aboutsummaryrefslogtreecommitdiffstats
path: root/system/doc/tutorial/erl_interface.xmlsrc
diff options
context:
space:
mode:
authorHans Bolinder <[email protected]>2015-03-12 15:35:13 +0100
committerBjörn Gustavsson <[email protected]>2015-03-12 17:42:20 +0100
commit2d3ab68c60e8bacf9e0efe403895e7065ef683be (patch)
tree1d2c73d661a06411fb08e81818df9e890c7271bf /system/doc/tutorial/erl_interface.xmlsrc
parent0c20078ff0fbad9066c8dd4ebcd6faa0b4f31b42 (diff)
downloadotp-2d3ab68c60e8bacf9e0efe403895e7065ef683be.tar.gz
otp-2d3ab68c60e8bacf9e0efe403895e7065ef683be.tar.bz2
otp-2d3ab68c60e8bacf9e0efe403895e7065ef683be.zip
Update Interoperability Tutorial
Language cleaned up by the technical writers xsipewe and tmanevik from Combitech. Proofreading and corrections by Hans Bolinder.
Diffstat (limited to 'system/doc/tutorial/erl_interface.xmlsrc')
-rw-r--r--system/doc/tutorial/erl_interface.xmlsrc108
1 files changed, 82 insertions, 26 deletions
diff --git a/system/doc/tutorial/erl_interface.xmlsrc b/system/doc/tutorial/erl_interface.xmlsrc
index 0c4c5a99c2..5751a945d6 100644
--- a/system/doc/tutorial/erl_interface.xmlsrc
+++ b/system/doc/tutorial/erl_interface.xmlsrc
@@ -4,7 +4,7 @@
<chapter>
<header>
<copyright>
- <year>2000</year><year>2013</year>
+ <year>2000</year><year>2015</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
@@ -28,14 +28,29 @@
<rev></rev>
<file>erl_interface.xml</file>
</header>
- <p>This is an example of how to solve the <seealso marker="example">example problem</seealso> by using a port and <c>erl_interface</c>. It is necessary to read the <seealso marker="c_port">port example</seealso> before reading this chapter.</p>
+
+ <p>This section outlines an example of how to solve the example
+ problem in <seealso marker="example">Problem Example</seealso> by
+ using a port and Erl_Interface. It is necessary to read the port
+ example in <seealso marker="c_port">Ports</seealso> before reading
+ this section.</p>
<section>
<title>Erlang Program</title>
- <p>The example below shows an Erlang program communicating with a C program over a plain port with home made encoding.</p>
- <codeinclude file="complex1.erl" type="erl"/>
- <p>Compared to the Erlang module
- above used for the plain port, there are two differences when using Erl_Interface on the C side: Since Erl_Interface operates on the Erlang external term format the port must be set to use binaries and, instead of inventing an encoding/decoding scheme, the BIFs <c>term_to_binary/1</c> and <c>binary_to_term/1</c> should be used. That is:</p>
+ <p>The following example shows an Erlang program communicating
+ with a C program over a plain port with home made encoding:</p>
+ <codeinclude file="complex1.erl" type="erl"/>
+ <p>There are two differences when using Erl_Interface on the C
+ side compared to the example in <seealso marker="c_port">
+ Ports</seealso>, using only the plain port:</p>
+ <list type="bulleted">
+ <item>As Erl_Interface operates on the Erlang external term format,
+ the port must be set to use binaries.</item>
+ <item>Instead of inventing an encoding/decoding scheme, the
+ <c>term_to_binary/1</c> and <c>binary_to_term/1</c> BIFs are to
+ be used.</item>
+ </list>
+ <p>That is:</p>
<pre>
open_port({spawn, ExtPrg}, [{packet, 2}])</pre>
<p>is replaced with:</p>
@@ -55,69 +70,110 @@ receive
{Port, {data, Data}} ->
Caller ! {complex, binary_to_term(Data)}
end</pre>
- <p>The resulting Erlang program is shown below.</p>
+ <p>The resulting Erlang program is as follows:</p>
<codeinclude file="complex2.erl" type="erl"/>
- <p>Note that calling <c>complex2:foo/1</c> and <c>complex2:bar/1</c> will result in the tuple <c>{foo,X}</c> or <c>{bar,Y}</c> being sent to the <c>complex</c> process, which will code them as binaries and send them to the port. This means that the C program must be able to handle these two tuples.</p>
