aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorLukas Larsson <[email protected]>2019-04-18 14:28:29 +0200
committerLukas Larsson <[email protected]>2019-04-18 14:28:29 +0200
commitd0d4f2be1ebfe8293a627531b65819e85482c1d9 (patch)
tree0e8bada3e0022db00fe0d566b2850f9751129f85 /lib
parent659ed4c005bb8c943c217d52383c219c0998aafa (diff)
parentcf92a1285fb7f1ea6e8c883f02ca146b5b1ab455 (diff)
downloadotp-d0d4f2be1ebfe8293a627531b65819e85482c1d9.tar.gz
otp-d0d4f2be1ebfe8293a627531b65819e85482c1d9.tar.bz2
otp-d0d4f2be1ebfe8293a627531b65819e85482c1d9.zip
Merge branch 'lukas/tools/overhead_benchmark'
* lukas/tools/overhead_benchmark: etp: Fix free de processes check tools: Add overhead benchmark
Diffstat (limited to 'lib')
-rw-r--r--lib/tools/test/Makefile3
-rw-r--r--lib/tools/test/prof_bench_SUITE.erl126
-rw-r--r--lib/tools/test/prof_bench_SUITE_data/sofs_copy.erl2809
-rw-r--r--lib/tools/test/tools_bench.spec1
4 files changed, 2938 insertions, 1 deletions
diff --git a/lib/tools/test/Makefile b/lib/tools/test/Makefile
index 2b7b17afb3..7a0a941ccc 100644
--- a/lib/tools/test/Makefile
+++ b/lib/tools/test/Makefile
@@ -32,6 +32,7 @@ MODULES = \
make_SUITE \
tools_SUITE \
xref_SUITE \
+ prof_bench_SUITE \
ignore_cores
ERL_FILES= $(MODULES:%=%.erl)
@@ -41,7 +42,7 @@ INSTALL_PROGS= $(TARGET_FILES)
EMAKEFILE=Emakefile
-SPEC_FILES= tools.spec
+SPEC_FILES= tools.spec tools_bench.spec
COVER_FILE = tools.cover
# ----------------------------------------------------
diff --git a/lib/tools/test/prof_bench_SUITE.erl b/lib/tools/test/prof_bench_SUITE.erl
new file mode 100644
index 0000000000..50d0ba9cd9
--- /dev/null
+++ b/lib/tools/test/prof_bench_SUITE.erl
@@ -0,0 +1,126 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2001-2017. All Rights Reserved.
+%%
+%% Licensed under the Apache License, Version 2.0 (the "License");
+%% you may not use this file except in compliance with the License.
+%% You may obtain a copy of the License at
+%%
+%% http://www.apache.org/licenses/LICENSE-2.0
+%%
+%% Unless required by applicable law or agreed to in writing, software
+%% distributed under the License is distributed on an "AS IS" BASIS,
+%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+%% See the License for the specific language governing permissions and
+%% limitations under the License.
+%%
+%% %CopyrightEnd%
+%%
+-module(prof_bench_SUITE).
+
+-include_lib("common_test/include/ct_event.hrl").
+
+%% Test server framework exports
+-export([all/0, suite/0, init_per_suite/1, end_per_suite/1]).
+
+-export([overhead/1]).
+
+%%%---------------------------------------------------------------------
+%%% Test suites
+%%%---------------------------------------------------------------------
+
+
+suite() ->
+ [{timetrap,{minutes,10}}].
+
+all() ->
+ [overhead].
+
+init_per_suite(Config) ->
+ case {test_server:is_native(fprof_SUITE) or
+ (lists:any(fun(M) -> test_server:is_native(M) end, modules())) or
+ (whereis(cover_server) =/= undefined),
+ erlang:system_info(wordsize)}
+ of
+ {true, _} -> {skip, "Native or cover code"};
+ {_, 4} -> {skip, "Can't run on 32-bit as files will be large"};
+ {false, 8} -> Config
+ end.
+
+end_per_suite(Config) ->
+ LogFile = filename:join(proplists:get_value(priv_dir, Config), "fprof.trace"),
+ file:delete(LogFile),
+ ok.
+
+%%%---------------------------------------------------------------------
+
+%% ct:run_test([{suite, prof_bench_SUITE}]).
+overhead(Config) ->
+ LogFile = filename:join(proplists:get_value(priv_dir, Config), "fprof.trace"),
+ SofsCopy = filename:join(proplists:get_value(data_dir, Config), "sofs_copy.erl"),
+ TC = fun() -> compile:file(SofsCopy, [binary]) end,
+ _Warmup = timer:tc(TC),
+
+ {NormTime,{ok, sofs_copy, _}} = timer:tc(TC),
+ {FProfTime,{ok,sofs_copy,_}} = fprof:apply(timer, tc, [TC], [{file, LogFile}]),
+ ct:pal("FProf: ~p Norm: ~p Ratio: ~p",[FProfTime, NormTime, NormTime / FProfTime * 100]),
+ {ok,{EProfTime,{ok,sofs_copy,_}}} = eprof:profile([], timer, tc, [TC]),
+ ct:pal("EProf: ~p Norm: ~p Ratio: ~p",[EProfTime, NormTime, NormTime / EProfTime * 100]),
+ {CProfTime,{ok,sofs_copy,_}} = cprof_apply(timer, tc, [TC]),
+ ct:pal("CProf: ~p Norm: ~p Ratio: ~p",[CProfTime, NormTime, NormTime / CProfTime * 100]),
+ {CoverTime,{ok,sofs_copy,_}} = cover_apply(timer, tc, [TC]),
+ ct:pal("Cover: ~p Norm: ~p Ratio: ~p",[CoverTime, NormTime, NormTime / CoverTime * 100]),
+
+ ct_event:notify(#event{name = benchmark_data,
+ data = [{name, fprof_overhead},
+ {value, NormTime / FProfTime * 100}]}),
+ ct_event:notify(#event{name = benchmark_data,
+ data = [{name, eprof_overhead},
+ {value, NormTime / EProfTime * 100}]}),
+ ct_event:notify(#event{name = benchmark_data,
+ data = [{name, cprof_overhead},
+ {value, NormTime / CProfTime * 100}]}),
+ ct_event:notify(#event{name = benchmark_data,
+ data = [{name, cover_overhead},
+ {value, NormTime / CoverTime * 100}]}).
+
+%% overhead(Config) ->
+%% LogFile = filename:join(proplists:get_value(priv_dir, Config), "fprof.trace"),
+%% SofsCopy = filename:join(proplists:get_value(data_dir, Config), "sofs_copy.erl"),
+%% TC = fun() -> compile:file(SofsCopy, [binary]) end,
+%% _Warmup = timer:tc(TC),
+
+%% [{ok,{EProfTime,{ok,sofs_copy,_}}} = eprof:profile([], timer, tc, [TC])
+%% || _ <- lists:seq(1,10)],
+%% %% [fprof:apply(timer, tc, [TC], [{file, LogFile}]) || _ <- lists:seq(1,10)],
+%% {FProfTime,{ok,sofs_copy,_}} = fprof:apply(timer, tc, [TC], [{file, LogFile}]),
+%% {NormTime,{ok, sofs_copy, _}} = timer:tc(TC),
+
+ %% ct:pal("FProf: ~p Norm: ~p Ratio: ~p",[FProfTime, NormTime, FProfTime / NormTime]).
+
+cprof_apply(M, F, A) ->
+ cprof:start(),
+ Res = apply(M, F, A),
+ cprof:stop(),
+ Res.
+
+cover_apply(M, F, A) ->
+ cover:start(),
+ catch cover:local_only(),
+ Modules = modules(),
+ [code:unstick_mod(Mod) || Mod <- Modules],
+ cover:compile_beam(Modules),
+ [code:stick_mod(Mod) || Mod <- Modules],
+ Res = apply(M, F, A),
+ cover:stop(),
+ Res.
+
+modules() ->
+ application:load(compiler),
+ {ok, CompilerModules} = application:get_key(compiler, modules),
+ %% Only cover compile a subset of the stdlib modules
+ StdlibModules = [erl_parse, erl_expand_records, erl_lint, gb_trees, gb_sets, sofs,
+ beam_lib, dict, epp, erl_anno, erl_bits,
+ orddict, ordsets, sets, string, unicode, unicode_util],
+ CompilerModules ++ StdlibModules.
diff --git a/lib/tools/test/prof_bench_SUITE_data/sofs_copy.erl b/lib/tools/test/prof_bench_SUITE_data/sofs_copy.erl
new file mode 100644
index 0000000000..2a9b19177e
--- /dev/null
+++ b/lib/tools/test/prof_bench_SUITE_data/sofs_copy.erl
@@ -0,0 +1,2809 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2001-2017. All Rights Reserved.
+%%
+%% Licensed under the Apache License, Version 2.0 (the "License");
+%% you may not use this file except in compliance with the License.
+%% You may obtain a copy of the License at
+%%
+%% http://www.apache.org/licenses/LICENSE-2.0
+%%
+%% Unless required by applicable law or agreed to in writing, software
+%% distributed under the License is distributed on an "AS IS" BASIS,
+%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+%% See the License for the specific language governing permissions and
+%% limitations under the License.
+%%
+%% %CopyrightEnd%
+%%
+-module(sofs_copy).
+
+-export([from_term/1, from_term/2, from_external/2, empty_set/0,
+ is_type/1, set/1, set/2, from_sets/1, relation/1, relation/2,
+ a_function/1, a_function/2, family/1, family/2,
+ to_external/1, type/1, to_sets/1, no_elements/1,
+ specification/2, union/2, intersection/2, difference/2,
+ symdiff/2, symmetric_partition/2, product/1, product/2,
+ constant_function/2, is_equal/2, is_subset/2, is_sofs_set/1,
+ is_set/1, is_empty_set/1, is_disjoint/2]).
+
+-export([union/1, intersection/1, canonical_relation/1]).
+
+-export([relation_to_family/1, domain/1, range/1, field/1,
+ relative_product/1, relative_product/2, relative_product1/2,
+ converse/1, image/2, inverse_image/2, strict_relation/1,
+ weak_relation/1, extension/3, is_a_function/1]).
+
+-export([composite/2, inverse/1]).
+
+-export([restriction/2, restriction/3, drestriction/2, drestriction/3,
+ substitution/2, projection/2, partition/1, partition/2,
+ partition/3, multiple_relative_product/2, join/4]).
+
+-export([family_to_relation/1, family_specification/2,
+ union_of_family/1, intersection_of_family/1,
+ family_union/1, family_intersection/1,
+ family_domain/1, family_range/1, family_field/1,
+ family_union/2, family_intersection/2, family_difference/2,
+ partition_family/2, family_projection/2]).
+
+-export([family_to_digraph/1, family_to_digraph/2,
+ digraph_to_family/1, digraph_to_family/2]).
+
+%% Shorter names of some functions.
+-export([fam2rel/1, rel2fam/1]).
+
+-import(lists,
+ [any/2, append/1, flatten/1, foreach/2,
+ keysort/2, last/1, map/2, mapfoldl/3, member/2, merge/2,
+ reverse/1, reverse/2, sort/1, umerge/1, umerge/2, usort/1]).
+
+-compile({inline, [{family_to_relation,1}, {relation_to_family,1}]}).
+
+-compile({inline, [{rel,2},{a_func,2},{fam,2},{term2set,2}]}).
+
+-compile({inline, [{external_fun,1},{element_type,1}]}).
+
+-compile({inline,
+ [{unify_types,2}, {match_types,2},
+ {test_rel,3}, {symdiff,3},
+ {subst,3}]}).
+
+-compile({inline, [{fam_binop,3}]}).
+
+%% Nope, no is_member, del_member or add_member.
+%%
+%% See also "Naive Set Theory" by Paul R. Halmos.
+%%
+%% By convention, erlang:error/1 is called from exported functions.
+
+-define(TAG, 'Set').
+-define(ORDTAG, 'OrdSet').
+
+-record(?TAG, {data = [] :: list(), type = type :: term()}).
+-record(?ORDTAG, {orddata = {} :: tuple() | atom(),
+ ordtype = type :: term()}).
+
+-define(LIST(S), (S)#?TAG.data).
+-define(TYPE(S), (S)#?TAG.type).
+-define(SET(L, T), #?TAG{data = L, type = T}).
+-define(IS_SET(S), is_record(S, ?TAG)).
+-define(IS_UNTYPED_SET(S), ?TYPE(S) =:= ?ANYTYPE).
+
+%% Ordered sets and atoms:
+-define(ORDDATA(S), (S)#?ORDTAG.orddata).
+-define(ORDTYPE(S), (S)#?ORDTAG.ordtype).
+-define(ORDSET(L, T), #?ORDTAG{orddata = L, ordtype = T}).
+-define(IS_ORDSET(S), is_record(S, ?ORDTAG)).
+-define(ATOM_TYPE, atom).
+-define(IS_ATOM_TYPE(T), is_atom(T)). % true for ?ANYTYPE...
+
+%% When IS_SET is true:
+-define(ANYTYPE, '_').
+-define(BINREL(X, Y), {X, Y}).
+-define(IS_RELATION(R), is_tuple(R)).
+-define(REL_ARITY(R), tuple_size(R)).
+-define(REL_TYPE(I, R), element(I, R)).
+-define(SET_OF(X), [X]).
+-define(IS_SET_OF(X), is_list(X)).
+-define(FAMILY(X, Y), ?BINREL(X, ?SET_OF(Y))).
+
+-export_type([anyset/0, binary_relation/0, external_set/0, a_function/0,
+ family/0, relation/0, set_of_sets/0, set_fun/0, spec_fun/0,
+ type/0]).
+-export_type([ordset/0, a_set/0]).
+
+-type(anyset() :: ordset() | a_set()).
+-type(binary_relation() :: relation()).
+-type(external_set() :: term()).
+-type(a_function() :: relation()).
+-type(family() :: a_function()).
+-opaque(ordset() :: #?ORDTAG{}).
+-type(relation() :: a_set()).
+-opaque(a_set() :: #?TAG{}).
+-type(set_of_sets() :: a_set()).
+-type(set_fun() :: pos_integer()
+ | {external, fun((external_set()) -> external_set())}
+ | fun((anyset()) -> anyset())).
+-type(spec_fun() :: {external, fun((external_set()) -> boolean())}
+ | fun((anyset()) -> boolean())).
+-type(type() :: term()).
+
+-type(tuple_of(_T) :: tuple()).
+
+%%
+%% Exported functions
+%%
+
+%%%
+%%% Create sets
+%%%
+
+-spec(from_term(Term) -> AnySet when
+ AnySet :: anyset(),
+ Term :: term()).
+from_term(T) ->
+ Type = case T of
+ _ when is_list(T) -> [?ANYTYPE];
+ _ -> ?ANYTYPE
+ end,
+ try setify(T, Type)
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(from_term(Term, Type) -> AnySet when
+ AnySet :: anyset(),
+ Term :: term(),
+ Type :: type()).
