1,
@@ -209,6 +226,9 @@
is_integer/2,
integer_value/1,
integer_literal/1,
+ integer_range_type/2,
+ integer_range_type_low/1,
+ integer_range_type_high/1,
list/1,
list/2,
list_comp/2,
@@ -230,6 +250,12 @@
map_field_exact/2,
map_field_exact_name/1,
map_field_exact_value/1,
+ map_type/0,
+ map_type/1,
+ map_type_fields/1,
+ map_type_pair/2,
+ map_type_pair_key/1,
+ map_type_pair_value/1,
match_expr/2,
match_expr_body/1,
match_expr_pattern/1,
@@ -270,6 +296,12 @@
record_index_expr/2,
record_index_expr_field/1,
record_index_expr_type/1,
+ record_type/2,
+ record_type_name/1,
+ record_type_fields/1,
+ record_type_field/2,
+ record_type_field_name/1,
+ record_type_field_type/1,
size_qualifier/2,
size_qualifier_argument/1,
size_qualifier_body/1,
@@ -288,6 +320,18 @@
try_expr_clauses/1,
try_expr_handlers/1,
try_expr_after/1,
+ tuple_type/0,
+ tuple_type/1,
+ tuple_type_elements/1,
+ type_application/2,
+ type_application/3,
+ type_application_name/1,
+ type_application_arguments/1,
+ type_union/1,
+ type_union_types/1,
+ typed_record_field/2,
+ typed_record_field_body/1,
+ typed_record_field_type/1,
class_qualifier/2,
class_qualifier_argument/1,
class_qualifier_body/1,
@@ -295,6 +339,9 @@
tuple_elements/1,
tuple_size/1,
underscore/0,
+ user_type_application/2,
+ user_type_application_name/1,
+ user_type_application_arguments/1,
variable/1,
variable_name/1,
variable_literal/1,
@@ -412,23 +459,28 @@
%% <center><table border="1">
%% <tr>
%% <td>application</td>
+%% <td>annotated_type</td>
%% <td>arity_qualifier</td>
%% <td>atom</td>
-%% <td>attribute</td>
%% </tr><tr>
+%% <td>attribute</td>
%% <td>binary</td>
%% <td>binary_field</td>
+%% <td>bitstring_type</td>
+%% </tr><tr>
%% <td>block_expr</td>
%% <td>case_expr</td>
-%% </tr><tr>
%% <td>catch_expr</td>
%% <td>char</td>
+%% </tr><tr>
%% <td>class_qualifier</td>
%% <td>clause</td>
-%% </tr><tr>
%% <td>comment</td>
%% <td>cond_expr</td>
+%% </tr><tr>
%% <td>conjunction</td>
+%% <td>constrained_function_type</td>
+%% <td>constraint</td>
%% <td>disjunction</td>
%% </tr><tr>
%% <td>eof_marker</td>
@@ -437,43 +489,57 @@
%% <td>form_list</td>
%% </tr><tr>
%% <td>fun_expr</td>
+%% <td>fun_type</td>
%% <td>function</td>
+%% <td>function_type</td>
+%% </tr><tr>
%% <td>generator</td>
%% <td>if_expr</td>
-%% </tr><tr>
%% <td>implicit_fun</td>
%% <td>infix_expr</td>
+%% </tr><tr>
%% <td>integer</td>
+%% <td>integer_range_type</td>
%% <td>list</td>
-%% </tr><tr>
%% <td>list_comp</td>
+%% </tr><tr>
%% <td>macro</td>
%% <td>map_expr</td>
%% <td>map_field_assoc</td>
-%% </tr><tr>
%% <td>map_field_exact</td>
+%% </tr><tr>
+%% <td>map_type</td>
+%% <td>map_type_pair</td>
%% <td>match_expr</td>
%% <td>module_qualifier</td>
-%% <td>named_fun_expr</td>
%% </tr><tr>
+%% <td>named_fun_expr</td>
%% <td>nil</td>
%% <td>operator</td>
%% <td>parentheses</td>
-%% <td>prefix_expr</td>
%% </tr><tr>
+%% <td>prefix_expr</td>
%% <td>receive_expr</td>
%% <td>record_access</td>
%% <td>record_expr</td>
-%% <td>record_field</td>
%% </tr><tr>
+%% <td>record_field</td>
%% <td>record_index_expr</td>
+%% <td>record_type</td>
+%% <td>record_type_field</td>
+%% </tr><tr>
%% <td>size_qualifier</td>
%% <td>string</td>
%% <td>text</td>
-%% </tr><tr>
%% <td>try_expr</td>
+%% </tr><tr>
%% <td>tuple</td>
+%% <td>tuple_type</td>
+%% <td>typed_record_field</td>
+%% <td>type_application</td>
+%% <td>type_union</td>
%% <td>underscore</td>
+%% <td>user_type_application</td>
%% <td>variable</td>
%% </tr><tr>
%% <td>warning_marker</td>
@@ -487,12 +553,14 @@
%% always have the same name as the node type itself.
%%
%% @see tree/2
+%% @see annotated_type/2
%% @see application/3
%% @see arity_qualifier/2
%% @see atom/1
%% @see attribute/2
%% @see binary/1
%% @see binary_field/2
+%% @see bitstring_type/2
%% @see block_expr/1
%% @see case_expr/2
%% @see catch_expr/1
@@ -502,24 +570,33 @@
%% @see comment/2
%% @see cond_expr/1
%% @see conjunction/1
+%% @see constrained_function_type/2
+%% @see constraint/2
%% @see disjunction/1
%% @see eof_marker/0
%% @see error_marker/1
%% @see float/1
%% @see form_list/1
%% @see fun_expr/1
+%% @see fun_type/0
%% @see function/2
+%% @see function_type/1
+%% @see function_type/2
%% @see generator/2
%% @see if_expr/1
%% @see implicit_fun/2
%% @see infix_expr/3
%% @see integer/1
+%% @see integer_range_type/2
%% @see list/2
%% @see list_comp/2
%% @see macro/2
%% @see map_expr/2
%% @see map_field_assoc/2
%% @see map_field_exact/2
+%% @see map_type/0
+%% @see map_type/1
+%% @see map_type_pair/2
%% @see match_expr/2
%% @see module_qualifier/2
%% @see named_fun_expr/2
@@ -532,12 +609,20 @@
%% @see record_expr/2
%% @see record_field/2
%% @see record_index_expr/2
+%% @see record_type/2
+%% @see record_type_field/2
%% @see size_qualifier/2
%% @see string/1
%% @see text/1
%% @see try_expr/3
%% @see tuple/1
+%% @see tuple_type/0
+%% @see tuple_type/1
+%% @see typed_record_field/2
+%% @see type_application/2
+%% @see type_union/1
%% @see underscore/0
+%% @see user_type_application/2
%% @see variable/1
%% @see warning_marker/1
@@ -602,6 +687,24 @@ type(Node) ->
{remote, _, _, _} -> module_qualifier;
{'try', _, _, _, _, _} -> try_expr;
{tuple, _, _} -> tuple;
+
+ %% Type types
+ {ann_type, _, _} -> annotated_type;
+ {remote_type, _, _} -> type_application;
+ {type, _, binary, [_, _]} -> bitstring_type;
+ {type, _, bounded_fun, [_, _]} -> constrained_function_type;
+ {type, _, constraint, [_, _]} -> constraint;
+ {type, _, 'fun', []} -> fun_type;
+ {type, _, 'fun', [_, _]} -> function_type;
+ {type, _, map, _} -> map_type;
+ {type, _, map_field_assoc, _} -> map_type_pair;
+ {type, _, record, _} -> record_type;
+ {type, _, field_type, _} -> record_type_field;
+ {type, _, range, _} -> integer_range_type;
+ {type, _, tuple, _} -> tuple_type;
+ {type, _, union, _} -> type_union;
+ {type, _, _, _} -> type_application;
+ {user_type, _, _, _} -> user_type_application;
_ ->
erlang:error({badarg, Node})
end.
@@ -621,6 +724,7 @@ type(Node) ->
%% <td>`error_marker'</td>
%% </tr><tr>
%% <td>`float'</td>
+%% <td>`fun_type'</td>
%% <td>`integer'</td>
%% <td>`nil'</td>
%% <td>`operator'</td>
@@ -633,7 +737,13 @@ type(Node) ->
%% </tr>
%% </table></center>
%%
+%% A node of type `map_expr' is a leaf node if and only if it has no
+%% argument and no fields.
+%% A node of type `map_type' is a leaf node if and only if it has no
+%% fields (`any_size').
%% A node of type `tuple' is a leaf node if and only if its arity is zero.
+%% A node of type `tuple_type' is a leaf node if and only if it has no
+%% elements (`any_size').
