diff options
author | Raimo Niskanen <[email protected]> | 2016-04-25 17:04:35 +0200 |
---|---|---|
committer | Raimo Niskanen <[email protected]> | 2016-04-25 17:04:35 +0200 |
commit | b6da7406d35f9decaaa7fa089f58ed03879dadfe (patch) | |
tree | a4f767bad05d024615b104053839e72023c72f23 /system | |
parent | b842026cc5e86cf7f054da073f6da16adf02baa9 (diff) | |
parent | f06f69068807168cf4cc731711ed82489cc5b99c (diff) | |
download | otp-b6da7406d35f9decaaa7fa089f58ed03879dadfe.tar.gz otp-b6da7406d35f9decaaa7fa089f58ed03879dadfe.tar.bz2 otp-b6da7406d35f9decaaa7fa089f58ed03879dadfe.zip |
Merge branch 'raimo/new-gen-state-machine/OTP-13065'
* raimo/new-gen-state-machine/OTP-13065: (52 commits)
Add section on state filtering
Promote gen_statem over gen_fsm
Modify code_change/4 to return CallbackMode
Use ?NAME macro in examples
Introduce Fred Herbert suggested additions
Introduce corrections from Fred Hebert and Ingela
Use .png pictures instead of .gif
Write Design Principles chapter
Fix missing short forms for event timeout
Do more intricate Fred Hebert doc changes
Change Caller -> From as suggested by Fred Hebert
Do documentation improvements from Fred Hebert
Fix broken documenation reference
Rename state_timeout -> event_timeout
Fix most of the system docs and emacs mode
Change code_change/4 to {ok,State,Data}
Fixup sharpened test suite
Sharpen test suite
Remove the remove_event action and all alike
Relax caller() type check and cleanup
...
Conflicts:
lib/stdlib/src/gen.erl
lib/stdlib/src/gen_event.erl
lib/stdlib/src/gen_fsm.erl
lib/stdlib/src/gen_server.erl
lib/stdlib/test/error_logger_forwarder.erl
Diffstat (limited to 'system')
-rw-r--r-- | system/doc/definitions/term.defs | 1 | ||||
-rw-r--r-- | system/doc/design_principles/Makefile | 15 | ||||
-rw-r--r-- | system/doc/design_principles/appup_cookbook.xml | 3 | ||||
-rw-r--r-- | system/doc/design_principles/code_lock.dia | bin | 0 -> 2955 bytes | |||
-rw-r--r-- | system/doc/design_principles/code_lock.png | bin | 0 -> 58823 bytes | |||
-rw-r--r-- | system/doc/design_principles/code_lock_2.dia | bin | 0 -> 2646 bytes | |||
-rw-r--r-- | system/doc/design_principles/code_lock_2.png | bin | 0 -> 51848 bytes | |||
-rw-r--r-- | system/doc/design_principles/des_princ.xml | 4 | ||||
-rw-r--r-- | system/doc/design_principles/fsm.xml | 10 | ||||
-rw-r--r-- | system/doc/design_principles/part.xml | 1 | ||||
-rw-r--r-- | system/doc/design_principles/release_handling.xml | 2 | ||||
-rw-r--r-- | system/doc/design_principles/statem.xml | 1451 | ||||
-rw-r--r-- | system/doc/design_principles/sup_princ.xml | 6 | ||||
-rw-r--r-- | system/doc/design_principles/xmlfiles.mk | 1 | ||||
-rw-r--r-- | system/doc/reference_manual/modules.xml | 3 |
15 files changed, 1488 insertions, 9 deletions
diff --git a/system/doc/definitions/term.defs b/system/doc/definitions/term.defs index 6091a46a20..921175a7f0 100644 --- a/system/doc/definitions/term.defs +++ b/system/doc/definitions/term.defs @@ -76,6 +76,7 @@ the module Erlang in the application kernel","kenneth"}, {"gen_event","gen_event","A behaviour used for programming event handling mechanisms, such as alarm handlers, error loggers, and plug-and-play handlers.","mbj"}, {"gen_fsm","gen_fsm","A behaviour used for programming finite state machines.","mbj"}, {"gen_server","gen_server","A behaviour used for programming client-server processes.","mbj"}, +{"gen_statem","gen_statem","A behaviour used for programming generic state machines.","raimo"}, {"gterm","Global Glossary Database","A glossary database used to list common acronymns and defintions etc.","jocke"}, {"xref","xref","A cross reference tool that can be used for finding dependencies between functions, modules, applications and releases. Part of the Tools application.","gunilla"}, {"GSlong","Graphics System","A library module which provides a graphics interface for Erlang.","mbj"}, diff --git a/system/doc/design_principles/Makefile b/system/doc/design_principles/Makefile index 653072bc65..937b3e28c8 100644 --- a/system/doc/design_principles/Makefile +++ b/system/doc/design_principles/Makefile @@ -58,6 +58,12 @@ GIF_FILES = \ sup5.gif \ sup6.gif +PNG_FILES = \ + code_lock.png \ + code_lock_2.png + +IMAGE_FILES = $(GIF_FILES) $(PNG_FILES) + XML_FILES = \ $(BOOK_FILES) $(XML_CHAPTER_FILES) \ $(XML_PART_FILES) @@ -85,13 +91,16 @@ _create_dirs := $(shell mkdir -p $(HTMLDIR)) $(HTMLDIR)/%.gif: %.gif $(INSTALL_DATA) $< $@ +$(HTMLDIR)/%.png: %.png + $(INSTALL_DATA) $< $@ + docs: html local_docs: PDFDIR=../../pdf -html: $(HTML_UG_FILE) gifs +html: $(HTML_UG_FILE) images -gifs: $(GIF_FILES:%=$(HTMLDIR)/%) +images: $(IMAGE_FILES:%=$(HTMLDIR)/%) debug opt: @@ -109,7 +118,7 @@ release_docs_spec: docs # $(INSTALL_DIR) "$(RELEASE_PATH)/pdf" # $(INSTALL_DATA) $(TOP_PDF_FILE) "$(RELEASE_PATH)/pdf" $(INSTALL_DIR) $(RELSYSDIR) - $(INSTALL_DATA) $(GIF_FILES) $(HTMLDIR)/*.html \ + $(INSTALL_DATA) $(IMAGE_FILES) $(HTMLDIR)/*.html \ $(RELSYSDIR) diff --git a/system/doc/design_principles/appup_cookbook.xml b/system/doc/design_principles/appup_cookbook.xml index 417b482fba..4f23c42c59 100644 --- a/system/doc/design_principles/appup_cookbook.xml +++ b/system/doc/design_principles/appup_cookbook.xml @@ -50,7 +50,8 @@ <p>In a system implemented according to the OTP design principles, all processes, except system processes and special processes, reside in one of the behaviours <c>supervisor</c>, - <c>gen_server</c>, <c>gen_fsm</c>, or <c>gen_event</c>. These + <c>gen_server</c>, <c>gen_fsm</c>, + <c>gen_statem</c> or <c>gen_event</c>. These belong to the STDLIB application and upgrading/downgrading normally requires an emulator restart.</p> <p>OTP thus provides no support for changing residence modules except diff --git a/system/doc/design_principles/code_lock.dia b/system/doc/design_principles/code_lock.dia Binary files differnew file mode 100644 index 0000000000..bed6d8ee86 --- /dev/null +++ b/system/doc/design_principles/code_lock.dia diff --git a/system/doc/design_principles/code_lock.png b/system/doc/design_principles/code_lock.png Binary files differnew file mode 100644 index 0000000000..e40f0320aa --- /dev/null +++ b/system/doc/design_principles/code_lock.png diff --git a/system/doc/design_principles/code_lock_2.dia b/system/doc/design_principles/code_lock_2.dia Binary files differnew file mode 100644 index 0000000000..4e82a9e1d6 --- /dev/null +++ b/system/doc/design_principles/code_lock_2.dia diff --git a/system/doc/design_principles/code_lock_2.png b/system/doc/design_principles/code_lock_2.png Binary files differnew file mode 100644 index 0000000000..138fbdef6c --- /dev/null +++ b/system/doc/design_principles/code_lock_2.png diff --git a/system/doc/design_principles/des_princ.xml b/system/doc/design_principles/des_princ.xml index 0cf9f28bdc..8ab8661c2d 100644 --- a/system/doc/design_principles/des_princ.xml +++ b/system/doc/design_principles/des_princ.xml @@ -226,7 +226,9 @@ free(Ch, {Alloc, Free} = Channels) -> <item><p><seealso marker="gen_server_concepts">gen_server</seealso></p> <p>For implementing the server of a client-server relation</p></item> <item><p><seealso marker="fsm">gen_fsm</seealso></p> - <p>For implementing finite-state machines</p></item> + <p>For implementing finite-state machines (Old)</p></item> + <item><p><seealso marker="statem">gen_statem</seealso></p> + <p>For implementing state machines (New)</p></item> <item><p><seealso marker="events">gen_event</seealso></p> <p>For implementing event handling functionality</p></item> <item><p><seealso marker="sup_princ">supervisor</seealso></p> diff --git a/system/doc/design_principles/fsm.xml b/system/doc/design_principles/fsm.xml index f20d20fb7e..3468f93ae0 100644 --- a/system/doc/design_principles/fsm.xml +++ b/system/doc/design_principles/fsm.xml @@ -30,6 +30,16 @@ <file>fsm.xml</file> </header> <marker id="gen_fsm behaviour"></marker> + <note> + <p> + There is a new behaviour + <seealso marker="gen_statem"><c>gen_statem</c></seealso> + that is intended to replace <c>gen_fsm</c> for new code. + It has the same features and add some really useful. + This module will not be removed for the foreseeable future + to keep old state machine implementations running. + </p> + </note> <p>This section is to be read with the <c>gen_fsm(3)</c> manual page in STDLIB, where all interface functions and callback functions are described in detail.</p> diff --git a/system/doc/design_principles/part.xml b/system/doc/design_principles/part.xml index 7862a2d650..6495211e04 100644 --- a/system/doc/design_principles/part.xml +++ b/system/doc/design_principles/part.xml @@ -31,6 +31,7 @@ <xi:include href="des_princ.xml"/> <xi:include href="gen_server_concepts.xml"/> <xi:include href="fsm.xml"/> + <xi:include href="statem.xml"/> <xi:include href="events.xml"/> <xi:include href="sup_princ.xml"/> <xi:include href="spec_proc.xml"/> diff --git a/system/doc/design_principles/release_handling.xml b/system/doc/design_principles/release_handling.xml index c38cca248f..4f71ad4437 100644 --- a/system/doc/design_principles/release_handling.xml +++ b/system/doc/design_principles/release_handling.xml @@ -249,7 +249,7 @@ <p>If <c>Modules=dynamic</c>, which is the case for event managers, the event manager process informs the release handler about the list of currently installed event handlers - (<c>gen_fsm</c>), and it is checked if the module name is in + (<c>gen_event</c>), and it is checked if the module name is in this list instead.</p> <p>The release handler suspends, asks for code change, and resumes processes by calling the functions diff --git a/system/doc/design_principles/statem.xml b/system/doc/design_principles/statem.xml new file mode 100644 index 0000000000..a4b8fb06a0 --- /dev/null +++ b/system/doc/design_principles/statem.xml @@ -0,0 +1,1451 @@ +<?xml version="1.0" encoding="utf-8" ?> +<!DOCTYPE chapter SYSTEM "chapter.dtd"> + +<chapter> + <header> + <copyright> + <year>2016</year> + <holder>Ericsson AB. All Rights Reserved.</holder> + </copyright> + <legalnotice> + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + </legalnotice> + + <title>gen_statem Behaviour</title> + <prepared></prepared> + <docno></docno> + <date></date> + <rev></rev> + <file>statem.xml</file> + </header> + <marker id="gen_statem behaviour"></marker> + <p> + This section is to be read with the + <seealso marker="stdlib:gen_statem"><c>gen_statem(3)</c></seealso> + manual page in STDLIB, where all interface functions and callback + functions are described in detail. + </p> + <p> + This is a new behaviour in OTP-19.0. + It has been thoroughly reviewed, is stable enough + to be used by at least two heavy OTP applications, and is here to stay. + But depending on user feedback, we do not expect + but might find it necessary to make minor + not backwards compatible changes into OTP-20.0, + so its state can be designated as "not quite experimental"... + </p> + +<!-- =================================================================== --> + + <section> + <title>Event Driven State Machines</title> + <p> + Established Automata theory does not deal much with + how a state transition is triggered, + but in general assumes that the output is a function + of the input (and the state) and that they are + some kind of values. + </p> + <p> + For an Event Driven State Machine the input is an event + that triggers a state transition and the output + is actions executed during the state transition. + It can analogously to the mathematical model of a + Finite State Machine be described as + a set of relations of the form: + </p> + <pre> +State(S) x Event(E) -> Actions(A), State(S')</pre> + <p>These relations are interpreted as meaning:</p> + <p> + If we are in state <c>S</c> and event <c>E</c> occurs, we + are to perform actions <c>A</c> and make a transition to + state <c>S'</c>. + </p> + <p> + Note that <c>S'</c> may be equal to <c>S</c>. + </p> + <p> + Since <c>A</c> and <c>S'</c> depend only on + <c>S</c> and <c>E</c> the kind of state machine described + here is a Mealy Machine. + (See for example the corresponding Wikipedia article) + </p> + <p> + Like most <c>gen_</c> behaviours, <c>gen_statem</c> keeps + a server <c>Data</c> besides the state. This and the fact that + there is no restriction on the number of states + (assuming enough virtual machine memory) + or on the number of distinct input events actually makes + a state machine implemented with this behaviour Turing complete. + But it feels mostly like an Event Driven Mealy Machine. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <marker id="callback_modes" /> + <title>Callback Modes</title> + <p> + The <c>gen_statem</c> behaviour supports two different callback modes. + In the mode + <seealso marker="stdlib:gen_statem#type-callback_mode"> + <c>state_functions</c>, + </seealso> + the state transition rules are written as a number of Erlang + functions, which conform to the following convention: + </p> + <pre> +StateName(EventType, EventContent, Data) -> + .. code for actions here ... + {next_state, NewStateName, NewData}.