+from_term(L, T) ->
+ case is_type(T) of
+ true ->
+ try setify(L, T)
+ catch _:_ -> erlang:error(badarg)
+ end;
+ false ->
+ erlang:error(badarg)
+ end.
+
+-spec(from_external(ExternalSet, Type) -> AnySet when
+ ExternalSet :: external_set(),
+ AnySet :: anyset(),
+ Type :: type()).
+from_external(L, ?SET_OF(Type)) ->
+ ?SET(L, Type);
+from_external(T, Type) ->
+ ?ORDSET(T, Type).
+
+-spec(empty_set() -> Set when
+ Set :: a_set()).
+empty_set() ->
+ ?SET([], ?ANYTYPE).
+
+-spec(is_type(Term) -> Bool when
+ Bool :: boolean(),
+ Term :: term()).
+is_type(Atom) when ?IS_ATOM_TYPE(Atom), Atom =/= ?ANYTYPE ->
+ true;
+is_type(?SET_OF(T)) ->
+ is_element_type(T);
+is_type(T) when tuple_size(T) > 0 ->
+ is_types(tuple_size(T), T);
+is_type(_T) ->
+ false.
+
+-spec(set(Terms) -> Set when
+ Set :: a_set(),
+ Terms :: [term()]).
+set(L) ->
+ try usort(L) of
+ SL -> ?SET(SL, ?ATOM_TYPE)
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(set(Terms, Type) -> Set when
+ Set :: a_set(),
+ Terms :: [term()],
+ Type :: type()).
+set(L, ?SET_OF(Type)) when ?IS_ATOM_TYPE(Type), Type =/= ?ANYTYPE ->
+ try usort(L) of
+ SL -> ?SET(SL, Type)
+ catch _:_ -> erlang:error(badarg)
+ end;
+set(L, ?SET_OF(_) = T) ->
+ try setify(L, T)
+ catch _:_ -> erlang:error(badarg)
+ end;
+set(_, _) ->
+ erlang:error(badarg).
+
+-spec(from_sets(ListOfSets) -> Set when
+ Set :: a_set(),
+ ListOfSets :: [anyset()];
+ (TupleOfSets) -> Ordset when
+ Ordset :: ordset(),
+ TupleOfSets :: tuple_of(anyset())).
+from_sets(Ss) when is_list(Ss) ->
+ case set_of_sets(Ss, [], ?ANYTYPE) of
+ {error, Error} ->
+ erlang:error(Error);
+ Set ->
+ Set
+ end;
+from_sets(Tuple) when is_tuple(Tuple) ->
+ case ordset_of_sets(tuple_to_list(Tuple), [], []) of
+ error ->
+ erlang:error(badarg);
+ Set ->
+ Set
+ end;
+from_sets(_) ->
+ erlang:error(badarg).
+
+-spec(relation(Tuples) -> Relation when
+ Relation :: relation(),
+ Tuples :: [tuple()]).
+relation([]) ->
+ ?SET([], ?BINREL(?ATOM_TYPE, ?ATOM_TYPE));
+relation(Ts = [T | _]) when is_tuple(T) ->
+ try rel(Ts, tuple_size(T))
+ catch _:_ -> erlang:error(badarg)
+ end;
+relation(_) ->
+ erlang:error(badarg).
+
+-spec(relation(Tuples, Type) -> Relation when
+ N :: integer(),
+ Type :: N | type(),
+ Relation :: relation(),
+ Tuples :: [tuple()]).
+relation(Ts, TS) ->
+ try rel(Ts, TS)
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(a_function(Tuples) -> Function when
+ Function :: a_function(),
+ Tuples :: [tuple()]).
+a_function(Ts) ->
+ try func(Ts, ?BINREL(?ATOM_TYPE, ?ATOM_TYPE)) of
+ Bad when is_atom(Bad) ->
+ erlang:error(Bad);
+ Set ->
+ Set
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(a_function(Tuples, Type) -> Function when
+ Function :: a_function(),
+ Tuples :: [tuple()],
+ Type :: type()).
+a_function(Ts, T) ->
+ try a_func(Ts, T) of
+ Bad when is_atom(Bad) ->
+ erlang:error(Bad);
+ Set ->
+ Set
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(family(Tuples) -> Family when
+ Family :: family(),
+ Tuples :: [tuple()]).
+family(Ts) ->
+ try fam2(Ts, ?FAMILY(?ATOM_TYPE, ?ATOM_TYPE)) of
+ Bad when is_atom(Bad) ->
+ erlang:error(Bad);
+ Set ->
+ Set
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(family(Tuples, Type) -> Family when
+ Family :: family(),
+ Tuples :: [tuple()],
+ Type :: type()).
+family(Ts, T) ->
+ try fam(Ts, T) of
+ Bad when is_atom(Bad) ->
+ erlang:error(Bad);
+ Set ->
+ Set
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+%%%
+%%% Functions on sets.
+%%%
+
+-spec(to_external(AnySet) -> ExternalSet when
+ ExternalSet :: external_set(),
+ AnySet :: anyset()).
+to_external(S) when ?IS_SET(S) ->
+ ?LIST(S);
+to_external(S) when ?IS_ORDSET(S) ->
+ ?ORDDATA(S).
+
+-spec(type(AnySet) -> Type when
+ AnySet :: anyset(),
+ Type :: type()).
+type(S) when ?IS_SET(S) ->
+ ?SET_OF(?TYPE(S));
+type(S) when ?IS_ORDSET(S) ->
+ ?ORDTYPE(S).
+
+-spec(to_sets(ASet) -> Sets when
+ ASet :: a_set() | ordset(),
+ Sets :: tuple_of(AnySet) | [AnySet],
+ AnySet :: anyset()).
+to_sets(S) when ?IS_SET(S) ->
+ case ?TYPE(S) of
+ ?SET_OF(Type) -> list_of_sets(?LIST(S), Type, []);
+ Type -> list_of_ordsets(?LIST(S), Type, [])
+ end;
+to_sets(S) when ?IS_ORDSET(S), is_tuple(?ORDTYPE(S)) ->
+ tuple_of_sets(tuple_to_list(?ORDDATA(S)), tuple_to_list(?ORDTYPE(S)), []);
+to_sets(S) when ?IS_ORDSET(S) ->
+ erlang:error(badarg).
+
+-spec(no_elements(ASet) -> NoElements when
+ ASet :: a_set() | ordset(),
+ NoElements :: non_neg_integer()).
+no_elements(S) when ?IS_SET(S) ->
+ length(?LIST(S));
+no_elements(S) when ?IS_ORDSET(S), is_tuple(?ORDTYPE(S)) ->
+ tuple_size(?ORDDATA(S));
+no_elements(S) when ?IS_ORDSET(S) ->
+ erlang:error(badarg).
+
+-spec(specification(Fun, Set1) -> Set2 when
+ Fun :: spec_fun(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+specification(Fun, S) when ?IS_SET(S) ->
+ Type = ?TYPE(S),
+ R = case external_fun(Fun) of
+ false ->
+ spec(?LIST(S), Fun, element_type(Type), []);
+ XFun ->
+ specification(?LIST(S), XFun, [])
+ end,
+ case R of
+ SL when is_list(SL) ->
+ ?SET(SL, Type);
+ Bad ->
+ erlang:error(Bad)
+ end.
+
+-spec(union(Set1, Set2) -> Set3 when
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set()).
+union(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case unify_types(?TYPE(S1), ?TYPE(S2)) of
+ [] -> erlang:error(type_mismatch);
+ Type -> ?SET(umerge(?LIST(S1), ?LIST(S2)), Type)
+ end.
+
+-spec(intersection(Set1, Set2) -> Set3 when
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set()).
+intersection(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case unify_types(?TYPE(S1), ?TYPE(S2)) of
+ [] -> erlang:error(type_mismatch);
+ Type -> ?SET(intersection(?LIST(S1), ?LIST(S2), []), Type)
+ end.
+
+-spec(difference(Set1, Set2) -> Set3 when
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set()).
+difference(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case unify_types(?TYPE(S1), ?TYPE(S2)) of
+ [] -> erlang:error(type_mismatch);
+ Type -> ?SET(difference(?LIST(S1), ?LIST(S2), []), Type)
+ end.
+
+-spec(symdiff(Set1, Set2) -> Set3 when
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set()).
+symdiff(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case unify_types(?TYPE(S1), ?TYPE(S2)) of
+ [] -> erlang:error(type_mismatch);
+ Type -> ?SET(symdiff(?LIST(S1), ?LIST(S2), []), Type)
+ end.
+
+-spec(symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5} when
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set(),
+ Set4 :: a_set(),
+ Set5 :: a_set()).
+symmetric_partition(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case unify_types(?TYPE(S1), ?TYPE(S2)) of
+ [] -> erlang:error(type_mismatch);
+ Type -> sympart(?LIST(S1), ?LIST(S2), [], [], [], Type)
+ end.
+
+-spec(product(Set1, Set2) -> BinRel when
+ BinRel :: binary_relation(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+product(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ if
+ ?TYPE(S1) =:= ?ANYTYPE -> S1;
+ ?TYPE(S2) =:= ?ANYTYPE -> S2;
+ true ->
+ F = fun(E) -> {0, E} end,
+ T = ?BINREL(?TYPE(S1), ?TYPE(S2)),
+ ?SET(relprod(map(F, ?LIST(S1)), map(F, ?LIST(S2))), T)
+ end.
+
+-spec(product(TupleOfSets) -> Relation when
+ Relation :: relation(),
+ TupleOfSets :: tuple_of(a_set())).
+product({S1, S2}) ->
+ product(S1, S2);
+product(T) when is_tuple(T) ->
+ Ss = tuple_to_list(T),
+ try sets_to_list(Ss) of
+ [] ->
+ erlang:error(badarg);
+ L ->
+ Type = types(Ss, []),
+ case member([], L) of
+ true ->
+ empty_set();
+ false ->
+ ?SET(reverse(prod(L, [], [])), Type)
+ end
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(constant_function(Set, AnySet) -> Function when
+ AnySet :: anyset(),
+ Function :: a_function(),
+ Set :: a_set()).
+constant_function(S, E) when ?IS_SET(S) ->
+ case {?TYPE(S), is_sofs_set(E)} of
+ {?ANYTYPE, true} -> S;
+ {Type, true} ->
+ NType = ?BINREL(Type, type(E)),
+ ?SET(constant_function(?LIST(S), to_external(E), []), NType);
+ _ -> erlang:error(badarg)
+ end;
+constant_function(S, _) when ?IS_ORDSET(S) ->
+ erlang:error(badarg).
+
+-spec(is_equal(AnySet1, AnySet2) -> Bool when
+ AnySet1 :: anyset(),
+ AnySet2 :: anyset(),
+ Bool :: boolean()).
+is_equal(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case match_types(?TYPE(S1), ?TYPE(S2)) of
+ true -> ?LIST(S1) == ?LIST(S2);
+ false -> erlang:error(type_mismatch)
+ end;
+is_equal(S1, S2) when ?IS_ORDSET(S1), ?IS_ORDSET(S2) ->
+ case match_types(?ORDTYPE(S1), ?ORDTYPE(S2)) of
+ true -> ?ORDDATA(S1) == ?ORDDATA(S2);
+ false -> erlang:error(type_mismatch)
+ end;
+is_equal(S1, S2) when ?IS_SET(S1), ?IS_ORDSET(S2) ->
+ erlang:error(type_mismatch);
+is_equal(S1, S2) when ?IS_ORDSET(S1), ?IS_SET(S2) ->
+ erlang:error(type_mismatch).
+
+-spec(is_subset(Set1, Set2) -> Bool when
+ Bool :: boolean(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+is_subset(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case match_types(?TYPE(S1), ?TYPE(S2)) of
+ true -> subset(?LIST(S1), ?LIST(S2));
+ false -> erlang:error(type_mismatch)
+ end.
+
+-spec(is_sofs_set(Term) -> Bool when
+ Bool :: boolean(),
+ Term :: term()).
+is_sofs_set(S) when ?IS_SET(S) ->
+ true;
+is_sofs_set(S) when ?IS_ORDSET(S) ->
+ true;
+is_sofs_set(_S) ->
+ false.
+
+-spec(is_set(AnySet) -> Bool when
+ AnySet :: anyset(),
+ Bool :: boolean()).
+is_set(S) when ?IS_SET(S) ->
+ true;
+is_set(S) when ?IS_ORDSET(S) ->
+ false.
+
+-spec(is_empty_set(AnySet) -> Bool when
+ AnySet :: anyset(),
+ Bool :: boolean()).
+is_empty_set(S) when ?IS_SET(S) ->
+ ?LIST(S) =:= [];
+is_empty_set(S) when ?IS_ORDSET(S) ->
+ false.
+
+-spec(is_disjoint(Set1, Set2) -> Bool when
+ Bool :: boolean(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+is_disjoint(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ case match_types(?TYPE(S1), ?TYPE(S2)) of
+ true ->
+ case ?LIST(S1) of
+ [] -> true;
+ [A | As] -> disjoint(?LIST(S2), A, As)
+ end;
+ false -> erlang:error(type_mismatch)
+ end.
+
+%%%
+%%% Functions on set-of-sets.
+%%%
+
+-spec(union(SetOfSets) -> Set when
+ Set :: a_set(),
+ SetOfSets :: set_of_sets()).
+union(Sets) when ?IS_SET(Sets) ->
+ case ?TYPE(Sets) of
+ ?SET_OF(Type) -> ?SET(lunion(?LIST(Sets)), Type);
+ ?ANYTYPE -> Sets;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(intersection(SetOfSets) -> Set when
+ Set :: a_set(),
+ SetOfSets :: set_of_sets()).
+intersection(Sets) when ?IS_SET(Sets) ->
+ case ?LIST(Sets) of
+ [] -> erlang:error(badarg);
+ [L | Ls] ->
+ case ?TYPE(Sets) of
+ ?SET_OF(Type) ->
+ ?SET(lintersection(Ls, L), Type);
+ _ -> erlang:error(badarg)
+ end
+ end.
+
+-spec(canonical_relation(SetOfSets) -> BinRel when
+ BinRel :: binary_relation(),
+ SetOfSets :: set_of_sets()).
+canonical_relation(Sets) when ?IS_SET(Sets) ->
+ ST = ?TYPE(Sets),
+ case ST of
+ ?SET_OF(?ANYTYPE) -> empty_set();
+ ?SET_OF(Type) ->
+ ?SET(can_rel(?LIST(Sets), []), ?BINREL(Type, ST));
+ ?ANYTYPE -> Sets;
+ _ -> erlang:error(badarg)
+ end.
+
+%%%
+%%% Functions on binary relations only.
