aboutsummaryrefslogtreecommitdiffstats
path: root/erts/doc/src/absform.xml
diff options
context:
space:
mode:
Diffstat (limited to 'erts/doc/src/absform.xml')
-rw-r--r--erts/doc/src/absform.xml1273
1 files changed, 891 insertions, 382 deletions
diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml
index 835a4fc692..d77d989057 100644
--- a/erts/doc/src/absform.xml
+++ b/erts/doc/src/absform.xml
@@ -4,470 +4,979 @@
<chapter>
<header>
<copyright>
- <year>2001</year><year>2013</year>
+ <year>2001</year><year>2018</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
- The contents of this file are subject to the Erlang Public License,
- Version 1.1, (the "License"); you may not use this file except in
- compliance with the License. You should have received a copy of the
- Erlang Public License along with this software. If not, it can be
- retrieved online at http://www.erlang.org/.
-
- Software distributed under the License is distributed on an "AS IS"
- basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
- the License for the specific language governing rights and limitations
- under the License.
-
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+
</legalnotice>
<title>The Abstract Format</title>
<prepared>Arndt Jonasson</prepared>
<responsible>Kenneth Lundin</responsible>
<docno>1</docno>
- <approved>Jultomten</approved>
+ <approved></approved>
<checked></checked>
- <date>00-12-01</date>
+ <date>2000-12-01</date>
<rev>A</rev>
<file>absform.xml</file>
</header>
- <p></p>
- <p>This document describes the standard representation of parse trees for Erlang
- programs as Erlang terms. This representation is known as the <em>abstract format</em>.
- Functions dealing with such parse trees are <c><![CDATA[compile:forms/[1,2]]]></c>
- and functions in the modules
- <c><![CDATA[epp]]></c>,
- <c><![CDATA[erl_eval]]></c>,
- <c><![CDATA[erl_lint]]></c>,
- <c><![CDATA[erl_pp]]></c>,
- <c><![CDATA[erl_parse]]></c>,
- and
- <c><![CDATA[io]]></c>.
- They are also used as input and output for parse transforms (see the module
- <c><![CDATA[compile]]></c>).</p>
- <p>We use the function <c><![CDATA[Rep]]></c> to denote the mapping from an Erlang source
- construct <c><![CDATA[C]]></c> to its abstract format representation <c><![CDATA[R]]></c>, and write
- <c><![CDATA[R = Rep(C)]]></c>.
- </p>
- <p>The word <c><![CDATA[LINE]]></c> below represents an integer, and denotes the
+ <p>This section describes the standard representation of parse trees for Erlang
+ programs as Erlang terms. This representation is known as the <em>abstract
+ format</em>. Functions dealing with such parse trees are
+ <seealso marker="compiler:compile#forms/1">
+ <c>compile:forms/1,2</c></seealso> and functions in the following
+ modules:</p>
+
+ <list type="bulleted">
+ <item><seealso marker="stdlib:epp">
+ <c>epp(3)</c></seealso></item>
+ <item><seealso marker="stdlib:erl_eval">
+ <c>erl_eval(3)</c></seealso></item>
+ <item><seealso marker="stdlib:erl_lint">
+ <c>erl_lint(3)</c></seealso></item>
+ <item><seealso marker="stdlib:erl_parse">
+ <c>erl_parse(3)</c></seealso></item>
+ <item><seealso marker="stdlib:erl_pp">
+ <c>erl_pp(3)</c></seealso></item>
+ <item><seealso marker="stdlib:io">
+ <c>io(3)</c></seealso></item>
+ </list>
+
+ <p>The functions are also used as input and output for parse transforms, see
+ the <seealso marker="compiler:compile"><c>compile(3)</c></seealso>
+ module.</p>
+
+ <p>We use the function <c>Rep</c> to denote the mapping from an Erlang source
+ construct <c>C</c> to its abstract format representation <c>R</c>, and write
+ <c>R = Rep(C)</c>.</p>
+
+ <p>The word <c>LINE</c> in this section represents an integer, and denotes the
number of the line in the source file where the construction occurred.
- Several instances of <c><![CDATA[LINE]]></c> in the same construction may denote
+ Several instances of <c>LINE</c> in the same construction can denote
different lines.</p>
- <p>Since operators are not terms in their own right, when operators are
- mentioned below, the representation of an operator should be taken to
+
+ <p>As operators are not terms in their own right, when operators are
+ mentioned below, the representation of an operator is to be taken to
be the atom with a printname consisting of the same characters as the
- operator.
- </p>
+ operator.</p>
<section>
- <title>Module declarations and forms</title>
- <p>A module declaration consists of a sequence of forms that are either
+ <title>Module Declarations and Forms</title>
+ <p>A module declaration consists of a sequence of forms, which are either
function declarations or attributes.</p>
+
<list type="bulleted">
- <item>If D is a module declaration consisting of the forms
- <c><![CDATA[F_1]]></c>, ..., <c><![CDATA[F_k]]></c>, then
- Rep(D) = <c><![CDATA[[Rep(F_1), ..., Rep(F_k)]]]></c>.</item>
- <item>If F is an attribute <c><![CDATA[-module(Mod)]]></c>, then
- Rep(F) = <c><![CDATA[{attribute,LINE,module,Mod}]]></c>.</item>
- <item>If F is an attribute <c><![CDATA[-export([Fun_1/A_1, ..., Fun_k/A_k])]]></c>, then
- Rep(F) = <c><![CDATA[{attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}]]></c>.</item>
- <item>If F is an attribute <c><![CDATA[-import(Mod,[Fun_1/A_1, ..., Fun_k/A_k])]]></c>, then
- Rep(F) = <c><![CDATA[{attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}]]></c>.</item>
- <item>If F is an attribute <c><![CDATA[-compile(Options)]]></c>, then
- Rep(F) = <c><![CDATA[{attribute,LINE,compile,Options}]]></c>.</item>
- <item>If F is an attribute <c><![CDATA[-file(File,Line)]]></c>, then
- Rep(F) = <c><![CDATA[{attribute,LINE,file,{File,Line}}]]></c>.</item>
- <item>If F is a record declaration <c><![CDATA[-record(Name,{V_1, ..., V_k})]]></c>, then
- Rep(F) =
- <c><![CDATA[{attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}]]></c>. For Rep(V), see below.</item>
- <item>If F is a wild attribute <c><![CDATA[-A(T)]]></c>, then
- Rep(F) = <c><![CDATA[{attribute,LINE,A,T}]]></c>.
- <br></br></item>
- <item>If F is a function declaration <c><![CDATA[Name Fc_1 ; ... ; Name Fc_k]]></c>,
- where each <c><![CDATA[Fc_i]]></c> is a function clause with a
- pattern sequence of the same length <c><![CDATA[Arity]]></c>, then
- Rep(F) = <c><![CDATA[{function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}]]></c>.</item>
+ <item>
+ <p>If D is a module declaration consisting of the forms
+ <c>F_1</c>, ..., <c>F_k</c>, then
+ Rep(D) = <c>[Rep(F_1), ..., Rep(F_k)]</c>.</p>
+ </item>
+ <item>
+ <p>If F is an attribute <c>-export([Fun_1/A_1, ..., Fun_k/A_k])</c>,
+ then Rep(F) =
+ <c>{attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}</c>.</p>
+ </item>
+ <item>
+ <p>If F is an attribute <c>-import(Mod,[Fun_1/A_1, ..., Fun_k/A_k])</c>,
+ then Rep(F) =
+ <c>{attribute,LINE,import,{Mod,[{Fun_1,A_1}, ...,
+ {Fun_k,A_k}]}}</c>.</p>
+ </item>
+ <item>
+ <p>If F is an attribute <c>-module(Mod)</c>, then
+ Rep(F) = <c>{attribute,LINE,module,Mod}</c>.</p>
+ </item>
+ <item>
+ <p>If F is an attribute <c>-file(File,Line)</c>, then
+ Rep(F) = <c>{attribute,LINE,file,{File,Line}}</c>.</p>
+ </item>
+ <item>
+ <p>If F is a function declaration <c>Name Fc_1 ; ... ; Name Fc_k</c>,
+ where each <c>Fc_i</c> is a function clause with a pattern sequence of
+ the same length <c>Arity</c>, then Rep(F) =
+ <c>{function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If F is a function specification <c>-Spec Name Ft_1; ...; Ft_k</c>,
+ where <c>Spec</c> is either the atom <c>spec</c> or the atom
+ <c>callback</c>, and each <c>Ft_i</c> is a possibly constrained
+ function type with an argument sequence of the same length
+ <c>Arity</c>, then Rep(F) =
+ <c>{attribute,Line,Spec,{{Name,Arity},[Rep(Ft_1), ...,
+ Rep(Ft_k)]}}</c>.</p>
+ </item>
+ <item>
+ <p>If F is a function specification
+ <c>-spec Mod:Name Ft_1; ...; Ft_k</c>, where each <c>Ft_i</c> is a
+ possibly constrained function type with an argument sequence of the
+ same length <c>Arity</c>, then Rep(F) =
+ <c>{attribute,Line,spec,{{Mod,Name,Arity},[Rep(Ft_1), ...,
+ Rep(Ft_k)]}}</c>.</p>
+ </item>
+ <item>
+ <p>If F is a record declaration <c>-record(Name,{V_1, ..., V_k})</c>,
+ where each <c>V_i</c> is a record field, then Rep(F) =
+ <c>{attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}</c>.