%%
%% Note: not all literals are leaf nodes, and vice versa. E.g.,
%% tuples with nonzero arity and nonempty lists may be literals, but are
@@ -653,6 +763,7 @@ is_leaf(Node) ->
eof_marker -> true;
error_marker -> true;
float -> true;
+ fun_type -> true;
integer -> true;
nil -> true;
operator -> true; % nonstandard type
@@ -661,7 +772,9 @@ is_leaf(Node) ->
map_expr ->
map_expr_fields(Node) =:= [] andalso
map_expr_argument(Node) =:= none;
+ map_type -> map_type_fields(Node) =:= any_size;
tuple -> tuple_elements(Node) =:= [];
+ tuple_type -> tuple_type_elements(Node) =:= any_size;
underscore -> true;
variable -> true;
warning_marker -> true;
@@ -3114,6 +3227,39 @@ attribute(Name) ->
%% `Imports' is `{Module, [{A1, N1}, ..., {Ak, Nk}]}', or
%% `-import(A1.....An).', if `Imports' is `[A1, ..., An]'.
%%
+%% {attribute, Pos, export_type, ExportedTypes}
+%%
+%% ExportedTypes = [{atom(), integer()}]
+%%
+%% Representing `-export_type([N1/A1, ..., Nk/Ak]).',
+%% if `ExportedTypes' is `[{N1, A1}, ..., {Nk, Ak}]'.
+%%
+%% {attribute, Pos, optional_callbacks, OptionalCallbacks}
+%%
+%% OptionalCallbacks = [{atom(), integer()}]
+%%
+%% Representing `-optional_callbacks([A1/N1, ..., Ak/Nk]).',
+%% if `OptionalCallbacks' is `[{A1, N1}, ..., {Ak, Nk}]'.
+%%
+%% {attribute, Pos, SpecTag, {FuncSpec, FuncType}}
+%%
+%% SpecTag = spec | callback
+%% FuncSpec = {module(), atom(), arity()} | {atom(), arity()}
+%% FuncType = a (possibly constrained) function type
+%%
+%% Representing `-SpecTag M:F/A Ft1; ...; Ftk.' or
+%% `-SpecTag F/A Ft1; ...; Ftk.', if `FuncTypes' is
+%% `[Ft1, ..., Ftk]'.
+%%
+%% {attribute, Pos, TypeTag, {Name, Type, Parameters}}
+%%
+%% TypeTag = type | opaque
+%% Type = a type
+%% Parameters = [Variable]
+%%
+%% Representing `-TypeTag Name(V1, ..., Vk) :: Type .'
+%% if `Parameters' is `[V1, ..., Vk]'.
+%%
%% {attribute, Pos, file, Position}
%%
%% Position = {filename(), integer()}
@@ -3125,13 +3271,19 @@ attribute(Name) ->
%%
%% Info = {Name, [Entries]}
%% Name = atom()
-%% Entries = {record_field, Pos, atom()}
-%% | {record_field, Pos, atom(), erl_parse()}
%%
-%% Representing `-record(Name, {<F1>, ..., <Fn>}).', if `Info' is
+%% Entries = UntypedEntries
+%% | {typed_record_field, UntypedEntries, Type}
+%% UntypedEntries = {record_field, Pos, atom()}
+%% | {record_field, Pos, atom(), erl_parse()}
+%%
+%% Representing `-record(Name, {<F1>, ..., <Fn>}).', if `Info' is
%% `{Name, [D1, ..., D1]}', where each `Fi' is either `Ai = <Ei>',
%% if the corresponding `Di' is `{record_field, Pos, Ai, Ei}', or
-%% otherwise simply `Ai', if `Di' is `{record_field, Pos, Ai}'.
+%% otherwise simply `Ai', if `Di' is `{record_field, Pos, Ai}', or
+%% `Ai = <Ei> :: <Ti>', if `Di' is `{typed_record_field,
+%% {record_field, Pos, Ai, Ei}, Ti}', or `Ai :: <Ti>', if `Di' is
+%% `{typed_record_field, {record_field, Pos, Ai}, Ti}'.
%%
%% {attribute, L, Name, Term}
%%
@@ -3309,11 +3461,6 @@ attribute_arguments(Node) ->
[set_pos(
list(unfold_function_names(Data, Pos)),
Pos)];
- optional_callbacks ->
- D = try list(unfold_function_names(Data, Pos))
- catch _:_ -> abstract(Data)
- end,
- [set_pos(D, Pos)];
import ->
{Module, Imports} = Data,
[set_pos(atom(Module), Pos),
@@ -4183,7 +4330,8 @@ record_field(Name) ->
%% type(Node) = record_field
%% data(Node) = #record_field{name :: Name, value :: Value}
%%
-%% Name = Value = syntaxTree()
+%% Name = syntaxTree()
+%% Value = none | syntaxTree()
-spec record_field(syntaxTree(), 'none' | syntaxTree()) -> syntaxTree().
@@ -4568,7 +4716,7 @@ application(Module, Name, Arguments) ->
%%
%% `erl_parse' representation:
%%
-%% {call, Pos, Fun, Args}
+%% {call, Pos, Operator, Args}
%%
%% Operator = erl_parse()
%% Arguments = [erl_parse()]
@@ -4623,6 +4771,1045 @@ application_arguments(Node) ->
(data(Node1))#application.arguments
end.
+%% =====================================================================
+%% @doc Creates an abstract annotated type expression. The result
+%% represents "<code><em>Name</em> :: <em>Type</em></code>".
+%%
+%% @see annotated_type_name/1
+%% @see annotated_type_body/1
+
+-record(annotated_type, {name :: syntaxTree(), body :: syntaxTree()}).
+
+%% type(Node) = annotated_type
+%% data(Node) = #annotated_type{name :: Name,
+%% body :: Type}
+%%
+%% Name = syntaxTree()
+%% Type = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {ann_type, Pos, [Name, Type]}
+%%
+%% Name = erl_parse()
+%% Type = erl_parse()
+
+-spec annotated_type(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+annotated_type(Name, Type) ->
+ tree(annotated_type, #annotated_type{name = Name, body = Type}).
+
+revert_annotated_type(Node) ->
+ Pos = get_pos(Node),
+ Name = annotated_type_name(Node),
+ Type = annotated_type_body(Node),
+ {ann_type, Pos, [Name, Type]}.
+
+
+%% =====================================================================
+%% @doc Returns the name subtree of an `annotated_type' node.
+%%
+%% @see annotated_type/2
+
+-spec annotated_type_name(syntaxTree()) -> syntaxTree().
+
+annotated_type_name(Node) ->
+ case unwrap(Node) of
+ {ann_type, _, [Name, _]} ->
+ Name;
+ Node1 ->
+ (data(Node1))#annotated_type.name
+ end.
+
+
+%% =====================================================================
+%% @doc Returns the type subtrees of an `annotated_type' node.
+%%
+%% @see annotated_type/2
+
+-spec annotated_type_body(syntaxTree()) -> syntaxTree().
+
+annotated_type_body(Node) ->
+ case unwrap(Node) of
+ {ann_type, _, [_, Type]} ->
+ Type;
+ Node1 ->
+ (data(Node1))#annotated_type.body
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract fun of any type. The result represents
+%% "<code>fun()</code>".
+
+%% type(Node) = fun_type
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, 'fun', []}
+
+-spec fun_type() -> syntaxTree().
+
+fun_type() ->
+ tree(fun_type).
+
+revert_fun_type(Node) ->
+ Pos = get_pos(Node),
+ {type, Pos, 'fun', []}.
+
+
+%% =====================================================================
+%% @doc Creates an abstract type application expression. If
+%% `Module' is `none', this is call is equivalent
+%% to `type_application(TypeName, Arguments)', otherwise it is
+%% equivalent to `type_application(module_qualifier(Module, TypeName),
+%% Arguments)'.
+%%
+%% (This is a utility function.)
+%%
+%% @see type_application/2
+%% @see module_qualifier/2
+
+-spec type_application('none' | syntaxTree(), syntaxTree(), [syntaxTree()]) ->
+ syntaxTree().
+
+type_application(none, TypeName, Arguments) ->
+ type_application(TypeName, Arguments);
+type_application(Module, TypeName, Arguments) ->
+ type_application(module_qualifier(Module, TypeName), Arguments).
+
+
+%% =====================================================================
+%% @doc Creates an abstract type application expression. If `Arguments' is
+%% `[T1, ..., Tn]', the result represents
+%% "<code><em>TypeName</em>(<em>T1</em>, ...<em>Tn</em>)</code>".
+%%
+%% @see user_type_application/2
+%% @see type_application/3
+%% @see type_application_name/1
+%% @see type_application_arguments/1
+
+-record(type_application, {type_name :: syntaxTree(),
+ arguments :: [syntaxTree()]}).
+
+%% type(Node) = type_application
+%% data(Node) = #type_application{type_name :: TypeName,
+%% arguments :: Arguments}
+%%
+%% TypeName = syntaxTree()
+%% Arguments = [syntaxTree()]
+%%
+%% `erl_parse' representation:
+%%
+%% {remote, Pos, [Module, Name, Arguments]} |
+%% {type, Pos, Name, Arguments}
+%%
+%% Module = erl_parse()
+%% Name = atom()
+%% Arguments = [erl_parse()]
+
+-spec type_application(syntaxTree(), [syntaxTree()]) -> syntaxTree().
