diff options
Diffstat (limited to 'erts/doc')
-rw-r--r-- | erts/doc/src/absform.xml | 932 | ||||
-rw-r--r-- | erts/doc/src/erl.xml | 5 | ||||
-rw-r--r-- | erts/doc/src/erl_driver.xml | 116 | ||||
-rw-r--r-- | erts/doc/src/erl_nif.xml | 116 | ||||
-rw-r--r-- | erts/doc/src/erlang.xml | 179 | ||||
-rw-r--r-- | erts/doc/src/notes.xml | 164 |
6 files changed, 1014 insertions, 498 deletions
diff --git a/erts/doc/src/absform.xml b/erts/doc/src/absform.xml index df2553ced3..186c9a1143 100644 --- a/erts/doc/src/absform.xml +++ b/erts/doc/src/absform.xml @@ -11,7 +11,7 @@ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - + http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software @@ -19,7 +19,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. - + </legalnotice> <title>The Abstract Format</title> @@ -35,24 +35,24 @@ <p></p> <p>This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This representation is known as the <em>abstract format</em>. - Functions dealing with such parse trees are <c><![CDATA[compile:forms/[1,2]]]></c> + Functions dealing with such parse trees are <c>compile:forms/[1,2]</c> and functions in the modules - <c><![CDATA[epp]]></c>, - <c><![CDATA[erl_eval]]></c>, - <c><![CDATA[erl_lint]]></c>, - <c><![CDATA[erl_pp]]></c>, - <c><![CDATA[erl_parse]]></c>, + <c>epp</c>, + <c>erl_eval</c>, + <c>erl_lint</c>, + <c>erl_pp</c>, + <c>erl_parse</c>, and - <c><![CDATA[io]]></c>. + <c>io</c>. They are also used as input and output for parse transforms (see the module - <c><![CDATA[compile]]></c>).</p> - <p>We use the function <c><![CDATA[Rep]]></c> to denote the mapping from an Erlang source - construct <c><![CDATA[C]]></c> to its abstract format representation <c><![CDATA[R]]></c>, and write - <c><![CDATA[R = Rep(C)]]></c>. + <c>compile</c>).</p> + <p>We use the function <c>Rep</c> to denote the mapping from an Erlang source + construct <c>C</c> to its abstract format representation <c>R</c>, and write + <c>R = Rep(C)</c>. </p> - <p>The word <c><![CDATA[LINE]]></c> below represents an integer, and denotes the + <p>The word <c>LINE</c> below represents an integer, and denotes the number of the line in the source file where the construction occurred. - Several instances of <c><![CDATA[LINE]]></c> in the same construction may denote + Several instances of <c>LINE</c> in the same construction may denote different lines.</p> <p>Since operators are not terms in their own right, when operators are mentioned below, the representation of an operator should be taken to @@ -61,233 +61,116 @@ </p> <section> - <title>Module declarations and forms</title> + <title>Module Declarations and Forms</title> <p>A module declaration consists of a sequence of forms that are either function declarations or attributes.</p> <list type="bulleted"> <item>If D is a module declaration consisting of the forms - <c><![CDATA[F_1]]></c>, ..., <c><![CDATA[F_k]]></c>, then - Rep(D) = <c><![CDATA[[Rep(F_1), ..., Rep(F_k)]]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-module(Mod)]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,module,Mod}]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-behavior(Behavior)]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,behavior,Behavior}]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-behaviour(Behaviour)]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,behaviour,Behaviour}]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-export([Fun_1/A_1, ..., Fun_k/A_k])]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-import(Mod,[Fun_1/A_1, ..., Fun_k/A_k])]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-compile(Options)]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,compile,Options}]]></c>.</item> - <item>If F is an attribute <c><![CDATA[-file(File,Line)]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,file,{File,Line}}]]></c>.</item> - <item>If F is a record declaration <c><![CDATA[-record(Name,{V_1, ..., V_k})]]></c>, then - Rep(F) = - <c><![CDATA[{attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}]]></c>. For Rep(V), see below.</item> - <item>If F is a type attribute (i.e. <c><![CDATA[opaque]]></c> or - <c><![CDATA[type]]></c>) - <c><![CDATA[-Attr Name(A_1, ..., A_k) :: T]]></c> where each - <c><![CDATA[A_i]]></c> is a variable, then Rep(F) = - <c><![CDATA[{attribute,LINE,Attr,{Name,Rep(T),[Rep(A_1), ..., Rep(A_k)]}}]]></c>. - For Rep(T), see below.</item> - <item>If F is a type spec (i.e. <c><![CDATA[callback]]></c> or - <c><![CDATA[spec]]></c>) - <c><![CDATA[-Attr F Tc_1; ...; Tc_k]]></c>, - where each <c><![CDATA[Tc_i]]></c> is a fun type clause with an - argument sequence of the same length <c><![CDATA[Arity]]></c>, then - Rep(F) = - <c><![CDATA[{Attr,LINE,{{F,Arity},[Rep(Tc_1), ..., Rep(Tc_k)]}}]]></c>. - For Rep(Tc_i), see below.</item> - <item>If F is a type spec (i.e. <c><![CDATA[callback]]></c> or - <c><![CDATA[spec]]></c>) - <c><![CDATA[-Attr Mod:F Tc_1; ...; Tc_k]]></c>, - where each <c><![CDATA[Tc_i]]></c> is a fun type clause with an - argument sequence of the same length <c><![CDATA[Arity]]></c>, then - Rep(F) = - <c><![CDATA[{Attr,LINE,{{Mod,F,Arity},[Rep(Tc_1), ..., Rep(Tc_k)]}}]]></c>. - For Rep(Tc_i), see below.</item> - <item>If F is a wild attribute <c><![CDATA[-A(T)]]></c>, then - Rep(F) = <c><![CDATA[{attribute,LINE,A,T}]]></c>. + <c>F_1</c>, ..., <c>F_k</c>, then + Rep(D) = <c>[Rep(F_1), ..., Rep(F_k)]</c>.</item> + <item>If F is an attribute <c>-module(Mod)</c>, then + Rep(F) = <c>{attribute,LINE,module,Mod}</c>.</item> + <item>If F is an attribute <c>-behavior(Behavior)</c>, then + Rep(F) = <c>{attribute,LINE,behavior,Behavior}</c>.</item> + <item>If F is an attribute <c>-behaviour(Behaviour)</c>, then + Rep(F) = <c>{attribute,LINE,behaviour,Behaviour}</c>.</item> + <item>If F is an attribute <c>-export([Fun_1/A_1, ..., Fun_k/A_k])</c>, then + Rep(F) = <c>{attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}</c>.</item> + <item>If F is an attribute <c>-import(Mod,[Fun_1/A_1, ..., Fun_k/A_k])</c>, then + Rep(F) = <c>{attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}</c>.</item> + <item>If F is an attribute <c>-export_type([Type_1/A_1, ..., Type_k/A_k])</c>, then + Rep(F) = <c>{attribute,LINE,export_type,[{Type_1,A_1}, ..., {Type_k,A_k}]}</c>.</item> + <item>If F is an attribute <c>-compile(Options)</c>, then + Rep(F) = <c>{attribute,LINE,compile,Options}</c>.</item> + <item>If F is an attribute <c>-file(File,Line)</c>, then + Rep(F) = <c>{attribute,LINE,file,{File,Line}}</c>.