diff options
-rw-r--r-- | bootstrap/lib/stdlib/ebin/erl_parse.beam | bin | 84396 -> 308128 bytes | |||
-rw-r--r-- | erts/doc/src/absform.xml | 160 | ||||
-rw-r--r-- | lib/edoc/src/edoc_layout.erl | 2 | ||||
-rw-r--r-- | lib/edoc/src/edoc_specs.erl | 142 | ||||
-rw-r--r-- | lib/stdlib/src/erl_parse.yrl | 64 | ||||
-rw-r--r-- | lib/stdlib/src/erl_pp.erl | 127 | ||||
-rw-r--r-- | lib/stdlib/test/erl_pp_SUITE.erl | 2 |
7 files changed, 353 insertions, 144 deletions
diff --git a/bootstrap/lib/stdlib/ebin/erl_parse.beam b/bootstrap/lib/stdlib/ebin/erl_parse.beam Binary files differindex adf1cfb43e..0522f5c05e 100644 --- a/bootstrap/lib/stdlib/ebin/erl_parse.beam +++ b/bootstrap/lib/stdlib/ebin/erl_parse.beam diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml index 835a4fc692..e1a8c2e517 100644 --- a/erts/doc/src/absform.xml +++ b/erts/doc/src/absform.xml @@ -4,7 +4,7 @@ <chapter> <header> <copyright> - <year>2001</year><year>2013</year> + <year>2001</year><year>2015</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -80,6 +80,28 @@ <item>If F is a record declaration <c><![CDATA[-record(Name,{V_1, ..., V_k})]]></c>, then Rep(F) = <c><![CDATA[{attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}]]></c>. For Rep(V), see below.</item> + <item>If F is a type attribute (i.e. <c><![CDATA[opaque]]></c> or + <c><![CDATA[type]]></c>) + <c><![CDATA[-Attr Name(A_1, ..., A_k) :: T]]></c> where each + <c><![CDATA[A_i]]></c> is a variable, then Rep(F) = + <c><![CDATA[{attribute,LINE,Attr,{Name,Rep(T),[Rep(A_1), ..., Rep(A_k)]}}]]></c>. + For Rep(T), see below.</item> + <item>If F is a type spec (i.e. <c><![CDATA[callback]]></c> or + <c><![CDATA[spec]]></c>) + <c><![CDATA[-Attr F Tc_1; ...; Tc_k]]></c>, + where each <c><![CDATA[Tc_i]]></c> is a fun type clause with an + argument sequence of the same length <c><![CDATA[Arity]]></c>, then + Rep(F) = + <c><![CDATA[{Attr,LINE,{{F,Arity},[Rep(Tc_1), ..., Rep(Tc_k)]}}]]></c>. + For Rep(Tc_i), see below.</item> + <item>If F is a type spec (i.e. <c><![CDATA[callback]]></c> or + <c><![CDATA[spec]]></c>) + <c><![CDATA[-Attr Mod:F Tc_1; ...; Tc_k]]></c>, + where each <c><![CDATA[Tc_i]]></c> is a fun type clause with an + argument sequence of the same length <c><![CDATA[Arity]]></c>, then + Rep(F) = + <c><![CDATA[{Attr,LINE,{{Mod,F,Arity},[Rep(Tc_1), ..., Rep(Tc_k)]}}]]></c>. + For Rep(Tc_i), see below.</item> <item>If F is a wild attribute <c><![CDATA[-A(T)]]></c>, then Rep(F) = <c><![CDATA[{attribute,LINE,A,T}]]></c>. <br></br></item> @@ -90,6 +112,127 @@ </list> <section> + <title>Type clauses</title> + <list type="bulleted"> + <item>If T is a fun type clause + <c><![CDATA[(A_1, ..., A_n) -> Ret]]></c>, where each + <c><![CDATA[A_i]]></c> and <c><![CDATA[Ret]]></c> are types, then + Rep(T) = + <c><![CDATA[{type,LINE,'fun',[{type,LINE,product,[Rep(A_1), ..., Rep(A_n)]},Rep(Ret)]}]]></c>. + </item> + <item>If T is a bounded fun type clause <c><![CDATA[Tc when Tg]]></c>, + where <c><![CDATA[Tc]]></c> is an unbounded fun type clause and + <c><![CDATA[Tg]]></c> is a type guard sequence, then Rep(T) = + <c><![CDATA[{type,LINE,bounded_fun,[Rep(Tc),Rep(Tg)]}]]></c>.</item> + </list> + </section> + + <section> + <title>Type guards</title> + <list type="bulleted"> + <item>If G is a constraint <c><![CDATA[F(A_1, ..., A_k)]]></c>, where + <c><![CDATA[F]]></c> is an atom and each <c><![CDATA[A_i]]></c> is a + type, then Rep(G) = + <c><![CDATA[{type,LINE,constraint,[Rep(F),[Rep(A_1), ..., Rep(A_k)]]}]]></c>. + </item> + <item>If G is a type definition <c><![CDATA[Name :: Type]]></c>, + where <c><![CDATA[Name]]></c> is a variable and + <c><![CDATA[Type]]></c> is a type, then Rep(G) = + <c><![CDATA[{type,LINE,constraint,[{atom,LINE,is_subtype},[Rep(Name),Rep(Type)]]}]]></c>.