aboutsummaryrefslogtreecommitdiffstats
path: root/system
diff options
context:
space:
mode:
authorRaimo Niskanen <[email protected]>2018-03-20 03:34:23 -0700
committerRaimo Niskanen <[email protected]>2018-03-22 12:18:11 +0100
commitd86fd35ca0c65069955a34d6ae9fbc33b9663eb0 (patch)
tree81c804acf4e080541bd8fc008c71bcbf4ee0e0be /system
parentea1963553ffb06eb1bda636f328718f91136ed9c (diff)
downloadotp-d86fd35ca0c65069955a34d6ae9fbc33b9663eb0.tar.gz
otp-d86fd35ca0c65069955a34d6ae9fbc33b9663eb0.tar.bz2
otp-d86fd35ca0c65069955a34d6ae9fbc33b9663eb0.zip
Update User's Guide and pointers to it
Diffstat (limited to 'system')
-rw-r--r--system/doc/design_principles/statem.xml543
1 files changed, 412 insertions, 131 deletions
diff --git a/system/doc/design_principles/statem.xml b/system/doc/design_principles/statem.xml
index 5be2981f62..16f6ce8348 100644
--- a/system/doc/design_principles/statem.xml
+++ b/system/doc/design_principles/statem.xml
@@ -36,16 +36,6 @@
manual page in STDLIB, where all interface functions and callback
functions are described in detail.
</p>
- <note>
- <p>
- This is a new behavior in Erlang/OTP 19.0.
- It has been thoroughly reviewed, is stable enough
- to be used by at least two heavy OTP applications, and is here to stay.
- Depending on user feedback, we do not expect
- but can find it necessary to make minor
- not backward compatible changes into Erlang/OTP 20.0.
- </p>
- </note>
<!-- =================================================================== -->
@@ -95,60 +85,96 @@ State(S) x Event(E) -> Actions(A), State(S')</pre>
<!-- =================================================================== -->
<section>
+ <marker id="Callback Module" />
+ <title>Callback Module</title>
+ <p>
+ The callback module contains functions that implement
+ the state machine.
+ When an event occurs,
+ the <c>gen_statem</c> behaviour engine
+ calls a function in the callback module with the event,
+ current state and server data.
+ This function performs the actions for this event,
+ and returns the new state and server data
+ and also actions to be performed by the behaviour engine.
+ </p>
+ <p>
+ The behaviour engine holds the state machine state,
+ server data, timer references, a queue of posponed messages
+ and other metadata. It receives all process messages,
+ handles the system messages, and calls the callback module
+ with machine specific events.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
<marker id="Callback Modes" />
<title>Callback Modes</title>
<p>
The <c>gen_statem</c> behavior supports two callback modes:
</p>
- <list type="bulleted">
+ <taglist>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-callback_mode">
+ <c>state_functions</c>
+ </seealso>
+ </tag>
<item>
<p>
- In mode
- <seealso marker="stdlib:gen_statem#type-callback_mode"><c>state_functions</c></seealso>,
- the state transition rules are written as some Erlang
- functions, which conform to the following convention:
- </p>
- <pre>
-StateName(EventType, EventContent, Data) ->
- ... code for actions here ...
- {next_state, NewStateName, NewData}.
- </pre>
- <p>
- This form is used in most examples here for example in section
- <seealso marker="#Example">Example</seealso>.
+ Events are handled by one callback functions per state.
</p>
</item>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-callback_mode">
+ <c>handle_event_function</c>
+ </seealso>
+ </tag>
<item>
<p>
- In mode
- <seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>,
- only one Erlang function provides all state transition rules:
- </p>
- <pre>
-handle_event(EventType, EventContent, State, Data) ->
- ... code for actions here ...
- {next_state, NewState, NewData}
- </pre>
- <p>
- See section
- <seealso marker="#One Event Handler">One Event Handler</seealso>
- for an example.
+ Events are handled by one single callback function.
</p>
</item>
- </list>
+ </taglist>
<p>
- Both these modes allow other return tuples; see
- <seealso marker="stdlib:gen_statem#Module:StateName/3"><c>Module:StateName/3</c></seealso>
- in the <c>gen_statem</c> manual page.