+ For Rep(V), see below.</p>
+ </item>
+ <item>
+ <p>If F is a type declaration <c>-Type Name(V_1, ..., V_k) :: T</c>,
+ where <c>Type</c> is either the atom <c>type</c> or the atom
+ <c>opaque</c>, each <c>V_i</c> is a variable, and <c>T</c> is a type,
+ then Rep(F) =
+ <c>{attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ...,
+ Rep(V_k)]}}</c>.</p>
+ </item>
+ <item>
+ <p>If F is a wild attribute <c>-A(T)</c>, then
+ Rep(F) = <c>{attribute,LINE,A,T}</c>.</p>
+ </item>
</list>
<section>
- <title>Record fields</title>
- <p>Each field in a record declaration may have an optional
- explicit default initializer expression</p>
+ <title>Record Fields</title>
+ <p>Each field in a record declaration can have an optional,
+ explicit, default initializer expression, and an
+ optional type.</p>
+
<list type="bulleted">
- <item>If V is <c><![CDATA[A]]></c>, then
- Rep(V) = <c><![CDATA[{record_field,LINE,Rep(A)}]]></c>.</item>
- <item>If V is <c><![CDATA[A = E]]></c>, then
- Rep(V) = <c><![CDATA[{record_field,LINE,Rep(A),Rep(E)}]]></c>.</item>
+ <item>
+ <p>If V is <c>A</c>, then
+ Rep(V) = <c>{record_field,LINE,Rep(A)}</c>.</p>
+ </item>
+ <item>
+ <p>If V is <c>A = E</c>, where <c>E</c> is an expression, then
+ Rep(V) = <c>{record_field,LINE,Rep(A),Rep(E)}</c>.</p>
+ </item>
+ <item>
+ <p>If V is <c>A :: T</c>, where <c>T</c> is a type, then Rep(V) =
+ <c>{typed_record_field,{record_field,LINE,Rep(A)},Rep(T)}</c>.</p>
+ </item>
+ <item>
+ <p>If V is <c>A = E :: T</c>, where
+ <c>E</c> is an expression and <c>T</c> is a type, then Rep(V) =
+ <c>{typed_record_field,{record_field,LINE,Rep(A),Rep(E)},Rep(T)}</c>.
+ </p>
+ </item>
</list>
</section>
<section>
- <title>Representation of parse errors and end of file</title>
+ <title>Representation of Parse Errors and End-of-File</title>
<p>In addition to the representations of forms, the list that represents
- a module declaration (as returned by functions in <c><![CDATA[erl_parse]]></c> and
- <c><![CDATA[epp]]></c>) may contain tuples <c><![CDATA[{error,E}]]></c> and <c><![CDATA[{warning,W}]]></c>, denoting
- syntactically incorrect forms and warnings, and <c><![CDATA[{eof,LINE}]]></c>, denoting an end
- of stream encountered before a complete form had been parsed.</p>
+ a module declaration (as returned by functions in
+ <seealso marker="stdlib:epp"><c>epp(3)</c></seealso> and
+ <seealso marker="stdlib:erl_parse"><c>erl_parse(3)</c></seealso>)
+ can contain the following:</p>
+
+ <list type="bulleted">
+ <item>
+ <p>Tuples <c>{error,E}</c> and <c>{warning,W}</c>, denoting
+ syntactically incorrect forms and warnings.
+ </p>
+ </item>
+ <item>
+ <p><c>{eof,LOCATION}</c>, denoting an end-of-stream
+ encountered before a complete form had been parsed.
+ The word <c>LOCATION</c> represents an integer, and denotes the
+ number of the last line in the source file.
+ </p>
+ </item>
+ </list>
</section>
</section>
<section>
- <title>Atomic literals</title>
+ <title>Atomic Literals</title>
<p>There are five kinds of atomic literals, which are represented in the
- same way in patterns, expressions and guards:</p>
+ same way in patterns, expressions, and guards:</p>
+
<list type="bulleted">
- <item>If L is an integer or character literal, then
- Rep(L) = <c><![CDATA[{integer,LINE,L}]]></c>.</item>
- <item>If L is a float literal, then
- Rep(L) = <c><![CDATA[{float,LINE,L}]]></c>.</item>
- <item>If L is a string literal consisting of the characters
- <c><![CDATA[C_1]]></c>, ..., <c><![CDATA[C_k]]></c>, then
- Rep(L) = <c><![CDATA[{string,LINE,[C_1, ..., C_k]}]]></c>.</item>
- <item>If L is an atom literal, then
- Rep(L) = <c><![CDATA[{atom,LINE,L}]]></c>.</item>
+ <item>
+ <p>If L is an atom literal, then Rep(L) = <c>{atom,LINE,L}</c>.</p>
+ </item>
+ <item>
+ <p>If L is a character literal, then Rep(L) = <c>{char,LINE,L}</c>.</p>
+ </item>
+ <item>
+ <p>If L is a float literal, then Rep(L) = <c>{float,LINE,L}</c>.</p>
+ </item>
+ <item>
+ <p>If L is an integer literal, then
+ Rep(L) = <c>{integer,LINE,L}</c>.</p>
+ </item>
+ <item>
+ <p>If L is a string literal consisting of the characters
+ <c>C_1</c>, ..., <c>C_k</c>, then
+ Rep(L) = <c>{string,LINE,[C_1, ..., C_k]}</c>.</p>
+ </item>
</list>
- <p>Note that negative integer and float literals do not occur as such; they are
- parsed as an application of the unary negation operator.</p>
+
+ <p>Notice that negative integer and float literals do not occur as such;
+ they are parsed as an application of the unary negation operator.</p>
</section>
<section>
<title>Patterns</title>
- <p>If <c><![CDATA[Ps]]></c> is a sequence of patterns <c><![CDATA[P_1, ..., P_k]]></c>, then
- Rep(Ps) = <c><![CDATA[[Rep(P_1), ..., Rep(P_k)]]]></c>. Such sequences occur as the
+ <p>If Ps is a sequence of patterns <c>P_1, ..., P_k</c>, then
+ Rep(Ps) = <c>[Rep(P_1), ..., Rep(P_k)]</c>. Such sequences occur as the
list of arguments to a function or fun.</p>
+
<p>Individual patterns are represented as follows:</p>
+
<list type="bulleted">
- <item>If P is an atomic literal L, then Rep(P) = Rep(L).</item>
- <item>If P is a compound pattern <c><![CDATA[P_1 = P_2]]></c>, then
- Rep(P) = <c><![CDATA[{match,LINE,Rep(P_1),Rep(P_2)}]]></c>.</item>
- <item>If P is a variable pattern <c><![CDATA[V]]></c>, then
- Rep(P) = <c><![CDATA[{var,LINE,A}]]></c>,
- where A is an atom with a printname consisting of the same characters as
- <c><![CDATA[V]]></c>.</item>
- <item>If P is a universal pattern <c><![CDATA[_]]></c>, then
- Rep(P) = <c><![CDATA[{var,LINE,'_'}]]></c>.</item>
- <item>If P is a tuple pattern <c><![CDATA[{P_1, ..., P_k}]]></c>, then
- Rep(P) = <c><![CDATA[{tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}]]></c>.</item>
- <item>If P is a nil pattern <c><![CDATA[[]]]></c>, then
- Rep(P) = <c><![CDATA[{nil,LINE}]]></c>.</item>
- <item>If P is a cons pattern <c><![CDATA[[P_h | P_t]]]></c>, then
- Rep(P) = <c><![CDATA[{cons,LINE,Rep(P_h),Rep(P_t)}]]></c>.</item>
- <item>If E is a binary pattern <c><![CDATA[<<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>]]></c>, then
- Rep(E) = <c><![CDATA[{bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}]]></c>.
- For Rep(TSL), see below.