</item> + </list> + </section> + + <section> + <title>Types</title> + <list type="bulleted"> + <item>If T is a type definition <c><![CDATA[Name :: Type]]></c>, + where <c><![CDATA[Name]]></c> is a variable and + <c><![CDATA[Type]]></c> is a type, then Rep(T) = + <c><![CDATA[{ann_type,LINE,[Rep(Name),Rep(Type)]}]]></c>.</item> + <item>If T is a type union <c><![CDATA[A_1 | ... | A_k]]></c>, + where each <c><![CDATA[A_i]]></c> is a type, then Rep(T) = + <c><![CDATA[{type,LINE,union,[Rep(A_1), ..., Rep(A_k)]}]]></c>.</item> + <item>If T is a type range <c><![CDATA[L .. R]]></c>, + where <c><![CDATA[L]]></c> and <c><![CDATA[R]]></c> are types, then + Rep(T) = <c><![CDATA[{type,LINE,range,[Rep(L), Rep(R)]}]]></c>.</item> + <item>If T is a binary operation <c><![CDATA[L Op R]]></c>, + where <c><![CDATA[Op]]></c> is an arithmetic or bitwise binary operator + and <c><![CDATA[L]]></c> and <c><![CDATA[R]]></c> are types, then + Rep(T) = <c><![CDATA[{op,LINE,Op,Rep(L),Rep(R)}]]></c>.</item> + <item>If T is <c><![CDATA[Op A]]></c>, where <c><![CDATA[Op]]></c> is an + arithmetic or bitwise unary operator and <c><![CDATA[A]]></c> is a + type, then Rep(T) = <c><![CDATA[{op,LINE,Op,Rep(A)}]]></c>.</item> + <item>If T is a fun type <c><![CDATA[fun()]]></c>, then Rep(T) = + <c><![CDATA[{type,LINE,'fun',[]}]]></c>.</item> + <item>If T is a variable <c><![CDATA[V]]></c>, then Rep(T) = + <c><![CDATA[{var,LINE,A}]]></c>, where <c><![CDATA[A]]></c> is an atom + with a printname consisting of the same characters as + <c><![CDATA[V]]></c>.</item> + <item>If T is an atomic literal L and L is not a string literal, then + Rep(T) = Rep(L).</item> + <item>If T is a tuple or map type <c><![CDATA[F()]]></c> (i.e. + <c><![CDATA[tuple]]></c> or <c><![CDATA[map]]></c>), then Rep(T) = + <c><![CDATA[{type,LINE,F,any}]]></c>.</item> + <item>If T is a type <c><![CDATA[F(A_1, ..., A_k)]]></c>, where each + <c><![CDATA[A_i]]></c> is a type, then Rep(T) = + <c><![CDATA[{user_type,LINE,F,[Rep(A_1), ..., Rep(A_k)]}]]></c>.</item> + <item>If T is a remote type <c><![CDATA[M:F(A_1, ..., A_k)]]></c>, where + each <c><![CDATA[A_i]]></c> is a type and <c><![CDATA[M]]></c> and + <c><![CDATA[F]]></c>, then Rep(T) = + <c><![CDATA[{remote_type,LINE,[Rep(M),Rep(F),[Rep(A_1), ..., Rep(A_k)]]}]]></c>. + </item> + <item>If T is the nil type <c><![CDATA[[]]]></c>, then Rep(T) = + <c><![CDATA[{type,LINE,nil,[]}]]></c>.</item> + <item>If T is a list type <c><![CDATA[[A]]]></c>, where + <c><![CDATA[A]]></c> is a type, then Rep(T) = + <c><![CDATA[{type,LINE,list,[Rep(A)]}]]></c>.</item> + <item>If T is a non-empty list type <c><![CDATA[[A, ...]]]></c>, where + <c><![CDATA[A]]></c> is a type, then Rep(T) = + <c><![CDATA[{type,LINE,nonempty_list,[Rep(A)]}]]></c>.</item> + <item>If T is a map type <c><![CDATA[#{P_1, ..., P_k}]]></c>, where each + <c><![CDATA[P_i]]></c> is a map pair type, then Rep(T) = + <c><![CDATA[{type,LINE,map,[Rep(P_1), ..., Rep(P_k)]}]]></c>.</item> + <item>If T is a map pair type <c><![CDATA[K => V]]></c>, where + <c><![CDATA[K]]></c> and <c><![CDATA[V]]></c> are types, + then Rep(T) = + <c><![CDATA[{type,LINE,map_field_assoc,[Rep(K),Rep(V)]}]]></c>.</item> + <item>If T is a tuple type <c><![CDATA[{A_1, ..., A_k}]]></c>, where + each <c><![CDATA[A_i]]></c> is a type, then Rep(T) = + <c><![CDATA[{type,LINE,tuple,[Rep(A_1), ..., Rep(A_k)]}]]></c>.</item> + <item>If T is a record type <c><![CDATA[#Name{}]]></c>, where + <c><![CDATA[Name]]></c> is an atom, then Rep(T) = + <c><![CDATA[{type,LINE,record,[Rep(Name)]}]]></c>.