- These other return tuples can, for example, stop the machine,
- execute state transition actions on the machine engine itself,
- and send replies.
+ The callback mode is selected at server start
+ and may be changed with a code upgrade/downgrade.
+ </p>
+ <p>
+ See the section
+ <seealso marker="#Event Handler">Event Handler</seealso>
+ that describes the event handling callback function(s).
+ </p>
+ <p>
+ The callback mode is selected by implementing a callback function
+ <seealso marker="stdlib:gen_statem#Module:callback_mode/0">
+ <c>Module:callback_mode()</c>
+ </seealso>
+ that returns one of the callback modes.
+ </p>
+ <p>
+ The
+ <seealso marker="stdlib:gen_statem#Module:callback_mode/0">
+ <c>Module:callback_mode()</c>
+ </seealso>
+ function may also return a list containing the callback mode
+ and the atom <c>state_enter</c> in which case
+ <seealso marker="#State Enter Calls">state enter calls</seealso>
+ are activated for the callback mode.
</p>
<section>
<marker id="Choosing the Callback Mode" />
<title>Choosing the Callback Mode</title>
<p>
+ The short version: choose <c>state_functions</c> -
+ it is the one most like <c>gen_fsm</c>.
+ But if you do not want the restriction that the state
+ must be an atom, or if having to write an event handler function
+ per state is not as you like it; please read on...
+ </p>
+ <p>
The two
<seealso marker="#Callback Modes">callback modes</seealso>
give different possibilities
@@ -186,7 +212,9 @@ handle_event(EventType, EventContent, State, Data) ->
This mode works equally well when you want to focus on
one event at the time or on
one state at the time, but function
- <seealso marker="stdlib:gen_statem#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>
+ <seealso marker="stdlib:gen_statem#Module:handle_event/4">
+ <c>Module:handle_event/4</c>
+ </seealso>
quickly grows too large to handle without branching to
helper functions.
</p>
@@ -208,36 +236,166 @@ handle_event(EventType, EventContent, State, Data) ->
<!-- =================================================================== -->
<section>
- <marker id="State Enter Calls" />
- <title>State Enter Calls</title>
+ <marker id="Event Handler" />
+ <title>Event Handler</title>
<p>
- The <c>gen_statem</c> behavior can regardless of callback mode
- automatically
- <seealso marker="stdlib:gen_statem#type-state_enter">
- call the state callback
- </seealso>
- with special arguments whenever the state changes
- so you can write state entry actions
- near the rest of the state transition rules.
- It typically looks like this:
+ Which callback function that handles an event
+ depends on the callback mode:
</p>
- <pre>
-StateName(enter, _OldState, Data) ->
- ... code for state entry actions here ...
- {keep_state, NewData};
-StateName(EventType, EventContent, Data) ->
- ... code for actions here ...
- {next_state, NewStateName, NewData}.</pre>
+ <taglist>
+ <tag><c>state_functions</c></tag>
+ <item>
+ The event is handled by:<br />
+ <seealso marker="stdlib:gen_statem#Module:StateName/3">
+ <c>Module:StateName(EventType, EventContent, Data)</c>
+ </seealso>
+ <p>
+ This form is the one mostly used in the
+ <seealso marker="#Example">Example</seealso>
+ section.
+ </p>
+ </item>
+ <tag><c>handle_event_function</c></tag>
+ <item>
+ The event is handled by:<br />
+ <seealso marker="stdlib:gen_statem#Module:handle_event/4">
+ <c>Module:handle_event(EventType, EventContent, State, Data)</c>
+ </seealso>
+ <p>
+ See section
+ <seealso marker="#One Event Handler">One Event Handler</seealso>
+ for an example.
+ </p>
+ </item>
+ </taglist>
<p>
- Depending on how your state machine is specified,
- this can be a very useful feature,
- but it forces you to handle the state enter calls in all states.
- See also the
- <seealso marker="#State Entry Actions">
- State Entry Actions
+ The state is either the name of the function itself or an argument to it.
+ The other arguments are the <c>EventType</c> described in section
+ <seealso marker="#Event Types">Event Types</seealso>,
+ the event dependent <c>EventContent</c>, and the current server <c>Data</c>.