+%%%
+
+-spec(rel2fam(BinRel) -> Family when
+ Family :: family(),
+ BinRel :: binary_relation()).
+rel2fam(R) ->
+ relation_to_family(R).
+
+-spec(relation_to_family(BinRel) -> Family when
+ Family :: family(),
+ BinRel :: binary_relation()).
+%% Inlined.
+relation_to_family(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ ?BINREL(DT, RT) ->
+ ?SET(rel2family(?LIST(R)), ?FAMILY(DT, RT));
+ ?ANYTYPE -> R;
+ _Else -> erlang:error(badarg)
+ end.
+
+-spec(domain(BinRel) -> Set when
+ BinRel :: binary_relation(),
+ Set :: a_set()).
+domain(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ ?BINREL(DT, _) -> ?SET(dom(?LIST(R)), DT);
+ ?ANYTYPE -> R;
+ _Else -> erlang:error(badarg)
+ end.
+
+-spec(range(BinRel) -> Set when
+ BinRel :: binary_relation(),
+ Set :: a_set()).
+range(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ ?BINREL(_, RT) -> ?SET(ran(?LIST(R), []), RT);
+ ?ANYTYPE -> R;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(field(BinRel) -> Set when
+ BinRel :: binary_relation(),
+ Set :: a_set()).
+%% In "Introduction to LOGIC", Suppes defines the field of a binary
+%% relation to be the union of the domain and the range (or
+%% counterdomain).
+field(R) ->
+ union(domain(R), range(R)).
+
+-spec(relative_product(ListOfBinRels) -> BinRel2 when
+ ListOfBinRels :: [BinRel, ...],
+ BinRel :: binary_relation(),
+ BinRel2 :: binary_relation()).
+%% The following clause is kept for backward compatibility.
+%% The list is due to Dialyzer's specs.
+relative_product(RT) when is_tuple(RT) ->
+ relative_product(tuple_to_list(RT));
+relative_product(RL) when is_list(RL) ->
+ case relprod_n(RL, foo, false, false) of
+ {error, Reason} ->
+ erlang:error(Reason);
+ Reply ->
+ Reply
+ end.
+
+-spec(relative_product(ListOfBinRels, BinRel1) -> BinRel2 when
+ ListOfBinRels :: [BinRel, ...],
+ BinRel :: binary_relation(),
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation();
+ (BinRel1, BinRel2) -> BinRel3 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation(),
+ BinRel3 :: binary_relation()).
+relative_product(R1, R2) when ?IS_SET(R1), ?IS_SET(R2) ->
+ relative_product1(converse(R1), R2);
+%% The following clause is kept for backward compatibility.
+%% The list is due to Dialyzer's specs.
+relative_product(RT, R) when is_tuple(RT), ?IS_SET(R) ->
+ relative_product(tuple_to_list(RT), R);
+relative_product(RL, R) when is_list(RL), ?IS_SET(R) ->
+ EmptyR = case ?TYPE(R) of
+ ?BINREL(_, _) -> ?LIST(R) =:= [];
+ ?ANYTYPE -> true;
+ _ -> erlang:error(badarg)
+ end,
+ case relprod_n(RL, R, EmptyR, true) of
+ {error, Reason} ->
+ erlang:error(Reason);
+ Reply ->
+ Reply
+ end.
+
+-spec(relative_product1(BinRel1, BinRel2) -> BinRel3 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation(),
+ BinRel3 :: binary_relation()).
+relative_product1(R1, R2) when ?IS_SET(R1), ?IS_SET(R2) ->
+ {DTR1, RTR1} = case ?TYPE(R1) of
+ ?BINREL(_, _) = R1T -> R1T;
+ ?ANYTYPE -> {?ANYTYPE, ?ANYTYPE};
+ _ -> erlang:error(badarg)
+ end,
+ {DTR2, RTR2} = case ?TYPE(R2) of
+ ?BINREL(_, _) = R2T -> R2T;
+ ?ANYTYPE -> {?ANYTYPE, ?ANYTYPE};
+ _ -> erlang:error(badarg)
+ end,
+ case match_types(DTR1, DTR2) of
+ true when DTR1 =:= ?ANYTYPE -> R1;
+ true when DTR2 =:= ?ANYTYPE -> R2;
+ true -> ?SET(relprod(?LIST(R1), ?LIST(R2)), ?BINREL(RTR1, RTR2));
+ false -> erlang:error(type_mismatch)
+ end.
+
+-spec(converse(BinRel1) -> BinRel2 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation()).
+converse(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ ?BINREL(DT, RT) -> ?SET(converse(?LIST(R), []), ?BINREL(RT, DT));
+ ?ANYTYPE -> R;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(image(BinRel, Set1) -> Set2 when
+ BinRel :: binary_relation(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+image(R, S) when ?IS_SET(R), ?IS_SET(S) ->
+ case ?TYPE(R) of
+ ?BINREL(DT, RT) ->
+ case match_types(DT, ?TYPE(S)) of
+ true ->
+ ?SET(usort(restrict(?LIST(S), ?LIST(R))), RT);
+ false ->
+ erlang:error(type_mismatch)
+ end;
+ ?ANYTYPE -> R;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(inverse_image(BinRel, Set1) -> Set2 when
+ BinRel :: binary_relation(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+inverse_image(R, S) when ?IS_SET(R), ?IS_SET(S) ->
+ case ?TYPE(R) of
+ ?BINREL(DT, RT) ->
+ case match_types(RT, ?TYPE(S)) of
+ true ->
+ NL = restrict(?LIST(S), converse(?LIST(R), [])),
+ ?SET(usort(NL), DT);
+ false ->
+ erlang:error(type_mismatch)
+ end;
+ ?ANYTYPE -> R;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(strict_relation(BinRel1) -> BinRel2 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation()).
+strict_relation(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ Type = ?BINREL(_, _) ->
+ ?SET(strict(?LIST(R), []), Type);
+ ?ANYTYPE -> R;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(weak_relation(BinRel1) -> BinRel2 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation()).
+weak_relation(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ ?BINREL(DT, RT) ->
+ case unify_types(DT, RT) of
+ [] ->
+ erlang:error(badarg);
+ Type ->
+ ?SET(weak(?LIST(R)), ?BINREL(Type, Type))
+ end;
+ ?ANYTYPE -> R;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(extension(BinRel1, Set, AnySet) -> BinRel2 when
+ AnySet :: anyset(),
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation(),
+ Set :: a_set()).
+extension(R, S, E) when ?IS_SET(R), ?IS_SET(S) ->
+ case {?TYPE(R), ?TYPE(S), is_sofs_set(E)} of
+ {T=?BINREL(DT, RT), ST, true} ->
+ case match_types(DT, ST) and match_types(RT, type(E)) of
+ false ->
+ erlang:error(type_mismatch);
+ true ->
+ RL = ?LIST(R),
+ case extc([], ?LIST(S), to_external(E), RL) of
+ [] ->
+ R;
+ L ->
+ ?SET(merge(RL, reverse(L)), T)
+ end
+ end;
+ {?ANYTYPE, ?ANYTYPE, true} ->
+ R;
+ {?ANYTYPE, ST, true} ->
+ case type(E) of
+ ?SET_OF(?ANYTYPE) ->
+ R;
+ ET ->
+ ?SET([], ?BINREL(ST, ET))
+ end;
+ {_, _, true} ->
+ erlang:error(badarg)
+ end.
+
+-spec(is_a_function(BinRel) -> Bool when
+ Bool :: boolean(),
+ BinRel :: binary_relation()).
+is_a_function(R) when ?IS_SET(R) ->
+ case ?TYPE(R) of
+ ?BINREL(_, _) ->
+ case ?LIST(R) of
+ [] -> true;
+ [{V,_} | Es] -> is_a_func(Es, V)
+ end;
+ ?ANYTYPE -> true;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(restriction(BinRel1, Set) -> BinRel2 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation(),
+ Set :: a_set()).
+restriction(Relation, Set) ->
+ restriction(1, Relation, Set).
+
+-spec(drestriction(BinRel1, Set) -> BinRel2 when
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation(),
+ Set :: a_set()).
+drestriction(Relation, Set) ->
+ drestriction(1, Relation, Set).
+
+%%%
+%%% Functions on functions only.
+%%%
+
+-spec(composite(Function1, Function2) -> Function3 when
+ Function1 :: a_function(),
+ Function2 :: a_function(),
+ Function3 :: a_function()).
+composite(Fn1, Fn2) when ?IS_SET(Fn1), ?IS_SET(Fn2) ->
+ ?BINREL(DTF1, RTF1) = case ?TYPE(Fn1)of
+ ?BINREL(_, _) = F1T -> F1T;
+ ?ANYTYPE -> {?ANYTYPE, ?ANYTYPE};
+ _ -> erlang:error(badarg)
+ end,
+ ?BINREL(DTF2, RTF2) = case ?TYPE(Fn2) of
+ ?BINREL(_, _) = F2T -> F2T;
+ ?ANYTYPE -> {?ANYTYPE, ?ANYTYPE};
+ _ -> erlang:error(badarg)
+ end,
+ case match_types(RTF1, DTF2) of
+ true when DTF1 =:= ?ANYTYPE -> Fn1;
+ true when DTF2 =:= ?ANYTYPE -> Fn2;
+ true ->
+ case comp(?LIST(Fn1), ?LIST(Fn2)) of
+ SL when is_list(SL) ->
+ ?SET(sort(SL), ?BINREL(DTF1, RTF2));
+ Bad ->
+ erlang:error(Bad)
+ end;
+ false -> erlang:error(type_mismatch)
+ end.
+
+-spec(inverse(Function1) -> Function2 when
+ Function1 :: a_function(),
+ Function2 :: a_function()).
+inverse(Fn) when ?IS_SET(Fn) ->
+ case ?TYPE(Fn) of
+ ?BINREL(DT, RT) ->
+ case inverse1(?LIST(Fn)) of
+ SL when is_list(SL) ->
+ ?SET(SL, ?BINREL(RT, DT));
+ Bad ->
+ erlang:error(Bad)
+ end;
+ ?ANYTYPE -> Fn;
+ _ -> erlang:error(badarg)
+ end.
+
+%%%
+%%% Functions on relations (binary or other).
+%%%
+
+-spec(restriction(SetFun, Set1, Set2) -> Set3 when
+ SetFun :: set_fun(),
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set()).
+%% Equivalent to range(restriction(inverse(substitution(Fun, S1)), S2)).
+restriction(I, R, S) when is_integer(I), ?IS_SET(R), ?IS_SET(S) ->
+ RT = ?TYPE(R),
+ ST = ?TYPE(S),
+ case check_for_sort(RT, I) of
+ empty ->
+ R;
+ error ->
+ erlang:error(badarg);
+ Sort ->
+ RL = ?LIST(R),
+ case {match_types(?REL_TYPE(I, RT), ST), ?LIST(S)} of
+ {true, _SL} when RL =:= [] ->
+ R;
+ {true, []} ->
+ ?SET([], RT);
+ {true, [E | Es]} when Sort =:= false -> % I =:= 1
+ ?SET(reverse(restrict_n(I, RL, E, Es, [])), RT);
+ {true, [E | Es]} ->
+ ?SET(sort(restrict_n(I, keysort(I, RL), E, Es, [])), RT);
+ {false, _SL} ->
+ erlang:error(type_mismatch)
+ end
+ end;
+restriction(SetFun, S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ Type1 = ?TYPE(S1),
+ Type2 = ?TYPE(S2),
+ SL1 = ?LIST(S1),
+ case external_fun(SetFun) of
+ false when Type2 =:= ?ANYTYPE ->
+ S2;
+ false ->
+ case subst(SL1, SetFun, element_type(Type1)) of
+ {NSL, NewType} -> % NewType can be ?ANYTYPE
+ case match_types(NewType, Type2) of
+ true ->
+ NL = sort(restrict(?LIST(S2), converse(NSL, []))),
+ ?SET(NL, Type1);
+ false ->
+ erlang:error(type_mismatch)
+ end;
+ Bad ->
+ erlang:error(Bad)
+ end;
+ _ when Type1 =:= ?ANYTYPE ->
+ S1;
+ _XFun when ?IS_SET_OF(Type1) ->
+ erlang:error(badarg);
+ XFun ->
+ FunT = XFun(Type1),
+ try check_fun(Type1, XFun, FunT) of
+ Sort ->
+ case match_types(FunT, Type2) of
+ true ->
+ R1 = inverse_substitution(SL1, XFun, Sort),
+ ?SET(sort(Sort, restrict(?LIST(S2), R1)), Type1);
+ false ->
+ erlang:error(type_mismatch)
+ end
+ catch _:_ -> erlang:error(badarg)
+ end
+ end.
+
+-spec(drestriction(SetFun, Set1, Set2) -> Set3 when
+ SetFun :: set_fun(),
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set()).
+drestriction(I, R, S) when is_integer(I), ?IS_SET(R), ?IS_SET(S) ->
+ RT = ?TYPE(R),
+ ST = ?TYPE(S),
+ case check_for_sort(RT, I) of
+ empty ->
+ R;
+ error ->
+ erlang:error(badarg);
+ Sort ->
+ RL = ?LIST(R),
+ case {match_types(?REL_TYPE(I, RT), ST), ?LIST(S)} of
+ {true, []} ->
+ R;
+ {true, _SL} when RL =:= [] ->
+ R;
+ {true, [E | Es]} when Sort =:= false -> % I =:= 1
+ ?SET(diff_restrict_n(I, RL, E, Es, []), RT);
+ {true, [E | Es]} ->
+ ?SET(diff_restrict_n(I, keysort(I, RL), E, Es, []), RT);
+ {false, _SL} ->
+ erlang:error(type_mismatch)
+ end
+ end;
+drestriction(SetFun, S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ Type1 = ?TYPE(S1),
+ Type2 = ?TYPE(S2),
+ SL1 = ?LIST(S1),
+ case external_fun(SetFun) of
+ false when Type2 =:= ?ANYTYPE ->
+ S1;
+ false ->
+ case subst(SL1, SetFun, element_type(Type1)) of
+ {NSL, NewType} -> % NewType can be ?ANYTYPE
+ case match_types(NewType, Type2) of
+ true ->
+ SL2 = ?LIST(S2),
+ NL = sort(diff_restrict(SL2, converse(NSL, []))),
+ ?SET(NL, Type1);
+ false ->
+ erlang:error(type_mismatch)
+ end;
+ Bad ->
+ erlang:error(Bad)
+ end;
+ _ when Type1 =:= ?ANYTYPE ->
+ S1;
+ _XFun when ?IS_SET_OF(Type1) ->
+ erlang:error(badarg);
+ XFun ->
+ FunT = XFun(Type1),
+ try check_fun(Type1, XFun, FunT) of
+ Sort ->
+ case match_types(FunT, Type2) of
+ true ->
+ R1 = inverse_substitution(SL1, XFun, Sort),
+ SL2 = ?LIST(S2),
+ ?SET(sort(Sort, diff_restrict(SL2, R1)), Type1);
+ false ->
+ erlang:error(type_mismatch)
+ end
+ catch _:_ -> erlang:error(badarg)
+ end
+ end.