</pre> + <p> + In the mode + <seealso marker="stdlib:gen_statem#type-callback_mode"> + <c>handle_event_function</c> + </seealso> + there is only one + Erlang function that implements all state transition rules: + </p> + <pre> +handle_event(EventType, EventContent, State, Data) -> + .. code for actions here ... + {next_state, State', Data'}</pre> + <p> + Both these modes allow other return tuples + that you can find in the + <seealso marker="stdlib:gen_statem#Module:StateName/3"> + reference manual. + </seealso> + These other return tuples can for example stop the machine, + execute state transition actions on the machine engine itself + and send replies. + </p> + + <section> + <title>Choosing the Callback Mode</title> + <p> + The two + <seealso marker="#callback_modes">callback modes</seealso> + gives different possibilities + and restrictions, but one goal remains: + you want to handle all possible combinations of + events and states. + </p> + <p> + You can for example do this by focusing on one state at the time + and for every state ensure that all events are handled, + or the other way around focus on one event at the time + and ensure that it is handled in every state, + or mix these strategies. + </p> + <p> + With <c>state_functions</c> you are restricted to use + atom only states, and the <c>gen_statem</c> engine dispatches + on state name for you. This encourages the callback module + to gather the implementation of all event actions particular + to one state in the same place in the code + hence to focus on one state at the time. + </p> + <p> + This mode fits well when you have a regular state diagram + like the ones in this chapter that describes all events and actions + belonging to a state visually around that state, + and each state has its unique name. + </p> + <p> + With <c>handle_event_function</c> you are free to mix strategies + as you like because all events and states + are handled in the the same callback function. + </p> + <p> + This mode works equally well when you want to focus on + one event at the time or when you want to focus on + one state at the time, but the <c>handle_event/4</c> function + quickly grows too large to handle without introducing dispatching. + </p> + <p> + The mode enables the use of non-atom states for example + complex states or even hiearchical states. + If, for example, a state diagram is largely alike + for the client and for the server side of a protocol; + then you can have a state <c>{StateName,server}</c> or + <c>{StateName,client}</c> and since you do the dispatching + yourself you make <c>StateName</c> decide where in the code + to handle most events in the state. + The second element of the tuple is then used to select + whether to handle special client side or server side events. + </p> + </section> + </section> + +<!-- =================================================================== --> + + <section> + <title>Example</title> + <p> + This is an example starting off as equivalent to the the example in the + <seealso marker="fsm"><c>gen_fsm</c> behaviour</seealso> + description. In later chapters additions and tweaks are made + using features in <c>gen_statem</c> that <c>gen_fsm</c> does not have. + At the end of this section you can find the example again + with all the added features. + </p> + <p> + A door with a code lock can be viewed as a state machine. + Initially, the door is locked. Anytime someone presses a button, + this generates an event. + Depending on what buttons have been pressed before, + the sequence so far can be correct, incomplete, or wrong. + </p> + <p> + If it is correct, the door is unlocked for 10 seconds (10000 ms). + If it is incomplete, we wait for another button to be pressed. If + it is is wrong, we start all over, + waiting for a new button sequence. + </p> + <image file="../design_principles/code_lock.png"> + <icaption>Code lock state diagram</icaption> + </image> + <p> + We can implement such a code lock state machine using + <c>gen_statem</c> with the following callback module: + </p> + <marker id="ex"></marker> + <code type="erl"><![CDATA[ +-module(code_lock). +-behaviour(gen_statem). +-define(NAME, code_lock). +-define(CALLBACK_MODE, state_functions). + +-export([start_link/1]). +-export([button/1]). +-export([init/1,terminate/3,code_change/4]). +-export([locked/3,open/3]). + +start_link(Code) -> + gen_statem:start_link({local,?NAME}, ?MODULE, Code, []). + +button(Digit) -> + gen_statem:cast(?NAME, {button,Digit}). + + +init(Code) -> + do_lock(), + Data = #{code => Code, remaining => Code}, + {?CALLBACK_MODE,locked,Data}. + +locked( + cast, {button,Digit}, + #{code := Code, remaining := Remaining} = Data) -> + case Remaining of + [Digit] -> + do_unlock(), + {next_state,open,Data#{remaining := Code},10000}; + [Digit|Rest] -> % Incomplete + {next_state,locked,Data#{remaining := Rest}}; + _Wrong -> + {next_state,locked,Data#{remaining := Code}} + end. + +open(timeout, _, Data) -> + do_lock(), + {next_state,locked,Data}; +open(cast, {button,_}, Data) -> + do_lock(), + {next_state,locked,Data}. + +do_lock() -> + io:format("Lock~n", []). +do_unlock() -> + io:format("Unlock~n", []). + +terminate(_Reason, State, _Data) -> + State =/= locked andalso do_lock(), + ok. +code_change(_Vsn, State, Data, _Extra) -> + {?CALLBACK_MODE,State,Data}. + ]]></code> + <p>The code is explained in the next sections.</p> + </section> + +<!-- =================================================================== --> + + <section> + <title>Starting gen_statem</title> + <p> + In the example in the previous section, the <c>gen_statem</c> is + started by calling <c>code_lock:start_link(Code)</c>: + </p> + <code type="erl"><![CDATA[ +start_link(Code) -> + gen_statem:start_link({local,?NAME}, ?MODULE, Code, []). + ]]></code> + <p> + <c>start_link</c> calls the function + <seealso marker="stdlib:gen_statem#start_link/4"> + <c>gen_statem:start_link/4</c> + </seealso> + which spawns and links to a new process; a <c>gen_statem</c>. + </p> + <list type="bulleted"> + <item> + <p> + The first argument, <c>{local,?NAME}</c>, specifies + the name. In this case, the <c>gen_statem</c> is locally + registered as <c>code_lock</c> through the macro <c>?NAME</c>. + </p> + <p> + If the name is omitted, the <c>gen_statem</c> is not registered. + Instead its pid must be used. The name can also be given + as <c>{global,Name}</c>, in which case the <c>gen_statem</c> is + registered using + <seealso marker="kernel:global#register_name/2"> + <c>global:register_name/2</c>. + </seealso> + </p> + </item> + <item> + <p> + The second argument, <c>?MODULE</c>, is the name of + the callback module, that is; the module where the callback + functions are located, which is this module. + </p> + <p> + The interface functions (<c>start_link/1</c> and <c>button/1</c>) + are located in the same module as the callback functions + (<c>init/1</c>, <c>locked/3</c>, and <c>open/3</c>). + It is normally good programming practice to have the client + side and the server side code contained in one module. + </p> + </item> + <item> + <p> + The third argument, <c>Code</c>, is a list of digits that + is the correct unlock code which is passsed + to the callback function <c>init/1</c>. + </p> + </item> + <item> + <p> + The fourth argument, <c>[]</c>, is a list of options. See the + <seealso marker="stdlib:gen_statem#start_link/3"> + <c>gen_statem:start_link/3</c> + </seealso> + manual page for available options. + </p> + </item> + </list> + <p> + If name registration succeeds, the new <c>gen_statem</c> process + calls the callback function <c>code_lock:init(Code)</c>. + This function is expected to return <c>{CallbackMode,State,Data}</c>, + where + <seealso