+
+type_application(TypeName, Arguments) ->
+ tree(type_application,
+ #type_application{type_name = TypeName, arguments = Arguments}).
+
+revert_type_application(Node) ->
+ Pos = get_pos(Node),
+ TypeName = type_application_name(Node),
+ Arguments = type_application_arguments(Node),
+ case type(TypeName) of
+ module_qualifier ->
+ Module = module_qualifier_argument(TypeName),
+ Name = module_qualifier_body(TypeName),
+ {remote_type, Pos, [Module, Name, Arguments]};
+ atom ->
+ {type, Pos, atom_value(TypeName), Arguments}
+ end.
+
+
+%% =====================================================================
+%% @doc Returns the type name subtree of a `type_application' node.
+%%
+%% @see type_application/2
+
+-spec type_application_name(syntaxTree()) -> syntaxTree().
+
+type_application_name(Node) ->
+ case unwrap(Node) of
+ {remote_type, _, [Module, Name, _]} ->
+ module_qualifier(Module, Name);
+ {type, Pos, Name, _} ->
+ set_pos(atom(Name), Pos);
+ Node1 ->
+ (data(Node1))#type_application.type_name
+ end.
+
+
+%% =====================================================================
+%% @doc Returns the arguments subtrees of a `type_application' node.
+%%
+%% @see type_application/2
+
+-spec type_application_arguments(syntaxTree()) -> [syntaxTree()].
+
+type_application_arguments(Node) ->
+ case unwrap(Node) of
+ {remote_type, _, [_, _, Arguments]} ->
+ Arguments;
+ {type, _, _, Arguments} ->
+ Arguments;
+ Node1 ->
+ (data(Node1))#type_application.arguments
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract bitstring type. The result represents
+%% "<code><em>&lt;&lt;_:M, _:_*N&gt;&gt;</em></code>".
+%%
+%% @see bitstring_type_m/1
+%% @see bitstring_type_n/1
+
+-record(bitstring_type, {m :: syntaxTree(), n :: syntaxTree()}).
+
+%% type(Node) = bitstring_type
+%% data(Node) = #bitstring_type{m :: M, n :: N}
+%%
+%% M = syntaxTree()
+%% N = syntaxTree()
+%%
+
+-spec bitstring_type(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+bitstring_type(M, N) ->
+ tree(bitstring_type, #bitstring_type{m = M, n =N}).
+
+revert_bitstring_type(Node) ->
+ Pos = get_pos(Node),
+ M = bitstring_type_m(Node),
+ N = bitstring_type_n(Node),
+ {type, Pos, binary, [M, N]}.
+
+%% =====================================================================
+%% @doc Returns the number of start bits, `M', of a `bitstring_type' node.
+%%
+%% @see bitstring_type/2
+
+-spec bitstring_type_m(syntaxTree()) -> syntaxTree().
+
+bitstring_type_m(Node) ->
+ case unwrap(Node) of
+ {type, _, binary, [M, _]} ->
+ M;
+ Node1 ->
+ (data(Node1))#bitstring_type.m
+ end.
+
+%% =====================================================================
+%% @doc Returns the segment size, `N', of a `bitstring_type' node.
+%%
+%% @see bitstring_type/2
+
+-spec bitstring_type_n(syntaxTree()) -> syntaxTree().
+
+bitstring_type_n(Node) ->
+ case unwrap(Node) of
+ {type, _, binary, [_, N]} ->
+ N;
+ Node1 ->
+ (data(Node1))#bitstring_type.n
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract constrained function type.
+%% If `FunctionConstraint' is `[C1, ..., Cn]', the result represents
+%% "<code><em>FunctionType</em> when <em>C1</em>, ...<em>Cn</em></code>".
+%%
+%% @see constrained_function_type_body/1
+%% @see constrained_function_type_argument/1
+
+-record(constrained_function_type, {body :: syntaxTree(),
+ argument :: syntaxTree()}).
+
+%% type(Node) = constrained_function_type
+%% data(Node) = #constrained_function_type{body :: FunctionType,
+%% argument :: FunctionConstraint}
+%%
+%% FunctionType = syntaxTree()
+%% FunctionConstraint = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, bounded_fun, [FunctionType, FunctionConstraint]}
+%%
+%% FunctionType = erl_parse()
+%% FunctionConstraint = [erl_parse()]
+
+-spec constrained_function_type(syntaxTree(), [syntaxTree()]) -> syntaxTree().
+
+constrained_function_type(FunctionType, FunctionConstraint) ->
+ Conj = conjunction(FunctionConstraint),
+ tree(constrained_function_type,
+ #constrained_function_type{body = FunctionType,
+ argument = Conj}).
+
+revert_constrained_function_type(Node) ->
+ Pos = get_pos(Node),
+ FunctionType = constrained_function_type_body(Node),
+ FunctionConstraint =
+ conjunction_body(constrained_function_type_argument(Node)),
+ {type, Pos, bounded_fun, [FunctionType, FunctionConstraint]}.
+
+
+%% =====================================================================
+%% @doc Returns the function type subtree of a
+%% `constrained_function_type' node.
+%%
+%% @see constrained_function_type/2
+
+-spec constrained_function_type_body(syntaxTree()) -> syntaxTree().
+
+constrained_function_type_body(Node) ->
+ case unwrap(Node) of
+ {type, _, bounded_fun, [FunctionType, _]} ->
+ FunctionType;
+ Node1 ->
+ (data(Node1))#constrained_function_type.body
+ end.
+
+%% =====================================================================
+%% @doc Returns the function constraint subtree of a
+%% `constrained_function_type' node.
+%%
+%% @see constrained_function_type/2
+
+-spec constrained_function_type_argument(syntaxTree()) -> syntaxTree().
+
+constrained_function_type_argument(Node) ->
+ case unwrap(Node) of
+ {type, _, bounded_fun, [_, FunctionConstraint]} ->
+ conjunction(FunctionConstraint);
+ Node1 ->
+ (data(Node1))#constrained_function_type.argument
+ end.
+
+
+%% =====================================================================
+%% @equiv function_type(any_arity, Type)
+
+function_type(Type) ->
+ function_type(any_arity, Type).
+
+%% =====================================================================
+%% @doc Creates an abstract function type. If `Arguments' is
+%% `[T1, ..., Tn]', then if it occurs within a function
+%% specification, the result represents
+%% "<code>(<em>T1</em>, ...<em>Tn</em>) -> <em>Return</em></code>"; otherwise
+%% it represents
+%% "<code>fun((<em>T1</em>, ...<em>Tn</em>) -> <em>Return</em>)</code>".
+%% If `Arguments' is `any_arity', it represents
+%% "<code>fun((...) -> <em>Return</em>)</code>".
+%%
+%% Note that the `erl_parse' representation is identical for
+%% "<code><em>FunctionType</em></code>" and
+%% "<code>fun(<em>FunctionType</em>)</code>".
+%%
+%% @see function_type_arguments/1
+%% @see function_type_return/1
+
+-record(function_type, {arguments :: any_arity | [syntaxTree()],
+ return :: syntaxTree()}).
+
+%% type(Node) = function_type
+%% data(Node) = #function_type{arguments :: any | Arguments,
+%% return :: Type}
+%%
+%% Arguments = [syntaxTree()]
+%% Type = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, 'fun', [{type, Pos, product, Arguments}, Type]}
+%% {type, Pos, 'fun', [{type, Pos, any}, Type]}
+%%
+%% Arguments = [erl_parse()]
+%% Type = erl_parse()
+
+-spec function_type('any_arity' | syntaxTree(), syntaxTree()) -> syntaxTree().
+
+function_type(Arguments, Return) ->
+ tree(function_type,
+ #function_type{arguments = Arguments, return = Return}).
+
+revert_function_type(Node) ->
+ Pos = get_pos(Node),
+ Type = function_type_return(Node),
+ case function_type_arguments(Node) of
+ any_arity ->
+ {type, Pos, 'fun', [{type, Pos, any}, Type]};
+ Arguments ->
+ {type, Pos, 'fun', [{type, Pos, product, Arguments}, Type]}
+ end.
+
+
+%% =====================================================================
+%% @doc Returns the argument types subtrees of a `function_type' node.
+%% If `Node' represents "<code>fun((...) -> <em>Return</em>)</code>",
+%% `any_arity' is returned; otherwise, if `Node' represents
+%% "<code>(<em>T1</em>, ...<em>Tn</em>) -> <em>Return</em></code>" or
+%% "<code>fun((<em>T1</em>, ...<em>Tn</em>) -> <em>Return</em>)</code>",
+%% `[T1, ..., Tn]' is returned.
+
+%%
+%% @see function_type/1
+%% @see function_type/2
+
+-spec function_type_arguments(syntaxTree()) -> any_arity | syntaxTree().
+
+function_type_arguments(Node) ->
+ case unwrap(Node) of
+ {type, _, 'fun', [{type, _, any}, _]} ->
+ any_arity;
+ {type, _, 'fun', [{type, _, product, Arguments}, _]} ->
+ Arguments;
+ Node1 ->
+ (data(Node1))#function_type.arguments
+ end.