</item> + <item>If T is a record type <c><![CDATA[#Name{F_1, ..., F_k}]]></c>, + where <c><![CDATA[Name]]></c> is an atom, then Rep(T) = + <c><![CDATA[{type,LINE,record,[Rep(Name),[Rep(F_1), ..., Rep(F_k)]]}]]></c>. + </item> + <item>If T is a record field type <c><![CDATA[Name :: Type]]></c>, + where <c><![CDATA[Name]]></c> is an atom, then Rep(T) = + <c><![CDATA[{type,LINE,field_type,[Rep(Name),Rep(Type)]}]]></c>.</item> + <item>If T is a record field type <c><![CDATA[<<>>]]></c>, then Rep(T) = + <c><![CDATA[{type,LINE,binary,[{integer,LINE,0},{integer,LINE,0}]}]]></c>. + </item> + <item>If T is a binary type <c><![CDATA[<< _ : B >>]]></c>, where + <c><![CDATA[B]]></c> is a type, then Rep(T) = + <c><![CDATA[{type,LINE,binary,[Rep(B),{integer,LINE,0}]}]]></c>.</item> + <item>If T is a binary type <c><![CDATA[<< _ : _ * U >>]]></c>, + where <c><![CDATA[U]]></c> is a type, then Rep(T) = + <c><![CDATA[{type,LINE,binary,[{integer,LINE,0},Rep(U)]}]]></c>.</item> + <item>If T is a binary type <c><![CDATA[<< _ : B , _ : _ * U >>]]></c>, + where <c><![CDATA[B]]></c> and <c><![CDATA[U]]></c> is a type, then + Rep(T) = + <c><![CDATA[{type,LINE,binary,[Rep(B),Rep(U)]}]]></c>.</item> + + <item>If T is a fun type <c><![CDATA[fun((...) -> Ret)]]></c>, then + Rep(T) = <c><![CDATA[{type,LINE,'fun',[{type,LINE,product,[]},Rep(Ret)]}]]></c>. + </item> + <item>If T is a fun type <c><![CDATA[fun(Tc)]]></c>, where + <c><![CDATA[Tc]]></c> is an unbounded fun type clause, + then Rep(T) = <c><![CDATA[Rep(Tc)]]></c>.</item> + </list> + </section> + + <section> <title>Record fields</title> <p>Each field in a record declaration may have an optional explicit default initializer expression</p> @@ -98,6 +241,21 @@ Rep(V) = <c><![CDATA[{record_field,LINE,Rep(A)}]]></c>.</item> <item>If V is <c><![CDATA[A = E]]></c>, then Rep(V) = <c><![CDATA[{record_field,LINE,Rep(A),Rep(E)}]]></c>.</item> + <item>If V is <c><![CDATA[A :: T]]></c>, where <c><![CDATA[A]]></c> is + an atom and <c><![CDATA[T]]></c> is a type and it does not contain + <c><![CDATA[undefined]]></c> syntactically, then Rep(V) = + <c><![CDATA[{typed_record_field,{record_field,LINE,Rep(A)},Rep(undefined | T)}]]></c>. + Note that if <![CDATA[T]]> is an annotated type, it will be wrapped in + parentheses.</item> + <item>If V is <c><![CDATA[A :: T]]></c>, where <c><![CDATA[A]]></c> is + an atom and <c><![CDATA[T]]></c> is a type, then Rep(V) = + <c><![CDATA[{typed_record_field,{record_field,LINE,Rep(A)},Rep(T)}]]></c>. + </item> + <item>If V is <c><![CDATA[A = E :: T]]></c>, where <c><![CDATA[A]]></c> + is an atom, <c><![CDATA[E]]></c> is an expression and + <c><![CDATA[T]]></c> is a type, then Rep(V) = + <c><![CDATA[{typed_record_field,{record_field,LINE,Rep(A),Rep(E)},Rep(T)}]]></c>. + </item> </list> </section> diff --git a/lib/edoc/src/edoc_layout.erl b/lib/edoc/src/edoc_layout.erl index 62d5eb9a18..b67ec31ae3 100644 --- a/lib/edoc/src/edoc_layout.erl +++ b/lib/edoc/src/edoc_layout.erl @@ -520,7 +520,7 @@ format_spec(Name, Type, Defs, #opts{pretty_printer = erl_pp}=Opts) -> {R, ".\n"} = etypef(L, O), [{pre, R}] catch _:_ -> - %% Example: "@spec ... -> record(a)" + %% Should not happen. format_spec(Name, Type, Defs, Opts#opts{pretty_printer=''}) end; format_spec(Sep, Type, Defs, _Opts) -> diff --git a/lib/edoc/src/edoc_specs.erl b/lib/edoc/src/edoc_specs.erl index 59f6cb8ddf..eb69058148 100644 --- a/lib/edoc/src/edoc_specs.erl +++ b/lib/edoc/src/edoc_specs.erl @@ -295,47 +295,54 @@ arg_name([A | As], Default) -> is_name(A) -> is_atom(A). -d2e({ann_type,_,[V, T0]}) -> +d2e(T) -> + d2e(T, 0). + +d2e({ann_type,_,[V, T0]}, Prec) -> %% Note: the -spec/-type syntax allows annotations everywhere, but %% EDoc does not. The fact that the annotation is added to the %% type here does not necessarily mean that it will be used by the %% layout