marker="#callback_modes"> + <c>CallbackMode</c> + </seealso> + selects callback module state function mode, in this case + <seealso marker="stdlib:gen_statem#type-callback_mode"> + <c>state_functions</c> + </seealso> + through the macro <c>?CALLBACK_MODE</c> that is; each state + has got its own handler function. + <c>State</c> is the initial state of the <c>gen_statem</c>, + in this case <c>locked</c>; assuming the door is locked to begin with. + <c>Data</c> is the internal server data of the <c>gen_statem</c>. + Here the server data is a <seealso marker="stdlib:maps">map</seealso> + with the key <c>code</c> that stores + the correct button sequence and the key <c>remaining</c> + that stores the remaining correct button sequence + (the same as the <c>code</c> to begin with). + </p> + <code type="erl"><![CDATA[ +init(Code) -> + do_lock(), + Data = #{code => Code, remaining => Code}, + {?CALLBACK_MODE,locked,Data}. + ]]></code> + <p> + <seealso marker="stdlib:gen_statem#start_link/3"> + <c>gen_statem:start_link</c> + </seealso> + is synchronous. It does not return until the <c>gen_statem</c> + has been initialized and is ready to receive events. + </p> + <p> + <seealso marker="stdlib:gen_statem#start_link/3"> + <c>gen_statem:start_link</c> + </seealso> + must be used if the <c>gen_statem</c> + is part of a supervision tree, that is; started by a supervisor. + There is another function; + <seealso marker="stdlib:gen_statem#start/3"> + <c>gen_statem:start</c> + </seealso> + to start a standalone <c>gen_statem</c>, that is; + a <c>gen_statem</c> that is not part of a supervision tree. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <title>Events and Handling them</title> + <p>The function notifying the code lock about a button event is + implemented using + <seealso marker="stdlib:gen_statem#cast/2"> + <c>gen_statem:cast/2</c>: + </seealso> + </p> + <code type="erl"><![CDATA[ +button(Digit) -> + gen_statem:cast(?NAME, {button,Digit}). + ]]></code> + <p> + The first argument is the name of the <c>gen_statem</c> and must + agree with the name used to start it so therefore we use the + same macro <c>?NAME</c> as when starting. + <c>{button,Digit}</c> is the actual event content. + </p> + <p> + The event is made into a message and sent to the <c>gen_statem</c>. + When the event is received, the <c>gen_statem</c> calls + <c>StateName(cast, Event, Data)</c>, which is expected to + return a tuple <c>{next_state,NewStateName,NewData}</c>. + <c>StateName</c> is the name of the current state and + <c>NewStateName</c> is the name of the next state to go to. + <c>NewData</c> is a new value for the server data of + the <c>gen_statem</c>. + </p> + <code type="erl"><![CDATA[ +locked( + cast, {button,Digit}, + #{code := Code, remaining := Remaining} = Data) -> + case Remaining of + [Digit] -> % Complete + do_unlock(), + {next_state,open,Data#{remaining := Code},10000}; + [Digit|Rest] -> % Incomplete + {next_state,locked,Data#{remaining := Rest}}; + [_|_] -> % Wrong + {next_state,locked,Data#{remaining := Code}} + end. + +open(timeout, _, Data) -> + do_lock(), + {next_state,locked,Data}; +open(cast, {button,_}, Data) -> + do_lock(), + {next_state,locked,Data}. + ]]></code> + <p> + If the door is locked and a button is pressed, the pressed + button is compared with the next correct button and, + depending on the result, the door is either unlocked + and the <c>gen_statem</c> goes to state <c>open</c>, + or the door remains in state <c>locked</c>. + </p> + <p> + If the pressed button is incorrect the server data + restarts from the start of the code sequence. + </p> + <p> + In state <c>open</c> any button locks the door since + any event cancels the event timer so we will not get + a timeout event after a button event. + </p> + </section> + + <section> + <title>Event Time-Outs</title> + <p> + When a correct code has been given, the door is unlocked and + the following tuple is returned from <c>locked/2</c>: + </p> + <code type="erl"><![CDATA[ +{next_state,open,Data#{remaining := Code},10000}; + ]]></code> + <p> + 10000 is a time-out value in milliseconds. + After this time, that is; 10 seconds, a time-out occurs. + Then, <c>StateName(timeout, 10000, Data)</c> is called. + The time-out occurs when the door has been in state <c>open</c> + for 10 seconds. After that the door is locked again: + </p> + <code type="erl"><![CDATA[ +open(timeout, _, Data) -> + do_lock(), + {next_state,locked,Data}; + ]]></code> + </section> + +<!-- =================================================================== --> + + <section> + <title>All State Events</title> + <p> + Sometimes an event can arrive in any state of the <c>gen_statem</c>. + It is convenient to handle these in a common state handler function + that all state functions call for events not specific to the state. + </p> + <p> + Let's introduce a <c>code_length/0</c> function that returns + the length of the correct code + (that should not be sensitive to reveal...). + We'll dispatch all events that are not state specific + to the common function <c>handle_event/3</c>. + </p> + <code type="erl"><![CDATA[ +... +-export([button/1,code_length/0]). +... + +code_length() -> + gen_statem:call(?NAME, code_length). + +... +locked(...) -> ... ; +locked(EventType, EventContent, Data) -> + handle_event(EventType, EventContent, Data). + +... +open(...) -> ... ; +open(EventType, EventContent, Data) -> + handle_event(EventType, EventContent, Data). + +handle_event({call,From}, code_length, #{code := Code} = Data) -> + {keep_state,Data,[{reply,From,length(Code)}]}. + ]]></code> + <p> + This example uses + <seealso marker="stdlib:gen_statem#call/2"> + <c>gen_statem:call/2</c> + </seealso> + which waits for a reply from the server. + The reply is sent with a <c>{reply,From,Reply}</c> tuple + in an action list in the <c>{keep_state,...}</c> tuple + that retains the current state. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <title>One Event Handler</title> + <p> + If you use the mode <c>handle_event_function</c> + all events are handled in <c>handle_event/4</c> and we + may (but do not have to) use an event-centered approach + where we dispatch on event first and then state: + </p> + <code type="erl"><![CDATA[ +... +-define(CALLBACK_MODE, state_functions). + +... +-export([handle_event/4]). + +... + +handle_event(cast, {button,Digit}, State, #{code := Code} = Data) -> + case State of + locked -> + case maps:get(remaining, Data) of + [Digit] -> % Complete + do_unlock(), + {next_state,open,Data#{remaining := Code},10000}; + [Digit|Rest] -> % Incomplete + {keep_state,Data#{remaining := Rest}}; + [_|_] -> % Wrong + {keep_state,Data#{remaining := Code}} + end; + open -> + do_lock(), + {next_state,locked,Data} + end; +handle_event(timeout, _, open, Data) -> + do_lock(), + {next_state,locked,Data}. + +... + ]]></code> + </section> + +<!