+
+-spec(projection(SetFun, Set1) -> Set2 when
+ SetFun :: set_fun(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+projection(I, Set) when is_integer(I), ?IS_SET(Set) ->
+ Type = ?TYPE(Set),
+ case check_for_sort(Type, I) of
+ empty ->
+ Set;
+ error ->
+ erlang:error(badarg);
+ _ when I =:= 1 ->
+ ?SET(projection1(?LIST(Set)), ?REL_TYPE(I, Type));
+ _ ->
+ ?SET(projection_n(?LIST(Set), I, []), ?REL_TYPE(I, Type))
+ end;
+projection(Fun, Set) ->
+ range(substitution(Fun, Set)).
+
+-spec(substitution(SetFun, Set1) -> Set2 when
+ SetFun :: set_fun(),
+ Set1 :: a_set(),
+ Set2 :: a_set()).
+substitution(I, Set) when is_integer(I), ?IS_SET(Set) ->
+ Type = ?TYPE(Set),
+ case check_for_sort(Type, I) of
+ empty ->
+ Set;
+ error ->
+ erlang:error(badarg);
+ _Sort ->
+ NType = ?REL_TYPE(I, Type),
+ NSL = substitute_element(?LIST(Set), I, []),
+ ?SET(NSL, ?BINREL(Type, NType))
+ end;
+substitution(SetFun, Set) when ?IS_SET(Set) ->
+ Type = ?TYPE(Set),
+ L = ?LIST(Set),
+ case external_fun(SetFun) of
+ false when L =/= [] ->
+ case subst(L, SetFun, element_type(Type)) of
+ {SL, NewType} ->
+ ?SET(reverse(SL), ?BINREL(Type, NewType));
+ Bad ->
+ erlang:error(Bad)
+ end;
+ false ->
+ empty_set();
+ _ when Type =:= ?ANYTYPE ->
+ empty_set();
+ _XFun when ?IS_SET_OF(Type) ->
+ erlang:error(badarg);
+ XFun ->
+ FunT = XFun(Type),
+ try check_fun(Type, XFun, FunT) of
+ _Sort ->
+ SL = substitute(L, XFun, []),
+ ?SET(SL, ?BINREL(Type, FunT))
+ catch _:_ -> erlang:error(badarg)
+ end
+ end.
+
+-spec(partition(SetOfSets) -> Partition when
+ SetOfSets :: set_of_sets(),
+ Partition :: a_set()).
+partition(Sets) ->
+ F1 = relation_to_family(canonical_relation(Sets)),
+ F2 = relation_to_family(converse(F1)),
+ range(F2).
+
+-spec(partition(SetFun, Set) -> Partition when
+ SetFun :: set_fun(),
+ Partition :: a_set(),
+ Set :: a_set()).
+partition(I, Set) when is_integer(I), ?IS_SET(Set) ->
+ Type = ?TYPE(Set),
+ case check_for_sort(Type, I) of
+ empty ->
+ Set;
+ error ->
+ erlang:error(badarg);
+ false -> % I =:= 1
+ ?SET(partition_n(I, ?LIST(Set)), ?SET_OF(Type));
+ true ->
+ ?SET(partition_n(I, keysort(I, ?LIST(Set))), ?SET_OF(Type))
+ end;
+partition(Fun, Set) ->
+ range(partition_family(Fun, Set)).
+
+-spec(partition(SetFun, Set1, Set2) -> {Set3, Set4} when
+ SetFun :: set_fun(),
+ Set1 :: a_set(),
+ Set2 :: a_set(),
+ Set3 :: a_set(),
+ Set4 :: a_set()).
+partition(I, R, S) when is_integer(I), ?IS_SET(R), ?IS_SET(S) ->
+ RT = ?TYPE(R),
+ ST = ?TYPE(S),
+ case check_for_sort(RT, I) of
+ empty ->
+ {R, R};
+ error ->
+ erlang:error(badarg);
+ Sort ->
+ RL = ?LIST(R),
+ case {match_types(?REL_TYPE(I, RT), ST), ?LIST(S)} of
+ {true, _SL} when RL =:= [] ->
+ {R, R};
+ {true, []} ->
+ {?SET([], RT), R};
+ {true, [E | Es]} when Sort =:= false -> % I =:= 1
+ [L1 | L2] = partition3_n(I, RL, E, Es, [], []),
+ {?SET(L1, RT), ?SET(L2, RT)};
+ {true, [E | Es]} ->
+ [L1 | L2] = partition3_n(I, keysort(I,RL), E, Es, [], []),
+ {?SET(L1, RT), ?SET(L2, RT)};
+ {false, _SL} ->
+ erlang:error(type_mismatch)
+ end
+ end;
+partition(SetFun, S1, S2) when ?IS_SET(S1), ?IS_SET(S2) ->
+ Type1 = ?TYPE(S1),
+ Type2 = ?TYPE(S2),
+ SL1 = ?LIST(S1),
+ case external_fun(SetFun) of
+ false when Type2 =:= ?ANYTYPE ->
+ {S2, S1};
+ false ->
+ case subst(SL1, SetFun, element_type(Type1)) of
+ {NSL, NewType} -> % NewType can be ?ANYTYPE
+ case match_types(NewType, Type2) of
+ true ->
+ R1 = converse(NSL, []),
+ [L1 | L2] = partition3(?LIST(S2), R1),
+ {?SET(sort(L1), Type1), ?SET(sort(L2), Type1)};
+ false ->
+ erlang:error(type_mismatch)
+ end;
+ Bad ->
+ erlang:error(Bad)
+ end;
+ _ when Type1 =:= ?ANYTYPE ->
+ {S1, S1};
+ _XFun when ?IS_SET_OF(Type1) ->
+ erlang:error(badarg);
+ XFun ->
+ FunT = XFun(Type1),
+ try check_fun(Type1, XFun, FunT) of
+ Sort ->
+ case match_types(FunT, Type2) of
+ true ->
+ R1 = inverse_substitution(SL1, XFun, Sort),
+ [L1 | L2] = partition3(?LIST(S2), R1),
+ {?SET(sort(L1), Type1), ?SET(sort(L2), Type1)};
+ false ->
+ erlang:error(type_mismatch)
+ end
+ catch _:_ -> erlang:error(badarg)
+ end
+ end.
+
+-spec(multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2 when
+ TupleOfBinRels :: tuple_of(BinRel),
+ BinRel :: binary_relation(),
+ BinRel1 :: binary_relation(),
+ BinRel2 :: binary_relation()).
+multiple_relative_product(T, R) when is_tuple(T), ?IS_SET(R) ->
+ case test_rel(R, tuple_size(T), eq) of
+ true when ?TYPE(R) =:= ?ANYTYPE ->
+ empty_set();
+ true ->
+ MProd = mul_relprod(tuple_to_list(T), 1, R),
+ relative_product(MProd);
+ false ->
+ erlang:error(badarg)
+ end.
+
+-spec(join(Relation1, I, Relation2, J) -> Relation3 when
+ Relation1 :: relation(),
+ Relation2 :: relation(),
+ Relation3 :: relation(),
+ I :: pos_integer(),
+ J :: pos_integer()).
+join(R1, I1, R2, I2)
+ when ?IS_SET(R1), ?IS_SET(R2), is_integer(I1), is_integer(I2) ->
+ case test_rel(R1, I1, lte) and test_rel(R2, I2, lte) of
+ false -> erlang:error(badarg);
+ true when ?TYPE(R1) =:= ?ANYTYPE -> R1;
+ true when ?TYPE(R2) =:= ?ANYTYPE -> R2;
+ true ->
+ L1 = ?LIST(raise_element(R1, I1)),
+ L2 = ?LIST(raise_element(R2, I2)),
+ T = relprod1(L1, L2),
+ F = case (I1 =:= 1) and (I2 =:= 1) of
+ true ->
+ fun({X,Y}) -> join_element(X, Y) end;
+ false ->
+ fun({X,Y}) ->
+ list_to_tuple(join_element(X, Y, I2))
+ end
+ end,
+ ?SET(replace(T, F, []), F({?TYPE(R1), ?TYPE(R2)}))
+ end.
+
+%% Inlined.
+test_rel(R, I, C) ->
+ case ?TYPE(R) of
+ Rel when ?IS_RELATION(Rel), C =:= eq, I =:= ?REL_ARITY(Rel) -> true;
+ Rel when ?IS_RELATION(Rel), C =:= lte, I>=1, I =< ?REL_ARITY(Rel) ->
+ true;
+ ?ANYTYPE -> true;
+ _ -> false
+ end.
+
+%%%
+%%% Family functions
+%%%
+
+-spec(fam2rel(Family) -> BinRel when
+ Family :: family(),
+ BinRel :: binary_relation()).
+fam2rel(F) ->
+ family_to_relation(F).
+
+-spec(family_to_relation(Family) -> BinRel when
+ Family :: family(),
+ BinRel :: binary_relation()).
+%% Inlined.
+family_to_relation(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(DT, RT) ->
+ ?SET(family2rel(?LIST(F), []), ?BINREL(DT, RT));
+ ?ANYTYPE -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(family_specification(Fun, Family1) -> Family2 when
+ Fun :: spec_fun(),
+ Family1 :: family(),
+ Family2 :: family()).
+family_specification(Fun, F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(_DT, Type) = FType ->
+ R = case external_fun(Fun) of
+ false ->
+ fam_spec(?LIST(F), Fun, Type, []);
+ XFun ->
+ fam_specification(?LIST(F), XFun, [])
+ end,
+ case R of
+ SL when is_list(SL) ->
+ ?SET(SL, FType);
+ Bad ->
+ erlang:error(Bad)
+ end;
+ ?ANYTYPE -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(union_of_family(Family) -> Set when
+ Family :: family(),
+ Set :: a_set()).
+union_of_family(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(_DT, Type) ->
+ ?SET(un_of_fam(?LIST(F), []), Type);
+ ?ANYTYPE -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(intersection_of_family(Family) -> Set when
+ Family :: family(),
+ Set :: a_set()).
+intersection_of_family(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(_DT, Type) ->
+ case int_of_fam(?LIST(F)) of
+ FU when is_list(FU) ->
+ ?SET(FU, Type);
+ Bad ->
+ erlang:error(Bad)
+ end;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(family_union(Family1) -> Family2 when
+ Family1 :: family(),
+ Family2 :: family()).
+family_union(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(DT, ?SET_OF(Type)) ->
+ ?SET(fam_un(?LIST(F), []), ?FAMILY(DT, Type));
+ ?ANYTYPE -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(family_intersection(Family1) -> Family2 when
+ Family1 :: family(),
+ Family2 :: family()).
+family_intersection(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(DT, ?SET_OF(Type)) ->
+ case fam_int(?LIST(F), []) of
+ FU when is_list(FU) ->
+ ?SET(FU, ?FAMILY(DT, Type));
+ Bad ->
+ erlang:error(Bad)
+ end;
+ ?ANYTYPE -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(family_domain(Family1) -> Family2 when
+ Family1 :: family(),
+ Family2 :: family()).
+family_domain(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(FDT, ?BINREL(DT, _)) ->
+ ?SET(fam_dom(?LIST(F), []), ?FAMILY(FDT, DT));
+ ?ANYTYPE -> F;
+ ?FAMILY(_, ?ANYTYPE) -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(family_range(Family1) -> Family2 when
+ Family1 :: family(),
+ Family2 :: family()).
+family_range(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(DT, ?BINREL(_, RT)) ->
+ ?SET(fam_ran(?LIST(F), []), ?FAMILY(DT, RT));
+ ?ANYTYPE -> F;
+ ?FAMILY(_, ?ANYTYPE) -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(family_field(Family1) -> Family2 when
+ Family1 :: family(),
+ Family2 :: family()).
+family_field(F) ->
+ family_union(family_domain(F), family_range(F)).
+
+-spec(family_union(Family1, Family2) -> Family3 when
+ Family1 :: family(),
+ Family2 :: family(),
+ Family3 :: family()).
+family_union(F1, F2) ->
+ fam_binop(F1, F2, fun fam_union/3).
+
+-spec(family_intersection(Family1, Family2) -> Family3 when
+ Family1 :: family(),
+ Family2 :: family(),
+ Family3 :: family()).
+family_intersection(F1, F2) ->
+ fam_binop(F1, F2, fun fam_intersect/3).
+
+-spec(family_difference(Family1, Family2) -> Family3 when
+ Family1 :: family(),
+ Family2 :: family(),
+ Family3 :: family()).
+family_difference(F1, F2) ->
+ fam_binop(F1, F2, fun fam_difference/3).
+
+%% Inlined.
+fam_binop(F1, F2, FF) when ?IS_SET(F1), ?IS_SET(F2) ->
+ case unify_types(?TYPE(F1), ?TYPE(F2)) of
+ [] ->
+ erlang:error(type_mismatch);
+ ?ANYTYPE ->
+ F1;
+ Type = ?FAMILY(_, _) ->
+ ?SET(FF(?LIST(F1), ?LIST(F2), []), Type);
+ _ -> erlang:error(badarg)
+ end.
+
+-spec(partition_family(SetFun, Set) -> Family when
+ Family :: family(),
+ SetFun :: set_fun(),
+ Set :: a_set()).
+partition_family(I, Set) when is_integer(I), ?IS_SET(Set) ->
+ Type = ?TYPE(Set),
+ case check_for_sort(Type, I) of
+ empty ->
+ Set;
+ error ->
+ erlang:error(badarg);
+ false -> % when I =:= 1
+ ?SET(fam_partition_n(I, ?LIST(Set)),
+ ?BINREL(?REL_TYPE(I, Type), ?SET_OF(Type)));
+ true ->
+ ?SET(fam_partition_n(I, keysort(I, ?LIST(Set))),
+ ?BINREL(?REL_TYPE(I, Type), ?SET_OF(Type)))
+ end;
+partition_family(SetFun, Set) when ?IS_SET(Set) ->
+ Type = ?TYPE(Set),
+ SL = ?LIST(Set),
+ case external_fun(SetFun) of
+ false when SL =/= [] ->
+ case subst(SL, SetFun, element_type(Type)) of
+ {NSL, NewType} ->
+ P = fam_partition(converse(NSL, []), true),
+ ?SET(reverse(P), ?BINREL(NewType, ?SET_OF(Type)));
+ Bad ->
+ erlang:error(Bad)
+ end;
+ false ->
+ empty_set();
+ _ when Type =:= ?ANYTYPE ->
+ empty_set();
+ _XFun when ?IS_SET_OF(Type) ->
+ erlang:error(badarg);
+ XFun ->
+ DType = XFun(Type),
+ try check_fun(Type, XFun, DType) of
+ Sort ->
+ Ts = inverse_substitution(?LIST(Set), XFun, Sort),
+ P = fam_partition(Ts, Sort),
+ ?SET(reverse(P), ?BINREL(DType, ?SET_OF(Type)))
+ catch _:_ -> erlang:error(badarg)
+ end
+ end.