+ </p>
+ <p>
+ State enter calls are also handled by the event handler and have
+ slightly different arguments. See the section
+ <seealso marker="#State Enter Calls">State Enter Calls</seealso>.
+ </p>
+ <p>
+ The event handler return values are defined in the description of
+ <seealso marker="stdlib:gen_statem#Module:StateName/3">
+ <c>Module:StateName/3</c>
</seealso>
- chapter.
+ in the <c>gen_statem</c> manual page, but here is
+ a more readable list:
</p>
+ <taglist>
+ <tag>
+ <c>{next_state, NextState, NewData, Actions}</c><br />
+ <c>{next_state, NextState, NewData}</c>
+ </tag>
+ <item>
+ <p>
+ Set next state and update the server data.
+ If the <c>Actions</c> field is used, execute state transition actions.
+ An empty <c>Actions</c> list is equivalent to not returning the field.
+ </p>
+ <p>
+ See section
+ <seealso marker="#Actions">Actions</seealso> for a list of possible
+ state transition actions.
+ </p>
+ <p>
+ If <c>NextState =/= State</c> the state machine changes
+ to a new state. A
+ <seealso marker="#State Enter Calls">state enter call</seealso>
+ is performed if enabled and all
+ <seealso marker="#Postponing Events">postponed events</seealso>
+ are retried.
+ </p>
+ </item>
+ <tag>
+ <c>{keep_state, NewData, Actions}</c><br />
+ <c>{keep_state, NewData}</c>
+ </tag>
+ <item>
+ <p>
+ Same as the <c>next_state</c> values with
+ <c>NextState =:= State</c>, that is no state change.
+ </p>
+ </item>
+ <tag>
+ <c>{keep_state_and_data, Actions}</c><br />
+ <c>keep_state_and_data</c>
+ </tag>
+ <item>
+ <p>
+ Same as the <c>keep_state</c> values with
+ <c>NextData =:= Data</c>, that is no change in server data.
+ </p>
+ </item>
+ <tag>
+ <c>{repeat_state, NewData, Actions}</c><br />
+ <c>{repeat_state, NewData}</c><br />
+ <c>{repeat_state_and_data, Actions}</c><br />
+ <c>repeat_state_and_data</c>
+ </tag>
+ <item>
+ <p>
+ Same as the <c>keep_state</c> or <c>keep_state_and_data</c> values,
+ and if <seealso marker="#State Enter Calls">state enter calls</seealso>
+ are enabled, repeat that call.
+ </p>
+ </item>
+ <tag>
+ <c>{stop, Reason, NewData}</c><br />
+ <c>{stop, Reason}</c>
+ </tag>
+ <item>
+ <p>
+ Stop the server with reason <c>Reason</c>.
+ If the <c>NewData</c> field is used, first update the server data.
+ </p>
+ </item>
+ <tag>
+ <c>{stop_and_reply, Reason, NewData, Actions}</c><br />
+ <c>{stop_and_reply, Reason, Actions}</c>
+ </tag>
+ <item>
+ <p>
+ Same as the <c>stop</c> values, but first execute the given
+ state transition actions that may only be reply actions.
+ </p>
+ </item>
+ </taglist>
+
+ <section>
+ <marker id="The First State" />
+ <title>The First State</title>
+ <p>
+ To decide the first state the
+ <seealso marker="stdlib:gen_statem#Module:init/1">
+ <c>Module:init(Args)</c>
+ </seealso>
+ callback function is called before any
+ <seealso marker="#Event Handler">event handler</seealso>
+ is called. This function behaves exactly as an event handler
+ function, but gets its only argument <c>Args</c> from
+ the <c>gen_statem</c>
+ <seealso marker="stdlib:gen_statem#start/3">
+ <c>start/3,4</c>
+ </seealso>
+ or
+ <seealso marker="stdlib:gen_statem#start_link/3">
+ <c>start_link/3,4</c>
+ </seealso>
+ function, and returns <c>{ok, State, Data}</c>
+ or <c>{ok, State, Data, Actions}</c>.
+ If you use the
+ <seealso marker="#Postponing Events"><c>postpone</c></seealso>
+ action from this function, that action is ignored,
+ since there is no event to postpone.