module. - T = d2e(T0), - ?add_t_ann(T, element(3, V)); -d2e({remote_type,_,[{atom,_,M},{atom,_,F},Ts0]}) -> + {_L,P,R} = erl_parse:type_inop_prec('::'), + T1 = d2e(T0, R), + T = ?add_t_ann(T1, element(3, V)), + maybe_paren(P, Prec, T); % the only necessary call to maybe_paren() +d2e({remote_type,_,[{atom,_,M},{atom,_,F},Ts0]}, _Prec) -> Ts = d2e(Ts0), typevar_anno(#t_type{name = #t_name{module = M, name = F}, args = Ts}, Ts); -d2e({type,_,'fun',[{type,_,product,As0},Ran0]}) -> +d2e({type,_,'fun',[{type,_,product,As0},Ran0]}, _Prec) -> Ts = [Ran|As] = d2e([Ran0|As0]), %% Assume that the linter has checked type variables. typevar_anno(#t_fun{args = As, range = Ran}, Ts); -d2e({type,_,'fun',[A0={type,_,any},Ran0]}) -> +d2e({type,_,'fun',[A0={type,_,any},Ran0]}, _Prec) -> Ts = [A, Ran] = d2e([A0, Ran0]), typevar_anno(#t_fun{args = [A], range = Ran}, Ts); -d2e({type,_,'fun',[]}) -> +d2e({type,_,'fun',[]}, _Prec) -> #t_type{name = #t_name{name = function}, args = []}; -d2e({type,_,any}) -> +d2e({type,_,any}, _Prec) -> #t_var{name = '...'}; % Kludge... not a type variable! -d2e({type,_,nil,[]}) -> +d2e({type,_,nil,[]}, _Prec) -> #t_nil{}; -d2e({paren_type,_,[T]}) -> - #t_paren{type = d2e(T)}; -d2e({type,_,list,[T0]}) -> +d2e({paren_type,_,[T]}, Prec) -> + d2e(T, Prec); +d2e({type,_,list,[T0]}, _Prec) -> T = d2e(T0), typevar_anno(#t_list{type = T}, [T]); -d2e({type,_,nonempty_list,[T0]}) -> +d2e({type,_,nonempty_list,[T0]}, _Prec) -> T = d2e(T0), typevar_anno(#t_nonempty_list{type = T}, [T]); -d2e({type,_,bounded_fun,[T,Gs]}) -> +d2e({type,_,bounded_fun,[T,Gs]}, _Prec) -> [F0|Defs] = d2e([T|Gs]), F = ?set_t_ann(F0, lists:keydelete(type_variables, 1, ?t_ann(F0))), %% Assume that the linter has checked type variables. #t_spec{type = typevar_anno(F, [F0]), defs = Defs}; -d2e({type,_,range,[V1,V2]}) -> +d2e({type,_,range,[V1,V2]}, Prec) -> + {_L,P,_R} = erl_parse:type_inop_prec('..'), {integer,_,I1} = erl_eval:partial_eval(V1), {integer,_,I2} = erl_eval:partial_eval(V2), - #t_integer_range{from = I1, to = I2}; -d2e({type,_,constraint,[Sub,Ts0]}) -> + T0 = #t_integer_range{from = I1, to = I2}, + maybe_paren(P, Prec, T0); +d2e({type,_,constraint,[Sub,Ts0]}, _Prec) -> case {Sub,Ts0} of {{atom,_,is_subtype},[{var,_,N},T0]} -> Ts = [T] = d2e([T0]), @@ -347,50 +354,60 @@ d2e({type,_,constraint,[Sub,Ts0]}) -> _ -> throw_error(get_line(element(2, Sub)), "cannot handle guard", []) end; -d2e({type,_,union,Ts0}) -> - Ts = d2e(Ts0), - typevar_anno(#t_union{types = Ts}, Ts); -d2e({type,_,tuple,any}) -> +d2e({type,_,union,Ts0}, Prec) -> + {_L,P,R} = erl_parse:type_inop_prec('|'), + Ts = d2e(Ts0, R), + T = maybe_paren(P, Prec, #t_union{types = Ts}), + typevar_anno(T, Ts); +d2e({type,_,tuple,any}, _Prec) -> #t_type{name = #t_name{name = tuple}, args = []}; -d2e({type,_,binary,[Base,Unit]}) -> - #t_binary{base_size = element(3, Base), - unit_size = element(3, Unit)}; -d2e({type,_,map,any}) -> - #t_map{ types = []}; -d2e({type,_,map,Es}) -> - #t_map{ types = d2e(Es) }; -d2e({type,_,map_field_assoc,[K,V]}) -> - #t_map_field{ k_type = d2e(K), v_type=d2e(V) }; -d2e({type,_,map_field_exact,K,V}) -> - #t_map_field{ k_type = d2e(K), v_type=d2e(V) }; -d2e({type,_,tuple,Ts0}) -> +d2e({type,_,binary,[Base,Unit]}, _Prec) -> + {integer,_,B} = erl_eval:partial_eval(Base), + {integer,_,U} = erl_eval:partial_eval(Unit), + #t_binary{base_size = B, unit_size = U}; +d2e({type,_,map,any}, _Prec) -> + #t_map{types = []}; +d2e({type,_,map,Es}, _Prec) -> + #t_map{types = d2e(Es) }; +d2e({type,_,map_field_assoc,[K,V]}, Prec) -> + T = #t_map_field{k_type = d2e(K), v_type=d2e(V) }, + {P,_R} = erl_parse:type_preop_prec('#'), + maybe_paren(P, Prec, T); +d2e({type,_,map_field_exact,K,V}, Prec) -> + T = #t_map_field{k_type = d2e(K), v_type=d2e(V) }, + {P,_R} = erl_parse:type_preop_prec('#'), + maybe_paren(P, Prec, T); +d2e({type,_,tuple,Ts0}, _Prec) -> Ts = d2e(Ts0), typevar_anno(#t_tuple{types = Ts}, Ts); -d2e({type,_,record,[Name|Fs0]}) -> +d2e({type,_,record,[Name|Fs0]}, Prec) -> Atom = #t_atom{val = element(3, Name)}, Fs = d2e(Fs0), - typevar_anno(#t_record{name = Atom, fields = Fs}, Fs); -d2e({type,_,field_type,[Name,Type0]}) -> - Type = d2e(Type0), - typevar_anno(#t_field{name = #t_atom{val = element(3, Name)}, type = Type}, - [Type]); -d2e({typed_record_field,{record_field,L,Name},Type}) -> - d2e({type,L,field_type,[Name,Type]}); -d2e({typed_record_field,{record_field,L,Name,_E},Type}) -> - d2e({type,L,field_type,[Name,Type]}); -d2e({record_field,L,_Name,_E}=F) -> - d2e({typed_record_field,F,{type,L,any,[]}}); % Maybe skip... -d2e({record_field,L,_Name}=F) -> - d2e({typed_record_field,F,{type,L,any,[]}}); % Maybe skip... -d2e({type,_,Name,Types0}) -> + {P,_R} = erl_parse:type_preop_prec('#'), + T = maybe_paren(P, Prec, #t_record{name = Atom, fields = Fs}), + typevar_anno(T, Fs); +d2e({type,_,field_type,[Name,Type0]}, Prec) -> + {_L,P,R} = erl_parse:type_inop_prec('::'), + Type = maybe_paren(P, Prec, d2e(Type0, R)), + T = #t_field{name = #t_atom{val = element(3, Name)}, type = Type}, + typevar_anno(T, [Type]); +d2e({typed_record_field,{record_field,L,Name},Type}, Prec) -> + d2e({type,L,field_type,[Name,Type]}, Prec); +d2e({typed_record_field,{record_field,L,Name,_E},Type}, Prec) -> + d2e({type,L,field_type,[Name,Type]}, Prec); +d2e({record_field,L,_Name,_E}=F, Prec) -> + d2e({typed_record_field,F,{type,L,any,[]}}, Prec); % Maybe skip... +d2e({record_field,L,_Name}=F, Prec) -> + d2e({typed_record_field,F,{type,L,any,[]}}, Prec); % Maybe skip... +d2e({type,_,Name,Types0}, _Prec) -> Types = d2e(Types0), typevar_anno(#t_type{name = #t_name{name = Name}, args = Types}, Types); -d2e({user_type,_,Name,Types0}) -> +d2e({user_type,_,Name,Types0}, _Prec) -> Types = d2e(Types0), typevar_anno(#t_type{name = #t_name{name = Name}, args = Types}, Types); -d2e({var,_,'_'}) -> +d2e({var,_,'_'}, _Prec) -> #t_type{name = #t_name{name = ?TOP_TYPE}}; -d2e({var,_,TypeName}) -> +d2e({var,_,TypeName}, _Prec) -> TypeVar = ordsets:from_list([TypeName]), T = #t_var{name = TypeName}, %% Annotate type variables with the name of the variable. @@ -398,13 +415,13 @@ d2e({var,_,TypeName}) -> %% from using the argument name from the source or to invent a new name. T1 = ?add_t_ann(T, {type_variables, TypeVar}), ?add_t_ann(T1, TypeName); -d2e(L) when is_list(L) -> - [d2e(T) || T <- L]; -d2e({atom,_,A}) -> +d2e(L, Prec) when is_list(L) -> + [d2e(T, Prec) || T <- L]; +d2e({atom,_,A}, _Prec) -> #t_atom{val = A}; -d2e(undefined = U) -> % opaque +d2e(undefined = U, _Prec) -> % opaque U; -d2e(Expr) -> +d2e(Expr, _Prec) -> {integer,_,I} = erl_eval:partial_eval(Expr), #t_integer{val = I}. @@ -422,6 +439,11 @@ typevars(Ts) -> get_typevars(Ts) -> [Vs || T <- Ts, T =/= undefined, {type_variables, Vs} <- ?t_ann(T)]. +maybe_paren(P, Prec, T) when P < Prec -> + #t_paren{type = T}; +maybe_paren(_P, _Prec, T) -> + T. + -record(parms, {tab, warn, file, line}). %% Expands record references. Explicitly given record fields are kept, @@ -484,11 +506,11 @@ xrecs(#t_fun{args = Args0, range = Range0}=T, P) -> Args = xrecs(Args0, P), Range = xrecs(Range0, P), T#t_fun{args = Args, range = Range}; -xrecs(#t_map{ types = Ts0 }=T,P) -> +xrecs(#t_map{types = Ts0 }=T,P) -> Ts = xrecs(Ts0, P), - T#t_map{ types = Ts }; -xrecs(#t_map_field{ k_type=Kt, v_type=Vt}=T, P) -> - T#t_map_field{ k_type=xrecs(Kt,P), v_type=xrecs(Vt,P)}; + T#t_map{types = Ts }; +xrecs(#t_map_field{k_type=Kt, v_type=Vt}=T, P) -> + T#t_map_field{k_type=xrecs(Kt,P), v_type=xrecs(Vt,P)}; xrecs(#t_tuple{types = Types0}=T, P) -> Types = xrecs(Types0, P), T#t_tuple{types = Types}; diff --git a/lib/stdlib/src/erl_parse.yrl b/lib/stdlib/src/erl_parse.yrl index e328e065e3..274bb2a782 100644 --- a/lib/stdlib/src/erl_parse.yrl +++ b/lib/stdlib/src/erl_parse.yrl @@ -125,22 +125,19 @@ top_type_100 -> type_200 : '$1'. top_type_100 -> type_200 '|' top_type_100 : lift_unions('$1','$3'). type_200 -> type_300 '..' type_300 : {type, ?anno('$1'), range, - [skip_paren('$1'), - skip_paren('$3')]}. + ['$1', '$3']}. type_200 -> type_300 : '$1'. -type_300 -> type_300 add_op type_400 : ?mkop2(skip_paren('$1'), - '$2', skip_paren('$3')). +type_300 -> type_300 add_op type_400 : ?mkop2('$1', '$2', '$3'). type_300 -> type_400 : '$1'. -type_400 -> type_400 mult_op type_500 : ?mkop2(skip_paren('$1'), - '$2', skip_paren('$3')). +type_400 -> type_400 mult_op type_500 : ?mkop2('$1', '$2', '$3'). type_400 -> type_500 : '$1'. -type_500 -> prefix_op type : ?mkop1('$1', skip_paren('$2')). +type_500 -> prefix_op type : ?mkop1('$1', '$2'). type_500 -> type : '$1'. -type -> '(' top_type ')' : {paren_type, ?anno('$2'), ['$2']}. +type -> '(' top_type ')' : '$2'. type -> var : '$1'. type -> atom : '$1'. type -> atom '(' ')' : build_gen_type('$1'). @@ -524,6 +521,7 @@ Erlang code. -export([normalise/1,abstract/1,tokens/1,tokens/2]). -export([abstract/2]). -export([inop_prec/1,preop_prec/1,func_prec/0,max_prec/0]). +-export([type_inop_prec/1,type_preop_prec/1]). -export([map_anno/2, fold_anno/3, mapfold_anno/3, new_anno/1, anno_to_term/1, anno_from_term/1]). -export([set_line/2,get_attribute/2,get_attributes/1]). @@ -671,11 +669,6 @@ lift_unions(T1, {type, _Aa, union, List}) -> lift_unions(T1, T2) -> {type, ?anno(T1), union, [T1, T2]}. -skip_paren({paren_type,_A,[Type]}) -> - skip_paren(Type); -skip_paren(Type) -> - Type. - build_gen_type({atom, Aa, tuple}) -> {type, Aa, tuple, any}; build_gen_type({atom, Aa, map}) -> @@ -687,7 +680,7 @@ build_gen_type({atom, Aa, Name}) -> build_bin_type([{var, _, '_'}|Left], Int) -> build_bin_type(Left, Int); build_bin_type([], Int) -> - skip_paren(Int); + Int; build_bin_type([{var, Aa, _}|_], _) -> ret_err(Aa, "Bad binary type"). @@ -807,8 +800,7 @@ record_fields([{typed,Expr,TypeInfo}|Fields]) -> {atom, Aa, _} -> case has_undefined(TypeInfo) of false -> - TypeInfo2 = maybe_add_paren(TypeInfo), - lift_unions(abstract2(undefined, Aa), TypeInfo2); + lift_unions(abstract2(undefined, Aa), TypeInfo); true -> TypeInfo end @@ -822,18 +814,11 @@ has_undefined({atom,_,undefined}) -> true; has_undefined({ann_type,_,[_,T]}) -> has_undefined(T); -has_undefined({paren_type,_,[T]}) -> - has_undefined(T); has_undefined({type,_,union,Ts}) -> lists:any(fun has_undefined/1, Ts); has_undefined(_) -> false. -maybe_add_paren({ann_type,A,T}) -> - {paren_type,A,[{ann_type,A,T}]}; -maybe_add_paren(T) -> - T. - term(Expr) -> try normalise(Expr) catch _:_R -> ret_err(?anno(Expr), "bad attribute") @@ -1099,6 +1084,39 @@ func_prec() -> {800,700}. max_prec() -> 900. +-type prec() :: non_neg_integer(). + +-type type_inop() :: '::' | '|' | '..' | '+' | '-' | 'bor' | 'bxor' + | 'bsl' | 'bsr' | '*' | '/' | 'div' | 'rem' | 'band'. + +-type type_preop() :: '+' | '-' | 'bnot' | '#'. + +-spec type_inop_prec(type_inop()) -> {prec(), prec(), prec()}. + +type_inop_prec('=') -> {150,100,100}; +type_inop_prec('::') -> {160,150,150}; +type_inop_prec('|') -> {180,170,170}; +type_inop_prec('..') -> {300,200,300}; +type_inop_prec('+') -> {400,400,500}; +type_inop_prec('-') -> {400,400,500}; +type_inop_prec('bor') -> {400,400,500}; +type_inop_prec('bxor') -> {400,400,500}; +type_inop_prec('bsl') -> {400,400,500}; +type_inop_prec('bsr') -> {400,400,500}; +type_inop_prec('*') -> {500,500,600}; +type_inop_prec('/') -> {500,500,600}; +type_inop_prec('div') -> {500,500,600}; +type_inop_prec('rem') -> {500,500,600}; +type_inop_prec('band') -> {500,500,600}; +type_inop_prec('#') -> {800,700,800}. + +-spec