</item> + <item>If F is a record declaration + <c>-record(Name,{V_1, ..., V_k})</c>, then Rep(F) = + <c>{attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}</c>. + For Rep(V), see below.</item> + <item>If F is a type declaration + <c>-Type Name(V_1, ..., V_k) :: T</c>, where + <c>Type</c> is either the atom <c>type</c> or the atom <c>opaque</c>, + each <c>V_i</c> is a variable, and <c>T</c> is a type, then Rep(F) = + <c>{attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ..., Rep(V_k)]}}</c>. + </item> + <item>If F is a function specification + <c>-Spec Name Ft_1; ...; Ft_k</c>, + where <c>Spec</c> is either the atom <c>spec</c> or the atom + <c>callback</c>, and each <c>Ft_i</c> is a possibly constrained + function type with an argument sequence of the same length + <c>Arity</c>, then Rep(F) = + <c>{attribute,Line,Spec,{{Name,Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}</c>. + </item> + <item>If F is a function specification + <c>-spec Mod:Name Ft_1; ...; Ft_k</c>, + where each <c>Ft_i</c> is a possibly constrained + function type with an argument sequence of the same length + <c>Arity</c>, then Rep(F) = + <c>{attribute,Line,spec,{{Mod,Name,Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}</c>. + </item> + <item>If F is a wild attribute <c>-A(T)</c>, then + Rep(F) = <c>{attribute,LINE,A,T}</c>. <br></br></item> - <item>If F is a function declaration <c><![CDATA[Name Fc_1 ; ... ; Name Fc_k]]></c>, - where each <c><![CDATA[Fc_i]]></c> is a function clause with a - pattern sequence of the same length <c><![CDATA[Arity]]></c>, then - Rep(F) = <c><![CDATA[{function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}]]></c>.</item> + <item>If F is a function declaration + <c>Name Fc_1 ; ... ; Name Fc_k</c>, + where each <c>Fc_i</c> is a function clause with a + pattern sequence of the same length <c>Arity</c>, then + Rep(F) = <c>{function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}</c>. + </item> </list> <section> - <title>Type clauses</title> - <list type="bulleted"> - <item>If T is a fun type clause - <c><![CDATA[(A_1, ..., A_n) -> Ret]]></c>, where each - <c><![CDATA[A_i]]></c> and <c><![CDATA[Ret]]></c> are types, then - Rep(T) = - <c><![CDATA[{type,LINE,'fun',[{type,LINE,product,[Rep(A_1), ..., Rep(A_n)]},Rep(Ret)]}]]></c>. - </item> - <item>If T is a bounded fun type clause <c><![CDATA[Tc when Tg]]></c>, - where <c><![CDATA[Tc]]></c> is an unbounded fun type clause and - <c><![CDATA[Tg]]></c> is a type guard sequence, then Rep(T) = - <c><![CDATA[{type,LINE,bounded_fun,[Rep(Tc),Rep(Tg)]}]]></c>.</item> - </list> - </section> - - <section> - <title>Type guards</title> - <list type="bulleted"> - <item>If G is a constraint <c><![CDATA[F(A_1, ..., A_k)]]></c>, where - <c><![CDATA[F]]></c> is an atom and each <c><![CDATA[A_i]]></c> is a - type, then Rep(G) = - <c><![CDATA[{type,LINE,constraint,[Rep(F),[Rep(A_1), ..., Rep(A_k)]]}]]></c>. - </item> - <item>If G is a type definition <c><![CDATA[Name :: Type]]></c>, - where <c><![CDATA[Name]]></c> is a variable and - <c><![CDATA[Type]]></c> is a type, then Rep(G) = - <c><![CDATA[{type,LINE,constraint,[{atom,LINE,is_subtype},[Rep(Name),Rep(Type)]]}]]></c>.</item> - </list> - </section> - - <section> - <title>Types</title> + <title>Record Fields</title> + <p>Each field in a record declaration may have an optional + explicit default initializer expression, as well as an + optional type.</p> <list type="bulleted"> - <item>If T is a type definition <c><![CDATA[Name :: Type]]></c>, - where <c><![CDATA[Name]]></c> is a variable and - <c><![CDATA[Type]]></c> is a type, then Rep(T) = - <c><![CDATA[{ann_type,LINE,[Rep(Name),Rep(Type)]}]]></c>.</item> - <item>If T is a type union <c><![CDATA[A_1 | ... | A_k]]></c>, - where each <c><![CDATA[A_i]]></c> is a type, then Rep(T) = - <c><![CDATA[{type,LINE,union,[Rep(A_1), ..., Rep(A_k)]}]]></c>.</item> - <item>If T is a type range <c><![CDATA[L .. R]]></c>, - where <c><![CDATA[L]]></c> and <c><![CDATA[R]]></c> are types, then - Rep(T) = <c><![CDATA[{type,LINE,range,[Rep(L), Rep(R)]}]]></c>.</item> - <item>If T is a binary operation <c><![CDATA[L Op R]]></c>, - where <c><![CDATA[Op]]></c> is an arithmetic or bitwise binary operator - and <c><![CDATA[L]]></c> and <c><![CDATA[R]]></c> are types, then - Rep(T) = <c><![CDATA[{op,LINE,Op,Rep(L),Rep(R)}]]></c>.</item> - <item>If T is <c><![CDATA[Op A]]></c>, where <c><![CDATA[Op]]></c> is an - arithmetic or bitwise unary operator and <c><![CDATA[A]]></c> is a - type, then Rep(T) = <c><![CDATA[{op,LINE,Op,Rep(A)}]]></c>.</item> - <item>If T is a fun type <c><![CDATA[fun()]]></c>, then Rep(T) = - <c><![CDATA[{type,LINE,'fun',[]}]]></c>.</item> - <item>If T is a variable <c><![CDATA[V]]></c>, then Rep(T) = - <c><![CDATA[{var,LINE,A}]]></c>, where <c><![CDATA[A]]></c> is an atom - with a printname consisting of the same characters as - <c><![CDATA[V]]></c>.</item> - <item>If T is an atomic literal L and L is not a string literal, then - Rep(T) = Rep(L).</item> - <item>If T is a tuple or map type <c><![CDATA[F()]]></c> (i.e. - <c><![CDATA[tuple]]></c> or <c><![CDATA[map]]></c>), then Rep(T) = - <c><![CDATA[{type,LINE,F,any}]]></c>.</item> - <item>If T is a type <c><![CDATA[F(A_1, ..., A_k)]]></c>, where each - <c><![CDATA[A_i]]></c> is a type, then Rep(T) = - <c><![CDATA[{user_type,LINE,F,[Rep(A_1), ..., Rep(A_k)]}]]></c>.</item> - <item>If T is a remote type <c><![CDATA[M:F(A_1, ..., A_k)]]></c>, where - each <c><![CDATA[A_i]]></c> is a type and <c><![CDATA[M]]></c> and - <c><![CDATA[F]]></c>, then Rep(T) = - <c><![CDATA[{remote_type,LINE,[Rep(M),Rep(F),[Rep(A_1), ..., Rep(A_k)]]}]]></c>. + <item>If V is <c>A</c>, then + Rep(V) = <c>{record_field,LINE,Rep(A)}</c>.</item> + <item>If V is <c>A = E</c>, + where <c>E</c> is an expression, then + Rep(V) = <c>{record_field,LINE,Rep(A),Rep(E)}</c>.</item> + <item>If V is <c>A :: T</c>, where <c>T</c> is a + type and it does not contain + <c>undefined</c> syntactically, then Rep(V) = + <c>{typed_record_field,{record_field,LINE,Rep(A)},Rep(undefined | T)}</c>. </item> - <item>If T is the nil type <c><![CDATA[[]]]></c>, then Rep(T) = - <c><![CDATA[{type,LINE,nil,[]}]]></c>.</item> - <item>If T is a list type <c><![CDATA[[A]]]></c>, where - <c><![CDATA[A]]></c> is a type, then Rep(T) = - <c><![CDATA[{type,LINE,list,[Rep(A)]}]]></c>.</item> - <item>If T is a non-empty list type <c><![CDATA[[A, ...]]]