+
+%% =====================================================================
+%% @doc Returns the return type subtrees of a `function_type' node.
+%%
+%% @see function_type/1
+%% @see function_type/2
+
+-spec function_type_return(syntaxTree()) -> syntaxTree().
+
+function_type_return(Node) ->
+ case unwrap(Node) of
+ {type, _, 'fun', [_, Type]} ->
+ Type;
+ Node1 ->
+ (data(Node1))#function_type.return
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract (subtype) constraint. The result represents
+%% "<code><em>Name</em> :: <em>Type</em></code>".
+%%
+%% @see constraint_argument/1
+%% @see constraint_body/1
+
+-record(constraint, {name :: syntaxTree(),
+ type :: syntaxTree()}).
+
+%% type(Node) = constraint
+%% data(Node) = #constraint{name :: Name,
+%% type :: Type}
+%%
+%% Name = syntaxTree()
+%% Type = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, constraint, [{atom, Pos, is_subtype}, Name, Type]}
+%%
+%% Name = erl_parse()
+%% Type = erl_parse()
+
+-spec constraint(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+constraint(Name, Type) ->
+ tree(constraint,
+ #constraint{name = Name, type = Type}).
+
+revert_constraint(Node) ->
+ Pos = get_pos(Node),
+ Name = constraint_argument(Node),
+ Type = constraint_body(Node),
+ {type, Pos, constraint, [Name, Type]}.
+
+
+%% =====================================================================
+%% @doc Returns the name subtree of a `constraint' node.
+%%
+%% @see constraint/2
+
+-spec constraint_argument(syntaxTree()) -> syntaxTree().
+
+constraint_argument(Node) ->
+ case unwrap(Node) of
+ {type, _, constraint, [Name, _]} ->
+ Name;
+ Node1 ->
+ (data(Node1))#constraint.name
+ end.
+
+%% =====================================================================
+%% @doc Returns the type subtree of a `constraint' node.
+%%
+%% @see constraint/2
+
+-spec constraint_body(syntaxTree()) -> syntaxTree().
+
+constraint_body(Node) ->
+ case unwrap(Node) of
+ {type, _, constraint, [_, Type]} ->
+ Type;
+ Node1 ->
+ (data(Node1))#constraint.type
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract type map assoc field. The result represents
+%% "<code><em>KeyType</em> => <em>ValueType</em></code>".
+%%
+%% @see map_type_pair_key/1
+%% @see map_type_pair_value/1
+
+-record(map_type_pair, {key :: syntaxTree(),
+ value :: syntaxTree()}).
+
+%% type(Node) = map_type_pair
+%% data(Node) = #map_type_pair{key :: KeyType,
+%% value :: ValueType}
+%%
+%% KeyType = syntaxTree()
+%% ValueType = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, map_field_assoc, [KeyType, ValueType]}
+%%
+%% KeyType = erl_parse()
+%% ValueType = erl_parse()
+
+-spec map_type_pair(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+map_type_pair(KeyType, ValueType) ->
+ tree(map_type_pair,
+ #map_type_pair{key = KeyType, value = ValueType}).
+
+revert_map_type_pair(Node) ->
+ Pos = get_pos(Node),
+ KeyType = map_type_pair_key(Node),
+ ValueType = map_type_pair_value(Node),
+ {type, Pos, map_field_assoc, [KeyType, ValueType]}.
+
+%% =====================================================================
+%% @doc Returns the key type subtrees of a `map_type_pair' node.
+%%
+%% @see map_type_pair/2
+
+-spec map_type_pair_key(syntaxTree()) -> syntaxTree().
+
+map_type_pair_key(Node) ->
+ case unwrap(Node) of
+ {type, _, map_field_assoc, [KeyType, _]} ->
+ KeyType;
+ Node1 ->
+ (data(Node1))#map_type_pair.key
+ end.
+
+%% =====================================================================
+%% @doc Returns the value type subtrees of a `map_type_pair' node.
+%%
+%% @see map_type_pair/2
+
+-spec map_type_pair_value(syntaxTree()) -> syntaxTree().
+
+map_type_pair_value(Node) ->
+ case unwrap(Node) of
+ {type, _, map_field_assoc, [_, ValueType]} ->
+ ValueType;
+ Node1 ->
+ (data(Node1))#map_type_pair.value
+ end.
+
+
+%% =====================================================================
+%% @equiv map_type(any_size)
+
+map_type() ->
+ map_type(any_size).
+
+%% =====================================================================
+%% @doc Creates an abstract type map. If `Fields' is
+%% `[F1, ..., Fn]', the result represents
+%% "<code>#{<em>F1</em>, ..., <em>Fn</em>}</code>";
+%% otherwise, if `Fields' is `any_size', it represents
+%% "<code>map()</code>".
+%%
+%% @see map_type_fields/1
+
+%% type(Node) = map_type
+%% data(Node) = Fields
+%%
+%% Fields = any_size | [syntaxTree()]
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, map, [Field]}
+%% {type, Pos, map, any}
+%%
+%% Field = erl_parse()
+
+-spec map_type('any_size' | [syntaxTree()]) -> syntaxTree().
+
+map_type(Fields) ->
+ tree(map_type, Fields).
+
+revert_map_type(Node) ->
+ Pos = get_pos(Node),
+ {type, Pos, map, map_type_fields(Node)}.
+
+
+%% =====================================================================
+%% @doc Returns the list of field subtrees of a `map_type' node.
+%% If `Node' represents "<code>map()</code>", `any_size' is returned;
+%% otherwise, if `Node' represents
+%% "<code>#{<em>F1</em>, ..., <em>Fn</em>}</code>",
+%% `[F1, ..., Fn]' is returned.
+%%
+%% @see map_type/0
+%% @see map_type/1
+
+-spec map_type_fields(syntaxTree()) -> 'any_size' | [syntaxTree()].
+
+map_type_fields(Node) ->
+ case unwrap(Node) of
+ {type, _, map, Fields} when is_list(Fields) ->
+ Fields;
+ {type, _, map, any} ->
+ any_size;
+ Node1 ->
+ data(Node1)
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract range type. The result represents
+%% "<code><em>Low</em> .. <em>High</em></code>".
+%%
+%% @see integer_range_type_low/1
+%% @see integer_range_type_high/1
+
+-record(integer_range_type, {low :: syntaxTree(),
+ high :: syntaxTree()}).
+
+%% type(Node) = integer_range_type
+%% data(Node) = #integer_range_type{low :: Low, high :: High}
+%%
+%% Low = syntaxTree()
+%% High = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, range, [Low, High]}
+%%
+%% Low = erl_parse()
+%% High = erl_parse()
+
+-spec integer_range_type(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+integer_range_type(Low, High) ->
+ tree(integer_range_type, #integer_range_type{low = Low, high = High}).
+
+revert_integer_range_type(Node) ->
+ Pos = get_pos(Node),
+ Low = integer_range_type_low(Node),
+ High = integer_range_type_high(Node),
+ {type, Pos, range, [Low, High]}.
+
+
+%% =====================================================================
+%% @doc Returns the low limit of an `integer_range_type' node.
+%%
+%% @see integer_range_type/2
+
+-spec integer_range_type_low(syntaxTree()) -> syntaxTree().
+
+integer_range_type_low(Node) ->
+ case unwrap(Node) of
+ {type, _, range, [Low, _]} ->
+ Low;
+ Node1 ->
+ (data(Node1))#integer_range_type.low
+ end.
+
+%% =====================================================================
+%% @doc Returns the high limit of an `integer_range_type' node.
+%%
+%% @see integer_range_type/2
+
+-spec integer_range_type_high(syntaxTree()) -> syntaxTree().
+
+integer_range_type_high(Node) ->
+ case unwrap(Node) of
+ {type, _, range, [_, High]} ->
+ High;
+ Node1 ->
+ (data(Node1))#integer_range_type.high
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract record type. If `Fields' is
+%% `[F1, ..., Fn]', the result represents
+%% "<code>#<em>Name</em>{<em>F1</em>, ..., <em>Fn</em>}</code>".
+%%
+%% @see record_type_name/1
+%% @see record_type_fields/1
+
+-record(record_type, {name :: syntaxTree(),
+ fields :: [syntaxTree()]}).
+
+%% type(Node) = record_type
+%% data(Node) = #record_type{name = Name, fields = Fields}
+%%
+%% Name = syntaxTree()
+%% Fields = [syntaxTree()]
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, record, [Name|Fields]}
+%%
+%% Name = erl_parse()
+%% Fields = [erl_parse()]
+
+-spec record_type(syntaxTree(), [syntaxTree()]) -> syntaxTree().
+
+record_type(Name, Fields) ->
+ tree(record_type, #record_type{name = Name, fields = Fields}).
+
+revert_record_type(Node) ->
+ Pos = get_pos(Node),
+ Name = record_type_name(Node),
+ Fields = record_type_fields(Node),
+ {type, Pos, record, [Name | Fields]}.