+ </p>
+ </section>
+
</section>
<!-- =================================================================== -->
@@ -246,10 +404,8 @@ StateName(EventType, EventContent, Data) ->
<marker id="Actions" />
<title>Actions</title>
<p>
- In the first section
- <seealso marker="#Event-Driven State Machines">
- Event-Driven State Machines
- </seealso>
+ In the first
+ <seealso marker="#Event-Driven State Machines">section</seealso>
actions were mentioned as a part of
the general state machine model. These general actions
are implemented with the code that callback module
@@ -264,72 +420,97 @@ StateName(EventType, EventContent, Data) ->
These are ordered by returning a list of
<seealso marker="stdlib:gen_statem#type-action">actions</seealso>
in the
- <seealso marker="stdlib:gen_statem#type-state_callback_result">return tuple</seealso>
+ <seealso marker="stdlib:gen_statem#type-state_callback_result">
+ return value
+ </seealso>
from the
<seealso marker="stdlib:gen_statem#Module:StateName/3">callback function</seealso>.
- These state transition actions affect the <c>gen_statem</c>
- engine itself and can do the following:
+ These are the possible state transition actions:
</p>
- <list type="bulleted">
- <item>
+ <taglist>
+ <tag>
<seealso marker="stdlib:gen_statem#type-postpone">
- Postpone
+ <c>postpone</c>
</seealso>
- the current event, see section
+ <br />
+ <c>{postpone, Boolean}</c>
+ </tag>
+ <item>
+ If set postpone the current event, see section
<seealso marker="#Postponing Events">Postponing Events</seealso>
</item>
- <item>
+ <tag>
<seealso marker="stdlib:gen_statem#type-hibernate">
- Hibernate
+ <c>hibernate</c>
</seealso>
- the <c>gen_statem</c>, treated in
+ <br />
+ <c>{hibernate, Boolean}</c>
+ </tag>
+ <item>
+ If set hibernate the <c>gen_statem</c>, treated in section
<seealso marker="#Hibernation">Hibernation</seealso>
</item>
- <item>
- Start a
+ <tag>
<seealso marker="stdlib:gen_statem#type-state_timeout">
- state time-out</seealso>,
- read more in section
+ <c>{state_timeout, Time}</c>
+ </seealso>
+ <br />
+ <c>{state_timeout, Time, Opts}</c>
+ </tag>
+ <item>
+ Start a state time-out, read more in section
<seealso marker="#State Time-Outs">State Time-Outs</seealso>
</item>
- <item>
- Start a
+ <tag>
<seealso marker="stdlib:gen_statem#type-generic_timeout">
- generic time-out</seealso>,
- read more in section
+ <c>{{timeout, Name}, Time}</c>
+ </seealso>
+ <br />
+ <c>{{timeout, Name}, Time, Opts}</c>
+ </tag>
+ <item>
+ Start a generic time-out, read more in section
<seealso marker="#Generic Time-Outs">Generic Time-Outs</seealso>
</item>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-event_timeout">
+ <c>{timeout, Time}</c>
+ </seealso>
+ <br />
+ <c>{timeout, Time, Opts}</c><br />
+ <c>Time</c>
+ </tag>
<item>
- Start an
- <seealso marker="stdlib:gen_statem#type-event_timeout">event time-out</seealso>,
- see more in section
+ Start an event time-out, see more in section
<seealso marker="#Event Time-Outs">Event Time-Outs</seealso>
</item>
- <item>
+ <tag>
<seealso marker="stdlib:gen_statem#type-reply_action">
- Reply
+ <c>{reply, From, Reply}</c>
</seealso>
- to a caller, mentioned at the end of section
+ </tag>
+ <item>
+ Reply to a caller, mentioned at the end of section
<seealso marker="#All State Events">All State Events</seealso>
</item>
- <item>
- Generate the
+ <tag>
<seealso marker="stdlib:gen_statem#type-action">
- next event
+ <c>{next_event, EventType, EventContent}</c>
</seealso>
- to handle, see section
- <seealso marker="#Self-Generated Events">Self-Generated Events</seealso>
+ </tag>
+ <item>
+ Generate the next event to handle, see section
+ <seealso marker="#Inserted Events">Inserted Events</seealso>
</item>
- </list>
+ </taglist>
<p>
- For details, see the
- <seealso marker="stdlib:gen_statem#type-action">
- <c>gen_statem(3)</c>
- </seealso>
- manual page.