></c>, where - <c><![CDATA[A]]></c> is a type, then Rep(T) = - <c><![CDATA[{type,LINE,nonempty_list,[Rep(A)]}]]></c>.</item> - <item>If T is a map type <c><![CDATA[#{P_1, ..., P_k}]]></c>, where each - <c><![CDATA[P_i]]></c> is a map pair type, then Rep(T) = - <c><![CDATA[{type,LINE,map,[Rep(P_1), ..., Rep(P_k)]}]]></c>.</item> - <item>If T is a map pair type <c><![CDATA[K => V]]></c>, where - <c><![CDATA[K]]></c> and <c><![CDATA[V]]></c> are types, - then Rep(T) = - <c><![CDATA[{type,LINE,map_field_assoc,[Rep(K),Rep(V)]}]]></c>.</item> - <item>If T is a tuple type <c><![CDATA[{A_1, ..., A_k}]]></c>, where - each <c><![CDATA[A_i]]></c> is a type, then Rep(T) = - <c><![CDATA[{type,LINE,tuple,[Rep(A_1), ..., Rep(A_k)]}]]></c>.</item> - <item>If T is a record type <c><![CDATA[#Name{}]]></c>, where - <c><![CDATA[Name]]></c> is an atom, then Rep(T) = - <c><![CDATA[{type,LINE,record,[Rep(Name)]}]]></c>.</item> - <item>If T is a record type <c><![CDATA[#Name{F_1, ..., F_k}]]></c>, - where <c><![CDATA[Name]]></c> is an atom, then Rep(T) = - <c><![CDATA[{type,LINE,record,[Rep(Name),[Rep(F_1), ..., Rep(F_k)]]}]]></c>. + <item>If V is <c>A :: T</c>, where <c>T</c> is a type, then Rep(V) = + <c>{typed_record_field,{record_field,LINE,Rep(A)},Rep(T)}</c>. + </item> + <item>If V is <c>A = E :: T</c>, where + <c>E</c> is an expression and <c>T</c> is a type, then Rep(V) = + <c>{typed_record_field,{record_field,LINE,Rep(A),Rep(E)},Rep(T)}</c>. </item> - <item>If T is a record field type <c><![CDATA[Name :: Type]]></c>, - where <c><![CDATA[Name]]></c> is an atom, then Rep(T) = - <c><![CDATA[{type,LINE,field_type,[Rep(Name),Rep(Type)]}]]></c>.</item> - <item>If T is a record field type <c><![CDATA[<<>>]]></c>, then Rep(T) = - <c><![CDATA[{type,LINE,binary,[{integer,LINE,0},{integer,LINE,0}]}]]></c>. - </item> - <item>If T is a binary type <c><![CDATA[<< _ : B >>]]></c>, where - <c><![CDATA[B]]></c> is a type, then Rep(T) = - <c><![CDATA[{type,LINE,binary,[Rep(B),{integer,LINE,0}]}]]></c>.</item> - <item>If T is a binary type <c><![CDATA[<< _ : _ * U >>]]></c>, - where <c><![CDATA[U]]></c> is a type, then Rep(T) = - <c><![CDATA[{type,LINE,binary,[{integer,LINE,0},Rep(U)]}]]></c>.</item> - <item>If T is a binary type <c><![CDATA[<< _ : B , _ : _ * U >>]]></c>, - where <c><![CDATA[B]]></c> and <c><![CDATA[U]]></c> is a type, then - Rep(T) = - <c><![CDATA[{type,LINE,binary,[Rep(B),Rep(U)]}]]></c>.</item> - - <item>If T is a fun type <c><![CDATA[fun((...) -> Ret)]]></c>, then - Rep(T) = <c><![CDATA[{type,LINE,'fun',[{type,LINE,product,[]},Rep(Ret)]}]]></c>. - </item> - <item>If T is a fun type <c><![CDATA[fun(Tc)]]></c>, where - <c><![CDATA[Tc]]></c> is an unbounded fun type clause, - then Rep(T) = <c><![CDATA[Rep(Tc)]]></c>.</item> </list> </section> <section> - <title>Record fields</title> - <p>Each field in a record declaration may have an optional - explicit default initializer expression</p> - <list type="bulleted"> - <item>If V is <c><![CDATA[A]]></c>, then - Rep(V) = <c><![CDATA[{record_field,LINE,Rep(A)}]]></c>.</item> - <item>If V is <c><![CDATA[A = E]]></c>, then - Rep(V) = <c><![CDATA[{record_field,LINE,Rep(A),Rep(E)}]]></c>.</item> - <item>If V is <c><![CDATA[A :: T]]></c>, where <c><![CDATA[A]]></c> is - an atom and <c><![CDATA[T]]></c> is a type and it does not contain - <c><![CDATA[undefined]]></c> syntactically, then Rep(V) = - <c><![CDATA[{typed_record_field,{record_field,LINE,Rep(A)},Rep(undefined | T)}]]></c>. - Note that if <![CDATA[T]]> is an annotated type, it will be wrapped in - parentheses.</item> - <item>If V is <c><![CDATA[A :: T]]></c>, where <c><![CDATA[A]]></c> is - an atom and <c><![CDATA[T]]></c> is a type, then Rep(V) = - <c><![CDATA[{typed_record_field,{record_field,LINE,Rep(A)},Rep(T)}]]></c>. - </item> - <item>If V is <c><![CDATA[A = E :: T]]></c>, where <c><![CDATA[A]]></c> - is an atom, <c><![CDATA[E]]></c> is an expression and - <c><![CDATA[T]]></c> is a type, then Rep(V) = - <c><![CDATA[{typed_record_field,{record_field,LINE,Rep(A),Rep(E)},Rep(T)}]]></c>. - </item> - </list> - </section> - - <section> - <title>Representation of parse errors and end of file</title> + <title>Representation of Parse Errors and End-of-file</title> <p>In addition to the representations of forms, the list that represents - a module declaration (as returned by functions in <c><![CDATA[erl_parse]]></c> and - <c><![CDATA[epp]]></c>) may contain tuples <c><![CDATA[{error,E}]]></c> and <c><![CDATA[{warning,W}]]></c>, denoting - syntactically incorrect forms and warnings, and <c><![CDATA[{eof,LINE}]]></c>, denoting an end - of stream encountered before a complete form had been parsed.</p> + a module declaration (as returned by functions in <c>erl_parse</c> and + <c>epp</c>) may contain tuples <c>{error,E}</c> and + <c>{warning,W}</c>, denoting syntactically incorrect forms and + warnings, and <c>{eof,LINE}</c>, denoting an end-of-stream + encountered before a complete form had been parsed.</p> </section> </section> <section> - <title>Atomic literals</title> + <title>Atomic Literals</title> <p>There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:</p> <list type="bulleted"> <item>If L is an integer or character literal, then - Rep(L) = <c><![CDATA[{integer,LINE,L}]]></c>.</item> + Rep(L) = <c>{integer,LINE,L}</c>.</item> <item>If L is a float literal, then - Rep(L) = <c><![CDATA[{float,LINE,L}]]></c>.</item> + Rep(L) = <c>{float,LINE,L}</c>.</item> <item>If L is a string literal consisting of the characters - <c><![CDATA[C_1]]></c>, ..., <c><![CDATA[C_k]]></c>, then - Rep(L) = <c><![CDATA[{string,LINE,[C_1, ..., C_k]}]]></c>.</item> + <c>C_1</c>, ..., <c>C_k</c>, then + Rep(L) = <c>{string,LINE,[C_1, ..., C_k]}</c>.</item> <item>If L is an atom literal, then - Rep(L) = <c><![CDATA[{atom,LINE,L}]]></c>.</item> + Rep(L) = <c>{atom,LINE,L}</c>.</item> </list> <p>Note that negative integer and float literals do not occur as such; they are parsed as an application of the unary negation operator.</p> @@ -295,47 +178,47 @@ <section> <title>Patterns</title> - <p>If <c><![CDATA[Ps]]></c> is a sequence of patterns <c><![CDATA[P_1, ..., P_k]]></c>, then - Rep(Ps) = <c><![CDATA[[Rep(P_1), ..., Rep(P_k)]]]></c>. Such sequences occur as the + <p>If <c>Ps</c> is a sequence of patterns <c>P_1, ..., P_k</c>, then + Rep(Ps) = <c>[Rep(P_1), ..., Rep(P_k)]</c>. Such sequences occur as the list of arguments to a function or fun.</p> <p>Individual patterns are represented as follows:</p> <list type="bulleted"> <item>If P is an atomic literal L, then Rep(P) = Rep(L).