- An omitted <c><![CDATA[Size]]></c> is represented by <c><![CDATA[default]]></c>. An omitted <c><![CDATA[TSL]]></c>
- (type specifier list) is represented by <c><![CDATA[default]]></c>.</item>
- <item>If P is <c><![CDATA[P_1 Op P_2]]></c>, where <c><![CDATA[Op]]></c> is a binary operator (this
- is either an occurrence of <c><![CDATA[++]]></c> applied to a literal string or character
- list, or an occurrence of an expression that can be evaluated to a number
- at compile time),
- then Rep(P) = <c><![CDATA[{op,LINE,Op,Rep(P_1),Rep(P_2)}]]></c>.</item>
- <item>If P is <c><![CDATA[Op P_0]]></c>, where <c><![CDATA[Op]]></c> is a unary operator (this is an
- occurrence of an expression that can be evaluated to a number at compile
- time), then Rep(P) = <c><![CDATA[{op,LINE,Op,Rep(P_0)}]]></c>.</item>
- <item>If P is a record pattern <c><![CDATA[#Name{Field_1=P_1, ..., Field_k=P_k}]]></c>,
- then Rep(P) =
- <c><![CDATA[{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}]]></c>.</item>
- <item>If P is <c><![CDATA[#Name.Field]]></c>, then
- Rep(P) = <c><![CDATA[{record_index,LINE,Name,Rep(Field)}]]></c>.</item>
- <item>If P is <c><![CDATA[( P_0 )]]></c>, then
- Rep(P) = <c><![CDATA[Rep(P_0)]]></c>,
- i.e., patterns cannot be distinguished from their bodies.</item>
+ <item>
+ <p>If P is an atomic literal <c>L</c>, then Rep(P) = Rep(L).</p>
+ </item>
+ <item>
+ <p>If P is a bitstring pattern
+ <c>&lt;&lt;P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>></c>, where each
+ <c>Size_i</c> is an expression that can be evaluated to an integer,
+ and each <c>TSL_i</c> is a type specificer list, then Rep(P) =
+ <c>{bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)},
+ ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}</c>.
+ For Rep(TSL), see below.
+ An omitted <c>Size_i</c> is represented by <c>default</c>.
+ An omitted <c>TSL_i</c> is represented by <c>default</c>.</p>
+ </item>
+ <item>
+ <p>If P is a compound pattern <c>P_1 = P_2</c>, then Rep(P) =
+ <c>{match,LINE,Rep(P_1),Rep(P_2)}</c>.</p>
+ </item>
+ <item>
+ <p>If P is a cons pattern <c>[P_h | P_t]</c>, then Rep(P) =
+ <c>{cons,LINE,Rep(P_h),Rep(P_t)}</c>.</p>
+ </item>
+ <item>
+ <p>If P is a map pattern <c>#{A_1, ..., A_k}</c>, where each
+ <c>A_i</c> is an association <c>P_i_1 := P_i_2</c>, then Rep(P) =
+ <c>{map,LINE,[Rep(A_1), ..., Rep(A_k)]}</c>.
+ For Rep(A), see below.</p>
+ </item>
+ <item>
+ <p>If P is a nil pattern <c>[]</c>, then Rep(P) =
+ <c>{nil,LINE}</c>.</p>
+ </item>
+ <item>
+ <p>If P is an operator pattern <c>P_1 Op P_2</c>, where <c>Op</c> is a
+ binary operator (this is either an occurrence of <c>++</c> applied to
+ a literal string or character list, or an occurrence of an expression
+ that can be evaluated to a number at compile time), then Rep(P) =
+ <c>{op,LINE,Op,Rep(P_1),Rep(P_2)}</c>.</p>
+ </item>
+ <item>
+ <p>If P is an operator pattern <c>Op P_0</c>, where <c>Op</c> is a
+ unary operator (this is an occurrence of an expression that can be
+ evaluated to a number at compile time), then Rep(P) =
+ <c>{op,LINE,Op,Rep(P_0)}</c>.</p>
+ </item>
+ <item>
+ <p>If P is a parenthesized pattern <c>( P_0 )</c>, then Rep(P) =
+ <c>Rep(P_0)</c>, that is, parenthesized patterns cannot be
+ distinguished from their bodies.</p>
+ </item>
+ <item>
+ <p>If P is a record field index pattern <c>#Name.Field</c>,
+ where <c>Field</c> is an atom, then Rep(P) =
+ <c>{record_index,LINE,Name,Rep(Field)}</c>.</p>
+ </item>
+ <item>
+ <p>If P is a record pattern <c>#Name{Field_1=P_1, ..., Field_k=P_k}</c>,
+ where each <c>Field_i</c> is an atom or <c>_</c>, then Rep(P) =
+ <c>{record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ...,
+ {record_field,LINE,Rep(Field_k),Rep(P_k)}]}</c>.</p>
+ </item>
+ <item>
+ <p>If P is a tuple pattern <c>{P_1, ..., P_k}</c>, then Rep(P) =
+ <c>{tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If P is a universal pattern <c>_</c>, then Rep(P) =
+ <c>{var,LINE,'_'}</c>.</p></item>
+ <item>
+ <p>If P is a variable pattern <c>V</c>, then Rep(P) =
+ <c>{var,LINE,A}</c>, where A is an atom with a printname consisting
+ of the same characters as <c>V</c>.</p>
+ </item>
</list>
- <p>Note that every pattern has the same source form as some expression, and is
- represented the same way as the corresponding expression.</p>
+
+ <p>Notice that every pattern has the same source form as some expression,
+ and is represented in the same way as the corresponding expression.</p>
</section>
<section>
<title>Expressions</title>
- <p>A body B is a sequence of expressions <c><![CDATA[E_1, ..., E_k]]></c>, and
- Rep(B) = <c><![CDATA[[Rep(E_1), ..., Rep(E_k)]]]></c>.</p>
- <p>An expression E is one of the following alternatives:</p>
+ <p>A body B is a non-empty sequence of expressions <c>E_1, ..., E_k</c>,
+ and Rep(B) = <c>[Rep(E_1), ..., Rep(E_k)]</c>.</p>
+
+ <p>An expression E is one of the following:</p>
+
<list type="bulleted">
- <item>If P is an atomic literal <c><![CDATA[L]]></c>, then
- Rep(P) = Rep(L).</item>
- <item>If E is <c><![CDATA[P = E_0]]></c>, then
- Rep(E) = <c><![CDATA[{match,LINE,Rep(P),Rep(E_0)}]]></c>.</item>
- <item>If E is a variable <c><![CDATA[V]]></c>, then
- Rep(E) = <c><![CDATA[{var,LINE,A}]]></c>,
- where <c><![CDATA[A]]></c> is an atom with a printname consisting of the same
- characters as <c><![CDATA[V]]></c>.</item>
- <item>If E is a tuple skeleton <c><![CDATA[{E_1, ..., E_k}]]></c>, then
- Rep(E) = <c><![CDATA[{tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}]]></c>.</item>
- <item>If E is <c><![CDATA[[]]]></c>, then
- Rep(E) = <c><![CDATA[{nil,LINE}]]></c>.</item>
- <item>If E is a cons skeleton <c><![CDATA[[E_h | E_t]]]></c>, then
- Rep(E) = <c><![CDATA[{cons,LINE,Rep(E_h),Rep(E_t)}]]></c>.</item>
- <item>If E is a binary constructor <c><![CDATA[<<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>>]]></c>, then
- Rep(E) = <c><![CDATA[{bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}]]></c>.
- For Rep(TSL), see below.