+
+
+%% =====================================================================
+%% @doc Returns the name subtree of a `record_type' node.
+%%
+%% @see record_type/2
+
+-spec record_type_name(syntaxTree()) -> syntaxTree().
+
+record_type_name(Node) ->
+ case unwrap(Node) of
+ {type, _, record, [Name|_]} ->
+ Name;
+ Node1 ->
+ (data(Node1))#record_type.name
+ end.
+
+%% =====================================================================
+%% @doc Returns the fields subtree of a `record_type' node.
+%%
+%% @see record_type/2
+
+-spec record_type_fields(syntaxTree()) -> [syntaxTree()].
+
+record_type_fields(Node) ->
+ case unwrap(Node) of
+ {type, _, record, [_|Fields]} ->
+ Fields;
+ Node1 ->
+ (data(Node1))#record_type.fields
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract record type field. The result represents
+%% "<code><em>Name</em> :: <em>Type</em></code>".
+%%
+%% @see record_type_field_name/1
+%% @see record_type_field_type/1
+
+-record(record_type_field, {name :: syntaxTree(),
+ type :: syntaxTree()}).
+
+%% type(Node) = record_type_field
+%% data(Node) = #record_type_field{name = Name, type = Type}
+%%
+%% Name = syntaxTree()
+%% Type = syntaxTree()
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, field_type, [Name, Type]}
+%%
+%% Name = erl_parse()
+%% Type = erl_parse()
+
+-spec record_type_field(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+record_type_field(Name, Type) ->
+ tree(record_type_field, #record_type_field{name = Name, type = Type}).
+
+revert_record_type_field(Node) ->
+ Pos = get_pos(Node),
+ Name = record_type_field_name(Node),
+ Type = record_type_field_type(Node),
+ {type, Pos, field_type, [Name, Type]}.
+
+
+%% =====================================================================
+%% @doc Returns the name subtree of a `record_type_field' node.
+%%
+%% @see record_type_field/2
+
+-spec record_type_field_name(syntaxTree()) -> syntaxTree().
+
+record_type_field_name(Node) ->
+ case unwrap(Node) of
+ {type, _, field_type, [Name, _]} ->
+ Name;
+ Node1 ->
+ (data(Node1))#record_type_field.name
+ end.
+
+%% =====================================================================
+%% @doc Returns the type subtree of a `record_type_field' node.
+%%
+%% @see record_type_field/2
+
+-spec record_type_field_type(syntaxTree()) -> syntaxTree().
+
+record_type_field_type(Node) ->
+ case unwrap(Node) of
+ {type, _, field_type, [_, Type]} ->
+ Type;
+ Node1 ->
+ (data(Node1))#record_type_field.type
+ end.
+
+
+%% =====================================================================
+%% @equiv tuple_type(any_size)
+
+tuple_type() ->
+ tuple_type(any_size).
+
+%% =====================================================================
+%% @doc Creates an abstract type tuple. If `Elements' is
+%% `[T1, ..., Tn]', the result represents
+%% "<code>{<em>T1</em>, ..., <em>Tn</em>}</code>";
+%% otherwise, if `Elements' is `any_size', it represents
+%% "<code>tuple()</code>".
+%%
+%% @see tuple_type_elements/1
+
+%% type(Node) = tuple_type
+%% data(Node) = Elements
+%%
+%% Elements = any_size | [syntaxTree()]
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, tuple, [Element]}
+%% {type, Pos, tuple, any}
+%%
+%% Element = erl_parse()
+
+-spec tuple_type(any_size | [syntaxTree()]) -> syntaxTree().
+
+tuple_type(Elements) ->
+ tree(tuple_type, Elements).
+
+revert_tuple_type(Node) ->
+ Pos = get_pos(Node),
+ {type, Pos, tuple, tuple_type_elements(Node)}.
+
+
+%% =====================================================================
+%% @doc Returns the list of type element subtrees of a `tuple_type' node.
+%% If `Node' represents "<code>tuple()</code>", `any_size' is returned;
+%% otherwise, if `Node' represents
+%% "<code>{<em>T1</em>, ..., <em>Tn</em>}</code>",
+%% `[T1, ..., Tn]' is returned.
+%%
+%% @see tuple_type/0
+%% @see tuple_type/1
+
+-spec tuple_type_elements(syntaxTree()) -> 'any_size' | [syntaxTree()].
+
+tuple_type_elements(Node) ->
+ case unwrap(Node) of
+ {type, _, tuple, Elements} when is_list(Elements) ->
+ Elements;
+ {type, _, tuple, any} ->
+ any_size;
+ Node1 ->
+ data(Node1)
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract type union. If `Types' is
+%% `[T1, ..., Tn]', the result represents
+%% "<code><em>T1</em> | ... | <em>Tn</em></code>".
+%%
+%% @see type_union_types/1
+
+%% type(Node) = type_union
+%% data(Node) = Types
+%%
+%% Types = [syntaxTree()]
+%%
+%% `erl_parse' representation:
+%%
+%% {type, Pos, union, Elements}
+%%
+%% Elements = [erl_parse()]
+
+-spec type_union([syntaxTree()]) -> syntaxTree().
+
+type_union(Types) ->
+ tree(type_union, Types).
+
+revert_type_union(Node) ->
+ Pos = get_pos(Node),
+ {type, Pos, union, type_union_types(Node)}.
+
+
+%% =====================================================================
+%% @doc Returns the list of type subtrees of a `type_union' node.
+%%
+%% @see type_union/1
+
+-spec type_union_types(syntaxTree()) -> [syntaxTree()].
+
+type_union_types(Node) ->
+ case unwrap(Node) of
+ {type, _, union, Types} when is_list(Types) ->
+ Types;
+ Node1 ->
+ data(Node1)
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract user type. If `Arguments' is
+%% `[T1, ..., Tn]', the result represents
+%% "<code><em>TypeName</em>(<em>T1</em>, ...<em>Tn</em>)</code>".
+%%
+%% @see type_application/2
+%% @see user_type_application_name/1
+%% @see user_type_application_arguments/1
+
+-record(user_type_application, {type_name :: syntaxTree(),
+ arguments :: [syntaxTree()]}).
+
+%% type(Node) = user_type_application
+%% data(Node) = #user_type_application{type_name :: TypeName,
+%% arguments :: Arguments}
+%%
+%% TypeName = syntaxTree()
+%% Arguments = [syntaxTree()]
+%%
+%% `erl_parse' representation:
+%%
+%% {user_type, Pos, Name, Arguments}
+%%
+%% Name = erl_parse()
+%% Arguments = [Type]
+%% Type = erl_parse()
+
+-spec user_type_application(syntaxTree(), [syntaxTree()]) -> syntaxTree().
+
+user_type_application(TypeName, Arguments) ->
+ tree(user_type_application,
+ #user_type_application{type_name = TypeName, arguments = Arguments}).
+
+revert_user_type_application(Node) ->
+ Pos = get_pos(Node),
+ TypeName = user_type_application_name(Node),
+ Arguments = user_type_application_arguments(Node),
+ {user_type, Pos, atom_value(TypeName), Arguments}.
+
+
+%% =====================================================================
+%% @doc Returns the type name subtree of a `user_type_application' node.
+%%
+%% @see user_type_application/2
+
+-spec user_type_application_name(syntaxTree()) -> syntaxTree().
+
+user_type_application_name(Node) ->
+ case unwrap(Node) of
+ {user_type, Pos, Name, _} ->
+ set_pos(atom(Name), Pos);
+ Node1 ->
+ (data(Node1))#user_type_application.type_name
+ end.
+
+
+%% =====================================================================
+%% @doc Returns the arguments subtrees of a `user_type_application' node.
+%%
+%% @see user_type_application/2
+
+-spec user_type_application_arguments(syntaxTree()) -> [syntaxTree()].
+
+user_type_application_arguments(Node) ->
+ case unwrap(Node) of
+ {user_type, _, _, Arguments} ->
+ Arguments;
+ Node1 ->
+ (data(Node1))#user_type_application.arguments
+ end.
+
+
+%% =====================================================================
+%% @doc Creates an abstract typed record field specification. The
+%% result represents "<code><em>Field</em> :: <em>Type</em></code>".
+%%
+%% @see typed_record_field_body/1
+%% @see typed_record_field_type/1
+
+-record(typed_record_field, {body :: syntaxTree(),
+ type :: syntaxTree()}).
+
+%% type(Node) = typed_record_field
+%% data(Node) = #typed_record_field{body :: Field
+%% type = Type}
+%%
+%% Field = syntaxTree()
+%% Type = syntaxTree()
+
+-spec typed_record_field(syntaxTree(), syntaxTree()) -> syntaxTree().
+
+typed_record_field(Field, Type) ->
+ tree(typed_record_field,
+ #typed_record_field{body = Field, type = Type}).
+
+
+%% =====================================================================
+%% @doc Returns the field subtree of a `typed_record_field' node.
+%%
+%% @see typed_record_field/2
+
+-spec typed_record_field_body(syntaxTree()) -> syntaxTree().