+
+-spec(family_projection(SetFun, Family1) -> Family2 when
+ SetFun :: set_fun(),
+ Family1 :: family(),
+ Family2 :: family()).
+family_projection(SetFun, F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(_, _) when [] =:= ?LIST(F) ->
+ empty_set();
+ ?FAMILY(DT, Type) ->
+ case external_fun(SetFun) of
+ false ->
+ case fam_proj(?LIST(F), SetFun, Type, ?ANYTYPE, []) of
+ {SL, NewType} ->
+ ?SET(SL, ?BINREL(DT, NewType));
+ Bad ->
+ erlang:error(Bad)
+ end;
+ _ ->
+ erlang:error(badarg)
+ end;
+ ?ANYTYPE -> F;
+ _ -> erlang:error(badarg)
+ end.
+
+%%%
+%%% Digraph functions
+%%%
+
+-spec(family_to_digraph(Family) -> Graph when
+ Graph :: digraph:graph(),
+ Family :: family()).
+family_to_digraph(F) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(_, _) -> fam2digraph(F, digraph:new());
+ ?ANYTYPE -> digraph:new();
+ _Else -> erlang:error(badarg)
+ end.
+
+-spec(family_to_digraph(Family, GraphType) -> Graph when
+ Graph :: digraph:graph(),
+ Family :: family(),
+ GraphType :: [digraph:d_type()]).
+family_to_digraph(F, Type) when ?IS_SET(F) ->
+ case ?TYPE(F) of
+ ?FAMILY(_, _) -> ok;
+ ?ANYTYPE -> ok;
+ _Else -> erlang:error(badarg)
+ end,
+ try digraph:new(Type) of
+ G -> case catch fam2digraph(F, G) of
+ {error, Reason} ->
+ true = digraph:delete(G),
+ erlang:error(Reason);
+ _ ->
+ G
+ end
+ catch
+ error:badarg -> erlang:error(badarg)
+ end.
+
+-spec(digraph_to_family(Graph) -> Family when
+ Graph :: digraph:graph(),
+ Family :: family()).
+digraph_to_family(G) ->
+ try digraph_family(G) of
+ L -> ?SET(L, ?FAMILY(?ATOM_TYPE, ?ATOM_TYPE))
+ catch _:_ -> erlang:error(badarg)
+ end.
+
+-spec(digraph_to_family(Graph, Type) -> Family when
+ Graph :: digraph:graph(),
+ Family :: family(),
+ Type :: type()).
+digraph_to_family(G, T) ->
+ case {is_type(T), T} of
+ {true, ?SET_OF(?FAMILY(_,_) = Type)} ->
+ try digraph_family(G) of
+ L -> ?SET(L, Type)
+ catch _:_ -> erlang:error(badarg)
+ end;
+ _ ->
+ erlang:error(badarg)
+ end.
+
+%%
+%% Local functions
+%%
+
+%% Type = OrderedSetType
+%% | SetType
+%% | atom() except '_'
+%% OrderedSetType = {Type, ..., Type}
+%% SetType = [ElementType] % list of exactly one element
+%% ElementType = '_' % any type (implies empty set)
+%% | Type
+
+is_types(0, _T) ->
+ true;
+is_types(I, T) ->
+ case is_type(?REL_TYPE(I, T)) of
+ true -> is_types(I-1, T);
+ false -> false
+ end.
+
+is_element_type(?ANYTYPE) ->
+ true;
+is_element_type(T) ->
+ is_type(T).
+
+set_of_sets([S | Ss], L, T0) when ?IS_SET(S) ->
+ case unify_types([?TYPE(S)], T0) of
+ [] -> {error, type_mismatch};
+ Type -> set_of_sets(Ss, [?LIST(S) | L], Type)
+ end;
+set_of_sets([S | Ss], L, T0) when ?IS_ORDSET(S) ->
+ case unify_types(?ORDTYPE(S), T0) of
+ [] -> {error, type_mismatch};
+ Type -> set_of_sets(Ss, [?ORDDATA(S) | L], Type)
+ end;
+set_of_sets([], L, T) ->
+ ?SET(usort(L), T);
+set_of_sets(_, _L, _T) ->
+ {error, badarg}.
+
+ordset_of_sets([S | Ss], L, T) when ?IS_SET(S) ->
+ ordset_of_sets(Ss, [?LIST(S) | L], [[?TYPE(S)] | T]);
+ordset_of_sets([S | Ss], L, T) when ?IS_ORDSET(S) ->
+ ordset_of_sets(Ss, [?ORDDATA(S) | L], [?ORDTYPE(S) | T]);
+ordset_of_sets([], L, T) ->
+ ?ORDSET(list_to_tuple(reverse(L)), list_to_tuple(reverse(T)));
+ordset_of_sets(_, _L, _T) ->
+ error.
+
+%% Inlined.
+rel(Ts, [Type]) ->
+ case is_type(Type) and atoms_only(Type, 1) of
+ true ->
+ rel(Ts, tuple_size(Type), Type);
+ false ->
+ rel_type(Ts, [], Type)
+ end;
+rel(Ts, Sz) ->
+ rel(Ts, Sz, erlang:make_tuple(Sz, ?ATOM_TYPE)).
+
+atoms_only(Type, I) when ?IS_ATOM_TYPE(?REL_TYPE(I, Type)) ->
+ atoms_only(Type, I+1);
+atoms_only(Type, I) when I > tuple_size(Type), ?IS_RELATION(Type) ->
+ true;
+atoms_only(_Type, _I) ->
+ false.
+
+rel(Ts, Sz, Type) when Sz >= 1 ->
+ SL = usort(Ts),
+ rel(SL, SL, Sz, Type).
+
+rel([T | Ts], L, Sz, Type) when tuple_size(T) =:= Sz ->
+ rel(Ts, L, Sz, Type);
+rel([], L, _Sz, Type) ->
+ ?SET(L, Type).
+
+rel_type([E | Ts], L, Type) ->
+ {NType, NE} = make_element(E, Type, Type),
+ rel_type(Ts, [NE | L], NType);
+rel_type([], [], ?ANYTYPE) ->
+ empty_set();
+rel_type([], SL, Type) when ?IS_RELATION(Type) ->
+ ?SET(usort(SL), Type).
+
+%% Inlined.
+a_func(Ts, T) ->
+ case {T, is_type(T)} of
+ {[?BINREL(DT, RT) = Type], true} when ?IS_ATOM_TYPE(DT),
+ ?IS_ATOM_TYPE(RT) ->
+ func(Ts, Type);
+ {[Type], true} ->
+ func_type(Ts, [], Type, fun(?BINREL(_,_)) -> true end)
+ end.
+
+func(L0, Type) ->
+ L = usort(L0),
+ func(L, L, L, Type).
+
+func([{X,_} | Ts], X0, L, Type) when X /= X0 ->
+ func(Ts, X, L, Type);
+func([{X,_} | _Ts], X0, _L, _Type) when X == X0 ->
+ bad_function;
+func([], _X0, L, Type) ->
+ ?SET(L, Type).
+
+%% Inlined.
+fam(Ts, T) ->
+ case {T, is_type(T)} of
+ {[?FAMILY(DT, RT) = Type], true} when ?IS_ATOM_TYPE(DT),
+ ?IS_ATOM_TYPE(RT) ->
+ fam2(Ts, Type);
+ {[Type], true} ->
+ func_type(Ts, [], Type, fun(?FAMILY(_,_)) -> true end)
+ end.
+
+fam2([], Type) ->
+ ?SET([], Type);
+fam2(Ts, Type) ->
+ fam2(sort(Ts), Ts, [], Type).
+
+fam2([{I,L} | T], I0, SL, Type) when I /= I0 ->
+ fam2(T, I, [{I,usort(L)} | SL], Type);
+fam2([{I,L} | T], I0, SL, Type) when I == I0 ->
+ case {usort(L), SL} of
+ {NL, [{_I,NL1} | _]} when NL == NL1 ->
+ fam2(T, I0, SL, Type);
+ _ ->
+ bad_function
+ end;
+fam2([], _I0, SL, Type) ->
+ ?SET(reverse(SL), Type).
+
+func_type([E | T], SL, Type, F) ->
+ {NType, NE} = make_element(E, Type, Type),
+ func_type(T, [NE | SL], NType, F);
+func_type([], [], ?ANYTYPE, _F) ->
+ empty_set();
+func_type([], SL, Type, F) ->
+ true = F(Type),
+ NL = usort(SL),
+ check_function(NL, ?SET(NL, Type)).
+
+setify(L, ?SET_OF(Atom)) when ?IS_ATOM_TYPE(Atom), Atom =/= ?ANYTYPE ->
+ ?SET(usort(L), Atom);
+setify(L, ?SET_OF(Type0)) ->
+ try is_no_lists(Type0) of
+ N when is_integer(N) ->
+ rel(L, N, Type0);
+ Sizes ->
+ make_oset(L, Sizes, L, Type0)
+ catch
+ _:_ ->
+ {?SET_OF(Type), Set} = create(L, Type0, Type0, []),
+ ?SET(Set, Type)
+ end;
+setify(E, Type0) ->
+ {Type, OrdSet} = make_element(E, Type0, Type0),
+ ?ORDSET(OrdSet, Type).
+
+is_no_lists(T) when is_tuple(T) ->
+ Sz = tuple_size(T),
+ is_no_lists(T, Sz, Sz, []).
+
+is_no_lists(_T, 0, Sz, []) ->
+ Sz;
+is_no_lists(_T, 0, Sz, L) ->
+ {Sz, L};
+is_no_lists(T, I, Sz, L) when ?IS_ATOM_TYPE(?REL_TYPE(I, T)) ->
+ is_no_lists(T, I-1, Sz, L);
+is_no_lists(T, I, Sz, L) ->
+ is_no_lists(T, I-1, Sz, [{I,is_no_lists(?REL_TYPE(I, T))} | L]).
+
+create([E | Es], T, T0, L) ->
+ {NT, S} = make_element(E, T, T0),
+ create(Es, NT, T0, [S | L]);
+create([], T, _T0, L) ->
+ {?SET_OF(T), usort(L)}.
+
+make_element(C, ?ANYTYPE, _T0) ->
+ make_element(C);
+make_element(C, Atom, ?ANYTYPE) when ?IS_ATOM_TYPE(Atom),
+ not is_list(C), not is_tuple(C) ->
+ {Atom, C};
+make_element(C, Atom, Atom) when ?IS_ATOM_TYPE(Atom) ->
+ {Atom, C};
+make_element(T, TT, ?ANYTYPE) when tuple_size(T) =:= tuple_size(TT) ->
+ make_tuple(tuple_to_list(T), tuple_to_list(TT), [], [], ?ANYTYPE);
+make_element(T, TT, T0) when tuple_size(T) =:= tuple_size(TT) ->
+ make_tuple(tuple_to_list(T), tuple_to_list(TT), [], [], tuple_to_list(T0));
+make_element(L, [LT], ?ANYTYPE) when is_list(L) ->
+ create(L, LT, ?ANYTYPE, []);
+make_element(L, [LT], [T0]) when is_list(L) ->
+ create(L, LT, T0, []).
+
+make_tuple([E | Es], [T | Ts], NT, L, T0) when T0 =:= ?ANYTYPE ->
+ {ET, ES} = make_element(E, T, T0),
+ make_tuple(Es, Ts, [ET | NT], [ES | L], T0);
+make_tuple([E | Es], [T | Ts], NT, L, [T0 | T0s]) ->
+ {ET, ES} = make_element(E, T, T0),
+ make_tuple(Es, Ts, [ET | NT], [ES | L], T0s);
+make_tuple([], [], NT, L, _T0s) when NT =/= [] ->
+ {list_to_tuple(reverse(NT)), list_to_tuple(reverse(L))}.
+
+%% Derive type.
+make_element(C) when not is_list(C), not is_tuple(C) ->
+ {?ATOM_TYPE, C};
+make_element(T) when is_tuple(T) ->
+ make_tuple(tuple_to_list(T), [], []);
+make_element(L) when is_list(L) ->
+ create(L, ?ANYTYPE, ?ANYTYPE, []).
+
+make_tuple([E | Es], T, L) ->
+ {ET, ES} = make_element(E),
+ make_tuple(Es, [ET | T], [ES | L]);
+make_tuple([], T, L) when T =/= [] ->
+ {list_to_tuple(reverse(T)), list_to_tuple(reverse(L))}.
+
+make_oset([T | Ts], Szs, L, Type) ->
+ true = test_oset(Szs, T, T),
+ make_oset(Ts, Szs, L, Type);
+make_oset([], _Szs, L, Type) ->
+ ?SET(usort(L), Type).
+
+%% Optimization. Avoid re-building (nested) tuples.
+test_oset({Sz,Args}, T, T0) when tuple_size(T) =:= Sz ->
+ test_oset_args(Args, T, T0);
+test_oset(Sz, T, _T0) when tuple_size(T) =:= Sz ->
+ true.
+
+test_oset_args([{Arg,Szs} | Ss], T, T0) ->
+ true = test_oset(Szs, ?REL_TYPE(Arg, T), T0),
+ test_oset_args(Ss, T, T0);
+test_oset_args([], _T, _T0) ->
+ true.
+
+list_of_sets([S | Ss], Type, L) ->
+ list_of_sets(Ss, Type, [?SET(S, Type) | L]);
+list_of_sets([], _Type, L) ->
+ reverse(L).
+
+list_of_ordsets([S | Ss], Type, L) ->
+ list_of_ordsets(Ss, Type, [?ORDSET(S, Type) | L]);
+list_of_ordsets([], _Type, L) ->
+ reverse(L).
+
+tuple_of_sets([S | Ss], [?SET_OF(Type) | Types], L) ->
+ tuple_of_sets(Ss, Types, [?SET(S, Type) | L]);
+tuple_of_sets([S | Ss], [Type | Types], L) ->
+ tuple_of_sets(Ss, Types, [?ORDSET(S, Type) | L]);
+tuple_of_sets([], [], L) ->
+ list_to_tuple(reverse(L)).
+
+spec([E | Es], Fun, Type, L) ->
+ case Fun(term2set(E, Type)) of
+ true ->
+ spec(Es, Fun, Type, [E | L]);
+ false ->
+ spec(Es, Fun, Type, L);
+ _ ->
+ badarg
+ end;
+spec([], _Fun, _Type, L) ->
+ reverse(L).