type_preop_prec(type_preop()) -> {prec(), prec()}. + +type_preop_prec('+') -> {600,700}; +type_preop_prec('-') -> {600,700}; +type_preop_prec('bnot') -> {600,700}; +type_preop_prec('#') -> {700,800}. + %%% [Experimental]. The parser just copies the attributes of the %%% scanner tokens to the abstract format. This design decision has %%% been hidden to some extent: use set_line() and get_attribute() to diff --git a/lib/stdlib/src/erl_pp.erl b/lib/stdlib/src/erl_pp.erl index 623a29f923..6da585b72e 100644 --- a/lib/stdlib/src/erl_pp.erl +++ b/lib/stdlib/src/erl_pp.erl @@ -27,7 +27,8 @@ -import(lists, [append/1,foldr/3,mapfoldl/3,reverse/1,reverse/2]). -import(io_lib, [write/1,format/2]). --import(erl_parse, [inop_prec/1,preop_prec/1,func_prec/0,max_prec/0]). +-import(erl_parse, [inop_prec/1,preop_prec/1,func_prec/0,max_prec/0, + type_inop_prec/1, type_preop_prec/1]). -define(MAXLINE, 72). @@ -271,49 +272,64 @@ typeattr(Tag, {TypeName,Type,Args}, _Opts) -> {first,leaf("-"++atom_to_list(Tag)++" "), typed(call({atom,a0(),TypeName}, Args, 0, options(none)), Type)}. -ltype({ann_type,_Line,[V,T]}) -> - typed(lexpr(V, options(none)), T); -ltype({paren_type,_Line,[T]}) -> - [$(,ltype(T),$)]; -ltype({type,_Line,union,Ts}) -> - {seq,[],[],[' |'],ltypes(Ts)}; -ltype({type,_Line,list,[T]}) -> +ltype(T) -> + ltype(T, 0). + +ltype({ann_type,_Line,[V,T]}, Prec) -> + {_L,P,_R} = type_inop_prec('::'), + E = typed(lexpr(V, options(none)), T), + maybe_paren(P, Prec, E); +ltype({paren_type,_Line,[T]}, P) -> + %% Generated before Erlang/OTP 18. + ltype(T, P); +ltype({type,_Line,union,Ts}, Prec) -> + {_L,P,R} = type_inop_prec('|'), + E = {seq,[],[],[' |'],ltypes(Ts, R)}, + maybe_paren(P, Prec, E); +ltype({type,_Line,list,[T]}, _) -> {seq,$[,$],$,,[ltype(T)]}; -ltype({type,_Line,nonempty_list,[T]}) -> +ltype({type,_Line,nonempty_list,[T]}, _) -> {seq,$[,$],[$,],[ltype(T),leaf("...")]}; -ltype({type,Line,nil,[]}) -> - lexpr({nil,Line}, 0, options(none)); -ltype({type,Line,map,any}) -> +ltype({type,Line,nil,[]}, _) -> + lexpr({nil,Line}, options(none)); +ltype({type,Line,map,any}, _) -> simple_type({atom,Line,map}, []); -ltype({type,_Line,map,Pairs}) -> - map_type(Pairs); -ltype({type,Line,tuple,any}) -> +ltype({type,_Line,map,Pairs}, Prec) -> + {P,_R} = type_preop_prec('#'), + E = map_type(Pairs), + maybe_paren(P, Prec, E); +ltype({type,Line,tuple,any}, _) -> simple_type({atom,Line,tuple}, []); -ltype({type,_Line,tuple,Ts}) -> - tuple_type(Ts, fun ltype/1); -ltype({type,_Line,record,[{atom,_,N}|Fs]}) -> - record_type(N, Fs); -ltype({type,_Line,range,[_I1,_I2]=Es}) -> - expr_list(Es, '..', fun lexpr/2, options(none)); -ltype({type,_Line,binary,[I1,I2]}) -> +ltype({type,_Line,tuple,Ts}, _) -> + tuple_type(Ts, fun ltype/2); +ltype({type,_Line,record,[{atom,_,N}|Fs]}, Prec) -> + {P,_R} = type_preop_prec('#'), + E = record_type(N, Fs), + maybe_paren(P, Prec, E); +ltype({type,_Line,range,[_I1,_I2]=Es}, Prec) -> + {_L,P,R} = type_inop_prec('..'), + F = fun(E, Opts) -> lexpr(E, R, Opts) end, + E = expr_list(Es, '..', F, options(none)), + maybe_paren(P, Prec, E); +ltype({type,_Line,binary,[I1,I2]}, _) -> binary_type(I1, I2); % except binary() -ltype({type,_Line,'fun',[]}) -> +ltype({type,_Line,'fun',[]}, _) -> leaf("fun()"); -ltype({type,_,'fun',[{type,_,any},_]}=FunType) -> +ltype({type,_,'fun',[{type,_,any},_]}=FunType, _) -> [fun_type(['fun',$(], FunType),$)]; -ltype({type,_Line,'fun',[{type,_,product,_},_]}=FunType) -> +ltype({type,_Line,'fun',[{type,_,product,_},_]}=FunType, _) -> [fun_type(['fun',$(], FunType),$)]; -ltype({type,Line,T,Ts}) -> +ltype({type,Line,T,Ts}, _) -> %% Compatibility. Before 