</item> - <item>If P is a compound pattern <c><![CDATA[P_1 = P_2]]></c>, then - Rep(P) = <c><![CDATA[{match,LINE,Rep(P_1),Rep(P_2)}]]></c>.</item> - <item>If P is a variable pattern <c><![CDATA[V]]></c>, then - Rep(P) = <c><![CDATA[{var,LINE,A}]]></c>, + <item>If P is a compound pattern <c>P_1 = P_2</c>, then + Rep(P) = <c>{match,LINE,Rep(P_1),Rep(P_2)}</c>.</item> + <item>If P is a variable pattern <c>V</c>, then + Rep(P) = <c>{var,LINE,A}</c>, where A is an atom with a printname consisting of the same characters as - <c><![CDATA[V]]></c>.</item> - <item>If P is a universal pattern <c><![CDATA[_]]></c>, then - Rep(P) = <c><![CDATA[{var,LINE,'_'}]]></c>.</item> - <item>If P is a tuple pattern <c><![CDATA[{P_1, ..., P_k}]]></c>, then - Rep(P) = <c><![CDATA[{tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}]]></c>.</item> - <item>If P is a nil pattern <c><![CDATA[[]]]></c>, then - Rep(P) = <c><![CDATA[{nil,LINE}]]></c>.</item> - <item>If P is a cons pattern <c><![CDATA[[P_h | P_t]]]></c>, then - Rep(P) = <c><![CDATA[{cons,LINE,Rep(P_h),Rep(P_t)}]]></c>.</item> - <item>If E is a binary pattern <c><![CDATA[<<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>]]></c>, then - Rep(E) = <c><![CDATA[{bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}]]></c>. + <c>V</c>.</item> + <item>If P is a universal pattern <c>_</c>, then + Rep(P) = <c>{var,LINE,'_'}</c>.</item> + <item>If P is a tuple pattern <c>{P_1, ..., P_k}</c>, then + Rep(P) = <c>{tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}</c>.</item> + <item>If P is a nil pattern <c>[]</c>, then + Rep(P) = <c>{nil,LINE}</c>.</item> + <item>If P is a cons pattern <c>[P_h | P_t]</c>, then + Rep(P) = <c>{cons,LINE,Rep(P_h),Rep(P_t)}</c>.</item> + <item>If E is a binary pattern <c><<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>></c>, then + Rep(E) = <c>{bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}</c>. For Rep(TSL), see below. - An omitted <c><![CDATA[Size]]></c> is represented by <c><![CDATA[default]]></c>. An omitted <c><![CDATA[TSL]]></c> - (type specifier list) is represented by <c><![CDATA[default]]></c>.</item> - <item>If P is <c><![CDATA[P_1 Op P_2]]></c>, where <c><![CDATA[Op]]></c> is a binary operator (this - is either an occurrence of <c><![CDATA[++]]></c> applied to a literal string or character + An omitted <c>Size</c> is represented by <c>default</c>. An omitted <c>TSL</c> + (type specifier list) is represented by <c>default</c>.</item> + <item>If P is <c>P_1 Op P_2</c>, where <c>Op</c> is a binary operator (this + is either an occurrence of <c>++</c> applied to a literal string or character list, or an occurrence of an expression that can be evaluated to a number at compile time), - then Rep(P) = <c><![CDATA[{op,LINE,Op,Rep(P_1),Rep(P_2)}]]></c>.</item> - <item>If P is <c><![CDATA[Op P_0]]></c>, where <c><![CDATA[Op]]></c> is a unary operator (this is an + then Rep(P) = <c>{op,LINE,Op,Rep(P_1),Rep(P_2)}</c>.</item> + <item>If P is <c>Op P_0</c>, where <c>Op</c> is a unary operator (this is an occurrence of an expression that can be evaluated to a number at compile - time), then Rep(P) = <c><![CDATA[{op,LINE,Op,Rep(P_0)}]]></c>.</item> - <item>If P is a record pattern <c><![CDATA[#Name{Field_1=P_1, ..., Field_k=P_k}]]></c>, + time), then Rep(P) = <c>{op,LINE,Op,Rep(P_0)}</c>.</item> + <item>If P is a record pattern <c>#Name{Field_1=P_1, ..., Field_k=P_k}</c>, then Rep(P) = - <c><![CDATA[{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}]]></c>.</item> - <item>If P is <c><![CDATA[#Name.Field]]></c>, then - Rep(P) = <c><![CDATA[{record_index,LINE,Name,Rep(Field)}]]></c>.</item> - <item>If P is <c><![CDATA[( P_0 )]]></c>, then - Rep(P) = <c><![CDATA[Rep(P_0)]]></c>, - i.e., patterns cannot be distinguished from their bodies.</item> + <c>{record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}</c>.</item> + <item>If P is <c>#Name.Field</c>, then + Rep(P) = <c>{record_index,LINE,Name,Rep(Field)}</c>.</item> + <item>If P is <c>( P_0 )</c>, then + Rep(P) = <c>Rep(P_0)</c>, + that is, patterns cannot be distinguished from their bodies.</item> </list> <p>Note that every pattern has the same source form as some expression, and is represented the same way as the corresponding expression.</p> @@ -343,180 +226,167 @@ <section> <title>Expressions</title> - <p>A body B is a sequence of expressions <c><![CDATA[E_1, ..., E_k]]></c>, and - Rep(B) = <c><![CDATA[[Rep(E_1), ..., Rep(E_k)]]]></c>.</p> + <p>A body B is a sequence of expressions <c>E_1, ..., E_k</c>, and + Rep(B) = <c>[Rep(E_1), ..., Rep(E_k)]</c>.</p> <p>An expression E is one of the following alternatives:</p> <list type="bulleted"> - <item>If P is an atomic literal <c><![CDATA[L]]></c>, then - Rep(P) = Rep(L).</item> - <item>If E is <c><![CDATA[P = E_0]]></c>, then - Rep(E) = <c><![CDATA[{match,LINE,Rep(P),Rep(E_0)}]]></c>.</item> - <item>If E is a variable <c><![CDATA[V]]></c>, then - Rep(E) = <c><![CDATA[{var,LINE,A}]]></c>, - where <c><![CDATA[A]]></c> is an atom with a printname consisting of the same - characters as <c><![CDATA[V]]></c>.</item> - <item>If E is a tuple skeleton <c><![CDATA[{E_1, ..., E_k}]]></c>, then - Rep(E) = <c><![CDATA[{tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}]]></c>.</item> - <item>If E is <c><![CDATA[[]]]></c>, then - Rep(E) = <c><![CDATA[{nil,LINE}]]></c>.</item> - <item>If E is a cons skeleton <c><![CDATA[[E_h | E_t]]]></c>, then - Rep(E) = <c><![CDATA[{cons,LINE,Rep(E_h),Rep(E_t)}]]></c>.</item> - <item>If E is a binary constructor <c><![CDATA[<<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>>]]></c>, then - Rep(E) = <c><![CDATA[{bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}]]></c>. + <item>If P is an atomic literal <c>L</c>, then Rep(P) = Rep(L).</item> + <item>If E is <c>P = E_0</c>, then + Rep(E) = <c>{match,LINE,Rep(P),Rep(E_0)}</c>.</item> + <item>If E is a variable <c>V</c>, then Rep(E) = <c>{var,LINE,A}</c>, + where <c>A</c> is an atom with a printname consisting of the same + characters as <c>V</c>.</item> + <item>If E is a tuple skeleton <c>{E_1, ..., E_k}</c>, then + Rep(E) = <c>{tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}</c>.</item> + <item>If E is <c>[]</c>, then + Rep(E) = <c>{nil,LINE}</c>.</item> + <item>If E is a cons skeleton <c>[E_h | E_t]</c>, then + Rep(E) = <c>{cons,LINE,Rep(E_h),Rep(E_t)}</c>.