+
+specification([E | Es], Fun, L) ->
+ case Fun(E) of
+ true ->
+ specification(Es, Fun, [E | L]);
+ false ->
+ specification(Es, Fun, L);
+ _ ->
+ badarg
+ end;
+specification([], _Fun, L) ->
+ reverse(L).
+
+%% Elements from the first list are kept.
+intersection([H1 | T1], [H2 | T2], L) when H1 < H2 ->
+ intersection1(T1, T2, L, H2);
+intersection([H1 | T1], [H2 | T2], L) when H1 == H2 ->
+ intersection(T1, T2, [H1 | L]);
+intersection([H1 | T1], [_H2 | T2], L) ->
+ intersection2(T1, T2, L, H1);
+intersection(_, _, L) ->
+ reverse(L).
+
+intersection1([H1 | T1], T2, L, H2) when H1 < H2 ->
+ intersection1(T1, T2, L, H2);
+intersection1([H1 | T1], T2, L, H2) when H1 == H2 ->
+ intersection(T1, T2, [H1 | L]);
+intersection1([H1 | T1], T2, L, _H2) ->
+ intersection2(T1, T2, L, H1);
+intersection1(_, _, L, _) ->
+ reverse(L).
+
+intersection2(T1, [H2 | T2], L, H1) when H1 > H2 ->
+ intersection2(T1, T2, L, H1);
+intersection2(T1, [H2 | T2], L, H1) when H1 == H2 ->
+ intersection(T1, T2, [H1 | L]);
+intersection2(T1, [H2 | T2], L, _H1) ->
+ intersection1(T1, T2, L, H2);
+intersection2(_, _, L, _) ->
+ reverse(L).
+
+difference([H1 | T1], [H2 | T2], L) when H1 < H2 ->
+ diff(T1, T2, [H1 | L], H2);
+difference([H1 | T1], [H2 | T2], L) when H1 == H2 ->
+ difference(T1, T2, L);
+difference([H1 | T1], [_H2 | T2], L) ->
+ diff2(T1, T2, L, H1);
+difference(L1, _, L) ->
+ reverse(L, L1).
+
+diff([H1 | T1], T2, L, H2) when H1 < H2 ->
+ diff(T1, T2, [H1 | L], H2);
+diff([H1 | T1], T2, L, H2) when H1 == H2 ->
+ difference(T1, T2, L);
+diff([H1 | T1], T2, L, _H2) ->
+ diff2(T1, T2, L, H1);
+diff(_, _, L, _) ->
+ reverse(L).
+
+diff2(T1, [H2 | T2], L, H1) when H1 > H2 ->
+ diff2(T1, T2, L, H1);
+diff2(T1, [H2 | T2], L, H1) when H1 == H2 ->
+ difference(T1, T2, L);
+diff2(T1, [H2 | T2], L, H1) ->
+ diff(T1, T2, [H1 | L], H2);
+diff2(T1, _, L, H1) ->
+ reverse(L, [H1 | T1]).
+
+symdiff([H1 | T1], T2, L) ->
+ symdiff2(T1, T2, L, H1);
+symdiff(_, T2, L) ->
+ reverse(L, T2).
+
+symdiff1([H1 | T1], T2, L, H2) when H1 < H2 ->
+ symdiff1(T1, T2, [H1 | L], H2);
+symdiff1([H1 | T1], T2, L, H2) when H1 == H2 ->
+ symdiff(T1, T2, L);
+symdiff1([H1 | T1], T2, L, H2) ->
+ symdiff2(T1, T2, [H2 | L], H1);
+symdiff1(_, T2, L, H2) ->
+ reverse(L, [H2 | T2]).
+
+symdiff2(T1, [H2 | T2], L, H1) when H1 > H2 ->
+ symdiff2(T1, T2, [H2 | L], H1);
+symdiff2(T1, [H2 | T2], L, H1) when H1 == H2 ->
+ symdiff(T1, T2, L);
+symdiff2(T1, [H2 | T2], L, H1) ->
+ symdiff1(T1, T2, [H1 | L], H2);
+symdiff2(T1, _, L, H1) ->
+ reverse(L, [H1 | T1]).
+
+sympart([H1 | T1], [H2 | T2], L1, L12, L2, T) when H1 < H2 ->
+ sympart1(T1, T2, [H1 | L1], L12, L2, T, H2);
+sympart([H1 | T1], [H2 | T2], L1, L12, L2, T) when H1 == H2 ->
+ sympart(T1, T2, L1, [H1 | L12], L2, T);
+sympart([H1 | T1], [H2 | T2], L1, L12, L2, T) ->
+ sympart2(T1, T2, L1, L12, [H2 | L2], T, H1);
+sympart(S1, [], L1, L12, L2, T) ->
+ {?SET(reverse(L1, S1), T),
+ ?SET(reverse(L12), T),
+ ?SET(reverse(L2), T)};
+sympart(_, S2, L1, L12, L2, T) ->
+ {?SET(reverse(L1), T),
+ ?SET(reverse(L12), T),
+ ?SET(reverse(L2, S2), T)}.
+
+sympart1([H1 | T1], T2, L1, L12, L2, T, H2) when H1 < H2 ->
+ sympart1(T1, T2, [H1 | L1], L12, L2, T, H2);
+sympart1([H1 | T1], T2, L1, L12, L2, T, H2) when H1 == H2 ->
+ sympart(T1, T2, L1, [H1 | L12], L2, T);
+sympart1([H1 | T1], T2, L1, L12, L2, T, H2) ->
+ sympart2(T1, T2, L1, L12, [H2 | L2], T, H1);
+sympart1(_, T2, L1, L12, L2, T, H2) ->
+ {?SET(reverse(L1), T),
+ ?SET(reverse(L12), T),
+ ?SET(reverse(L2, [H2 | T2]), T)}.
+
+sympart2(T1, [H2 | T2], L1, L12, L2, T, H1) when H1 > H2 ->
+ sympart2(T1, T2, L1, L12, [H2 | L2], T, H1);
+sympart2(T1, [H2 | T2], L1, L12, L2, T, H1) when H1 == H2 ->
+ sympart(T1, T2, L1, [H1 | L12], L2, T);
+sympart2(T1, [H2 | T2], L1, L12, L2, T, H1) ->
+ sympart1(T1, T2, [H1 | L1], L12, L2, T, H2);
+sympart2(T1, _, L1, L12, L2, T, H1) ->
+ {?SET(reverse(L1, [H1 | T1]), T),
+ ?SET(reverse(L12), T),
+ ?SET(reverse(L2), T)}.
+
+prod([[E | Es] | Xs], T, L) ->
+ prod(Es, Xs, T, prod(Xs, [E | T], L));
+prod([], T, L) ->
+ [list_to_tuple(reverse(T)) | L].
+
+prod([E | Es], Xs, T, L) ->
+ prod(Es, Xs, T, prod(Xs, [E | T], L));
+prod([], _Xs, _E, L) ->
+ L.
+
+constant_function([E | Es], X, L) ->
+ constant_function(Es, X, [{E,X} | L]);
+constant_function([], _X, L) ->
+ reverse(L).
+
+subset([H1 | T1], [H2 | T2]) when H1 > H2 ->
+ subset(T1, T2, H1);
+subset([H1 | T1], [H2 | T2]) when H1 == H2 ->
+ subset(T1, T2);
+subset(L1, _) ->
+ L1 =:= [].
+
+subset(T1, [H2 | T2], H1) when H1 > H2 ->
+ subset(T1, T2, H1);
+subset(T1, [H2 | T2], H1) when H1 == H2 ->
+ subset(T1, T2);
+subset(_, _, _) ->
+ false.
+
+disjoint([B | Bs], A, As) when A < B ->
+ disjoint(As, B, Bs);
+disjoint([B | _Bs], A, _As) when A == B ->
+ false;
+disjoint([_B | Bs], A, As) ->
+ disjoint(Bs, A, As);
+disjoint(_Bs, _A, _As) ->
+ true.
+
+%% Append sets that come in order, then "merge".
+lunion([[_] = S]) -> % optimization
+ S;
+lunion([[] | Ls]) ->
+ lunion(Ls);
+lunion([S | Ss]) ->
+ umerge(lunion(Ss, last(S), [S], []));
+lunion([]) ->
+ [].
+
+lunion([[E] = S | Ss], Last, SL, Ls) when E > Last -> % optimization
+ lunion(Ss, E, [S | SL], Ls);
+lunion([S | Ss], Last, SL, Ls) when hd(S) > Last ->
+ lunion(Ss, last(S), [S | SL], Ls);
+lunion([S | Ss], _Last, SL, Ls) ->
+ lunion(Ss, last(S), [S], [append(reverse(SL)) | Ls]);
+lunion([], _Last, SL, Ls) ->
+ [append(reverse(SL)) | Ls].
+
+%% The empty list is always the first list, if present.
+lintersection(_, []) ->
+ [];
+lintersection([S | Ss], S0) ->
+ lintersection(Ss, intersection(S, S0, []));
+lintersection([], S) ->
+ S.
+
+can_rel([S | Ss], L) ->
+ can_rel(Ss, L, S, S);
+can_rel([], L) ->
+ sort(L).
+
+can_rel(Ss, L, [E | Es], S) ->
+ can_rel(Ss, [{E, S} | L], Es, S);
+can_rel(Ss, L, _, _S) ->
+ can_rel(Ss, L).
+
+rel2family([{X,Y} | S]) ->
+ rel2fam(S, X, [Y], []);
+rel2family([]) ->
+ [].
+
+rel2fam([{X,Y} | S], X0, YL, L) when X0 == X ->
+ rel2fam(S, X0, [Y | YL], L);
+rel2fam([{X,Y} | S], X0, [A,B | YL], L) -> % optimization
+ rel2fam(S, X, [Y], [{X0,reverse(YL,[B,A])} | L]);
+rel2fam([{X,Y} | S], X0, YL, L) ->
+ rel2fam(S, X, [Y], [{X0,YL} | L]);
+rel2fam([], X, YL, L) ->
+ reverse([{X,reverse(YL)} | L]).
+
+dom([{X,_} | Es]) ->
+ dom([], X, Es);
+dom([] = L) ->
+ L.
+
+dom(L, X, [{X1,_} | Es]) when X == X1 ->
+ dom(L, X, Es);
+dom(L, X, [{Y,_} | Es]) ->
+ dom([X | L], Y, Es);
+dom(L, X, []) ->
+ reverse(L, [X]).
+
+ran([{_,Y} | Es], L) ->
+ ran(Es, [Y | L]);
+ran([], L) ->
+ usort(L).
+
+relprod(A, B) ->
+ usort(relprod1(A, B)).
+
+relprod1([{Ay,Ax} | A], B) ->
+ relprod1(B, Ay, Ax, A, []);
+relprod1(_A, _B) ->
+ [].
+
+relprod1([{Bx,_By} | B], Ay, Ax, A, L) when Ay > Bx ->
+ relprod1(B, Ay, Ax, A, L);
+relprod1([{Bx,By} | B], Ay, Ax, A, L) when Ay == Bx ->
+ relprod(B, Bx, By, A, [{Ax,By} | L], Ax, B, Ay);
+relprod1([{Bx,By} | B], _Ay, _Ax, A, L) ->
+ relprod2(B, Bx, By, A, L);
+relprod1(_B, _Ay, _Ax, _A, L) ->
+ L.
+
+relprod2(B, Bx, By, [{Ay, _Ax} | A], L) when Ay < Bx ->
+ relprod2(B, Bx, By, A, L);
+relprod2(B, Bx, By, [{Ay, Ax} | A], L) when Ay == Bx ->
+ relprod(B, Bx, By, A, [{Ax,By} | L], Ax, B, Ay);
+relprod2(B, _Bx, _By, [{Ay, Ax} | A], L) ->
+ relprod1(B, Ay, Ax, A, L);
+relprod2(_, _, _, _, L) ->
+ L.
+
+relprod(B0, Bx0, By0, A0, L, Ax, [{Bx,By} | B], Ay) when Ay == Bx ->
+ relprod(B0, Bx0, By0, A0, [{Ax,By} | L], Ax, B, Ay);
+relprod(B0, Bx0, By0, A0, L, _Ax, _B, _Ay) ->
+ relprod2(B0, Bx0, By0, A0, L).
+
+relprod_n([], _R, _EmptyG, _IsR) ->
+ {error, badarg};
+relprod_n(RL, R, EmptyR, IsR) ->
+ case domain_type(RL, ?ANYTYPE) of
+ Error = {error, _Reason} ->
+ Error;
+ DType ->
+ Empty = any(fun is_empty_set/1, RL) or EmptyR,
+ RType = range_type(RL, []),
+ Type = ?BINREL(DType, RType),
+ Prod =
+ case Empty of
+ true when DType =:= ?ANYTYPE; RType =:= ?ANYTYPE ->
+ empty_set();
+ true ->
+ ?SET([], Type);
+ false ->
+ TL = ?LIST((relprod_n(RL))),
+ Sz = length(RL),
+ Fun = fun({X,A}) -> {X, flat(Sz, A, [])} end,
+ ?SET(map(Fun, TL), Type)
+ end,
+ case IsR of
+ true -> relative_product(Prod, R);
+ false -> Prod
+ end
+ end.
+
+relprod_n([R | Rs]) ->
+ relprod_n(Rs, R).
+
+relprod_n([], R) ->
+ R;
+relprod_n([R | Rs], R0) ->
+ T = raise_element(R0, 1),
+ R1 = relative_product1(T, R),
+ NR = projection({external, fun({{X,A},AS}) -> {X,{A,AS}} end}, R1),
+ relprod_n(Rs, NR).
+
+flat(1, A, L) ->
+ list_to_tuple([A | L]);
+flat(N, {T,A}, L) ->
+ flat(N-1, T, [A | L]).
+
+domain_type([T | Ts], T0) when ?IS_SET(T) ->
+ case ?TYPE(T) of
+ ?BINREL(DT, _RT) ->
+ case unify_types(DT, T0) of
+ [] -> {error, type_mismatch};
+ T1 -> domain_type(Ts, T1)
+ end;
+ ?ANYTYPE ->
+ domain_type(Ts, T0);
+ _ -> {error, badarg}
+ end;
+domain_type([], T0) ->
+ T0.
+
+range_type([T | Ts], L) ->
+ case ?TYPE(T) of
+ ?BINREL(_DT, RT) ->
+ range_type(Ts, [RT | L]);
+ ?ANYTYPE ->
+ ?ANYTYPE
+ end;
+range_type([], L) ->
+ list_to_tuple(reverse(L)).
+
+converse([{A,B} | X], L) ->
+ converse(X, [{B,A} | L]);
+converse([], L) ->
+ sort(L).
+
+strict([{E1,E2} | Es], L) when E1 == E2 ->
+ strict(Es, L);
+strict([E | Es], L) ->
+ strict(Es, [E | L]);
+strict([], L) ->
+ reverse(L).