- An omitted <c><![CDATA[Size]]></c> is represented by <c><![CDATA[default]]></c>. An omitted <c><![CDATA[TSL]]></c>
- (type specifier list) is represented by <c><![CDATA[default]]></c>.</item>
- <item>If E is <c><![CDATA[E_1 Op E_2]]></c>, where <c><![CDATA[Op]]></c> is a binary operator,
- then Rep(E) = <c><![CDATA[{op,LINE,Op,Rep(E_1),Rep(E_2)}]]></c>.</item>
- <item>If E is <c><![CDATA[Op E_0]]></c>, where <c><![CDATA[Op]]></c> is a unary operator, then
- Rep(E) = <c><![CDATA[{op,LINE,Op,Rep(E_0)}]]></c>.</item>
- <item>If E is <c><![CDATA[#Name{Field_1=E_1, ..., Field_k=E_k}]]></c>, then
- Rep(E) =
- <c><![CDATA[{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}]]></c>.</item>
- <item>If E is <c><![CDATA[E_0#Name{Field_1=E_1, ..., Field_k=E_k}]]></c>, then
- Rep(E) =
- <c><![CDATA[{record,LINE,Rep(E_0),Name, [{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}]]></c>.</item>
- <item>If E is <c><![CDATA[#Name.Field]]></c>, then
- Rep(E) = <c><![CDATA[{record_index,LINE,Name,Rep(Field)}]]></c>.</item>
- <item>If E is <c><![CDATA[E_0#Name.Field]]></c>, then
- Rep(E) = <c><![CDATA[{record_field,LINE,Rep(E_0),Name,Rep(Field)}]]></c>.</item>
- <item>If E is <c><![CDATA[#{W_1, ..., W_k}]]></c> where each
- <c><![CDATA[W_i]]></c> is a map assoc or exact field, then Rep(E) =
- <c><![CDATA[{map,LINE,[Rep(W_1), ..., Rep(W_k)]}]]></c>. For Rep(W), see
- below.</item>
- <item>If E is <c><![CDATA[E_0#{W_1, ..., W_k}]]></c> where
- <c><![CDATA[W_i]]></c> is a map assoc or exact field, then Rep(E) =
- <c><![CDATA[{map,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}]]></c>. For
- Rep(W), see below.</item>
- <item>If E is <c><![CDATA[catch E_0]]></c>, then
- Rep(E) = <c><![CDATA[{'catch',LINE,Rep(E_0)}]]></c>.</item>
- <item>If E is <c><![CDATA[E_0(E_1, ..., E_k)]]></c>, then
- Rep(E) = <c><![CDATA[{call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}]]></c>.</item>
- <item>If E is <c><![CDATA[E_m:E_0(E_1, ..., E_k)]]></c>, then
- Rep(E) =
- <c><![CDATA[{call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}]]></c>.</item>
- <item>If E is a list comprehension <c><![CDATA[[E_0 || W_1, ..., W_k]]]></c>,
- where each <c><![CDATA[W_i]]></c> is a generator or a filter, then
- Rep(E) = <c><![CDATA[{lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}]]></c>. For Rep(W), see
- below.</item>
- <item>If E is a binary comprehension <c><![CDATA[<<E_0 || W_1, ..., W_k>>]]></c>,
- where each <c><![CDATA[W_i]]></c> is a generator or a filter, then
- Rep(E) = <c><![CDATA[{bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}]]></c>. For Rep(W), see
- below.</item>
- <item>If E is <c><![CDATA[begin B end]]></c>, where <c><![CDATA[B]]></c> is a body, then
- Rep(E) = <c><![CDATA[{block,LINE,Rep(B)}]]></c>.</item>
- <item>If E is <c><![CDATA[if Ic_1 ; ... ; Ic_k end]]></c>,
- where each <c><![CDATA[Ic_i]]></c> is an if clause then
- Rep(E) =
- <c><![CDATA[{'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}]]></c>.</item>
- <item>If E is <c><![CDATA[case E_0 of Cc_1 ; ... ; Cc_k end]]></c>,
- where <c><![CDATA[E_0]]></c> is an expression and each <c><![CDATA[Cc_i]]></c> is a
- case clause then
- Rep(E) =
- <c><![CDATA[{'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}]]></c>.</item>
- <item>If E is <c><![CDATA[try B catch Tc_1 ; ... ; Tc_k end]]></c>,
- where <c><![CDATA[B]]></c> is a body and each <c><![CDATA[Tc_i]]></c> is a catch clause then
- Rep(E) =
- <c><![CDATA[{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}]]></c>.</item>
- <item>If E is <c><![CDATA[try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end]]></c>,
- where <c><![CDATA[B]]></c> is a body,
- each <c><![CDATA[Cc_i]]></c> is a case clause and
- each <c><![CDATA[Tc_j]]></c> is a catch clause then
- Rep(E) =
- <c><![CDATA[{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}]]></c>.</item>
- <item>If E is <c><![CDATA[try B after A end]]></c>,
- where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are bodies then
- Rep(E) =
- <c><![CDATA[{'try',LINE,Rep(B),[],[],Rep(A)}]]></c>.</item>
- <item>If E is <c><![CDATA[try B of Cc_1 ; ... ; Cc_k after A end]]></c>,
- where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are a bodies and
- each <c><![CDATA[Cc_i]]></c> is a case clause then
- Rep(E) =
- <c><![CDATA[{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[],Rep(A)}]]></c>.</item>
- <item>If E is <c><![CDATA[try B catch Tc_1 ; ... ; Tc_k after A end]]></c>,
- where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are bodies and
- each <c><![CDATA[Tc_i]]></c> is a catch clause then
- Rep(E) =
- <c><![CDATA[{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}]]></c>.</item>
- <item>If E is <c><![CDATA[try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end]]></c>,
- where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are a bodies,
- each <c><![CDATA[Cc_i]]></c> is a case clause and
- each <c><![CDATA[Tc_j]]></c> is a catch clause then
- Rep(E) =
- <c><![CDATA[{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}]]></c>.</item>
- <item>If E is <c><![CDATA[receive Cc_1 ; ... ; Cc_k end]]></c>,
- where each <c><![CDATA[Cc_i]]></c> is a case clause then
- Rep(E) =
- <c><![CDATA[{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}]]></c>.</item>
- <item>If E is <c><![CDATA[receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end]]></c>,
- where each <c><![CDATA[Cc_i]]></c> is a case clause,
- <c><![CDATA[E_0]]></c> is an expression and <c><![CDATA[B_t]]></c> is a body, then
- Rep(E) =
- <c><![CDATA[{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}]]></c>.</item>
- <item>If E is <c><![CDATA[fun Name / Arity]]></c>, then
- Rep(E) = <c><![CDATA[{'fun',LINE,{function,Name,Arity}}]]></c>.</item>
- <item>If E is <c><![CDATA[fun Module:Name/Arity]]></c>, then
- Rep(E) = <c><![CDATA[{'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}]]></c>.
- (Before the R15 release: Rep(E) = <c><![CDATA[{'fun',LINE,{function,Module,Name,Arity}}]]></c>.)</item>
- <item>If E is <c><![CDATA[fun Fc_1 ; ... ; Fc_k end]]></c>
- where each <c><![CDATA[Fc_i]]></c> is a function clause then Rep(E) =
- <c><![CDATA[{'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}]]></c>.</item>
- <item>If E is <c><![CDATA[fun Name Fc_1 ; ... ; Name Fc_k end]]></c>
- where <c><![CDATA[Name]]></c> is a variable and each
- <c><![CDATA[Fc_i]]></c> is a function clause then Rep(E) =
- <c><![CDATA[{named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}]]></c>.
- </item>
- <item>If E is <c><![CDATA[query [E_0 || W_1, ..., W_k] end]]></c>,
- where each <c><![CDATA[W_i]]></c> is a generator or a filter, then
- Rep(E) = <c><![CDATA[{'query',LINE,{lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}}]]></c>.
- For Rep(W), see below.</item>
- <item>If E is <c><![CDATA[E_0.Field]]></c>, a Mnesia record access
- inside a query, then
- Rep(E) = <c><![CDATA[{record_field,LINE,Rep(E_0),Rep(Field)}]]></c>.</item>
- <item>If E is <c><![CDATA[( E_0 )]]></c>, then
- Rep(E) = <c><![CDATA[Rep(E_0)]]></c>,
- i.e., parenthesized expressions cannot be distinguished from their bodies.</item>
+ <item>
+ <p>If E is an atomic literal <c>L</c>, then Rep(E) = Rep(L).</p>
+ </item>
+ <item>
+ <p>If E is a bitstring comprehension
+ <c>&lt;&lt;E_0 || Q_1, ..., Q_k>></c>,
+ where each <c>Q_i</c> is a qualifier, then Rep(E) =
+ <c>{bc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}</c>.
+ For Rep(Q), see below.</p>
+ </item>
+ <item>
+ <p>If E is a bitstring constructor
+ <c>&lt;&lt;E_1:Size_1/TSL_1, ..., E_k:Size_k/TSL_k>></c>,
+ where each <c>Size_i</c> is an expression and each
+ <c>TSL_i</c> is a type specificer list, then Rep(E) =
+ <c>{bin,LINE,[{bin_element,LINE,Rep(E_1),Rep(Size_1),Rep(TSL_1)},
+ ..., {bin_element,LINE,Rep(E_k),Rep(Size_k),Rep(TSL_k)}]}</c>.
+ For Rep(TSL), see below.
+ An omitted <c>Size_i</c> is represented by <c>default</c>.
+ An omitted <c>TSL_i</c> is represented by <c>default</c>.</p>
+ </item>
+ <item>
+ <p>If E is a block expression <c>begin B end</c>,
+ where <c>B</c> is a body, then Rep(E) =
+ <c>{block,LINE,Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a case expression <c>case E_0 of Cc_1 ; ... ; Cc_k end</c>,
+ where <c>E_0</c> is an expression and each <c>Cc_i</c> is a
+ case clause, then Rep(E) =
+ <c>{'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a catch expression <c>catch E_0</c>, then Rep(E) =
+ <c>{'catch',LINE,Rep(E_0)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a cons skeleton <c>[E_h | E_t]</c>, then Rep(E) =
+ <c>{cons,LINE,Rep(E_h),Rep(E_t)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a fun expression <c>fun Name/Arity</c>, then Rep(E) =
+ <c>{'fun',LINE,{function,Name,Arity}}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a fun expression <c>fun Module:Name/Arity</c>, then Rep(E) =
+ <c>{'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}</c>.