</item> + <item>If E is a binary constructor <c><<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>></c>, then Rep(E) = + <c>{bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}</c>. For Rep(TSL), see below. - An omitted <c><![CDATA[Size]]></c> is represented by <c><![CDATA[default]]></c>. An omitted <c><![CDATA[TSL]]></c> - (type specifier list) is represented by <c><![CDATA[default]]></c>.</item> - <item>If E is <c><![CDATA[E_1 Op E_2]]></c>, where <c><![CDATA[Op]]></c> is a binary operator, - then Rep(E) = <c><![CDATA[{op,LINE,Op,Rep(E_1),Rep(E_2)}]]></c>.</item> - <item>If E is <c><![CDATA[Op E_0]]></c>, where <c><![CDATA[Op]]></c> is a unary operator, then - Rep(E) = <c><![CDATA[{op,LINE,Op,Rep(E_0)}]]></c>.</item> - <item>If E is <c><![CDATA[#Name{Field_1=E_1, ..., Field_k=E_k}]]></c>, then - Rep(E) = - <c><![CDATA[{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}]]></c>.</item> - <item>If E is <c><![CDATA[E_0#Name{Field_1=E_1, ..., Field_k=E_k}]]></c>, then + An omitted <c>Size</c> is represented by <c>default</c>. An omitted <c>TSL</c> + (type specifier list) is represented by <c>default</c>.</item> + <item>If E is <c>E_1 Op E_2</c>, where <c>Op</c> is a binary operator, + then Rep(E) = <c>{op,LINE,Op,Rep(E_1),Rep(E_2)}</c>.</item> + <item>If E is <c>Op E_0</c>, where <c>Op</c> is a unary operator, then + Rep(E) = <c>{op,LINE,Op,Rep(E_0)}</c>.</item> + <item>If E is <c>#Name{Field_1=E_1, ..., Field_k=E_k}</c>, + then Rep(E) = + <c>{record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}</c>.</item> + <item>If E is <c>E_0#Name{Field_1=E_1, ..., Field_k=E_k}</c>, then Rep(E) = - <c><![CDATA[{record,LINE,Rep(E_0),Name, [{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}]]></c>.</item> - <item>If E is <c><![CDATA[#Name.Field]]></c>, then - Rep(E) = <c><![CDATA[{record_index,LINE,Name,Rep(Field)}]]></c>.</item> - <item>If E is <c><![CDATA[E_0#Name.Field]]></c>, then - Rep(E) = <c><![CDATA[{record_field,LINE,Rep(E_0),Name,Rep(Field)}]]></c>.</item> - <item>If E is <c><![CDATA[#{W_1, ..., W_k}]]></c> where each - <c><![CDATA[W_i]]></c> is a map assoc or exact field, then Rep(E) = - <c><![CDATA[{map,LINE,[Rep(W_1), ..., Rep(W_k)]}]]></c>. For Rep(W), see + <c>{record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}</c>.</item> + <item>If E is <c>#Name.Field</c>, then + Rep(E) = <c>{record_index,LINE,Name,Rep(Field)}</c>.</item> + <item>If E is <c>E_0#Name.Field</c>, then + Rep(E) = <c>{record_field,LINE,Rep(E_0),Name,Rep(Field)}</c>.</item> + <item>If E is <c>#{W_1, ..., W_k}</c> where each + <c>W_i</c> is a map assoc or exact field, then Rep(E) = + <c>{map,LINE,[Rep(W_1), ..., Rep(W_k)]}</c>. For Rep(W), see below.</item> - <item>If E is <c><![CDATA[E_0#{W_1, ..., W_k}]]></c> where - <c><![CDATA[W_i]]></c> is a map assoc or exact field, then Rep(E) = - <c><![CDATA[{map,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}]]></c>. For - Rep(W), see below.</item> - <item>If E is <c><![CDATA[catch E_0]]></c>, then - Rep(E) = <c><![CDATA[{'catch',LINE,Rep(E_0)}]]></c>.</item> - <item>If E is <c><![CDATA[E_0(E_1, ..., E_k)]]></c>, then - Rep(E) = <c><![CDATA[{call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}]]></c>.</item> - <item>If E is <c><![CDATA[E_m:E_0(E_1, ..., E_k)]]></c>, then - Rep(E) = - <c><![CDATA[{call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}]]></c>.</item> - <item>If E is a list comprehension <c><![CDATA[[E_0 || W_1, ..., W_k]]]></c>, - where each <c><![CDATA[W_i]]></c> is a generator or a filter, then - Rep(E) = <c><![CDATA[{lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}]]></c>. For Rep(W), see - below.</item> - <item>If E is a binary comprehension <c><![CDATA[<<E_0 || W_1, ..., W_k>>]]></c>, - where each <c><![CDATA[W_i]]></c> is a generator or a filter, then - Rep(E) = <c><![CDATA[{bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}]]></c>. For Rep(W), see + <item>If E is <c>E_0#{W_1, ..., W_k}</c> where + <c>W_i</c> is a map assoc or exact field, then Rep(E) = + <c>{map,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}</c>. + For Rep(W), see below.</item> + <item>If E is <c>catch E_0</c>, then + Rep(E) = <c>{'catch',LINE,Rep(E_0)}</c>.</item> + <item>If E is <c>E_0(E_1, ..., E_k)</c>, then + Rep(E) = <c>{call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}</c>.</item> + <item>If E is <c>E_m:E_0(E_1, ..., E_k)</c>, then Rep(E) = + <c>{call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}</c>. + </item> + <item>If E is a list comprehension <c>[E_0 || W_1, ..., W_k]</c>, + where each <c>W_i</c> is a generator or a filter, then Rep(E) = + <c>{lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}</c>. For Rep(W), see below.</item> - <item>If E is <c><![CDATA[begin B end]]></c>, where <c><![CDATA[B]]></c> is a body, then - Rep(E) = <c><![CDATA[{block,LINE,Rep(B)}]]></c>.</item> - <item>If E is <c><![CDATA[if Ic_1 ; ... ; Ic_k end]]></c>, - where each <c><![CDATA[Ic_i]]></c> is an if clause then - Rep(E) = - <c><![CDATA[{'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}]]></c>.</item> - <item>If E is <c><![CDATA[case E_0 of Cc_1 ; ... ; Cc_k end]]></c>, - where <c><![CDATA[E_0]]></c> is an expression and each <c><![CDATA[Cc_i]]></c> is a - case clause then - Rep(E) = - <c><![CDATA[{'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}]]></c>.</item> - <item>If E is <c><![CDATA[try B catch Tc_1 ; ... ; Tc_k end]]></c>, - where <c><![CDATA[B]]></c> is a body and each <c><![CDATA[Tc_i]]></c> is a catch clause then - Rep(E) = - <c><![CDATA[{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}]]></c>.</item> - <item>If E is <c><![CDATA[try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end]]></c>, - where <c><![CDATA[B]]></c> is a body, - each <c><![CDATA[Cc_i]]></c> is a case clause and - each <c><![CDATA[Tc_j]]></c> is a catch clause then - Rep(E) = - <c><![CDATA[{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}]]></c>.</item> - <item>If E is <c><![CDATA[try B after A end]]></c>, - where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are bodies then - Rep(E) = - <c><![CDATA[{'try',LINE,Rep(B),[],[],Rep(A)}]]></c>.</item> - <item>If E is <c><![CDATA[try B of Cc_1 ; ... ; Cc_k after A end]]></c>, - where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are a bodies and - each <c><![CDATA[Cc_i]]></c> is a case clause then - Rep(E) = - <c><![CDATA[{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[],Rep(A)}]]></c>.