+
+typed_record_field_body(Node) ->
+ (data(Node))#typed_record_field.body.
+
+
+%% =====================================================================
+%% @doc Returns the type subtree of a `typed_record_field' node.
+%%
+%% @see typed_record_field/2
+
+-spec typed_record_field_type(syntaxTree()) -> syntaxTree().
+
+typed_record_field_type(Node) ->
+ (data(Node))#typed_record_field.type.
+
%% =====================================================================
%% @doc Creates an abstract list comprehension. If `Body' is
@@ -6168,6 +7355,8 @@ revert(Node) ->
revert_root(Node) ->
case type(Node) of
+ annotated_type ->
+ revert_annotated_type(Node);
application ->
revert_application(Node);
atom ->
@@ -6182,6 +7371,8 @@ revert_root(Node) ->
revert_binary_field(Node);
binary_generator ->
revert_binary_generator(Node);
+ bitstring_type ->
+ revert_bitstring_type(Node);
block_expr ->
revert_block_expr(Node);
case_expr ->
@@ -6194,6 +7385,10 @@ revert_root(Node) ->
revert_clause(Node);
cond_expr ->
revert_cond_expr(Node);
+ constrained_function_type ->
+ revert_constrained_function_type(Node);
+ constraint ->
+ revert_constraint(Node);
eof_marker ->
revert_eof_marker(Node);
error_marker ->
@@ -6202,8 +7397,12 @@ revert_root(Node) ->
revert_float(Node);
fun_expr ->
revert_fun_expr(Node);
+ fun_type ->
+ revert_fun_type(Node);
function ->
revert_function(Node);
+ function_type ->
+ revert_function_type(Node);
generator ->
revert_generator(Node);
if_expr ->
@@ -6214,6 +7413,8 @@ revert_root(Node) ->
revert_infix_expr(Node);
integer ->
revert_integer(Node);
+ integer_range_type ->
+ revert_integer_range_type(Node);
list ->
revert_list(Node);
list_comp ->
@@ -6224,6 +7425,10 @@ revert_root(Node) ->
revert_map_field_assoc(Node);
map_field_exact ->
revert_map_field_exact(Node);
+ map_type ->
+ revert_map_type(Node);
+ map_type_pair ->
+ revert_map_type_pair(Node);
match_expr ->
revert_match_expr(Node);
module_qualifier ->
@@ -6244,14 +7449,26 @@ revert_root(Node) ->
revert_record_expr(Node);
record_index_expr ->
revert_record_index_expr(Node);
+ record_type ->
+ revert_record_type(Node);
+ record_type_field ->
+ revert_record_type_field(Node);
+ type_application ->
+ revert_type_application(Node);
+ type_union ->
+ revert_type_union(Node);
string ->
revert_string(Node);
try_expr ->
revert_try_expr(Node);
tuple ->
revert_tuple(Node);
+ tuple_type ->
+ revert_tuple_type(Node);
underscore ->
revert_underscore(Node);
+ user_type_application ->
+ revert_user_type_application(Node);
variable ->
revert_variable(Node);
warning_marker ->
@@ -6379,6 +7596,9 @@ subtrees(T) ->
[];
false ->
case type(T) of
+ annotated_type ->
+ [[annotated_type_name(T)],
+ [annotated_type_body(T)]];
application ->
[[application_operator(T)],
application_arguments(T)];
@@ -6407,6 +7627,9 @@ subtrees(T) ->
binary_generator ->
[[binary_generator_pattern(T)],
[binary_generator_body(T)]];
+ bitstring_type ->
+ [[bitstring_type_m(T)],
+ [bitstring_type_n(T)]];
block_expr ->
[block_expr_body(T)];
case_expr ->
@@ -6429,14 +7652,30 @@ subtrees(T) ->
[cond_expr_clauses(T)];
conjunction ->
[conjunction_body(T)];
+ constrained_function_type ->
+ C = constrained_function_type_argument(T),
+ [[constrained_function_type_body(T)],
+ conjunction_body(C)];
+ constraint ->
+ [[constraint_argument(T)],
+ constraint_body(T)];
disjunction ->
[disjunction_body(T)];
form_list ->
[form_list_elements(T)];
fun_expr ->
[fun_expr_clauses(T)];
+ fun_type ->
+ [];
function ->
[[function_name(T)], function_clauses(T)];
+ function_type ->
+ case function_type_arguments(T) of
+ any_arity ->
+ [[function_type_return(T)]];
+ As ->
+ [As,[function_type_return(T)]]
+ end;
generator ->
[[generator_pattern(T)], [generator_body(T)]];
if_expr ->
@@ -6447,6 +7686,9 @@ subtrees(T) ->
[[infix_expr_left(T)],
[infix_expr_operator(T)],
[infix_expr_right(T)]];
+ integer_range_type ->
+ [[integer_range_type_low(T)],
+ [integer_range_type_high(T)]];
list ->
case list_suffix(T) of
none ->
@@ -6476,6 +7718,11 @@ subtrees(T) ->
map_field_exact ->
[[map_field_exact_name(T)],
[map_field_exact_value(T)]];
+ map_type ->
+ [map_type_fields(T)];
+ map_type_pair ->
+ [[map_type_pair_key(T)],
+ [map_type_pair_value(T)]];
match_expr ->
[[match_expr_pattern(T)],
[match_expr_body(T)]];
@@ -6523,6 +7770,12 @@ subtrees(T) ->
record_index_expr ->
[[record_index_expr_type(T)],
[record_index_expr_field(T)]];
+ record_type ->
+ [[record_type_name(T)],
+ record_type_fields(T)];
+ record_type_field ->
+ [[record_type_field_name(T)],
+ [record_type_field_type(T)]];
size_qualifier ->
[[size_qualifier_body(T)],
[size_qualifier_argument(T)]];
@@ -6532,7 +7785,20 @@ subtrees(T) ->
try_expr_handlers(T),
try_expr_after(T)];
tuple ->
- [tuple_elements(T)]
+ [tuple_elements(T)];
+ tuple_type ->
+ [tuple_type_elements(T)];
+ type_application ->
+ [[type_application_name(T)],
+ type_application_arguments(T)];
+ type_union ->
+ [type_union_types(T)];
+ typed_record_field ->
+ [[typed_record_field_body(T)],
+ [typed_record_field_type(T)]];
+ user_type_application ->
+ [[user_type_application_name(T)],
+ user_type_application_arguments(T)]
end
end.
@@ -6576,6 +7842,7 @@ update_tree(Node, Groups) ->
-spec make_tree(atom(), [[syntaxTree()]]) -> syntaxTree().
+make_tree(annotated_type, [[N], [T]]) -> annotated_type(N, T);
make_tree(application, [[F], A]) -> application(F, A);
make_tree(arity_qualifier, [[N], [A]]) -> arity_qualifier(N, A);
make_tree(attribute, [[N]]) -> attribute(N);
@@ -6585,6 +7852,7 @@ make_tree(binary_comp, [[T], B]) -> binary_comp(T, B);
make_tree(binary_field, [[B]]) -> binary_field(B);
make_tree(binary_field, [[B], Ts]) -> binary_field(B, Ts);
make_tree(binary_generator, [[P], [E]]) -> binary_generator(P, E);
+make_tree(bitstring_type, [[M], [N]]) -> bitstring_type(M, N);
make_tree(block_expr, [B]) -> block_expr(B);
make_tree(case_expr, [[A], C]) -> case_expr(A, C);
make_tree(catch_expr, [[B]]) -> catch_expr(B);
@@ -6593,14 +7861,20 @@ make_tree(clause, [P, B]) -> clause(P, none, B);
make_tree(clause, [P, [G], B]) -> clause(P, G, B);
make_tree(cond_expr, [C]) -> cond_expr(C);
make_tree(conjunction, [E]) -> conjunction(E);
+make_tree(constrained_function_type, [[F],C]) ->
+ constrained_function_type(F, C);
+make_tree(constraint, [[N], Ts]) -> constraint(N, Ts);
make_tree(disjunction, [E]) -> disjunction(E);
make_tree(form_list, [E]) -> form_list(E);
make_tree(fun_expr, [C]) -> fun_expr(C);
make_tree(function, [[N], C]) -> function(N, C);
+make_tree(function_type, [[T]]) -> function_type(T);
+make_tree(function_type, [A,[T]]) -> function_type(A, T);
make_tree(generator, [[P], [E]]) -> generator(P, E);
make_tree(if_expr, [C]) -> if_expr(C);
make_tree(implicit_fun, [[N]]) -> implicit_fun(N);
make_tree(infix_expr, [[L], [F], [R]]) -> infix_expr(L, F, R);
+make_tree(integer_range_type, [[L],[H]]) -> integer_range_type(L, H);
make_tree(list, [P]) -> list(P);
make_tree(list, [P, [S]]) -> list(P, S);
make_tree(list_comp, [[T], B]) -> list_comp(T, B);
@@ -6610,6 +7884,8 @@ make_tree(map_expr, [Fs]) -> map_expr(Fs);
make_tree(map_expr, [[E], Fs]) -> map_expr(E, Fs);
make_tree(map_field_assoc, [[K], [V]]) -> map_field_assoc(K, V);
make_tree(map_field_exact, [[K], [V]]) -> map_field_exact(K, V);
+make_tree(map_type, [Fs]) -> map_type(Fs);
+make_tree(map_type_pair, [[K],[V]]) -> map_type_pair(K, V);
make_tree(match_expr, [[P], [E]]) -> match_expr(P, E);
make_tree(named_fun_expr, [[N], C]) -> named_fun_expr(N, C);
make_tree(module_qualifier, [[M], [N]]) -> module_qualifier(M, N);
@@ -6625,9 +7901,16 @@ make_tree(record_field, [[N]]) -> record_field(N);
make_tree(record_field, [[N], [E]]) -> record_field(N, E);
make_tree(record_index_expr, [[T], [F]]) ->
record_index_expr(T, F);
+make_tree(record_type, [[N],Fs]) -> record_type(N, Fs);
+make_tree(record_type_field, [[N],[T]]) -> record_type_field(N, T);
make_tree(size_qualifier, [[N], [A]]) -> size_qualifier(N, A);
make_tree(try_expr, [B, C, H, A]) -> try_expr(B, C, H, A);
-make_tree(tuple, [E]) -> tuple(E).