+ (Before Erlang/OTP R15: Rep(E) =
+ <c>{'fun',LINE,{function,Module,Name,Arity}}</c>.)</p>
+ </item>
+ <item>
+ <p>If E is a fun expression <c>fun Fc_1 ; ... ; Fc_k end</c>,
+ where each <c>Fc_i</c> is a function clause, then Rep(E) =
+ <c>{'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a fun expression <c>fun Name Fc_1 ; ... ; Name Fc_k end</c>,
+ where <c>Name</c> is a variable and each
+ <c>Fc_i</c> is a function clause, then Rep(E) =
+ <c>{named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a function call <c>E_0(E_1, ..., E_k)</c>, then Rep(E) =
+ <c>{call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a function call <c>E_m:E_0(E_1, ..., E_k)</c>, then Rep(E) =
+ <c>{call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ...,
+ Rep(E_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is an if expression <c>if Ic_1 ; ... ; Ic_k end</c>,
+ where each <c>Ic_i</c> is an if clause, then Rep(E) =
+ <c>{'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a list comprehension <c>[E_0 || Q_1, ..., Q_k]</c>,
+ where each <c>Q_i</c> is a qualifier, then Rep(E) =
+ <c>{lc,LINE,Rep(E_0),[Rep(Q_1), ..., Rep(Q_k)]}</c>.
+ For Rep(Q), see below.</p>
+ </item>
+ <item>
+ <p>If E is a map creation <c>#{A_1, ..., A_k}</c>,
+ where each <c>A_i</c> is an association <c>E_i_1 => E_i_2</c>,
+ then Rep(E) = <c>{map,LINE,[Rep(A_1), ..., Rep(A_k)]}</c>.
+ For Rep(A), see below.</p>
+ </item>
+ <item>
+ <p>If E is a map update <c>E_0#{A_1, ..., A_k}</c>,
+ where each <c>A_i</c> is an association <c>E_i_1 => E_i_2</c>
+ or <c>E_i_1 := E_i_2</c>, then Rep(E) =
+ <c>{map,LINE,Rep(E_0),[Rep(A_1), ..., Rep(A_k)]}</c>.
+ For Rep(A), see below.</p>
+ </item>
+ <item>
+ <p>If E is a match operator expression <c>P = E_0</c>,
+ where <c>P</c> is a pattern, then Rep(E) =
+ <c>{match,LINE,Rep(P),Rep(E_0)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is nil, <c>[]</c>, then Rep(E) = <c>{nil,LINE}</c>.</p>
+ </item>
+ <item>
+ <p>If E is an operator expression <c>E_1 Op E_2</c>,
+ where <c>Op</c> is a binary operator other than match operator
+ <c>=</c>, then Rep(E) =
+ <c>{op,LINE,Op,Rep(E_1),Rep(E_2)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is an operator expression <c>Op E_0</c>,
+ where <c>Op</c> is a unary operator, then Rep(E) =
+ <c>{op,LINE,Op,Rep(E_0)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a parenthesized expression <c>( E_0 )</c>, then Rep(E) =
+ <c>Rep(E_0)</c>, that is, parenthesized expressions cannot be
+ distinguished from their bodies.</p>
+ </item>
+ <item>
+ <p>If E is a receive expression <c>receive Cc_1 ; ... ; Cc_k end</c>,
+ where each <c>Cc_i</c> is a case clause, then Rep(E) =
+ <c>{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a receive expression
+ <c>receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end</c>,
+ where each <c>Cc_i</c> is a case clause, <c>E_0</c> is an expression,
+ and <c>B_t</c> is a body, then Rep(E) =
+ <c>{'receive',LINE,[Rep(Cc_1), ...,
+ Rep(Cc_k)],Rep(E_0),Rep(B_t)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a record creation
+ <c>#Name{Field_1=E_1, ..., Field_k=E_k}</c>,
+ where each <c>Field_i</c> is an atom or <c>_</c>, then Rep(E) =
+ <c>{record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)},
+ ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a record field access <c>E_0#Name.Field</c>,
+ where <c>Field</c> is an atom, then Rep(E) =
+ <c>{record_field,LINE,Rep(E_0),Name,Rep(Field)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a record field index <c>#Name.Field</c>,
+ where <c>Field</c> is an atom, then Rep(E) =
+ <c>{record_index,LINE,Name,Rep(Field)}</c>.</p></item>
+ <item>
+ <p>If E is a record update
+ <c>E_0#Name{Field_1=E_1, ..., Field_k=E_k}</c>,
+ where each <c>Field_i</c> is an atom, then Rep(E) =
+ <c>{record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)},
+ ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a tuple skeleton <c>{E_1, ..., E_k}</c>, then Rep(E) =
+ <c>{tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a try expression <c>try B catch Tc_1 ; ... ; Tc_k end</c>,
+ where <c>B</c> is a body and each <c>Tc_i</c> is a catch clause,
+ then Rep(E) =
+ <c>{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a try expression
+ <c>try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end</c>,
+ where <c>B</c> is a body, each <c>Cc_i</c> is a case clause, and
+ each <c>Tc_j</c> is a catch clause, then Rep(E) =
+ <c>{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,
+ Rep(Tc_n)],[]}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a try expression <c>try B after A end</c>,
+ where <c>B</c> and <c>A</c> are bodies, then Rep(E) =
+ <c>{'try',LINE,Rep(B),[],[],Rep(A)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a try expression
+ <c>try B of Cc_1 ; ... ; Cc_k after A end</c>,
+ where <c>B</c> and <c>A</c> are a bodies,
+ and each <c>Cc_i</c> is a case clause, then Rep(E) =
+ <c>{'try',LINE,Rep(B),[Rep(Cc_1), ...,
+ Rep(Cc_k)],[],Rep(A)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a try expression
+ <c>try B catch Tc_1 ; ... ; Tc_k after A end</c>,
+ where <c>B</c> and <c>A</c> are bodies,
+ and each <c>Tc_i</c> is a catch clause, then Rep(E) =
+ <c>{'try',LINE,Rep(B),[],[Rep(Tc_1), ...,
+ Rep(Tc_k)],Rep(A)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a try expression
+ <c>try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A
+ end</c>, where <c>B</c> and <c>A</c> are a bodies,
+ each <c>Cc_i</c> is a case clause,
+ and each <c>Tc_j</c> is a catch clause, then Rep(E) =
+ <c>{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,
+ Rep(Tc_n)],Rep(A)}</c>.</p>
+ </item>
+ <item>
+ <p>If E is a variable <c>V</c>, then Rep(E) = <c>{var,LINE,A}</c>,
+ where <c>A</c> is an atom with a printname consisting of the same
+ characters as <c>V</c>.</p>
+ </item>
</list>
<section>
- <title>Generators and filters</title>
- <p>When W is a generator or a filter (in the body of a list or binary comprehension), then:</p>
+ <title>Qualifiers</title>
+ <p>A qualifier Q is one of the following:</p>
+
<list type="bulleted">
- <item>If W is a generator <c><![CDATA[P <- E]]></c>, where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[E]]></c>
- is an expression, then
- Rep(W) = <c><![CDATA[{generate,LINE,Rep(P),Rep(E)}]]></c>.</item>
- <item>If W is a generator <c><![CDATA[P <= E]]></c>, where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[E]]></c>
- is an expression, then
- Rep(W) = <c><![CDATA[{b_generate,LINE,Rep(P),Rep(E)}]]></c>.</item>
- <item>If W is a filter <c><![CDATA[E]]></c>, which is an expression, then
- Rep(W) = <c><![CDATA[Rep(E)]]></c>.</item>
+ <item>
+ <p>If Q is a filter <c>E</c>, where <c>E</c> is an expression, then
+ Rep(Q) = <c>Rep(E)</c>.</p>
+ </item>
+ <item>
+ <p>If Q is a generator <c>P &lt;- E</c>, where <c>P</c> is
+ a pattern and <c>E</c> is an expression, then Rep(Q) =
+ <c>{generate,LINE,Rep(P),Rep(E)}</c>.</p>
+ </item>
+ <item>
+ <p>If Q is a bitstring generator <c>P &lt;= E</c>, where <c>P</c> is
+ a pattern and <c>E</c> is an expression, then Rep(Q) =
+ <c>{b_generate,LINE,Rep(P),Rep(E)}</c>.</p>
+ </item>
</list>
</section>
<section>
- <title>Binary element type specifiers</title>
- <p>A type specifier list TSL for a binary element is a sequence of type
- specifiers <c><![CDATA[TS_1 - ... - TS_k]]></c>.