+ For details, see the <c>gen_statem(3)</c>
+ manual page for type
+ <seealso marker="stdlib:gen_statem#type-action"><c>action()</c></seealso>.
You can, for example, reply to many callers,
generate multiple next events,
- and set time-outs to relative or absolute times.
+ and set a time-out to use absolute instead of relative time
+ (using the <c>Opts</c> field).
</p>
</section>
@@ -341,8 +522,8 @@ StateName(EventType, EventContent, Data) ->
<p>
Events are categorized in different
<seealso marker="stdlib:gen_statem#type-event_type">event types</seealso>.
- Events of all types are handled in the same callback function,
- for a given state, and the function gets
+ Events of all types are for a given state
+ handled in the same callback function, and that function gets
<c>EventType</c> and <c>EventContent</c> as arguments.
</p>
<p>
@@ -350,12 +531,20 @@ StateName(EventType, EventContent, Data) ->
they come from:
</p>
<taglist>
- <tag><c>cast</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-external_event_type">
+ <c>cast</c>
+ </seealso>
+ </tag>
<item>
Generated by
<seealso marker="stdlib:gen_statem#cast/2"><c>gen_statem:cast</c></seealso>.
</item>
- <tag><c>{call,From}</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-external_event_type">
+ <c>{call,From}</c>
+ </seealso>
+ </tag>
<item>
Generated by
<seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call</c></seealso>,
@@ -364,12 +553,20 @@ StateName(EventType, EventContent, Data) ->
<c>{reply,From,Msg}</c> or by calling
<seealso marker="stdlib:gen_statem#reply/1"><c>gen_statem:reply</c></seealso>.
</item>
- <tag><c>info</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-external_event_type">
+ <c>info</c>
+ </seealso>
+ </tag>
<item>
Generated by any regular process message sent to
the <c>gen_statem</c> process.
</item>
- <tag><c>state_timeout</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-timeout_event_type">
+ <c>state_timeout</c>
+ </seealso>
+ </tag>
<item>
Generated by state transition action
<seealso marker="stdlib:gen_statem#type-state_timeout">
@@ -377,7 +574,11 @@ StateName(EventType, EventContent, Data) ->
</seealso>
state timer timing out.
</item>
- <tag><c>{timeout,Name}</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-timeout_event_type">
+ <c>{timeout,Name}</c>
+ </seealso>
+ </tag>
<item>
Generated by state transition action
<seealso marker="stdlib:gen_statem#type-generic_timeout">
@@ -385,7 +586,11 @@ StateName(EventType, EventContent, Data) ->
</seealso>
generic timer timing out.
</item>
- <tag><c>timeout</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-timeout_event_type">
+ <c>timeout</c>
+ </seealso>
+ </tag>
<item>
Generated by state transition action
<seealso marker="stdlib:gen_statem#type-event_timeout">
@@ -394,7 +599,11 @@ StateName(EventType, EventContent, Data) ->
(or its short form <c>Time</c>)
event timer timing out.
</item>
- <tag><c>internal</c></tag>
+ <tag>
+ <seealso marker="stdlib:gen_statem#type-event_type">
+ <c>internal</c>
+ </seealso>
+ </tag>
<item>
Generated by state transition
<seealso marker="stdlib:gen_statem#type-action">action</seealso>
@@ -408,6 +617,61 @@ StateName(EventType, EventContent, Data) ->
<!-- =================================================================== -->
<section>
+ <marker id="State Enter Calls" />
+ <title>State Enter Calls</title>
+ <p>
+ The <c>gen_statem</c> behavior can if this is enabled,
+ regardless of callback mode,
+ automatically
+ <seealso marker="stdlib:gen_statem#type-state_enter">
+ call the state callback
+ </seealso>
+ with special arguments whenever the state changes
+ so you can write state enter actions
+ near the rest of the state transition rules.
+ It typically looks like this:
+ </p>
+ <pre>
+StateName(enter, OldState, Data) ->
+ ... code for state enter actions here ...
+ {keep_state, NewData};
+StateName(EventType, EventContent, Data) ->
+ ... code for actions here ...