18.0. simple_type({atom,Line,T}, Ts); -ltype({user_type,Line,T,Ts}) -> +ltype({user_type,Line,T,Ts}, _) -> simple_type({atom,Line,T}, Ts); -ltype({remote_type,Line,[M,F,Ts]}) -> +ltype({remote_type,Line,[M,F,Ts]}, _) -> simple_type({remote,Line,M,F}, Ts); -ltype({atom,_,T}) -> +ltype({atom,_,T}, _) -> leaf(write(T)); -ltype(E) -> - lexpr(E, 0, options(none)). +ltype(E, P) -> + lexpr(E, P, options(none)). binary_type(I1, I2) -> B = [[] || {integer,_,0} <- [I1]] =:= [], @@ -327,42 +343,37 @@ map_type(Fs) -> {first,[$#],map_pair_types(Fs)}. map_pair_types(Fs) -> - tuple_type(Fs, fun map_pair_type/1). + tuple_type(Fs, fun map_pair_type/2). -map_pair_type({type,_Line,map_field_assoc,[Ktype,Vtype]}) -> - map_assoc_typed(ltype(Ktype), Vtype). +map_pair_type({type,_Line,map_field_assoc,[Ktype,Vtype]}, Prec) -> + map_assoc_typed(ltype(Ktype), Vtype, Prec). -map_assoc_typed(B, {type,_,union,Ts}) -> - {first,[B,$\s],{seq,[],[],[],map_assoc_union_type(Ts)}}; -map_assoc_typed(B, Type) -> - {list,[{cstep,[B," =>"],ltype(Type)}]}. +map_assoc_typed(B, {type,_,union,Ts}, Prec) -> + {first,[B,$\s],{seq,[],[],[],map_assoc_union_type(Ts, Prec)}}; +map_assoc_typed(B, Type, Prec) -> + {list,[{cstep,[B," =>"],ltype(Type, Prec)}]}. -map_assoc_union_type([T|Ts]) -> - [[leaf("=> "),ltype(T)] | ltypes(Ts, fun union_elem/1)]. +map_assoc_union_type([T|Ts], Prec) -> + [[leaf("=> "),ltype(T)] | ltypes(Ts, fun union_elem/2, Prec)]. record_type(Name, Fields) -> {first,[record_name(Name)],field_types(Fields)}. field_types(Fs) -> - tuple_type(Fs, fun field_type/1). + tuple_type(Fs, fun field_type/2). -field_type({type,_Line,field_type,[Name,Type]}) -> +field_type({type,_Line,field_type,[Name,Type]}, _Prec) -> typed(lexpr(Name, options(none)), Type). -typed(B, {type,_,union,Ts}) -> - %% Special layout for :: followed by union. - {first,[B,$\s],{seq,[],[],[],union_type(Ts)}}; typed(B, Type) -> - {list,[{cstep,[B,' ::'],ltype(Type)}]}. + {_L,_P,R} = type_inop_prec('::'), + {list,[{cstep,[B,' ::'],ltype(Type, R)}]}. -union_type([T|Ts]) -> - [[leaf(":: "),ltype(T)] | ltypes(Ts, fun union_elem/1)]. - -union_elem(T) -> - [leaf(" | "),ltype(T)]. +union_elem(T, Prec) -> + [leaf(" | "),ltype(T, Prec)]. tuple_type(Ts, F) -> - {seq,${,$},[$,],ltypes(Ts, F)}. + {seq,${,$},[$,],ltypes(Ts, F, 0)}. specattr(SpecKind, {FuncSpec,TypeSpecs}) -> Func = case FuncSpec of @@ -399,16 +410,16 @@ type_args({type,_line,product,Ts}) -> targs(Ts). simple_type(Tag, Types) -> - {first,lexpr(Tag, 0, options(none)),targs(Types)}. + {first,lexpr(Tag, options(none)),targs(Types)}. targs(Ts) -> - {seq,$(,$),[$,],ltypes(Ts)}. + {seq,$(,$),[$,],ltypes(Ts, 0)}. -ltypes(Ts) -> - ltypes(Ts, fun ltype/1). +ltypes(Ts, Prec) -> + ltypes(Ts, fun ltype/2, Prec). -ltypes(Ts, F) -> - [F(T) || T <- Ts]. +ltypes(Ts, F, Prec) -> + [F(T, Prec) || T <- Ts]. attr(Name, Args) -> call({var,a0(),format("-~s", [Name])}, Args, 0, options(none)). diff --git a/lib/stdlib/test/erl_pp_SUITE.erl b/lib/stdlib/test/erl_pp_SUITE.erl index 1d63c8e17e..afeeb5bfd4 100644 --- a/lib/stdlib/test/erl_pp_SUITE.erl +++ b/lib/stdlib/test/erl_pp_SUITE.erl @@ -1149,7 +1149,7 @@ otp_11100(Config) when is_list(Config) -> {a,{type,A1,range,[{integer,A1,1},{foo,bar}]},[]}}), "-type foo(INVALID-FORM:{foo,bar}:) :: A.\n" = pf({attribute,A1,type,{foo,{var,A1,'A'},[{foo,bar}]}}), - "-type foo() :: (INVALID-FORM:{foo,bar}: :: []).\n" = + "-type foo() :: INVALID-FORM:{foo,bar}: :: [].\n" = pf({attribute,A1,type, {foo,{paren_type,A1, [{ann_type,A1,[{foo,bar},{type,A1,nil,[]}]}]}, |