- Rep(TSL) = <c><![CDATA[[Rep(TS_1), ..., Rep(TS_k)]]]></c>.</p>
- <p>When TS is a type specifier for a binary element, then:</p>
+ <title>Bitstring Element Type Specifiers</title>
+ <p>A type specifier list TSL for a bitstring element is a sequence
+ of type specifiers <c>TS_1 - ... - TS_k</c>, and
+ Rep(TSL) = <c>[Rep(TS_1), ..., Rep(TS_k)]</c>.</p>
+
<list type="bulleted">
- <item>If TS is an atom <c><![CDATA[A]]></c>, Rep(TS) = <c><![CDATA[A]]></c>.</item>
- <item>If TS is a couple <c><![CDATA[A:Value]]></c> where <c><![CDATA[A]]></c> is an atom and <c><![CDATA[Value]]></c>
- is an integer, Rep(TS) = <c><![CDATA[{A, Value}]]></c>.</item>
+ <item>
+ <p>If TS is a type specifier <c>A</c>, where <c>A</c> is an atom,
+ then Rep(TS) = <c>A</c>.</p>
+ </item>
+ <item>
+ <p>If TS is a type specifier <c>A:Value</c>,
+ where <c>A</c> is an atom and <c>Value</c> is an integer,
+ then Rep(TS) = <c>{A,Value}</c>.</p>
+ </item>
</list>
</section>
<section>
- <title>Map assoc and exact fields</title>
- <p>When W is an assoc or exact field (in the body of a map), then:</p>
+ <title>Associations</title>
+ <p>An association A is one of the following:</p>
+
<list type="bulleted">
- <item>If W is an assoc field <c><![CDATA[K => V]]></c>, where
- <c><![CDATA[K]]></c> and <c><![CDATA[V]]></c> are both expressions,
- then Rep(W) = <c><![CDATA[{map_field_assoc,LINE,Rep(K),Rep(V)}]]></c>.
- </item>
- <item>If W is an exact field <c><![CDATA[K := V]]></c>, where
- <c><![CDATA[K]]></c> and <c><![CDATA[V]]></c> are both expressions,
- then Rep(W) = <c><![CDATA[{map_field_exact,LINE,Rep(K),Rep(V)}]]></c>.
- </item>
+ <item>
+ <p>If A is an association <c>K => V</c>,
+ then Rep(A) = <c>{map_field_assoc,LINE,Rep(K),Rep(V)}</c>.</p>
+ </item>
+ <item>
+ <p>If A is an association <c>K := V</c>,
+ then Rep(A) = <c>{map_field_exact,LINE,Rep(K),Rep(V)}</c>.</p>
+ </item>
</list>
</section>
</section>
<section>
<title>Clauses</title>
- <p>There are function clauses, if clauses, case clauses
+ <p>There are function clauses, if clauses, case clauses,
and catch clauses.</p>
- <p>A clause <c><![CDATA[C]]></c> is one of the following alternatives:</p>
+
+ <p>A clause C is one of the following:</p>
+
<list type="bulleted">
- <item>If C is a function clause <c><![CDATA[( Ps ) -> B]]></c>
- where <c><![CDATA[Ps]]></c> is a pattern sequence and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,Rep(Ps),[],Rep(B)}]]></c>.</item>
- <item>If C is a function clause <c><![CDATA[( Ps ) when Gs -> B]]></c>
- where <c><![CDATA[Ps]]></c> is a pattern sequence,
- <c><![CDATA[Gs]]></c> is a guard sequence and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}]]></c>.</item>
- <item>If C is an if clause <c><![CDATA[Gs -> B]]></c>
- where <c><![CDATA[Gs]]></c> is a guard sequence and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[],Rep(Gs),Rep(B)}]]></c>.</item>
- <item>If C is a case clause <c><![CDATA[P -> B]]></c>
- where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[Rep(P)],[],Rep(B)}]]></c>.</item>
- <item>If C is a case clause <c><![CDATA[P when Gs -> B]]></c>
- where <c><![CDATA[P]]></c> is a pattern,
- <c><![CDATA[Gs]]></c> is a guard sequence and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}]]></c>.</item>
- <item>If C is a catch clause <c><![CDATA[P -> B]]></c>
- where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[Rep({throw,P,_})],[],Rep(B)}]]></c>.</item>
- <item>If C is a catch clause <c><![CDATA[X : P -> B]]></c>
- where <c><![CDATA[X]]></c> is an atomic literal or a variable pattern,
- <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[Rep({X,P,_})],[],Rep(B)}]]></c>.</item>
- <item>If C is a catch clause <c><![CDATA[P when Gs -> B]]></c>
- where <c><![CDATA[P]]></c> is a pattern, <c><![CDATA[Gs]]></c> is a guard sequence
- and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}]]></c>.</item>
- <item>If C is a catch clause <c><![CDATA[X : P when Gs -> B]]></c>
- where <c><![CDATA[X]]></c> is an atomic literal or a variable pattern,
- <c><![CDATA[P]]></c> is a pattern, <c><![CDATA[Gs]]></c> is a guard sequence
- and <c><![CDATA[B]]></c> is a body, then
- Rep(C) = <c><![CDATA[{clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}]]></c>.</item>
+ <item>
+ <p>If C is a case clause <c>P -> B</c>,
+ where <c>P</c> is a pattern and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep(P)],[],Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If C is a case clause <c>P when Gs -> B</c>,
+ where <c>P</c> is a pattern,
+ <c>Gs</c> is a guard sequence, and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If C is a catch clause <c>P -> B</c>,
+ where <c>P</c> is a pattern and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep({throw,P,_})],[],Rep(B)}</c>,
+ that is, a catch clause with an explicit exception class
+ <c>throw</c> and with or without an explicit stacktrace
+ variable <c>_</c> cannot be distinguished from a catch clause
+ without an explicit exception class and without an explicit
+ stacktrace variable.</p>
+ </item>
+ <item>
+ <p>If C is a catch clause <c>X : P -> B</c>,
+ where <c>X</c> is an atomic literal or a variable pattern,
+ <c>P</c> is a pattern, and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep({X,P,_})],[],Rep(B)}</c>,
+ that is, a catch clause with an explicit exception class and
+ with an explicit stacktrace variable <c>_</c> cannot be
+ distinguished from a catch clause with an explicit exception
+ class and without an explicit stacktrace variable.</p>
+ </item>
+ <item>
+ <p>If C is a catch clause <c>X : P : S -> B</c>,
+ where <c>X</c> is an atomic literal or a variable pattern,
+ <c>P</c> is a pattern, <c>S</c> is a variable, and <c>B</c>
+ is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep({X,P,S})],[],Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If C is a catch clause <c>P when Gs -> B</c>,
+ where <c>P</c> is a pattern, <c>Gs</c> is a guard sequence,
+ and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}</c>,
+ that is, a catch clause with an explicit exception class
+ <c>throw</c> and with or without an explicit stacktrace
+ variable <c>_</c> cannot be distinguished from a catch clause
+ without an explicit exception class and without an explicit
+ stacktrace variable.</p>
+ </item>
+ <item>
+ <p>If C is a catch clause <c>X : P when Gs -> B</c>,
+ where <c>X</c> is an atomic literal or a variable pattern,
+ <c>P</c> is a pattern, <c>Gs</c> is a guard sequence,
+ and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}</c>,
+ that is, a catch clause with an explicit exception class and
+ with an explicit stacktrace variable <c>_</c> cannot be
+ distinguished from a catch clause with an explicit exception
+ class and without an explicit stacktrace variable.</p>
+ </item>
+ <item>
+ <p>If C is a catch clause <c>X : P : S when Gs -> B</c>,
+ where <c>X</c> is an atomic literal or a variable pattern,
+ <c>P</c> is a pattern, <c>Gs</c> is a guard sequence,
+ <c>S</c> is a variable, and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[Rep({X,P,S})],Rep(Gs),Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If C is a function clause <c>( Ps ) -> B</c>,
+ where <c>Ps</c> is a pattern sequence and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,Rep(Ps),[],Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If C is a function clause <c>( Ps ) when Gs -> B</c>,
+ where <c>Ps</c> is a pattern sequence,
+ <c>Gs</c> is a guard sequence and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}</c>.</p>
+ </item>
+ <item>
+ <p>If C is an if clause <c>Gs -> B</c>,
+ where <c>Gs</c> is a guard sequence and <c>B</c> is a body, then
+ Rep(C) = <c>{clause,LINE,[],Rep(Gs),Rep(B)}</c>.</p>
+ </item>
</list>
</section>
<section>
<title>Guards</title>
- <p>A guard sequence Gs is a sequence of guards <c><![CDATA[G_1; ...; G_k]]></c>, and
- Rep(Gs) = <c><![CDATA[[Rep(G_1), ..., Rep(G_k)]]]></c>. If the guard sequence is
- empty, Rep(Gs) = <c><![CDATA[[]]]></c>.</p>
- <p>A guard G is a nonempty sequence of guard tests <c><![CDATA[Gt_1, ..., Gt_k]]></c>, and
- Rep(G) = <c><![CDATA[[Rep(Gt_1), ..., Rep(Gt_k)]]]></c>.</p>
- <p>A guard test <c><![CDATA[Gt]]></c> is one of the following alternatives:</p>
+ <p>A guard sequence Gs is a sequence of guards <c>G_1; ...; G_k</c>, and
+ Rep(Gs) = <c>[Rep(G_1), ..., Rep(G_k)]</c>. If the guard sequence is
+ empty, then Rep(Gs) = <c>[]</c>.</p>
+
+ <p>A guard G is a non-empty sequence of guard tests
+ <c>Gt_1, ..., Gt_k</c>, and Rep(G) =
+ <c>[Rep(Gt_1), ..., Rep(Gt_k)]</c>.</p>
+
+ <p>A guard test Gt is one of the following:</p>
+
+ <list type="bulleted">
+ <item>
+ <p>If Gt is an atomic literal <c>L</c>, then Rep(Gt) = Rep(L).</p>
+ </item>
+ <item>
+ <p>If Gt is a bitstring constructor
+ <c>&lt;&lt;Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>></c>,
+ where each <c>Size_i</c> is a guard test and each
+ <c>TSL_i</c> is a type specificer list, then Rep(Gt) =
+ <c>{bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)},
+ ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}</c>.