+ <p>Notice that calling <c>complex2:foo/1</c> and
+ <c>complex2:bar/1</c> results in the tuple <c>{foo,X}</c> or
+ <c>{bar,Y}</c> being sent to the <c>complex</c> process, which
+ codes them as binaries and sends them to the port. This means
+ that the C program must be able to handle these two tuples.</p>
</section>
<section>
<title>C Program</title>
- <p>The example below shows a C program communicating with an Erlang program over a plain port with home made encoding.</p>
+ <p>The following example shows a C program communicating with an
+ Erlang program over a plain port with home made encoding:</p>
<codeinclude file="port.c" type="c"/>
- <p>Compared to the C program above
- used for the plain port the <c>while</c>-loop must be rewritten. Messages coming from the port will be on the Erlang external term format. They should be converted into an <c>ETERM</c> struct, a C struct similar to an Erlang term. The result of calling <c>foo()</c> or <c>bar()</c> must be converted to the Erlang external term format before being sent back to the port. But before calling any other <c>erl_interface</c> function, the memory handling must be initiated.</p>
+ <p>Compared to the C program in <seealso marker="c_port">
+ Ports</seealso>, using only the plain port, the
+ <c>while</c>-loop must be rewritten. Messages coming from the
+ port is on the Erlang external term format. They must be
+ converted into an <c>ETERM</c> struct, which is a C struct
+ similar to an Erlang term. The result of calling <c>foo()</c> or
+ <c>bar()</c> must be converted to the Erlang external term
+ format before being sent back to the port. But before calling
+ any other Erl_Interface function, the memory handling must be
+ initiated:</p>
<pre>
erl_init(NULL, 0);</pre>
- <p>For reading from and writing to the port the functions <c>read_cmd()</c> and <c>write_cmd()</c> from the erl_comm.c example below
- can still be used.
+ <p>The following functions, <c>read_cmd()</c> and
+ <c>write_cmd()</c>, from the <c>erl_comm.c</c> example in
+ <seealso marker="c_port">Ports</seealso> can still be
+ used for reading from and writing to the port:
</p>
<codeinclude file="erl_comm.c" type="c"/>
- <p>The function <c>erl_decode()</c> from <c>erl_marshal</c> will convert the binary into an <c>ETERM</c> struct.</p>
+ <p>The function <c>erl_decode()</c> from <c>erl_marshal</c>
+ converts the binary into an <c>ETERM</c> struct:</p>
<pre>
int main() {
ETERM *tuplep;
while (read_cmd(buf) > 0) {
tuplep = erl_decode(buf);</pre>
- <p>In this case <c>tuplep</c> now points to an <c>ETERM</c> struct representing a tuple with two elements; the function name (atom) and the argument (integer). By using the function <c>erl_element()</c> from <c>erl_eterm</c> it is possible to extract these elements, which also must be declared as pointers to an <c>ETERM</c> struct.</p>
+ <p>Here, <c>tuplep</c> points to an <c>ETERM</c> struct
+ representing a tuple with two elements; the function name (atom)
+ and the argument (integer). Using the function
+ <c>erl_element()</c> from <c>erl_eterm</c>, these elements can
+ be extracted, but they must also be declared as pointers to an
+ <c>ETERM</c> struct:</p>
<pre>
fnp = erl_element(1, tuplep);
argp = erl_element(2, tuplep);</pre>
- <p>The macros <c>ERL_ATOM_PTR</c> and <c>ERL_INT_VALUE</c> from <c>erl_eterm</c> can be used to obtain the actual values of the atom and the integer. The atom value is represented as a string. By comparing this value with the strings "foo" and "bar" it can be decided which function to call.</p>
+ <p>The macros <c>ERL_ATOM_PTR</c> and <c>ERL_INT_VALUE</c> from
+ <c>erl_eterm</c> can be used to obtain the actual values of the
+ atom and the integer. The atom value is represented as a string.