</item> - <item>If E is <c><![CDATA[try B catch Tc_1 ; ... ; Tc_k after A end]]></c>, - where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are bodies and - each <c><![CDATA[Tc_i]]></c> is a catch clause then - Rep(E) = - <c><![CDATA[{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}]]></c>.</item> - <item>If E is <c><![CDATA[try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end]]></c>, - where <c><![CDATA[B]]></c> and <c><![CDATA[A]]></c> are a bodies, - each <c><![CDATA[Cc_i]]></c> is a case clause and - each <c><![CDATA[Tc_j]]></c> is a catch clause then - Rep(E) = - <c><![CDATA[{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}]]></c>.</item> - <item>If E is <c><![CDATA[receive Cc_1 ; ... ; Cc_k end]]></c>, - where each <c><![CDATA[Cc_i]]></c> is a case clause then + <item>If E is a binary comprehension + <c><<E_0 || W_1, ..., W_k>></c>, + where each <c>W_i</c> is a generator or a filter, then + Rep(E) = <c>{bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}</c>. + For Rep(W), see below.</item> + <item>If E is <c>begin B end</c>, where <c>B</c> is a body, then + Rep(E) = <c>{block,LINE,Rep(B)}</c>.</item> + <item>If E is <c>if Ic_1 ; ... ; Ic_k end</c>, + where each <c>Ic_i</c> is an if clause then Rep(E) = + <c>{'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}</c>.</item> + <item>If E is <c>case E_0 of Cc_1 ; ... ; Cc_k end</c>, + where <c>E_0</c> is an expression and each <c>Cc_i</c> is a + case clause then Rep(E) = + <c>{'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}</c>.</item> + <item>If E is <c>try B catch Tc_1 ; ... ; Tc_k end</c>, + where <c>B</c> is a body and each <c>Tc_i</c> is a catch clause then Rep(E) = - <c><![CDATA[{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}]]></c>.</item> - <item>If E is <c><![CDATA[receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end]]></c>, - where each <c><![CDATA[Cc_i]]></c> is a case clause, - <c><![CDATA[E_0]]></c> is an expression and <c><![CDATA[B_t]]></c> is a body, then + <c>{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}</c>.</item> + <item>If E is <c>try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end</c>, + where <c>B</c> is a body, + each <c>Cc_i</c> is a case clause and + each <c>Tc_j</c> is a catch clause then Rep(E) = + <c>{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}</c>.</item> + <item>If E is <c>try B after A end</c>, + where <c>B</c> and <c>A</c> are bodies then Rep(E) = + <c>{'try',LINE,Rep(B),[],[],Rep(A)}</c>.</item> + <item>If E is <c>try B of Cc_1 ; ... ; Cc_k after A end</c>, + where <c>B</c> and <c>A</c> are a bodies and + each <c>Cc_i</c> is a case clause then Rep(E) = + <c>{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[],Rep(A)}</c>.</item> + <item>If E is <c>try B catch Tc_1 ; ... ; Tc_k after A end</c>, + where <c>B</c> and <c>A</c> are bodies and + each <c>Tc_i</c> is a catch clause then Rep(E) = + <c>{'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}</c>.</item> + <item>If E is <c>try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end</c>, + where <c>B</c> and <c>A</c> are a bodies, + each <c>Cc_i</c> is a case clause and + each <c>Tc_j</c> is a catch clause then Rep(E) = - <c><![CDATA[{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}]]></c>.</item> - <item>If E is <c><![CDATA[fun Name / Arity]]></c>, then - Rep(E) = <c><![CDATA[{'fun',LINE,{function,Name,Arity}}]]></c>.</item> - <item>If E is <c><![CDATA[fun Module:Name/Arity]]></c>, then - Rep(E) = <c><![CDATA[{'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}]]></c>. - (Before the R15 release: Rep(E) = <c><![CDATA[{'fun',LINE,{function,Module,Name,Arity}}]]></c>.)</item> - <item>If E is <c><![CDATA[fun Fc_1 ; ... ; Fc_k end]]></c> - where each <c><![CDATA[Fc_i]]></c> is a function clause then Rep(E) = - <c><![CDATA[{'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}]]></c>.</item> - <item>If E is <c><![CDATA[fun Name Fc_1 ; ... ; Name Fc_k end]]></c> - where <c><![CDATA[Name]]></c> is a variable and each - <c><![CDATA[Fc_i]]></c> is a function clause then Rep(E) = - <c><![CDATA[{named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}]]></c>. + <c>{'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}</c>.</item> + <item>If E is <c>receive Cc_1 ; ... ; Cc_k end</c>, + where each <c>Cc_i</c> is a case clause then Rep(E) = + <c>{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}</c>.</item> + <item>If E is <c>receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end</c>, + where each <c>Cc_i</c> is a case clause, + <c>E_0</c> is an expression and <c>B_t</c> is a body, then Rep(E) = + <c>{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}</c>.</item> + <item>If E is <c>fun Name / Arity</c>, then + Rep(E) = <c>{'fun',LINE,{function,Name,Arity}}</c>.</item> + <item>If E is <c>fun Module:Name/Arity</c>, then Rep(E) = + <c>{'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}</c>. + (Before the R15 release: Rep(E) = + <c>{'fun',LINE,{function,Module,Name,Arity}}</c>.)</item> + <item>If E is <c>fun Fc_1 ; ... ; Fc_k end</c> + where each <c>Fc_i</c> is a function clause then Rep(E) = + <c>{'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}</c>.</item> + <item>If E is <c>fun Name Fc_1 ; ... ; Name Fc_k end</c> + where <c>Name</c> is a variable and each + <c>Fc_i</c> is a function clause then Rep(E) = + <c>{named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}</c>. </item> - <item>If E is <c><![CDATA[query [E_0 || W_1, ..., W_k] end]]></c>, - where each <c><![CDATA[W_i]]></c> is a generator or a filter, then - Rep(E) = <c><![CDATA[{'query',LINE,{lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}}]]></c>. - For Rep(W), see below.</item> - <item>If E is <c><![CDATA[E_0.Field]]></c>, a Mnesia record access - inside a query, then - Rep(E) = <c><![CDATA[{record_field,LINE,Rep(E_0),Rep(Field)}]]></c>.</item> - <item>If E is <c><![CDATA[( E_0 )]]></c>, then - Rep(E) = <c><![CDATA[Rep(E_0)]]></c>, - i.e., parenthesized expressions cannot be distinguished from their bodies.</item> + <item>If E is <c>( E_0 )</c>, then + Rep(E) = <c>Rep(E_0)</c>, that is, parenthesized + expressions cannot be distinguished from their bodies.</item> </list> <section> - <title>Generators and filters</title> - <p>When W is a generator or a filter (in the body of a list or binary comprehension), then:</p> + <title>Generators and Filters</title> + <p>When W is a generator or a filter (in the body of a list or + binary comprehension), then:</p> <list type="bulleted"> - <item>If W is a generator <c><![CDATA[P <- E]]></c>, where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[E]]></c> - is an expression, then - Rep(W) = <c><![CDATA[{generate,LINE,Rep(P),Rep(E)}]]></c>.