+ For Rep(TSL), see above.
+ An omitted <c>Size_i</c> is represented by <c>default</c>.
+ An omitted <c>TSL_i</c> is represented by <c>default</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a cons skeleton <c>[Gt_h | Gt_t]</c>, then Rep(Gt) =
+ <c>{cons,LINE,Rep(Gt_h),Rep(Gt_t)}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a function call <c>A(Gt_1, ..., Gt_k)</c>,
+ where <c>A</c> is an atom, then Rep(Gt) =
+ <c>{call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a function call <c>A_m:A(Gt_1, ..., Gt_k)</c>,
+ where <c>A_m</c> is the atom <c>erlang</c> and <c>A</c> is
+ an atom or an operator, then Rep(Gt) =
+ <c>{call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ...,
+ Rep(Gt_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a map creation <c>#{A_1, ..., A_k}</c>,
+ where each <c>A_i</c> is an association <c>Gt_i_1 => Gt_i_2</c>,
+ then Rep(Gt) = <c>{map,LINE,[Rep(A_1), ..., Rep(A_k)]}</c>.
+ For Rep(A), see above.</p>
+ </item>
+ <item>
+ <p>If Gt is a map update <c>Gt_0#{A_1, ..., A_k}</c>,
+ where each <c>A_i</c> is an association <c>Gt_i_1 => Gt_i_2</c>
+ or <c>Gt_i_1 := Gt_i_2</c>, then Rep(Gt) =
+ <c>{map,LINE,Rep(Gt_0),[Rep(A_1), ..., Rep(A_k)]}</c>.
+ For Rep(A), see above.</p>
+ </item>
+ <item>
+ <p>If Gt is nil, <c>[]</c>, then Rep(Gt) = <c>{nil,LINE}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is an operator guard test <c>Gt_1 Op Gt_2</c>,
+ where <c>Op</c> is a binary operator other than match
+ operator <c>=</c>, then Rep(Gt) =
+ <c>{op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is an operator guard test <c>Op Gt_0</c>,
+ where <c>Op</c> is a unary operator, then Rep(Gt) =
+ <c>{op,LINE,Op,Rep(Gt_0)}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a parenthesized guard test <c>( Gt_0 )</c>, then Rep(Gt) =
+ <c>Rep(Gt_0)</c>, that is, parenthesized
+ guard tests cannot be distinguished from their bodies.</p>
+ </item>
+ <item>
+ <p>If Gt is a record creation
+ <c>#Name{Field_1=Gt_1, ..., Field_k=Gt_k}</c>,
+ where each <c>Field_i</c> is an atom or <c>_</c>, then Rep(Gt) =
+ <c>{record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)},
+ ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a record field access <c>Gt_0#Name.Field</c>,
+ where <c>Field</c> is an atom, then Rep(Gt) =
+ <c>{record_field,LINE,Rep(Gt_0),Name,Rep(Field)}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a record field index <c>#Name.Field</c>,
+ where <c>Field</c> is an atom, then Rep(Gt) =
+ <c>{record_index,LINE,Name,Rep(Field)}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a tuple skeleton <c>{Gt_1, ..., Gt_k}</c>, then Rep(Gt) =
+ <c>{tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If Gt is a variable pattern <c>V</c>, then Rep(Gt) =
+ <c>{var,LINE,A}</c>, where A is an atom with
+ a printname consisting of the same characters as <c>V</c>.</p>
+ </item>
+ </list>
+
+ <p>Notice that every guard test has the same source form as some expression,
+ and is represented in the same way as the corresponding expression.</p>
+ </section>
+
+ <section>
+ <title>Types</title>
<list type="bulleted">
- <item>If Gt is an atomic literal L, then Rep(Gt) = Rep(L).</item>
- <item>If Gt is a variable pattern <c><![CDATA[V]]></c>, then
- Rep(Gt) = <c><![CDATA[{var,LINE,A}]]></c>,
- where A is an atom with a printname consisting of the same characters as
- <c><![CDATA[V]]></c>.</item>
- <item>If Gt is a tuple skeleton <c><![CDATA[{Gt_1, ..., Gt_k}]]></c>, then
- Rep(Gt) = <c><![CDATA[{tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item>
- <item>If Gt is <c><![CDATA[[]]]></c>, then
- Rep(Gt) = <c><![CDATA[{nil,LINE}]]></c>.</item>
- <item>If Gt is a cons skeleton <c><![CDATA[[Gt_h | Gt_t]]]></c>, then
- Rep(Gt) = <c><![CDATA[{cons,LINE,Rep(Gt_h),Rep(Gt_t)}]]></c>.</item>
- <item>If Gt is a binary constructor <c><![CDATA[<<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>]]></c>, then
- Rep(Gt) = <c><![CDATA[{bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}]]></c>.
- For Rep(TSL), see above.
- An omitted <c><![CDATA[Size]]></c> is represented by <c><![CDATA[default]]></c>. An omitted <c><![CDATA[TSL]]></c>
- (type specifier list) is represented by <c><![CDATA[default]]></c>.</item>
- <item>If Gt is <c><![CDATA[Gt_1 Op Gt_2]]></c>, where <c><![CDATA[Op]]></c>
- is a binary operator, then Rep(Gt) = <c><![CDATA[{op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}]]></c>.</item>
- <item>If Gt is <c><![CDATA[Op Gt_0]]></c>, where <c><![CDATA[Op]]></c> is a unary operator, then
- Rep(Gt) = <c><![CDATA[{op,LINE,Op,Rep(Gt_0)}]]></c>.</item>
- <item>If Gt is <c><![CDATA[#Name{Field_1=Gt_1, ..., Field_k=Gt_k}]]></c>, then
- Rep(E) =
- <c><![CDATA[{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}]]></c>.</item>
- <item>If Gt is <c><![CDATA[#Name.Field]]></c>, then
- Rep(Gt) = <c><![CDATA[{record_index,LINE,Name,Rep(Field)}]]></c>.</item>
- <item>If Gt is <c><![CDATA[Gt_0#Name.Field]]></c>, then
- Rep(Gt) = <c><![CDATA[{record_field,LINE,Rep(Gt_0),Name,Rep(Field)}]]></c>.</item>
- <item>If Gt is <c><![CDATA[A(Gt_1, ..., Gt_k)]]></c>, where <c><![CDATA[A]]></c> is an atom, then
- Rep(Gt) = <c><![CDATA[{call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item>
- <item>If Gt is <c><![CDATA[A_m:A(Gt_1, ..., Gt_k)]]></c>, where <c><![CDATA[A_m]]></c> is
- the atom <c><![CDATA[erlang]]></c> and <c><![CDATA[A]]></c> is an atom or an operator, then
- Rep(Gt) = <c><![CDATA[{call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item>
- <item>If Gt is <c><![CDATA[{A_m,A}(Gt_1, ..., Gt_k)]]></c>, where <c><![CDATA[A_m]]></c> is
- the atom <c><![CDATA[erlang]]></c> and <c><![CDATA[A]]></c> is an atom or an operator, then
- Rep(Gt) = <c><![CDATA[{call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item>
- <item>If Gt is <c><![CDATA[( Gt_0 )]]></c>, then
- Rep(Gt) = <c><![CDATA[Rep(Gt_0)]]></c>,
- i.e., parenthesized guard tests cannot be distinguished from their bodies.</item>
+ <item>
+ <p>If T is an annotated type <c>A :: T_0</c>,
+ where <c>A</c> is a variable, then Rep(T) =
+ <c>{ann_type,LINE,[Rep(A),Rep(T_0)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is an atom, a character, or an integer literal L,
+ then Rep(T) = Rep(L).</p>
+ </item>
+ <item>
+ <p>If T is a bitstring type <c>&lt;&lt;_:M,_:_*N>></c>,
+ where <c>M</c> and <c>N</c> are singleton integer types, then Rep(T) =
+ <c>{type,LINE,binary,[Rep(M),Rep(N)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is the empty list type <c>[]</c>, then Rep(T) =
+ <c>{type,Line,nil,[]}</c>, that is, the empty list type
+ <c>[]</c> cannot be distinguished from the predefined type
+ <c>nil()</c>.</p>
+ </item>
+ <item>
+ <p>If T is a fun type <c>fun()</c>, then Rep(T) =
+ <c>{type,LINE,'fun',[]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a fun type <c>fun((...) -> T_0)</c>, then Rep(T) =
+ <c>{type,LINE,'fun',[{type,LINE,any},Rep(T_0)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a fun type <c>fun(Ft)</c>, where
+ <c>Ft</c> is a function type, then Rep(T) = <c>Rep(Ft)</c>.