+
+weak(Es) ->
+ %% Not very efficient...
+ weak(Es, ran(Es, []), []).
+
+weak(Es=[{X,_} | _], [Y | Ys], L) when X > Y ->
+ weak(Es, Ys, [{Y,Y} | L]);
+weak(Es=[{X,_} | _], [Y | Ys], L) when X == Y ->
+ weak(Es, Ys, L);
+weak([E={X,Y} | Es], Ys, L) when X > Y ->
+ weak1(Es, Ys, [E | L], X);
+weak([E={X,Y} | Es], Ys, L) when X == Y ->
+ weak2(Es, Ys, [E | L], X);
+weak([E={X,_Y} | Es], Ys, L) -> % when X < _Y
+ weak2(Es, Ys, [E, {X,X} | L], X);
+weak([], [Y | Ys], L) ->
+ weak([], Ys, [{Y,Y} | L]);
+weak([], [], L) ->
+ reverse(L).
+
+weak1([E={X,Y} | Es], Ys, L, X0) when X > Y, X == X0 ->
+ weak1(Es, Ys, [E | L], X);
+weak1([E={X,Y} | Es], Ys, L, X0) when X == Y, X == X0 ->
+ weak2(Es, Ys, [E | L], X);
+weak1([E={X,_Y} | Es], Ys, L, X0) when X == X0 -> % when X < Y
+ weak2(Es, Ys, [E, {X,X} | L], X);
+weak1(Es, Ys, L, X) ->
+ weak(Es, Ys, [{X,X} | L]).
+
+weak2([E={X,_Y} | Es], Ys, L, X0) when X == X0 -> % when X < _Y
+ weak2(Es, Ys, [E | L], X);
+weak2(Es, Ys, L, _X) ->
+ weak(Es, Ys, L).
+
+extc(L, [D | Ds], C, Ts) ->
+ extc(L, Ds, C, Ts, D);
+extc(L, [], _C, _Ts) ->
+ L.
+
+extc(L, Ds, C, [{X,_Y} | Ts], D) when X < D ->
+ extc(L, Ds, C, Ts, D);
+extc(L, Ds, C, [{X,_Y} | Ts], D) when X == D ->
+ extc(L, Ds, C, Ts);
+extc(L, Ds, C, [{X,_Y} | Ts], D) ->
+ extc2([{D,C} | L], Ds, C, Ts, X);
+extc(L, Ds, C, [], D) ->
+ extc_tail([{D,C} | L], Ds, C).
+
+extc2(L, [D | Ds], C, Ts, X) when X > D ->
+ extc2([{D,C} | L], Ds, C, Ts, X);
+extc2(L, [D | Ds], C, Ts, X) when X == D ->
+ extc(L, Ds, C, Ts);
+extc2(L, [D | Ds], C, Ts, _X) ->
+ extc(L, Ds, C, Ts, D);
+extc2(L, [], _C, _Ts, _X) ->
+ L.
+
+extc_tail(L, [D | Ds], C) ->
+ extc_tail([{D,C} | L], Ds, C);
+extc_tail(L, [], _C) ->
+ L.
+
+is_a_func([{E,_} | Es], E0) when E /= E0 ->
+ is_a_func(Es, E);
+is_a_func(L, _E) ->
+ L =:= [].
+
+restrict_n(I, [T | Ts], Key, Keys, L) ->
+ case element(I, T) of
+ K when K < Key ->
+ restrict_n(I, Ts, Key, Keys, L);
+ K when K == Key ->
+ restrict_n(I, Ts, Key, Keys, [T | L]);
+ K ->
+ restrict_n(I, K, Ts, Keys, L, T)
+ end;
+restrict_n(_I, _Ts, _Key, _Keys, L) ->
+ L.
+
+restrict_n(I, K, Ts, [Key | Keys], L, E) when K > Key ->
+ restrict_n(I, K, Ts, Keys, L, E);
+restrict_n(I, K, Ts, [Key | Keys], L, E) when K == Key ->
+ restrict_n(I, Ts, Key, Keys, [E | L]);
+restrict_n(I, _K, Ts, [Key | Keys], L, _E) ->
+ restrict_n(I, Ts, Key, Keys, L);
+restrict_n(_I, _K, _Ts, _Keys, L, _E) ->
+ L.
+
+restrict([Key | Keys], Tuples) ->
+ restrict(Tuples, Key, Keys, []);
+restrict(_Keys, _Tuples) ->
+ [].
+
+restrict([{K,_E} | Ts], Key, Keys, L) when K < Key ->
+ restrict(Ts, Key, Keys, L);
+restrict([{K,E} | Ts], Key, Keys, L) when K == Key ->
+ restrict(Ts, Key, Keys, [E | L]);
+restrict([{K,E} | Ts], _Key, Keys, L) ->
+ restrict(Ts, K, Keys, L, E);
+restrict(_Ts, _Key, _Keys, L) ->
+ L.
+
+restrict(Ts, K, [Key | Keys], L, E) when K > Key ->
+ restrict(Ts, K, Keys, L, E);
+restrict(Ts, K, [Key | Keys], L, E) when K == Key ->
+ restrict(Ts, Key, Keys, [E | L]);
+restrict(Ts, _K, [Key | Keys], L, _E) ->
+ restrict(Ts, Key, Keys, L);
+restrict(_Ts, _K, _Keys, L, _E) ->
+ L.
+
+diff_restrict_n(I, [T | Ts], Key, Keys, L) ->
+ case element(I, T) of
+ K when K < Key ->
+ diff_restrict_n(I, Ts, Key, Keys, [T | L]);
+ K when K == Key ->
+ diff_restrict_n(I, Ts, Key, Keys, L);
+ K ->
+ diff_restrict_n(I, K, Ts, Keys, L, T)
+ end;
+diff_restrict_n(I, _Ts, _Key, _Keys, L) when I =:= 1 ->
+ reverse(L);
+diff_restrict_n(_I, _Ts, _Key, _Keys, L) ->
+ sort(L).
+
+diff_restrict_n(I, K, Ts, [Key | Keys], L, T) when K > Key ->
+ diff_restrict_n(I, K, Ts, Keys, L, T);
+diff_restrict_n(I, K, Ts, [Key | Keys], L, _T) when K == Key ->
+ diff_restrict_n(I, Ts, Key, Keys, L);
+diff_restrict_n(I, _K, Ts, [Key | Keys], L, T) ->
+ diff_restrict_n(I, Ts, Key, Keys, [T | L]);
+diff_restrict_n(I, _K, Ts, _Keys, L, T) when I =:= 1 ->
+ reverse(L, [T | Ts]);
+diff_restrict_n(_I, _K, Ts, _Keys, L, T) ->
+ sort([T | Ts ++ L]).
+
+diff_restrict([Key | Keys], Tuples) ->
+ diff_restrict(Tuples, Key, Keys, []);
+diff_restrict(_Keys, Tuples) ->
+ diff_restrict_tail(Tuples, []).
+
+diff_restrict([{K,E} | Ts], Key, Keys, L) when K < Key ->
+ diff_restrict(Ts, Key, Keys, [E | L]);
+diff_restrict([{K,_E} | Ts], Key, Keys, L) when K == Key ->
+ diff_restrict(Ts, Key, Keys, L);
+diff_restrict([{K,E} | Ts], _Key, Keys, L) ->
+ diff_restrict(Ts, K, Keys, L, E);
+diff_restrict(_Ts, _Key, _Keys, L) ->
+ L.
+
+diff_restrict(Ts, K, [Key | Keys], L, E) when K > Key ->
+ diff_restrict(Ts, K, Keys, L, E);
+diff_restrict(Ts, K, [Key | Keys], L, _E) when K == Key ->
+ diff_restrict(Ts, Key, Keys, L);
+diff_restrict(Ts, _K, [Key | Keys], L, E) ->
+ diff_restrict(Ts, Key, Keys, [E | L]);
+diff_restrict(Ts, _K, _Keys, L, E) ->
+ diff_restrict_tail(Ts, [E | L]).
+
+diff_restrict_tail([{_K,E} | Ts], L) ->
+ diff_restrict_tail(Ts, [E | L]);
+diff_restrict_tail(_Ts, L) ->
+ L.
+
+comp([], B) ->
+ check_function(B, []);
+comp(_A, []) ->
+ bad_function;
+comp(A0, [{Bx,By} | B]) ->
+ A = converse(A0, []),
+ check_function(A0, comp1(A, B, [], Bx, By)).
+
+comp1([{Ay,Ax} | A], B, L, Bx, By) when Ay == Bx ->
+ comp1(A, B, [{Ax,By} | L], Bx, By);
+comp1([{Ay,Ax} | A], B, L, Bx, _By) when Ay > Bx ->
+ comp2(A, B, L, Bx, Ay, Ax);
+comp1([{Ay,_Ax} | _A], _B, _L, Bx, _By) when Ay < Bx ->
+ bad_function;
+comp1([], B, L, Bx, _By) ->
+ check_function(Bx, B, L).
+
+comp2(A, [{Bx,_By} | B], L, Bx0, Ay, Ax) when Ay > Bx, Bx /= Bx0 ->
+ comp2(A, B, L, Bx, Ay, Ax);
+comp2(A, [{Bx,By} | B], L, _Bx0, Ay, Ax) when Ay == Bx ->
+ comp1(A, B, [{Ax,By} | L], Bx, By);
+comp2(_A, _B, _L, _Bx0, _Ay, _Ax) ->
+ bad_function.
+
+inverse1([{A,B} | X]) ->
+ inverse(X, A, [{B,A}]);
+inverse1([]) ->
+ [].
+
+inverse([{A,B} | X], A0, L) when A0 /= A ->
+ inverse(X, A, [{B,A} | L]);
+inverse([{A,_B} | _X], A0, _L) when A0 == A ->
+ bad_function;
+inverse([], _A0, L) ->
+ SL = [{V,_} | Es] = sort(L),
+ case is_a_func(Es, V) of
+ true -> SL;
+ false -> bad_function
+ end.
+
+%% Inlined.
+external_fun({external, Function}) when is_atom(Function) ->
+ false;
+external_fun({external, Fun}) ->
+ Fun;
+external_fun(_) ->
+ false.
+
+%% Inlined.
+element_type(?SET_OF(Type)) -> Type;
+element_type(Type) -> Type.
+
+subst(Ts, Fun, Type) ->
+ subst(Ts, Fun, Type, ?ANYTYPE, []).
+
+subst([T | Ts], Fun, Type, NType, L) ->
+ case setfun(T, Fun, Type, NType) of
+ {SD, ST} -> subst(Ts, Fun, Type, ST, [{T, SD} | L]);
+ Bad -> Bad
+ end;
+subst([], _Fun, _Type, NType, L) ->
+ {L, NType}.
+
+projection1([E | Es]) ->
+ projection1([], element(1, E), Es);
+projection1([] = L) ->
+ L.
+
+projection1(L, X, [E | Es]) ->
+ case element(1, E) of
+ X1 when X == X1 -> projection1(L, X, Es);
+ X1 -> projection1([X | L], X1, Es)
+ end;
+projection1(L, X, []) ->
+ reverse(L, [X]).
+
+projection_n([E | Es], I, L) ->
+ projection_n(Es, I, [element(I, E) | L]);
+projection_n([], _I, L) ->
+ usort(L).
+
+substitute_element([T | Ts], I, L) ->
+ substitute_element(Ts, I, [{T, element(I, T)} | L]);
+substitute_element(_, _I, L) ->
+ reverse(L).
+
+substitute([T | Ts], Fun, L) ->
+ substitute(Ts, Fun, [{T, Fun(T)} | L]);
+substitute(_, _Fun, L) ->
+ reverse(L).
+
+partition_n(I, [E | Ts]) ->
+ partition_n(I, Ts, element(I, E), [E], []);
+partition_n(_I, []) ->
+ [].
+
+partition_n(I, [E | Ts], K, Es, P) ->
+ case {element(I, E), Es} of
+ {K1, _} when K == K1 ->
+ partition_n(I, Ts, K, [E | Es], P);
+ {K1, [_]} -> % optimization
+ partition_n(I, Ts, K1, [E], [Es | P]);
+ {K1, _} ->
+ partition_n(I, Ts, K1, [E], [reverse(Es) | P])
+ end;
+partition_n(I, [], _K, Es, P) when I > 1 ->
+ sort([reverse(Es) | P]);
+partition_n(_I, [], _K, [_] = Es, P) -> % optimization
+ reverse(P, [Es]);
+partition_n(_I, [], _K, Es, P) ->
+ reverse(P, [reverse(Es)]).
+
+partition3_n(I, [T | Ts], Key, Keys, L1, L2) ->
+ case element(I, T) of
+ K when K < Key ->
+ partition3_n(I, Ts, Key, Keys, L1, [T | L2]);
+ K when K == Key ->
+ partition3_n(I, Ts, Key, Keys, [T | L1], L2);
+ K ->
+ partition3_n(I, K, Ts, Keys, L1, L2, T)
+ end;
+partition3_n(I, _Ts, _Key, _Keys, L1, L2) when I =:= 1 ->
+ [reverse(L1) | reverse(L2)];
+partition3_n(_I, _Ts, _Key, _Keys, L1, L2) ->
+ [sort(L1) | sort(L2)].
+
+partition3_n(I, K, Ts, [Key | Keys], L1, L2, T) when K > Key ->
+ partition3_n(I, K, Ts, Keys, L1, L2, T);
+partition3_n(I, K, Ts, [Key | Keys], L1, L2, T) when K == Key ->
+ partition3_n(I, Ts, Key, Keys, [T | L1], L2);
+partition3_n(I, _K, Ts, [Key | Keys], L1, L2, T) ->
+ partition3_n(I, Ts, Key, Keys, L1, [T | L2]);
+partition3_n(I, _K, Ts, _Keys, L1, L2, T) when I =:= 1 ->
+ [reverse(L1) | reverse(L2, [T | Ts])];
+partition3_n(_I, _K, Ts, _Keys, L1, L2, T) ->
+ [sort(L1) | sort([T | Ts ++ L2])].
+
+partition3([Key | Keys], Tuples) ->
+ partition3(Tuples, Key, Keys, [], []);
+partition3(_Keys, Tuples) ->
+ partition3_tail(Tuples, [], []).
+
+partition3([{K,E} | Ts], Key, Keys, L1, L2) when K < Key ->
+ partition3(Ts, Key, Keys, L1, [E | L2]);
+partition3([{K,E} | Ts], Key, Keys, L1, L2) when K == Key ->
+ partition3(Ts, Key, Keys, [E | L1], L2);
+partition3([{K,E} | Ts], _Key, Keys, L1, L2) ->
+ partition3(Ts, K, Keys, L1, L2, E);
+partition3(_Ts, _Key, _Keys, L1, L2) ->
+ [L1 | L2].