</item> - <item>If W is a generator <c><![CDATA[P <= E]]></c>, where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[E]]></c> - is an expression, then - Rep(W) = <c><![CDATA[{b_generate,LINE,Rep(P),Rep(E)}]]></c>.</item> - <item>If W is a filter <c><![CDATA[E]]></c>, which is an expression, then - Rep(W) = <c><![CDATA[Rep(E)]]></c>.</item> + <item>If W is a generator <c>P <- E</c>, where <c>P</c> is + a pattern and <c>E</c> is an expression, then + Rep(W) = <c>{generate,LINE,Rep(P),Rep(E)}</c>.</item> + <item>If W is a generator <c>P <= E</c>, where <c>P</c> is + a pattern and <c>E</c> is an expression, then + Rep(W) = <c>{b_generate,LINE,Rep(P),Rep(E)}</c>.</item> + <item>If W is a filter <c>E</c>, which is an expression, then + Rep(W) = <c>Rep(E)</c>.</item> </list> </section> <section> - <title>Binary element type specifiers</title> + <title>Binary Element Type Specifiers</title> <p>A type specifier list TSL for a binary element is a sequence of type - specifiers <c><![CDATA[TS_1 - ... - TS_k]]></c>. - Rep(TSL) = <c><![CDATA[[Rep(TS_1), ..., Rep(TS_k)]]]></c>.</p> + specifiers <c>TS_1 - ... - TS_k</c>. + Rep(TSL) = <c>[Rep(TS_1), ..., Rep(TS_k)]</c>.</p> <p>When TS is a type specifier for a binary element, then:</p> <list type="bulleted"> - <item>If TS is an atom <c><![CDATA[A]]></c>, Rep(TS) = <c><![CDATA[A]]></c>.</item> - <item>If TS is a couple <c><![CDATA[A:Value]]></c> where <c><![CDATA[A]]></c> is an atom and <c><![CDATA[Value]]></c> - is an integer, Rep(TS) = <c><![CDATA[{A, Value}]]></c>.</item> + <item>If TS is an atom <c>A</c>, then Rep(TS) = <c>A</c>.</item> + <item>If TS is a couple <c>A:Value</c> where <c>A</c> is an atom + and <c>Value</c> is an integer, then Rep(TS) = + <c>{A,Value}</c>.</item> </list> </section> <section> - <title>Map assoc and exact fields</title> + <title>Map Assoc and Exact Fields</title> <p>When W is an assoc or exact field (in the body of a map), then:</p> <list type="bulleted"> - <item>If W is an assoc field <c><![CDATA[K => V]]></c>, where - <c><![CDATA[K]]></c> and <c><![CDATA[V]]></c> are both expressions, - then Rep(W) = <c><![CDATA[{map_field_assoc,LINE,Rep(K),Rep(V)}]]></c>. + <item>If W is an assoc field <c>K => V</c>, where + <c>K</c> and <c>V</c> are both expressions, + then Rep(W) = <c>{map_field_assoc,LINE,Rep(K),Rep(V)}</c>. </item> - <item>If W is an exact field <c><![CDATA[K := V]]></c>, where - <c><![CDATA[K]]></c> and <c><![CDATA[V]]></c> are both expressions, - then Rep(W) = <c><![CDATA[{map_field_exact,LINE,Rep(K),Rep(V)}]]></c>. + <item>If W is an exact field <c>K := V</c>, where + <c>K</c> and <c>V</c> are both expressions, + then Rep(W) = <c>{map_field_exact,LINE,Rep(K),Rep(V)}</c>. </item> </list> </section> @@ -524,112 +394,220 @@ <section> <title>Clauses</title> - <p>There are function clauses, if clauses, case clauses + <p>There are function clauses, if clauses, case clauses and catch clauses.</p> - <p>A clause <c><![CDATA[C]]></c> is one of the following alternatives:</p> + <p>A clause <c>C</c> is one of the following alternatives:</p> <list type="bulleted"> - <item>If C is a function clause <c><![CDATA[( Ps ) -> B]]></c> - where <c><![CDATA[Ps]]></c> is a pattern sequence and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,Rep(Ps),[],Rep(B)}]]></c>.</item> - <item>If C is a function clause <c><![CDATA[( Ps ) when Gs -> B]]></c> - where <c><![CDATA[Ps]]></c> is a pattern sequence, - <c><![CDATA[Gs]]></c> is a guard sequence and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}]]></c>.</item> - <item>If C is an if clause <c><![CDATA[Gs -> B]]></c> - where <c><![CDATA[Gs]]></c> is a guard sequence and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[],Rep(Gs),Rep(B)}]]></c>.</item> - <item>If C is a case clause <c><![CDATA[P -> B]]></c> - where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[Rep(P)],[],Rep(B)}]]></c>.</item> - <item>If C is a case clause <c><![CDATA[P when Gs -> B]]></c> - where <c><![CDATA[P]]></c> is a pattern, - <c><![CDATA[Gs]]></c> is a guard sequence and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}]]></c>.</item> - <item>If C is a catch clause <c><![CDATA[P -> B]]></c> - where <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[Rep({throw,P,_})],[],Rep(B)}]]></c>.</item> - <item>If C is a catch clause <c><![CDATA[X : P -> B]]></c> - where <c><![CDATA[X]]></c> is an atomic literal or a variable pattern, - <c><![CDATA[P]]></c> is a pattern and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[Rep({X,P,_})],[],Rep(B)}]]></c>.</item> - <item>If C is a catch clause <c><![CDATA[P when Gs -> B]]></c> - where <c><![CDATA[P]]></c> is a pattern, <c><![CDATA[Gs]]></c> is a guard sequence - and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}]]></c>.</item> - <item>If C is a catch clause <c><![CDATA[X : P when Gs -> B]]></c> - where <c><![CDATA[X]]></c> is an atomic literal or a variable pattern, - <c><![CDATA[P]]></c> is a pattern, <c><![CDATA[Gs]]></c> is a guard sequence - and <c><![CDATA[B]]></c> is a body, then - Rep(C) = <c><![CDATA[{clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}]]></c>.</item> + <item>If C is a function clause <c>( Ps ) -> B</c> + where <c>Ps</c> is a pattern sequence and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,Rep(Ps),[],Rep(B)}</c>.</item> + <item>If C is a function clause <c>( Ps ) when Gs -> B</c> + where <c>Ps</c> is a pattern sequence, + <c>Gs</c> is a guard sequence and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}</c>.</item> + <item>If C is an if clause <c>Gs -> B</c> + where <c>Gs</c> is a guard sequence and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[],Rep(Gs),Rep(B)}</c>.</item> + <item>If C is a case clause <c>P -> B</c> + where <c>P</c> is a pattern and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[Rep(P)],[],Rep(B)}</c>.</item> + <item>If C is a case clause <c>P when Gs -> B</c> + where <c>P</c> is a pattern, + <c>Gs</c> is a guard sequence and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}</c>.</item> + <item>If C is a catch clause <c>P -> B</c> + where <c>P</c> is a pattern and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[Rep({throw,P,_})],[],Rep(B)}</c>.