-- =================================================================== --> + + <section> + <title>Stopping</title> + + <section> + <title>In a Supervision Tree</title> + <p> + If the <c>gen_statem</c> is part of a supervision tree, + no stop function is needed. + The <c>gen_statem</c> is automatically terminated by its supervisor. + Exactly how this is done is defined by a + <seealso marker="sup_princ#shutdown">shutdown strategy</seealso> + set in the supervisor. + </p> + <p> + If it is necessary to clean up before termination, the shutdown + strategy must be a time-out value and the <c>gen_statem</c> must + in the <c>init/1</c> function set itself to trap exit signals + by calling + <seealso marker="erts:erlang#process_flag/2"> + <c>process_flag(trap_exit, true)</c>. + </seealso> + When ordered to shutdown, the <c>gen_statem</c> then calls + the callback function + <c>terminate(shutdown, State, Data)</c>: + </p> + <code type="erl"><![CDATA[ +init(Args) -> + process_flag(trap_exit, true), + do_lock(), + ... + ]]></code> + <p> + In this example we let the <c>terminate/3</c> function + lock the door if it is open so we do not accidentally leave the door + open when the supervision tree terminates. + </p> + <code type="erl"><![CDATA[ +terminate(_Reason, State, _Data) -> + State =/= locked andalso do_lock(), + ok. + ]]></code> + </section> + + <section> + <title>Standalone gen_statem</title> + <p> + If the <c>gen_statem</c> is not part of a supervision tree, + it can be stopped using + <seealso marker="stdlib:gen_statem#stop/1"> + <c>gen_statem:stop</c>, + </seealso> + preferably through an API function: + </p> + <code type="erl"><![CDATA[ +... +-export([start_link/1,stop/0]). + +... +stop() -> + gen_statem:stop(?NAME). + ]]></code> + <p> + This makes the <c>gen_statem</c> call the <c>terminate/3</c> + callback function just like for a supervised server + and waits for the process to terminate. + </p> + </section> + </section> + +<!-- =================================================================== --> + + <section> + <title>Actions</title> + <p> + In the first chapters we mentioned actions as a part of + the general state machine model, and these actions + are implemented with the code the <c>gen_statem</c> + callback module executes in an event handling + callback function before returning + to the <c>gen_statem</c> engine. + </p> + <p> + There are more specific state transition actions + that a callback function can order the <c>gen_statem</c> + engine to do after the callback function return. + These are ordered by returning a list of + <seealso marker="stdlib:gen_statem#type-action"> + actions + </seealso> + in the + <seealso marker="stdlib:gen_statem#type-state_function_result"> + return tuple + </seealso> + from the + <seealso marker="stdlib:gen_statem#Module:StateName/3"> + callback function. + </seealso> + These state transition actions affect the <c>gen_statem</c> + engine itself. They can: + </p> + <list type="bulleted"> + <item>Postpone the current event.</item> + <item>Hibernate the <c>gen_statem</c>.</item> + <item>Start an event timeout.</item> + <item>Reply to a caller.</item> + <item>Generate the next event to handle.</item> + </list> + <p> + We have mentioned the event timeout + and replying to a caller in the example above. + An example of event postponing comes in later in this chapter. + See the + <seealso marker="stdlib:gen_statem#type-action"> + reference manual + </seealso> + for details. You can for example actually reply to several callers + and generate multiple next events to handle. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <title>Event Types</title> + <p> + So far we have mentioned a few + <seealso marker="stdlib:gen_statem#type-event_type"> + event types. + </seealso> + Events of all types are handled in the same callback function, + for a given state, and the function gets + <c>EventType</c> and <c>EventContent</c> as arguments. + </p> + <p> + Here is the complete list of event types and where + they come from: + </p> + <taglist> + <tag><c>cast</c></tag> + <item> + Generated by + <seealso marker="stdlib:gen_statem#cast/2"> + <c>gen_statem:cast</c>. + </seealso> + </item> + <tag><c>{call,From}</c></tag> + <item> + Generated by + <seealso marker="stdlib:gen_statem#call/2"> + <c>gen_statem:call</c> + </seealso> + where <c>From</c> is the reply address to use + when replying either through the state transition action + <c>{reply,From,Msg}</c> or by calling + <seealso marker="stdlib:gen_statem#reply/1"> + <c>gen_statem:reply</c>. + </seealso> + </item> + <tag><c>info</c></tag> + <item> + Generated by any regular process message sent to + the <c>gen_statem</c> process. + </item> + <tag><c>timeout</c></tag> + <item> + Generated by the state transition action + <c>{timeout,Time,EventContent}</c> (or its short form <c>Time</c>) + timer timing out. + </item> + <tag><c>internal</c></tag> + <item> + Generated by the state transition action + <c>{next_event,internal,EventContent}</c>. + In fact all event types above can be generated using + <c>{next_event,EventType,EventContent}</c>. + </item> + </taglist> + </section> + +<!-- =================================================================== --> + + <section> + <title>State Timeouts</title> + <p> + The timeout event generated by the state transition action + <c>{timeout,Time,EventContent}</c> is an event timeout, + that is; if an event arrives the timer is cancelled. + You get either an event or a timeout but not both. + </p> + <p> + Often you want a timer to not be cancelled by any event + or you want to start a timer in one state and respond + to the timeout in another. This can be accomplished + with a regular erlang timer: + <seealso marker="erts:erlang#start_timer/4"> + <c>erlang:start_timer</c>. + </seealso> + </p> + <p> + Looking at the example in this chapter so far; using the + <c>gen_statem</c> event timer has the consequence that + if a button event is generated while in the <c>open</c> state, + the timeout is cancelled and the button event is delivered. + Therefore we chose to lock the door if this happended. + </p> + <p> + Suppose we do not want a button to lock the door, + instead we want to ignore button events in the <c>open</c> state. + Then we start a timer when entering the <c>open</c> state + and wait for it to expire while ignoring button events: + </p> + <code type="erl"><![CDATA[ +... +locked( + cast, {button,Digit}, + #{code := Code, remaining := Remaining} = Data) -> + case Remaining of + [Digit] -> + do_unlock(), + Tref = erlang:start_timer(10000, self(), lock), + {next_state,open,Data#{remaining := Code, timer := Tref}}; +... + +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) -> + do_lock(), + {next_state,locked,Data}; +open(cast, {button,_}, Data) -> + {keep_state,Data}; +... + ]]></code> + <p> + If you need to cancel a timer due to some other event you can use + <seealso marker="erts:erlang#cancel_timer/2"> + <c>erlang:cancel_timer(Tref)</c>. + </seealso> + Note that a timeout message can not arrive after this, + unless you have postponed it (see the next section) before, + so make sure you do not accidentally postpone such messages. + </p> + <p> + Another way to cancel a timer is to not cancel it, + but instead to ignore it if it arrives in a state + where it is known to be late. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <title>Postponing Events</title> + <p> + If you want to ignore a particular event in the current state + and handle it in a future state, you can postpone the event. + A postponed event is retried after the state has + changed i.e <c>OldState =/= NewState</c>. + </p> + <p> + Postponing is ordered by the state transition + <seealso marker="stdlib:gen_statem#type-action"> + action + </seealso> + <c>postpone</c>. + </p> + <p> + In this example, instead of ignoring button events + while in the <c>open</c> state we can postpone them + and they will be queued and later handled in the <c>locked</c> state: + </p> + <code type="erl"><![CDATA[ +... +open(cast, {button,_}, Data) -> + {keep_state,Data,[postpone]}; +... + ]]></code> + <p> + The fact that a postponed event is only retried after a state change + translates into a requirement on the event and state space: + if you have a choice between storing a state data item + in the <c>State</c> or in the <c>Data</c>; + should a change in the item value affect which events that + are handled, then this item ought to be part of the state. + </p> + <p> + What you want to avoid is that you maybe much later decide + to postpone an event in one state and by misfortune it is never retried + because the code only changes the <c>Data</c> but not the <c>State</c>. + </p> + + <section> + <title>Fuzzy State Diagrams</title> + <p> + It is not uncommon that a state diagram does not specify + how to handle events that are not illustrated + in a particular state in the diagram. + Hopefully this is described in an associated text + or from the context. + </p> + <p> + Possible actions may be; ignore as in drop the event + (maybe log it) or deal with the event in some other state + as in postpone it. + </p> + </section> + + <section> + <title>Selective Receive</title> + <p> + Erlang's selective receive statement is often used to + describe simple state machine examples in straightforward + Erlang code. Here is a possible implementation of + the first example: + </p> + <code type="erl"><![CDATA[ +-module(code_lock). +-define(NAME, code_lock_1). +-export([start_link/1,button/1]). + +start_link(Code) -> + spawn( + fun () -> + true = register(?NAME, self()), + do_lock(), + locked(Code, Code) + end). + +button(Digit) -> + ?NAME ! {button,Digit}. + +locked(Code, [Digit|Remaining]) -> + receive + {button,Digit} when Remaining =:= [] -> + do_unlock(), + open(Code); + {button,Digit} -> + locked(Code, Remaining); + {button,_} -> + locked(Code, Code) + end. + +open(Code) -> + receive + after 10000 -> + do_lock(), + locked(Code, Code) + end. + +do_lock() -> + io:format("Locked~n", []). +do_unlock() -> + io:format("Open~n", []). + ]]></code> + <p> + The selective receive in this case causes <c>open</c> + to implicitly postpone any events to the <c>locked</c> state. + </p> + <p> + A selective receive can not be used from a <c>gen_statem</c> + behaviour just as for any <c>gen_*</c> behavior + since the receive statement is within the <c>gen_*</c> engine itself. + It has to be there because all + <seealso marker="stdlib:sys"><c>sys</c></seealso> + compatible behaviours must respond to system messages and therefore + do that in their engine receive loop, + passing non-system messages to the callback module. + </p> + <p> + The state transition + <seealso marker="stdlib:gen_statem#type-action"> + action + </seealso> + <c>postpone</c> is designed to be able to model + selective receives. A selective receive implicitly postpones + any not received events, but the <c>postpone</c> + state transition action explicitly postpones one received event. + </p> + <p> + Other than that both mechanisms have got the same theoretical + time and memory complexity, while the selective receive + language construct has got smaller constant factors. + </p> + </section> + </section> + +<!-- =================================================================== --> + + <section> + <title>Self Generated Events</title> + <p> + It may be beneficial in some cases to be able to generate events + to your own state machine. + This can be done with the state transition + <seealso marker="stdlib:gen_statem#type-action"> + action + </seealso> + <c>{next_event,EventType,EventContent}</c>. + </p> + <p> + You can generate events of any existing + <seealso marker="stdlib:gen_statem#type-action"> + type, + </seealso> + but the <c>internal</c> type can only be generated through the + <c>next_event</c> action and hence can not come from an external source, + so you can be certain that an <c>internal</c> event is an event + from your state machine to itself. + </p> + <p> + One example of using self generated events may be when you have + a state machine specification that uses state entry actions. + That you could code using a dedicated function + to do the state transition. But if you want that code to be + visible besides the other state logic you can insert + an <c>internal</c> event that does the entry actions. + This has the same unfortunate consequence as using + state transition functions that everywhere you go to + the state in question you will have to explicitly + insert the <c>internal</c> event + or use state transition function. + </p> + <p> + Here is an implementation of entry actions + using <c>internal</c> events with content <c>enter</c> + utilizing a helper function <c>enter/3</c> for state entry: + </p> + <code type="erl"><![CDATA[ +... +-define(CALLBACK_MODE, state_functions). + +... + +init(Code) -> + process_flag(trap_exit, true), + Data = #{code => Code}, + enter(?CALLBACK_MODE, locked, Data). + +... + +locked(internal, enter, _Data) -> + do_lock(), + {keep_state,Data#{remaining => Code}}; +locked( + cast, {button,Digit}, + #{code := Code, remaining := Remaining} = Data) -> + case Remaining of + [Digit] -> + enter(next_state, open, Data); +... + +open(internal, enter, _Data) -> + Tref = erlang:start_timer(10000, self(), lock), + do_unlock(), + {keep_state,Data#{timer => Tref}}; +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) -> + enter(next_state, locked, Data); +... + +enter(Tag, State, Data) -> + {Tag,State,Data,[{next_event,internal,enter}]}. + ]]></code> + </section> + +<!