+
+partition3(Ts, K, [Key | Keys], L1, L2, E) when K > Key ->
+ partition3(Ts, K, Keys, L1, L2, E);
+partition3(Ts, K, [Key | Keys], L1, L2, E) when K == Key ->
+ partition3(Ts, Key, Keys, [E | L1], L2);
+partition3(Ts, _K, [Key | Keys], L1, L2, E) ->
+ partition3(Ts, Key, Keys, L1, [E | L2]);
+partition3(Ts, _K, _Keys, L1, L2, E) ->
+ partition3_tail(Ts, L1, [E | L2]).
+
+partition3_tail([{_K,E} | Ts], L1, L2) ->
+ partition3_tail(Ts, L1, [E | L2]);
+partition3_tail(_Ts, L1, L2) ->
+ [L1 | L2].
+
+replace([E | Es], F, L) ->
+ replace(Es, F, [F(E) | L]);
+replace(_, _F, L) ->
+ sort(L).
+
+mul_relprod([T | Ts], I, R) when ?IS_SET(T) ->
+ P = raise_element(R, I),
+ F = relative_product1(P, T),
+ [F | mul_relprod(Ts, I+1, R)];
+mul_relprod([], _I, _R) ->
+ [].
+
+raise_element(R, I) ->
+ L = sort(I =/= 1, rearr(?LIST(R), I, [])),
+ Type = ?TYPE(R),
+ ?SET(L, ?BINREL(?REL_TYPE(I, Type), Type)).
+
+rearr([E | Es], I, L) ->
+ rearr(Es, I, [{element(I, E), E} | L]);
+rearr([], _I, L) ->
+ L.
+
+join_element(E1, E2) ->
+ [_ | L2] = tuple_to_list(E2),
+ list_to_tuple(tuple_to_list(E1) ++ L2).
+
+join_element(E1, E2, I2) ->
+ tuple_to_list(E1) ++ join_element2(tuple_to_list(E2), 1, I2).
+
+join_element2([B | Bs], C, I2) when C =/= I2 ->
+ [B | join_element2(Bs, C+1, I2)];
+join_element2([_ | Bs], _C, _I2) ->
+ Bs.
+
+family2rel([{X,S} | F], L) ->
+ fam2rel(F, L, X, S);
+family2rel([], L) ->
+ reverse(L).
+
+fam2rel(F, L, X, [Y | Ys]) ->
+ fam2rel(F, [{X,Y} | L], X, Ys);
+fam2rel(F, L, _X, _) ->
+ family2rel(F, L).
+
+fam_spec([{_,S}=E | F], Fun, Type, L) ->
+ case Fun(?SET(S, Type)) of
+ true ->
+ fam_spec(F, Fun, Type, [E | L]);
+ false ->
+ fam_spec(F, Fun, Type, L);
+ _ ->
+ badarg
+ end;
+fam_spec([], _Fun, _Type, L) ->
+ reverse(L).
+
+fam_specification([{_,S}=E | F], Fun, L) ->
+ case Fun(S) of
+ true ->
+ fam_specification(F, Fun, [E | L]);
+ false ->
+ fam_specification(F, Fun, L);
+ _ ->
+ badarg
+ end;
+fam_specification([], _Fun, L) ->
+ reverse(L).
+
+un_of_fam([{_X,S} | F], L) ->
+ un_of_fam(F, [S | L]);
+un_of_fam([], L) ->
+ lunion(sort(L)).
+
+int_of_fam([{_,S} | F]) ->
+ int_of_fam(F, [S]);
+int_of_fam([]) ->
+ badarg.
+
+int_of_fam([{_,S} | F], L) ->
+ int_of_fam(F, [S | L]);
+int_of_fam([], [L | Ls]) ->
+ lintersection(Ls, L).
+
+fam_un([{X,S} | F], L) ->
+ fam_un(F, [{X, lunion(S)} | L]);
+fam_un([], L) ->
+ reverse(L).
+
+fam_int([{X, [S | Ss]} | F], L) ->
+ fam_int(F, [{X, lintersection(Ss, S)} | L]);
+fam_int([{_X,[]} | _F], _L) ->
+ badarg;
+fam_int([], L) ->
+ reverse(L).
+
+fam_dom([{X,S} | F], L) ->
+ fam_dom(F, [{X, dom(S)} | L]);
+fam_dom([], L) ->
+ reverse(L).
+
+fam_ran([{X,S} | F], L) ->
+ fam_ran(F, [{X, ran(S, [])} | L]);
+fam_ran([], L) ->
+ reverse(L).
+
+fam_union(F1 = [{A,_AS} | _AL], [B1={B,_BS} | BL], L) when A > B ->
+ fam_union(F1, BL, [B1 | L]);
+fam_union([{A,AS} | AL], [{B,BS} | BL], L) when A == B ->
+ fam_union(AL, BL, [{A, umerge(AS, BS)} | L]);
+fam_union([A1 | AL], F2, L) ->
+ fam_union(AL, F2, [A1 | L]);
+fam_union(_, F2, L) ->
+ reverse(L, F2).
+
+fam_intersect(F1 = [{A,_AS} | _AL], [{B,_BS} | BL], L) when A > B ->
+ fam_intersect(F1, BL, L);
+fam_intersect([{A,AS} | AL], [{B,BS} | BL], L) when A == B ->
+ fam_intersect(AL, BL, [{A, intersection(AS, BS, [])} | L]);
+fam_intersect([_A1 | AL], F2, L) ->
+ fam_intersect(AL, F2, L);
+fam_intersect(_, _, L) ->
+ reverse(L).
+
+fam_difference(F1 = [{A,_AS} | _AL], [{B,_BS} | BL], L) when A > B ->
+ fam_difference(F1, BL, L);
+fam_difference([{A,AS} | AL], [{B,BS} | BL], L) when A == B ->
+ fam_difference(AL, BL, [{A, difference(AS, BS, [])} | L]);
+fam_difference([A1 | AL], F2, L) ->
+ fam_difference(AL, F2, [A1 | L]);
+fam_difference(F1, _, L) ->
+ reverse(L, F1).
+
+check_function([{X,_} | XL], R) ->
+ check_function(X, XL, R);
+check_function([], R) ->
+ R.
+
+check_function(X0, [{X,_} | XL], R) when X0 /= X ->
+ check_function(X, XL, R);
+check_function(X0, [{X,_} | _XL], _R) when X0 == X ->
+ bad_function;
+check_function(_X0, [], R) ->
+ R.
+
+fam_partition_n(I, [E | Ts]) ->
+ fam_partition_n(I, Ts, element(I, E), [E], []);
+fam_partition_n(_I, []) ->
+ [].
+
+fam_partition_n(I, [E | Ts], K, Es, P) ->
+ case {element(I, E), Es} of
+ {K1, _} when K == K1 ->
+ fam_partition_n(I, Ts, K, [E | Es], P);
+ {K1, [_]} -> % optimization
+ fam_partition_n(I, Ts, K1, [E], [{K,Es} | P]);
+ {K1, _} ->
+ fam_partition_n(I, Ts, K1, [E], [{K,reverse(Es)} | P])
+ end;
+fam_partition_n(_I, [], K, [_] = Es, P) -> % optimization
+ reverse(P, [{K,Es}]);
+fam_partition_n(_I, [], K, Es, P) ->
+ reverse(P, [{K,reverse(Es)}]).
+
+fam_partition([{K,Vs} | Ts], Sort) ->
+ fam_partition(Ts, K, [Vs], [], Sort);
+fam_partition([], _Sort) ->
+ [].
+
+fam_partition([{K1,V} | Ts], K, Vs, P, S) when K1 == K ->
+ fam_partition(Ts, K, [V | Vs], P, S);
+fam_partition([{K1,V} | Ts], K, [_] = Vs, P, S) -> % optimization
+ fam_partition(Ts, K1, [V], [{K, Vs} | P], S);
+fam_partition([{K1,V} | Ts], K, Vs, P, S) ->
+ fam_partition(Ts, K1, [V], [{K, sort(S, Vs)} | P], S);
+fam_partition([], K, [_] = Vs, P, _S) -> % optimization
+ [{K, Vs} | P];
+fam_partition([], K, Vs, P, S) ->
+ [{K, sort(S, Vs)} | P].
+
+fam_proj([{X,S} | F], Fun, Type, NType, L) ->
+ case setfun(S, Fun, Type, NType) of
+ {SD, ST} -> fam_proj(F, Fun, Type, ST, [{X, SD} | L]);
+ Bad -> Bad
+ end;
+fam_proj([], _Fun, _Type, NType, L) ->
+ {reverse(L), NType}.
+
+setfun(T, Fun, Type, NType) ->
+ case Fun(term2set(T, Type)) of
+ NS when ?IS_SET(NS) ->
+ case unify_types(NType, ?SET_OF(?TYPE(NS))) of
+ [] -> type_mismatch;
+ NT -> {?LIST(NS), NT}
+ end;
+ NS when ?IS_ORDSET(NS) ->
+ case unify_types(NType, NT = ?ORDTYPE(NS)) of
+ [] -> type_mismatch;
+ NT -> {?ORDDATA(NS), NT}
+ end;
+ _ ->
+ badarg
+ end.
+
+%% Inlined.
+term2set(L, Type) when is_list(L) ->
+ ?SET(L, Type);
+term2set(T, Type) ->
+ ?ORDSET(T, Type).
+
+fam2digraph(F, G) ->
+ Fun = fun({From, ToL}) ->
+ digraph:add_vertex(G, From),
+ Fun2 = fun(To) ->
+ digraph:add_vertex(G, To),
+ case digraph:add_edge(G, From, To) of
+ {error, {bad_edge, _}} ->
+ throw({error, cyclic});
+ _ ->
+ true
+ end
+ end,
+ foreach(Fun2, ToL)
+ end,
+ foreach(Fun, to_external(F)),
+ G.
+
+digraph_family(G) ->
+ Vs = sort(digraph:vertices(G)),
+ digraph_fam(Vs, Vs, G, []).
+
+digraph_fam([V | Vs], V0, G, L) when V /= V0 ->
+ Ns = sort(digraph:out_neighbours(G, V)),
+ digraph_fam(Vs, V, G, [{V,Ns} | L]);
+digraph_fam([], _V0, _G, L) ->
+ reverse(L).
+
+%% -> boolean()
+check_fun(T, F, FunT) ->
+ true = is_type(FunT),
+ {NT, _MaxI} = number_tuples(T, 1),
+ L = flatten(tuple2list(F(NT))),
+ has_hole(L, 1).
+
+number_tuples(T, N) when is_tuple(T) ->
+ {L, NN} = mapfoldl(fun number_tuples/2, N, tuple_to_list(T)),
+ {list_to_tuple(L), NN};
+number_tuples(_, N) ->
+ {N, N+1}.
+
+tuple2list(T) when is_tuple(T) ->
+ map(fun tuple2list/1, tuple_to_list(T));
+tuple2list(C) ->
+ [C].
+
+has_hole([I | Is], I0) when I =< I0 -> has_hole(Is, erlang:max(I+1, I0));
+has_hole(Is, _I) -> Is =/= [].
+
+%% Optimization. Same as check_fun/3, but for integers.
+check_for_sort(T, _I) when T =:= ?ANYTYPE ->
+ empty;
+check_for_sort(T, I) when ?IS_RELATION(T), I =< ?REL_ARITY(T), I >= 1 ->
+ I > 1;
+check_for_sort(_T, _I) ->
+ error.
+
+inverse_substitution(L, Fun, Sort) ->
+ %% One easily sees that the inverse of the tuples created by
+ %% applying Fun need to be sorted iff the tuples created by Fun
+ %% need to be sorted.
+ sort(Sort, fun_rearr(L, Fun, [])).
+
+fun_rearr([E | Es], Fun, L) ->
+ fun_rearr(Es, Fun, [{Fun(E), E} | L]);
+fun_rearr([], _Fun, L) ->
+ L.
+
+sets_to_list(Ss) ->
+ map(fun(S) when ?IS_SET(S) -> ?LIST(S) end, Ss).
+
+types([], L) ->
+ list_to_tuple(reverse(L));
+types([S | _Ss], _L) when ?TYPE(S) =:= ?ANYTYPE ->
+ ?ANYTYPE;
+types([S | Ss], L) ->
+ types(Ss, [?TYPE(S) | L]).
+
+%% Inlined.
+unify_types(T, T) -> T;
+unify_types(Type1, Type2) ->
+ catch unify_types1(Type1, Type2).
+
+unify_types1(Atom, Atom) when ?IS_ATOM_TYPE(Atom) ->
+ Atom;
+unify_types1(?ANYTYPE, Type) ->
+ Type;
+unify_types1(Type, ?ANYTYPE) ->
+ Type;
+unify_types1(?SET_OF(Type1), ?SET_OF(Type2)) ->
+ [unify_types1(Type1, Type2)];
+unify_types1(T1, T2) when tuple_size(T1) =:= tuple_size(T2) ->
+ unify_typesl(tuple_size(T1), T1, T2, []);
+unify_types1(_T1, _T2) ->
+ throw([]).
+
+unify_typesl(0, _T1, _T2, L) ->
+ list_to_tuple(L);
+unify_typesl(N, T1, T2, L) ->
+ T = unify_types1(?REL_TYPE(N, T1), ?REL_TYPE(N, T2)),
+ unify_typesl(N-1, T1, T2, [T | L]).
+
+%% inlined.
+match_types(T, T) -> true;
+match_types(Type1, Type2) -> match_types1(Type1, Type2).
+
+match_types1(Atom, Atom) when ?IS_ATOM_TYPE(Atom) ->
+ true;
+match_types1(?ANYTYPE, _) ->
+ true;
+match_types1(_, ?ANYTYPE) ->
+ true;
+match_types1(?SET_OF(Type1), ?SET_OF(Type2)) ->
+ match_types1(Type1, Type2);
+match_types1(T1, T2) when tuple_size(T1) =:= tuple_size(T2) ->
+ match_typesl(tuple_size(T1), T1, T2);
+match_types1(_T1, _T2) ->
+ false.
+
+match_typesl(0, _T1, _T2) ->
+ true;
+match_typesl(N, T1, T2) ->
+ case match_types1(?REL_TYPE(N, T1), ?REL_TYPE(N, T2)) of
+ true -> match_typesl(N-1, T1, T2);
+ false -> false
+ end.
+
+sort(true, L) ->
+ sort(L);
+sort(false, L) ->
+ reverse(L).
diff --git a/lib/tools/test/tools_bench.spec b/lib/tools/test/tools_bench.spec
new file mode 100644
index 0000000000..ef08fd68a8
--- /dev/null
+++ b/lib/tools/test/tools_bench.spec
@@ -0,0 +1 @@
+{suites,"../tools_test",[prof_bench_SUITE]}.