+make_tree(tuple, [E]) -> tuple(E);
+make_tree(tuple_type, [Es]) -> tuple_type(Es);
+make_tree(type_application, [[N], Ts]) -> type_application(N, Ts);
+make_tree(type_union, [Es]) -> type_union(Es);
+make_tree(typed_record_field, [[F],[T]]) -> typed_record_field(F, T);
+make_tree(user_type_application, [[N], Ts]) -> user_type_application(N, Ts).
%% =====================================================================
@@ -6954,6 +8237,7 @@ fold_variable_names(Vs) ->
unfold_variable_names(Vs, Pos) ->
[set_pos(variable(V), Pos) || V <- Vs].
+
%% Support functions for transforming lists of record field definitions.
%%
%% There is no unique representation for field definitions in the
@@ -6968,6 +8252,16 @@ fold_record_fields(Fs) ->
[fold_record_field(F) || F <- Fs].
fold_record_field(F) ->
+ case type(F) of
+ typed_record_field ->
+ Field = fold_record_field_1(typed_record_field_body(F)),
+ Type = typed_record_field_type(F),
+ {typed_record_field, Field, Type};
+ record_field ->
+ fold_record_field_1(F)
+ end.
+
+fold_record_field_1(F) ->
Pos = get_pos(F),
Name = record_field_name(F),
case record_field_value(F) of
@@ -6980,10 +8274,11 @@ fold_record_field(F) ->
unfold_record_fields(Fs) ->
[unfold_record_field(F) || F <- Fs].
-unfold_record_field({typed_record_field, Field, _Type}) ->
- unfold_record_field_1(Field);
+unfold_record_field({typed_record_field, Field, Type}) ->
+ F = unfold_record_field_1(Field),
+ set_pos(typed_record_field(F, Type), get_pos(F));
unfold_record_field(Field) ->
- unfold_record_field_1(Field).
+ unfold_record_field_1(Field).
unfold_record_field_1({record_field, Pos, Name}) ->
set_pos(record_field(Name), Pos);
@@ -7010,5 +8305,4 @@ unfold_binary_field_type({Type, Size}, Pos) ->
unfold_binary_field_type(Type, Pos) ->
set_pos(atom(Type), Pos).
-
%% =====================================================================
diff --git a/lib/syntax_tools/src/erl_syntax_lib.erl b/lib/syntax_tools/src/erl_syntax_lib.erl
index 58c4cc5244..9815559779 100644
--- a/lib/syntax_tools/src/erl_syntax_lib.erl
+++ b/lib/syntax_tools/src/erl_syntax_lib.erl
@@ -36,6 +36,7 @@
analyze_import_attribute/1, analyze_module_attribute/1,
analyze_record_attribute/1, analyze_record_expr/1,
analyze_record_field/1, analyze_wild_attribute/1, annotate_bindings/1,
+ analyze_type_application/1, analyze_type_name/1,
annotate_bindings/2, fold/3, fold_subtrees/3, foldl_listlist/3,
function_name_expansions/1, is_fail_expr/1, limit/2, limit/3,
map/2, map_subtrees/2, mapfold/3, mapfold_subtrees/3,
@@ -1029,14 +1030,17 @@ is_fail_expr(E) ->
%% <dt>`{records, Records}'</dt>
%% <dd><ul>
%% <li>`Records = [{atom(), Fields}]'</li>
-%% <li>`Fields = [{atom(), Default}]'</li>
+%% <li>`Fields = [{atom(), {Default, Type}}]'</li>
%% <li>`Default = none | syntaxTree()'</li>
+%% <li>`Type = none | syntaxTree()'</li>
%% </ul>
%% `Records' is a list of pairs representing the names
%% and corresponding field declarations of all record declaration
%% attributes occurring in `Forms'. For fields declared
%% without a default value, the corresponding value for
-%% `Default' is the atom `none' (cf.
+%% `Default' is the atom `none'. Similarly, for fields declared
+%% without a type, the corresponding value for `Type' is the
+%% atom `none' (cf.
%% `analyze_record_attribute/1'). We do not guarantee
%% that each record name occurs at most once in the list. The
%% order of listing is not defined.</dd>
@@ -1055,9 +1059,9 @@ is_fail_expr(E) ->
%%
%% @see analyze_wild_attribute/1
%% @see analyze_export_attribute/1
+%% @see analyze_function/1
%% @see analyze_import_attribute/1
%% @see analyze_record_attribute/1
-%% @see analyze_function/1
%% @see erl_syntax:error_marker_info/1
%% @see erl_syntax:warning_marker_info/1
@@ -1102,8 +1106,6 @@ collect_attribute(file, _, Info) ->
Info;
collect_attribute(record, {R, L}, Info) ->
finfo_add_record(R, L, Info);
-collect_attribute(spec, _, Info) ->
- Info;
collect_attribute(_, {N, V}, Info) ->
finfo_add_attribute(N, V, Info).
@@ -1114,12 +1116,15 @@ collect_attribute(_, {N, V}, Info) ->
module_imports = [] :: [atom()],
imports = [] :: [{atom(), [{atom(), arity()}]}],
attributes = [] :: [{atom(), term()}],
- records = [] :: [{atom(), [{atom(), field_default()}]}],
+ records = [] :: [{atom(), [{atom(),
+ field_default(),
+ field_type()}]}],
errors = [] :: [term()],
warnings = [] :: [term()],
functions = [] :: [{atom(), arity()}]}).
-type field_default() :: 'none' | erl_syntax:syntaxTree().
+-type field_type() :: 'none' | erl_syntax:syntaxTree().
new_finfo() ->
#forms{}.
@@ -1326,8 +1331,6 @@ analyze_attribute(file, Node) ->
analyze_file_attribute(Node);
analyze_attribute(record, Node) ->
analyze_record_attribute(Node);
-analyze_attribute(spec, _Node) ->
- spec;
analyze_attribute(_, Node) ->
%% A "wild" attribute (such as e.g. a `compile' directive).
analyze_wild_attribute(Node).
@@ -1523,6 +1526,55 @@ analyze_import_attribute(Node) ->
%% =====================================================================
+%% @spec analyze_type_name(Node::syntaxTree()) -> TypeName
+%%
+%% TypeName = atom()
+%% | {atom(), integer()}
+%% | {ModuleName, {atom(), integer()}}
+%% ModuleName = atom()
+%%
+%% @doc Returns the type name represented by a syntax tree. If
+%% `Node' represents a type name, such as
+%% "`foo/1'" or "`bloggs:fred/2'", a uniform
+%% representation of that name is returned.
+%%
+%% The evaluation throws `syntax_error' if
+%% `Node' does not represent a well-formed type name.
+
+-spec analyze_type_name(erl_syntax:syntaxTree()) -> typeName().
+
+analyze_type_name(Node) ->
+ case erl_syntax:type(Node) of
+ atom ->
+ erl_syntax:atom_value(Node);
+ arity_qualifier ->
+ A = erl_syntax:arity_qualifier_argument(Node),
+ N = erl_syntax:arity_qualifier_body(Node),
+
+ case ((erl_syntax:type(A) =:= integer)
+ and (erl_syntax:type(N) =:= atom))
+ of
+ true ->
+ append_arity(erl_syntax:integer_value(A),
+ erl_syntax:atom_value(N));
+ _ ->
+ throw(syntax_error)
+ end;
+ module_qualifier ->
+ M = erl_syntax:module_qualifier_argument(Node),
+ case erl_syntax:type(M) of
+ atom ->
+ N = erl_syntax:module_qualifier_body(Node),
+ N1 = analyze_type_name(N),
+ {erl_syntax:atom_value(M), N1};
+ _ ->
+ throw(syntax_error)
+ end;
+ _ ->
+ throw(syntax_error)
+ end.