+ By comparing this value with the strings "foo" and "bar", it can
+ be decided which function to call:</p>
<pre>
if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_INT_VALUE(argp));
} else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 3) == 0) {
res = bar(ERL_INT_VALUE(argp));
}</pre>
- <p>Now an <c>ETERM</c> struct representing the integer result can be constructed using the function <c>erl_mk_int()</c> from <c>erl_eterm</c>. It is also possible to use the function <c>erl_format()</c> from the module <c>erl_format</c>.</p>
+ <p>Now an <c>ETERM</c> struct that represents the integer result
+ can be constructed using the function <c>erl_mk_int()</c> from
+ <c>erl_eterm</c>. The function
+ <c>erl_format()</c> from the module <c>erl_format</c> can also
+ be used:</p>
<pre>
intp = erl_mk_int(res);</pre>
- <p>The resulting <c>ETERM</c> struct is converted into the Erlang external term format using the function <c>erl_encode()</c> from <c>erl_marshal</c> and sent to Erlang using <c>write_cmd()</c>.</p>
+ <p>The resulting <c>ETERM</c> struct is converted into the Erlang
+ external term format using the function <c>erl_encode()</c> from
+ <c>erl_marshal</c> and sent to Erlang using
+ <c>write_cmd()</c>:</p>
<pre>
erl_encode(intp, buf);
write_cmd(buf, erl_eterm_len(intp));</pre>
- <p>Last, the memory allocated by the <c>ETERM</c> creating functions must be freed.</p>
+ <p>Finally, the memory allocated by the <c>ETERM</c> creating
+ functions must be freed:</p>
<pre>
erl_free_compound(tuplep);
erl_free_term(fnp);
erl_free_term(argp);
erl_free_term(intp);</pre>
- <p>The resulting C program is shown below:</p>
+ <p>The resulting C program is as follows:</p>
<codeinclude file="ei.c" type="c"/>
</section>
<section>
<title>Running the Example</title>
- <p>1. Compile the C code, providing the paths to the include files <c>erl_interface.h</c> and <c>ei.h</c>, and to the libraries <c>erl_interface</c> and <c>ei</c>.</p>
+ <p><em>Step 1.</em> Compile the C code. This provides the paths to
+ the include files <c>erl_interface.h</c> and <c>ei.h</c>, and
+ also to the libraries <c>erl_interface</c> and <c>ei</c>:</p>
<pre>
unix> <input>gcc -o extprg -I/usr/local/otp/lib/erl_interface-3.2.1/include \\ </input>
<input> -L/usr/local/otp/lib/erl_interface-3.2.1/lib \\ </input>
<input> complex.c erl_comm.c ei.c -lerl_interface -lei</input></pre>
- <p>In R5B and later versions of OTP, the <c>include</c> and <c>lib</c> directories are situated under <c>OTPROOT/lib/erl_interface-VSN</c>, where <c>OTPROOT</c> is the root directory of the OTP installation (<c>/usr/local/otp</c> in the example above) and <c>VSN</c> is the version of the <c>erl_interface</c> application (3.2.1 in the example above). <br></br>
-
- In R4B and earlier versions of OTP, <c>include</c> and <c>lib</c> are situated under <c>OTPROOT/usr</c>.</p>
- <p>2. Start Erlang and compile the Erlang code.</p>
+ <p>In Erlang/OTP R5B and later versions of OTP, the <c>include</c>
+ and <c>lib</c> directories are situated under
+ <c>OTPROOT/lib/erl_interface-VSN</c>, where <c>OTPROOT</c> is
+ the root directory of the OTP installation
+ (<c>/usr/local/otp</c> in the recent example) and <c>VSN</c> is
+ the version of the Erl_interface application (3.2.1 in the
+ recent example).</p>
+ <p>In R4B and earlier versions of OTP, <c>include</c> and <c>lib</c>
+ are situated under <c>OTPROOT/usr</c>.</p>
+ <p><em>Step 2.</em> Start Erlang and compile the Erlang code:</p>
<pre>
unix> <input>erl</input>
Erlang (BEAM) emulator version 4.9.1.2
@@ -125,7 +181,7 @@ Erlang (BEAM) emulator version 4.9.1.2
Eshell V4.9.1.2 (abort with ^G)
1> <input>c(complex2).</input>
{ok,complex2}</pre>
- <p>3. Run the example.</p>
+ <p><em>Step 3.</em> Run the example:</p>
<pre>
2> <input>complex2:start("extprg").</input>
&lt;0.34.0>