+ For Rep(Ft), see below.</p>
+ </item>
+ <item>
+ <p>If T is an integer range type <c>L .. H</c>,
+ where <c>L</c> and <c>H</c> are singleton integer types, then Rep(T) =
+ <c>{type,LINE,range,[Rep(L),Rep(H)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a map type <c>map()</c>, then Rep(T) =
+ <c>{type,LINE,map,any}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a map type <c>#{A_1, ..., A_k}</c>, where each
+ <c>A_i</c> is an association type, then Rep(T) =
+ <c>{type,LINE,map,[Rep(A_1), ..., Rep(A_k)]}</c>.
+ For Rep(A), see below.</p>
+ </item>
+ <item>
+ <p>If T is an operator type <c>T_1 Op T_2</c>,
+ where <c>Op</c> is a binary operator (this is an occurrence of
+ an expression that can be evaluated to an integer at compile
+ time), then Rep(T) =
+ <c>{op,LINE,Op,Rep(T_1),Rep(T_2)}</c>.</p>
+ </item>
+ <item>
+ <p>If T is an operator type <c>Op T_0</c>, where <c>Op</c> is a
+ unary operator (this is an occurrence of an expression that can
+ be evaluated to an integer at compile time), then Rep(T) =
+ <c>{op,LINE,Op,Rep(T_0)}</c>.</p>
+ </item>
+ <item>
+ <p>If T is <c>( T_0 )</c>, then Rep(T) = <c>Rep(T_0)</c>, that is,
+ parenthesized types cannot be distinguished from their bodies.</p>
+ </item>
+ <item>
+ <p>If T is a predefined (or built-in) type <c>N(T_1, ..., T_k)</c>,
+ then Rep(T) = <c>{type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a record type <c>#Name{F_1, ..., F_k}</c>,
+ where each <c>F_i</c> is a record field type, then Rep(T) =
+ <c>{type,LINE,record,[Rep(Name),Rep(F_1), ..., Rep(F_k)]}</c>.
+ For Rep(F), see below.</p>
+ </item>
+ <item>
+ <p>If T is a remote type <c>M:N(T_1, ..., T_k)</c>, then Rep(T) =
+ <c>{remote_type,LINE,[Rep(M),Rep(N),[Rep(T_1), ...,
+ Rep(T_k)]]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a tuple type <c>tuple()</c>, then Rep(T) =
+ <c>{type,LINE,tuple,any}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a tuple type <c>{T_1, ..., T_k}</c>, then Rep(T) =
+ <c>{type,LINE,tuple,[Rep(T_1), ..., Rep(T_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a type union <c>T_1 | ... | T_k</c>, then Rep(T) =
+ <c>{type,LINE,union,[Rep(T_1), ..., Rep(T_k)]}</c>.</p>
+ </item>
+ <item>
+ <p>If T is a type variable <c>V</c>, then Rep(T) =
+ <c>{var,LINE,A}</c>, where <c>A</c> is an atom with a printname
+ consisting of the same characters as <c>V</c>. A type variable
+ is any variable except underscore (<c>_</c>).</p>
+ </item>
+ <item>
+ <p>If T is a user-defined type <c>N(T_1, ..., T_k)</c>, then Rep(T) =
+ <c>{user_type,LINE,N,[Rep(T_1), ..., Rep(T_k)]}</c>.</p>
+ </item>
</list>
- <p>Note that every guard test has the same source form as some expression,
- and is represented the same way as the corresponding expression.</p>
+
+ <section>
+ <title>Function Types</title>
+ <p>A function type Ft is one of the following:</p>
+
+ <list type="bulleted">
+ <item>
+ <p>If Ft is a constrained function type <c>Ft_1 when Fc</c>,
+ where <c>Ft_1</c> is a function type and
+ <c>Fc</c> is a function constraint, then Rep(T) =
+ <c>{type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}</c>.
+ For Rep(Fc), see below.</p>
+ </item>
+ <item>
+ <p>If Ft is a function type <c>(T_1, ..., T_n) -> T_0</c>,
+ where each <c>T_i</c> is a type, then Rep(Ft) =
+ <c>{type,LINE,'fun',[{type,LINE,product,[Rep(T_1), ...,
+ Rep(T_n)]},Rep(T_0)]}</c>.</p>
+ </item>
+ </list>
+ </section>
+
+ <section>
+ <title>Function Constraints</title>
+ <p>A function constraint Fc is a non-empty sequence of constraints
+ <c>C_1, ..., C_k</c>, and
+ Rep(Fc) = <c>[Rep(C_1), ..., Rep(C_k)]</c>.</p>
+
+ <list type="bulleted">
+ <item>If C is a constraint <c>V :: T</c>,
+ where <c>V</c> is a type variable
+ and <c>T</c> is a type, then Rep(C) =
+ <c>{type,LINE,constraint,[{atom,LINE,is_subtype},[Rep(V),Rep(T)]]}</c>.
+ </item>
+ </list>
+ </section>
+
+ <section>
+ <title>Association Types</title>
+ <list type="bulleted">
+ <item>
+ <p>If A is an association type <c>K => V</c>,
+ where <c>K</c> and <c>V</c> are types, then Rep(A) =
+ <c>{type,LINE,map_field_assoc,[Rep(K),Rep(V)]}</c>.</p>
+ </item>
+ <item>
+ <p>If A is an association type <c>K := V</c>,
+ where <c>K</c> and <c>V</c> are types, then Rep(A) =
+ <c>{type,LINE,map_field_exact,[Rep(K),Rep(V)]}</c>.</p>
+ </item>
+ </list>
+ </section>
+
+ <section>
+ <title>Record Field Types</title>
+ <list type="bulleted">
+ <item>If F is a record field type <c>Name :: Type</c>,
+ where <c>Type</c> is a type, then Rep(F) =
+ <c>{type,LINE,field_type,[Rep(Name),Rep(Type)]}</c>.
+ </item>
+ </list>
+ </section>
</section>
<section>
- <title>The abstract format after preprocessing</title>
- <p>The compilation option <c><![CDATA[debug_info]]></c> can be given to the
- compiler to have the abstract code stored in
- the <c><![CDATA[abstract_code]]></c> chunk in the BEAM file
+ <title>The Abstract Format after Preprocessing</title>
+ <p>The compilation option <c>debug_info</c> can be specified to the
+ compiler to have the abstract code stored in
+ the <c>abstract_code</c> chunk in the Beam file
(for debugging purposes).</p>
- <p>In OTP R9C and later, the <c><![CDATA[abstract_code]]></c> chunk will
- contain</p>
- <p><c><![CDATA[{raw_abstract_v1,AbstractCode}]]></c></p>
- <p>where <c><![CDATA[AbstractCode]]></c> is the abstract code as described
- in this document.</p>
- <p>In releases of OTP prior to R9C, the abstract code after some more
- processing was stored in the BEAM file. The first element of the
- tuple would be either <c><![CDATA[abstract_v1]]></c> (R7B) or <c><![CDATA[abstract_v2]]></c>
- (R8B).</p>
+
+ <p>As from Erlang/OTP R9C, the <c>abstract_code</c> chunk contains
+ <c>{raw_abstract_v1,AbstractCode}</c>, where <c>AbstractCode</c> is the
+ abstract code as described in this section.</p>
+
+ <p>In OTP releases before R9C, the abstract code after some more
+ processing was stored in the Beam file. The first element of the
+ tuple would be either <c>abstract_v1</c> (in OTP R7B) or
+ <c>abstract_v2</c> (in OTP R8B).</p>
</section>
</chapter>