+ {next_state, NewStateName, NewData}.</pre>
+ <p>
+ Since the state enter call is not an event there are restrictions
+ on the allowed return value and
+ <seealso marker="#Actions">state transition actions</seealso>.
+ You may not change the state,
+ <seealso marker="#Postponing Events">postpone</seealso>
+ this non-event, or
+ <seealso marker="#Inserted Events">insert events</seealso>.
+ </p>
+ <p>
+ The first state that is entered will get a state enter call
+ with <c>OldState</c> equal to the current state.
+ </p>
+ <p>
+ You may repeat the state enter call using the <c>{repeat_state,...}</c>
+ return value from the
+ <seealso marker="#Event Handler">event handler</seealso>.
+ In this case <c>OldState</c> will also be equal to the current state.
+ </p>
+ <p>
+ Depending on how your state machine is specified,
+ this can be a very useful feature,
+ but it forces you to handle the state enter calls in all states.
+ See also the
+ <seealso marker="#State Enter Actions">
+ State Enter Actions
+ </seealso>
+ chapter.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
<marker id="Example" />
<title>Example</title>
<p>
@@ -1196,14 +1460,14 @@ do_unlock() ->
<!-- =================================================================== -->
<section>
- <marker id="State Entry Actions" />
- <title>State Entry Actions</title>
+ <marker id="State Enter Actions" />
+ <title>State Enter Actions</title>
<p>
Say you have a state machine specification
- that uses state entry actions.
- Allthough you can code this using self-generated events
+ that uses state enter actions.
+ Allthough you can code this using inserted events
(described in the next section), especially if just
- one or a few states has got state entry actions,
+ one or a few states has got state enter actions,
this is a perfect use case for the built in
<seealso marker="#State Enter Calls">state enter calls</seealso>.
</p>
@@ -1244,7 +1508,7 @@ open(state_timeout, lock, Data) ->
...
]]></code>
<p>
- You can repeat the state entry code by returning one of
+ You can repeat the state enter code by returning one of
<c>{repeat_state, ...}</c>, <c>{repeat_state_and_data,_}</c>
or <c>repeat_state_and_data</c> that otherwise behaves
exactly like their <c>keep_state</c> siblings.
@@ -1259,8 +1523,8 @@ open(state_timeout, lock, Data) ->
<!-- =================================================================== -->
<section>
- <marker id="Self-Generated Events" />
- <title>Self-Generated Events</title>
+ <marker id="Inserted Events" />
+ <title>Inserted Events</title>
<p>
It can sometimes be beneficial to be able to generate events
to your own state machine.
@@ -1279,14 +1543,18 @@ open(state_timeout, lock, Data) ->
<p>
One example for this is to pre-process incoming data, for example
decrypting chunks or collecting characters up to a line break.
+ </p>
+ <p>
Purists may argue that this should be modelled with a separate
state machine that sends pre-processed events
- to the main state machine.
- But to decrease overhead the small pre-processing state machine
+ to the main state machine,
+ but to decrease overhead the small pre-processing state machine
can be implemented in the common state event handling
of the main state machine using a few state data variables
that then sends the pre-processed events as internal events
to the main state machine.
+ Using internal events also can make it easier
+ to synchronize the state machines.
</p>
<p>
The following example uses an input model where you give the lock
@@ -1800,10 +2068,23 @@ handle_event(
</p>
<p>
Another not uncommon scenario is to use the event time-out
- to triger hibernation after a certain time of inactivity.
+ to trigger hibernation after a certain time of inactivity.
+ There is also a server start option
+ <seealso marker="stdlib:gen_statem#type-hibernate_after_opt">
+ <c>{hibernate_after, Timeout}</c>
+ </seealso>
+ for
+ <seealso marker="stdlib:gen_statem#start/3">
+ <c>start/3,4</c>
+ </seealso>
+ or
+ <seealso marker="stdlib:gen_statem#start_link/3">
+ <c>start_link/3,4</c>
+ </seealso>
+ that may be used to automatically hibernate the server.
</p>
<p>
- This server probably does not use
+ This particular server probably does not use
heap memory worth hibernating for.
To gain anything from hibernation, your server would
have to produce some garbage during callback execution,