+
+%% =====================================================================
%% @spec analyze_wild_attribute(Node::syntaxTree()) -> {atom(), term()}
%%
%% @doc Returns the name and value of a "wild" attribute. The result is
@@ -1547,6 +1599,7 @@ analyze_wild_attribute(Node) ->
atom ->
case erl_syntax:attribute_arguments(Node) of
[V] ->
+ %% Note: does not work well with macros.
case catch {ok, erl_syntax:concrete(V)} of
{ok, Val} ->
{erl_syntax:atom_value(N), Val};
@@ -1568,17 +1621,22 @@ analyze_wild_attribute(Node) ->
%% @spec analyze_record_attribute(Node::syntaxTree()) ->
%% {atom(), Fields}
%%
-%% Fields = [{atom(), none | syntaxTree()}]
+%% Fields = [{atom(), {Default, Type}}]
+%% Default = none | syntaxTree()
+%% Type = none | syntaxTree()
%%
%% @doc Returns the name and the list of fields of a record declaration
%% attribute. The result is a pair `{Name, Fields}', if
%% `Node' represents "`-record(Name, {...}).'",
%% where `Fields' is a list of pairs `{Label,
-%% Default}' for each field "`Label'" or "`Label =
-%% <em>Default</em>'" in the declaration, listed in left-to-right
+%% {Default, Type}}' for each field "`Label'", "`Label =
+%% <em>Default</em>'", "`Label :: <em>Type</em>'", or
+%% "`Label = <em>Default</em> :: <em>Type</em>'" in the declaration,
+%% listed in left-to-right
%% order. If the field has no default-value declaration, the value for
-%% `Default' will be the atom `none'. We do not
-%% guarantee that each label occurs at most one in the list.
+%% `Default' will be the atom `none'. If the field has no type declaration,
+%% the value for `Type' will be the atom `none'. We do not
+%% guarantee that each label occurs at most once in the list.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed record declaration
@@ -1587,7 +1645,9 @@ analyze_wild_attribute(Node) ->
%% @see analyze_attribute/1
%% @see analyze_record_field/1
--type fields() :: [{atom(), 'none' | erl_syntax:syntaxTree()}].
+-type field() :: {atom(), {field_default(), field_type()}}.
+
+-type fields() :: [field()].
-spec analyze_record_attribute(erl_syntax:syntaxTree()) -> {atom(), fields()}.
@@ -1625,7 +1685,7 @@ analyze_record_attribute_tuple(Node) ->
%% {atom(), Info} | atom()
%%
%% Info = {atom(), [{atom(), Value}]} | {atom(), atom()} | atom()
-%% Value = none | syntaxTree()
+%% Value = syntaxTree()
%%
%% @doc Returns the record name and field name/names of a record
%% expression. If `Node' has type `record_expr',
@@ -1645,9 +1705,9 @@ analyze_record_attribute_tuple(Node) ->
%%
%% For a `record_expr' node, `Info' represents
%% the record name and the list of descriptors for the involved fields,
-%% listed in the order they appear. (See
-%% `analyze_record_field/1' for details on the field
-%% descriptors). For a `record_access' node,
+%% listed in the order they appear. A field descriptor is a pair
+%% `{Label, Value}', if `Node' represents "`Label = <em>Value</em>'".
+%% For a `record_access' node,
%% `Info' represents the record name and the field name. For a
%% `record_index_expr' node, `Info' represents the
%% record name and the name field name.
@@ -1659,7 +1719,7 @@ analyze_record_attribute_tuple(Node) ->
%% @see analyze_record_attribute/1
%% @see analyze_record_field/1
--type info() :: {atom(), [{atom(), 'none' | erl_syntax:syntaxTree()}]}
+-type info() :: {atom(), [{atom(), erl_syntax:syntaxTree()}]}
| {atom(), atom()} | atom().
-spec analyze_record_expr(erl_syntax:syntaxTree()) -> {atom(), info()} | atom().
@@ -1670,8 +1730,9 @@ analyze_record_expr(Node) ->
A = erl_syntax:record_expr_type(Node),
case erl_syntax:type(A) of
atom ->
- Fs = [analyze_record_field(F)
- || F <- erl_syntax:record_expr_fields(Node)],
+ Fs0 = [analyze_record_field(F)
+ || F <- erl_syntax:record_expr_fields(Node)],
+ Fs = [{N, D} || {N, {D, _T}} <- Fs0],
{record_expr, {erl_syntax:atom_value(A), Fs}};
_ ->
throw(syntax_error)
@@ -1713,16 +1774,19 @@ analyze_record_expr(Node) ->
end.
%% =====================================================================
-%% @spec analyze_record_field(Node::syntaxTree()) -> {atom(), Value}
+%% @spec analyze_record_field(Node::syntaxTree()) -> {atom(), {Default, Type}}
%%
-%% Value = none | syntaxTree()
+%% Default = none | syntaxTree()
+%% Type = none | syntaxTree()
%%
-%% @doc Returns the label and value-expression of a record field
-%% specifier. The result is a pair `{Label, Value}', if
-%% `Node' represents "`Label = <em>Value</em>'" or
-%% "`Label'", where in the first case, `Value' is
-%% a syntax tree, and in the second case `Value' is
-%% `none'.
+%% @doc Returns the label, value-expression, and type of a record field
+%% specifier. The result is a pair `{Label, {Default, Type}}', if
+%% `Node' represents "`Label'", "`Label = <em>Default</em>'",
+%% "`Label :: <em>Type</em>'", or
+%% "`Label = <em>Default</em> :: <em>Type</em>'".
+%% If the field has no value-expression, the value for
+%% `Default' will be the atom `none'. If the field has no type,
+%% the value for `Type' will be the atom `none'.
%%
%% The evaluation throws `syntax_error' if
%% `Node' does not represent a well-formed record field
@@ -1731,8 +1795,7 @@ analyze_record_expr(Node) ->
%% @see analyze_record_attribute/1
%% @see analyze_record_expr/1
--spec analyze_record_field(erl_syntax:syntaxTree()) ->
- {atom(), 'none' | erl_syntax:syntaxTree()}.
+-spec analyze_record_field(erl_syntax:syntaxTree()) -> field().
analyze_record_field(Node) ->
case erl_syntax:type(Node) of
@@ -1741,10 +1804,15 @@ analyze_record_field(Node) ->
case erl_syntax:type(A) of
atom ->
T = erl_syntax:record_field_value(Node),
- {erl_syntax:atom_value(A), T};
+ {erl_syntax:atom_value(A), {T, none}};
_ ->
throw(syntax_error)
end;
+ typed_record_field ->
+ F = erl_syntax:typed_record_field_body(Node),
+ {N, {V, _none}} = analyze_record_field(F),
+ T = erl_syntax:typed_record_field_type(Node),
+ {N, {V, T}};
_ ->
throw(syntax_error)
end.
@@ -1887,6 +1955,55 @@ analyze_application(Node) ->
%% =====================================================================
+%% @spec analyze_type_application(Node::syntaxTree()) -> typeName()
+%%
+%% TypeName = {atom(), integer()}
+%% | {ModuleName, {atom(), integer()}}
+%% ModuleName = atom()
+%%
+%% @doc Returns the name of a used type. The result is a
+%% representation of the name of the used pre-defined or local type `N/A',
+%% if `Node' represents a local (user) type application
+%% "`<em>N</em>(<em>T_1</em>, ..., <em>T_A</em>)'", or
+%% a representation of the name of the used remote type `M:N/A'
+%% if `Node' represents a remote user type application
+%% "`<em>M</em>:<em>N</em>(<em>T_1</em>, ..., <em>T_A</em>)'".
+%%
+%% The evaluation throws `syntax_error' if `Node' does not represent a
+%% well-formed (user) type application expression.
+%%
+%% @see analyze_type_name/1
+
+-type typeName() :: atom() | {module(), atom(), arity()} | {atom(), arity()}.
+
+-spec analyze_type_application(erl_syntax:syntaxTree()) -> typeName().
+
+analyze_type_application(Node) ->
+ case erl_syntax:type(Node) of
+ type_application ->
+ A = length(erl_syntax:type_application_arguments(Node)),
+ N = erl_syntax:type_application_name(Node),
+ case catch {ok, analyze_type_name(N)} of
+ {ok, TypeName} ->
+ append_arity(A, TypeName);
+ _ ->
+ throw(syntax_error)
+ end;
+ user_type_application ->
+ A = length(erl_syntax:user_type_application_arguments(Node)),
+ N = erl_syntax:user_type_application_name(Node),
+ case catch {ok, analyze_type_name(N)} of
+ {ok, TypeName} ->
+ append_arity(A, TypeName);
+ _ ->
+ throw(syntax_error)
+ end;
+ _ ->
+ throw(syntax_error)
+ end.
+
+
+%% =====================================================================
%% @spec function_name_expansions(Names::[Name]) -> [{ShortName, Name}]
%%
%% Name = ShortName | {atom(), Name}