-- =================================================================== --> + + <section> + <title>Example Revisited</title> + <p> + Here is the example after all mentioned modifications + and some more utilizing the entry actions, + which deserves a new state diagram: + </p> + <image file="../design_principles/code_lock_2.png"> + <icaption>Code lock state diagram revisited</icaption> + </image> + <p> + Note that this state diagram does not specify how to handle + a button event in the state <c>open</c>, so you will have to + read some other place that is here that unspecified events + shall be ignored as in not consumed but handled in some other state. + Nor does it show that the <c>code_length/0</c> call shall be + handled in every state. + </p> + + <section> + <title>Callback Mode: state_functions</title> + <p> + Using state functions: + </p> + <code type="erl"><![CDATA[ +-module(code_lock). +-behaviour(gen_statem). +-define(NAME, code_lock_2). +-define(CALLBACK_MODE, state_functions). + +-export([start_link/1,stop/0]). +-export([button/1,code_length/0]). +-export([init/1,terminate/3,code_change/4]). +-export([locked/3,open/3]). + +start_link(Code) -> + gen_statem:start_link({local,?NAME}, ?MODULE, Code, []). +stop() -> + gen_statem:stop(?NAME). + +button(Digit) -> + gen_statem:cast(?NAME, {button,Digit}). +code_length() -> + gen_statem:call(?NAME, code_length). + +init(Code) -> + process_flag(trap_exit, true), + Data = #{code => Code}, + enter(?CALLBACK_MODE, locked, Data). + +locked(internal, enter, #{code := Code} = Data) -> + do_lock(), + {keep_state,Data#{remaining => Code}}; +locked( + cast, {button,Digit}, + #{code := Code, remaining := Remaining} = Data) -> + case Remaining of + [Digit] -> % Complete + enter(next_state, open, Data); + [Digit|Rest] -> % Incomplete + {keep_state,Data#{remaining := Rest}}; + [_|_] -> % Wrong + {keep_state,Data#{remaining := Code}} + end; +locked(EventType, EventContent, Data) -> + handle_event(EventType, EventContent, Data). + +open(internal, enter, Data) -> + Tref = erlang:start_timer(10000, self(), lock), + do_unlock(), + {keep_state,Data#{timer => Tref}}; +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) -> + enter(next_state, locked, Data); +open(cast, {button,_}, _) -> + {keep_state_and_data,[postpone]}; +open(EventType, EventContent, Data) -> + handle_event(EventType, EventContent, Data). + +handle_event({call,From}, code_length, #{code := Code}) -> + {keep_state_and_data,[{reply,From,length(Code)}]}. +enter(Tag, State, Data) -> + {Tag,State,Data,[{next_event,internal,enter}]}. + +do_lock() -> + io:format("Locked~n", []). +do_unlock() -> + io:format("Open~n", []). + +terminate(_Reason, State, _Data) -> + State =/= locked andalso do_lock(), + ok. +code_change(_Vsn, State, Data, _Extra) -> + {?CALLBACK_MODE,State,Data}. + ]]></code> + </section> + + <section> + <title>Callback Mode: handle_event_function</title> + <p> + What to change to use one <c>handle_event/4</c> function. + Here a clean first-dispatch-on-event approach + does not work that well due to the generated + entry actions: + </p> + <code type="erl"><![CDATA[ +... +-define(CALLBACK_MODE, handle_event_function). + +... +-export([handle_event/4]). + +... + +%% State: locked +handle_event(internal, enter, locked, #{code := Code} = Data) -> + do_lock(), + {keep_state,Data#{remaining => Code}}; +handle_event( + cast, {button,Digit}, locked, + #{code := Code, remaining := Remaining} = Data) -> + case Remaining of + [Digit] -> % Complete + enter(next_state, open, Data); + [Digit|Rest] -> % Incomplete + {keep_state,Data#{remaining := Rest}}; + [_|_] -> % Wrong + {keep_state,Data#{remaining := Code}} + end; +%% +%% State: open +handle_event(internal, enter, open, Data) -> + Tref = erlang:start_timer(10000, self(), lock), + do_unlock(), + {keep_state,Data#{timer => Tref}}; +handle_event(info, {timeout,Tref,lock}, open, #{timer := Tref} = Data) -> + enter(next_state, locked, Data); +handle_event(cast, {button,_}, open, _) -> + {keep_state_and_data,[postpone]}; +%% +%% Any state +handle_event({call,From}, code_length, _State, #{code := Code}) -> + {keep_state_and_data,[{reply,From,length(Code)}]}. + +... + ]]></code> + </section> + <p> + Note that postponing buttons from the <c>locked</c> state + to the <c>open</c> state feels like the wrong thing to do + for a code lock, but it at least illustrates event postponing. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <title>Filter the State</title> + <p> + The example servers so far in this chapter will for example + when killed by an exit signal or due to an internal error + print out the full internal state in the error log. + This state contains both the code lock code + and which digits that remains to unlock. + </p> + <p> + This state data can be regarded as sensitive, + and maybe not what you want in the error log + because of something unpredictable happening. + </p> + <p> + Another reason to filter the state can be + that the state is too big to print out since it fills + the error log with uninteresting details. + </p> + <p> + To avoid this you can format the internal state + that gets in the error log and gets returned from + <seealso marker="stdlib:sys#get_status/1"> + <c>sys:get_status/1,2</c> + </seealso> + by implementing the + <seealso marker="stdlib:gen_statem#Module:format_status/2"> + <c>Module:format_status/2</c> + </seealso> + function, for example like this: + </p> + <code type="erl"><![CDATA[ +... +-export([init/1,terminate/3,code_change/4,format_status/2]). +... + +format_status(Opt, [_PDict,State,Data]) -> + StateData = + {State, + maps:filter( + fun (code, _) -> false; + (remaining, _) -> false; + (_, _) -> true + end, + Data)}, + case Opt of + terminate -> + StateData; + normal -> + [{data,[{"State",StateData}]}] + end. + ]]></code> + <p> + It is not mandatory to implement a + <seealso marker="stdlib:gen_statem#Module:format_status/2"> + <c>Module:format_status/2</c> + </seealso> + function. If you do not a default implementation is used that + does the same as this example function without filtering + the <c>Data</c> term that is: <c>StateData = {State,Data}</c>. + </p> + </section> + +<!-- =================================================================== --> + + <section> + <title>Complex State</title> + <p> + The callback mode + <seealso marker="stdlib:gen_statem#type-callback_mode"> + <c>handle_event_function</c> + </seealso> + enables using a non-atom state as described in + <seealso marker="#callback_modes"> + Callback Modes, + </seealso> + for example a complex state term like a tuple. + </p> + <p> + One reason to use this is when you have + a state item that affects the event handling + in particular when combining that with postponing events. + Let us complicate the previous example + by introducing a configurable lock button + (this is the state item in question) + that in the <c>open</c> state immediately locks the door, + and an API function <c>set_lock_button/1</c> to set the lock button. + </p> + <p> + Suppose now that we call <c>set_lock_button</c> + while the door is open, + and have already postponed a button event + that up until now was not the lock button; + the sensible thing might be to say that + the button was pressed too early so it should + not be recognized as the lock button, + but then it might be surprising that a button event + that now is the lock button event arrives (as retried postponed) + immediately after the state transits to <c>locked</c>. + </p> + <p> + So let us make the <c>button/1</c> function synchronous + by using <c>gen_statem:call</c>, + and still postpone its events in the <c>open</c> state. + Then a call to <c>button/1</c> during the <c>open</c> + state will not return until the state transits to <c>locked</c> + since it is there the event is handled and the reply is sent. + </p> + <p> + If now one process calls <c>set_lock_button/1</c> + to change the lock button while some other process + hangs in <c>button/1</c> with the new lock button + it could be expected that the hanging lock button call + immediately takes effect and locks the lock. + Therefore we make the current lock button a part of the state + so when we change the lock button the state will change + and all postponed events will be retried. + </p> + <p> + We define the state as <c>{StateName,LockButton}</c> + where <c>StateName</c> is as before + and <c>LockButton</c> is the current lock button: + </p> + <code type="erl"><![CDATA[ +-module(code_lock). +-behaviour(gen_statem). +-define(NAME, code_lock_3). +-define(CALLBACK_MODE, handle_event_function). + +-export([start_link/2,stop/0]). +-export([button/1,code_length/0,set_lock_button/1]). +-export([init/1,terminate/3,code_change/4,format_status/2]). +-export([handle_event/4]). + +start_link(Code, LockButton) -> + gen_statem:start_link( + {local,?NAME}, ?MODULE, {Code,LockButton}, []). +stop() -> + gen_statem:stop(?NAME). + +button(Digit) -> + gen_statem:call(?NAME, {button,Digit}). +code_length() -> + gen_statem:call(?NAME, code_length). +set_lock_button(LockButton) -> + gen_statem:call(?NAME, {set_lock_button,LockButton}). + +init({Code,LockButton}) -> + process_flag(trap_exit, true), + Data = #{code => Code, remaining => undefined, timer => undefined}, + enter(?CALLBACK_MODE, {locked,LockButton}, Data, []). + +handle_event( + {call,From}, {set_lock_button,NewLockButton}, + {StateName,OldLockButton}, Data) -> + {next_state,{StateName,NewLockButton},Data, + [{reply,From,OldLockButton}]}; +handle_event( + {call,From}, code_length, + {_StateName,_LockButton}, #{code := Code}) -> + {keep_state_and_data, + [{reply,From,length(Code)}]}; +handle_event( + EventType, EventContent, + {locked,LockButton}, #{code := Code, remaining := Remaining} = Data) -> + case {EventType,EventContent} of + {internal,enter} -> + do_lock(), + {keep_state,Data#{remaining := Code}}; + {{call,From},{button,Digit}} -> + case Remaining of + [Digit] -> % Complete + next_state( + {open,LockButton}, Data, + [{reply,From,ok}]); + [Digit|Rest] -> % Incomplete + {keep_state,Data#{remaining := Rest}, + [{reply,From,ok}]}; + [_|_] -> % Wrong + {keep_state,Data#{remaining := Code}, + [{reply,From,ok}]} + end + end; +handle_event( + EventType, EventContent, + {open,LockButton}, #{timer := Timer} = Data) -> + case {EventType,EventContent} of + {internal,enter} -> + Tref = erlang:start_timer(10000, self(), lock), + do_unlock(), + {keep_state,Data#{timer := Tref}}; + {info,{timeout,Timer,lock}} -> + next_state({locked,LockButton}, Data, []); + {{call,From},{button,Digit}} -> + if + Digit =:= LockButton -> + erlang:cancel_timer(Timer), + next_state( + {locked,LockButton}, Data, + [{reply,From,locked}]); + true -> + {keep_state_and_data, + [postpone]} + end + end. + +next_state(State, Data, Actions) -> + enter(next_state, State, Data, Actions). +enter(Tag, State, Data, Actions) -> + {Tag,State,Data,[{next_event,internal,enter}|Actions]}. + +do_lock() -> + io:format("Locked~n", []). +do_unlock() -> + io:format("Open~n", []). + +terminate(_Reason, State, _Data) -> + State =/= locked andalso do_lock(), + ok. +code_change(_Vsn, State, Data, _Extra) -> + {?CALLBACK_MODE,State,Data}. +format_status(Opt, [_PDict,State,Data]) -> + StateData = + {State, + maps:filter( + fun (code, _) -> false; + (remaining, _) -> false; + (_, _) -> true + end, + Data)}, + case Opt of + terminate -> + StateData; + normal -> + [{data,[{"State",StateData}]}] + end. + ]]></code> + <p> + It may be an ill-fitting model for a physical code lock + that the <c>button/1</c> call might hang until the lock + is locked. But for an API in general it is really not + that strange. + </p> + </section> + +</chapter> diff --git a/system/doc/design_principles/sup_princ.xml b/system/doc/design_principles/sup_princ.xml index 7408a34442..a77b3964fc 100644 --- a/system/doc/design_principles/sup_princ.xml +++ b/system/doc/design_principles/sup_princ.xml @@ -213,6 +213,7 @@ child_spec() = #{id => child_id(), % mandatory <item><c>supervisor:start_link</c></item> <item><c>gen_server:start_link</c></item> <item><c>gen_fsm:start_link</c></item> + <item><c>gen_statem:start_link</c></item> <item><c>gen_event:start_link</c></item> <item>A function compliant with these functions. For details, see the <c>supervisor(3)</c> manual page.</item> @@ -276,7 +277,8 @@ child_spec() = #{id => child_id(), % mandatory <p><c>modules</c> are to be a list with one element <c>[Module]</c>, where <c>Module</c> is the name of the callback module, if the child process is a supervisor, - gen_server or gen_fsm. If the child process is a gen_event, + gen_server, gen_fsm or gen_statem. + If the child process is a gen_event, the value shall be <c>dynamic</c>.</p> <p>This information is used by the release handler during upgrades and downgrades, see @@ -400,8 +402,8 @@ supervisor:delete_child(Sup, Id)</code> restarts.</p> </section> - <marker id="simple"/> <section> + <marker id="simple"/> <title>Simplified one_for_one Supervisors</title> <p>A supervisor with restart strategy <c>simple_one_for_one</c> is a simplified <c>one_for_one</c> supervisor, where all child diff --git a/system/doc/design_principles/xmlfiles.mk b/system/doc/design_principles/xmlfiles.mk index 9c3836c8ac..e476255d62 100644 --- a/system/doc/design_principles/xmlfiles.mk +++ b/system/doc/design_principles/xmlfiles.mk @@ -25,6 +25,7 @@ DESIGN_PRINCIPLES_CHAPTER_FILES = \ distributed_applications.xml \ events.xml \ fsm.xml \ + statem.xml \ gen_server_concepts.xml \ included_applications.xml \ release_handling.xml \ diff --git a/system/doc/reference_manual/modules.xml b/system/doc/reference_manual/modules.xml index 5f2ac2a67d..96968b547e 100644 --- a/system/doc/reference_manual/modules.xml +++ b/system/doc/reference_manual/modules.xml @@ -4,7 +4,7 @@ <chapter> <header> <copyright> - <year>2003</year><year>2015</year> + <year>2003</year><year>2016</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -144,6 +144,7 @@ fact(0) -> % | <list type="bulleted"> <item><c>gen_server</c></item> <item><c>gen_fsm</c></item> + <item><c>gen_statem</c></item> <item><c>gen_event</c></item> <item><c>supervisor</c></item> </list> |