</item> + <item>If C is a catch clause <c>X : P -> B</c> + where <c>X</c> is an atomic literal or a variable pattern, + <c>P</c> is a pattern and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[Rep({X,P,_})],[],Rep(B)}</c>.</item> + <item>If C is a catch clause <c>P when Gs -> B</c> + where <c>P</c> is a pattern, <c>Gs</c> is a guard sequence + and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}</c>.</item> + <item>If C is a catch clause <c>X : P when Gs -> B</c> + where <c>X</c> is an atomic literal or a variable pattern, + <c>P</c> is a pattern, <c>Gs</c> is a guard sequence + and <c>B</c> is a body, then + Rep(C) = <c>{clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}</c>.</item> </list> </section> <section> <title>Guards</title> - <p>A guard sequence Gs is a sequence of guards <c><![CDATA[G_1; ...; G_k]]></c>, and - Rep(Gs) = <c><![CDATA[[Rep(G_1), ..., Rep(G_k)]]]></c>. If the guard sequence is - empty, Rep(Gs) = <c><![CDATA[[]]]></c>.</p> - <p>A guard G is a nonempty sequence of guard tests <c><![CDATA[Gt_1, ..., Gt_k]]></c>, and - Rep(G) = <c><![CDATA[[Rep(Gt_1), ..., Rep(Gt_k)]]]></c>.</p> - <p>A guard test <c><![CDATA[Gt]]></c> is one of the following alternatives:</p> + <p>A guard sequence Gs is a sequence of guards <c>G_1; ...; G_k</c>, and + Rep(Gs) = <c>[Rep(G_1), ..., Rep(G_k)]</c>. If the guard sequence is + empty, Rep(Gs) = <c>[]</c>.</p> + <p>A guard G is a nonempty sequence of guard tests + <c>Gt_1, ..., Gt_k</c>, and Rep(G) = + <c>[Rep(Gt_1), ..., Rep(Gt_k)]</c>.</p> + <p>A guard test <c>Gt</c> is one of the following alternatives:</p> <list type="bulleted"> <item>If Gt is an atomic literal L, then Rep(Gt) = Rep(L).</item> - <item>If Gt is a variable pattern <c><![CDATA[V]]></c>, then - Rep(Gt) = <c><![CDATA[{var,LINE,A}]]></c>, - where A is an atom with a printname consisting of the same characters as - <c><![CDATA[V]]></c>.</item> - <item>If Gt is a tuple skeleton <c><![CDATA[{Gt_1, ..., Gt_k}]]></c>, then - Rep(Gt) = <c><![CDATA[{tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item> - <item>If Gt is <c><![CDATA[[]]]></c>, then - Rep(Gt) = <c><![CDATA[{nil,LINE}]]></c>.</item> - <item>If Gt is a cons skeleton <c><![CDATA[[Gt_h | Gt_t]]]></c>, then - Rep(Gt) = <c><![CDATA[{cons,LINE,Rep(Gt_h),Rep(Gt_t)}]]></c>.</item> - <item>If Gt is a binary constructor <c><![CDATA[<<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>]]></c>, then - Rep(Gt) = <c><![CDATA[{bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}]]></c>. + <item>If Gt is a variable pattern <c>V</c>, then + Rep(Gt) = <c>{var,LINE,A}</c>, where A is an atom with + a printname consisting of the same characters as <c>V</c>.</item> + <item>If Gt is a tuple skeleton <c>{Gt_1, ..., Gt_k}</c>, then + Rep(Gt) = <c>{tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}</c>.</item> + <item>If Gt is <c>[]</c>, then Rep(Gt) = <c>{nil,LINE}</c>.</item> + <item>If Gt is a cons skeleton <c>[Gt_h | Gt_t]</c>, then + Rep(Gt) = <c>{cons,LINE,Rep(Gt_h),Rep(Gt_t)}</c>.</item> + <item>If Gt is a binary constructor + <c><<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>></c>, then + Rep(Gt) = <c>{bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}</c>. For Rep(TSL), see above. - An omitted <c><![CDATA[Size]]></c> is represented by <c><![CDATA[default]]></c>. An omitted <c><![CDATA[TSL]]></c> - (type specifier list) is represented by <c><![CDATA[default]]></c>.</item> - <item>If Gt is <c><![CDATA[Gt_1 Op Gt_2]]></c>, where <c><![CDATA[Op]]></c> - is a binary operator, then Rep(Gt) = <c><![CDATA[{op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}]]></c>.</item> - <item>If Gt is <c><![CDATA[Op Gt_0]]></c>, where <c><![CDATA[Op]]></c> is a unary operator, then - Rep(Gt) = <c><![CDATA[{op,LINE,Op,Rep(Gt_0)}]]></c>.</item> - <item>If Gt is <c><![CDATA[#Name{Field_1=Gt_1, ..., Field_k=Gt_k}]]></c>, then + An omitted <c>Size</c> is represented by <c>default</c>. + An omitted <c>TSL</c> (type specifier list) is represented + by <c>default</c>.</item> + <item>If Gt is <c>Gt_1 Op Gt_2</c>, where <c>Op</c> + is a binary operator, then Rep(Gt) = + <c>{op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}</c>.</item> + <item>If Gt is <c>Op Gt_0</c>, where <c>Op</c> is a unary operator, then + Rep(Gt) = <c>{op,LINE,Op,Rep(Gt_0)}</c>.</item> + <item>If Gt is <c>#Name{Field_1=Gt_1, ..., Field_k=Gt_k}</c>, then Rep(E) = - <c><![CDATA[{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}]]></c>.</item> - <item>If Gt is <c><![CDATA[#Name.Field]]></c>, then - Rep(Gt) = <c><![CDATA[{record_index,LINE,Name,Rep(Field)}]]></c>.</item> - <item>If Gt is <c><![CDATA[Gt_0#Name.Field]]></c>, then - Rep(Gt) = <c><![CDATA[{record_field,LINE,Rep(Gt_0),Name,Rep(Field)}]]></c>.</item> - <item>If Gt is <c><![CDATA[A(Gt_1, ..., Gt_k)]]></c>, where <c><![CDATA[A]]></c> is an atom, then - Rep(Gt) = <c><![CDATA[{call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item> - <item>If Gt is <c><![CDATA[A_m:A(Gt_1, ..., Gt_k)]]></c>, where <c><![CDATA[A_m]]></c> is - the atom <c><![CDATA[erlang]]></c> and <c><![CDATA[A]]></c> is an atom or an operator, then - Rep(Gt) = <c><![CDATA[{call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item> - <item>If Gt is <c><![CDATA[{A_m,A}(Gt_1, ..., Gt_k)]]></c>, where <c><![CDATA[A_m]]></c> is - the atom <c><![CDATA[erlang]]></c> and <c><![CDATA[A]]></c> is an atom or an operator, then - Rep(Gt) = <c><![CDATA[{call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}]]></c>.</item> - <item>If Gt is <c><![CDATA[( Gt_0 )]]></c>, then - Rep(Gt) = <c><![CDATA[Rep(Gt_0)]]></c>, - i.e., parenthesized guard tests cannot be distinguished from their bodies.</item> + <c>{record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}</c>.</item> + <item>If Gt is <c>#Name.Field</c>, then + Rep(Gt) = <c>{record_index,LINE,Name,Rep(Field)}</c>.</item> + <item>If Gt is <c>Gt_0#Name.Field</c>, then + Rep(Gt) = <c>{record_field,LINE,Rep(Gt_0),Name,Rep(Field)}</c>.</item> + <item>If Gt is <c>A(Gt_1, ..., Gt_k)</c>, where <c>A</c> is an atom, then + Rep(Gt) = <c>{call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}</c>.</item> + <item>If Gt is <c>A_m:A(Gt_1, ..., Gt_k)</c>, where <c>A_m</c> is + the atom <c>erlang</c> and <c>A</c> is an atom or an operator, then + Rep(Gt) = <c>{call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}</c>.</item> + <item>If Gt is <c>{A_m,A}(Gt_1, ..., Gt_k)</c>, where <c>A_m</c> is + the atom <c>erlang</c> and <c>A</c> is an atom or an operator, then + Rep(Gt) = <c>{call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}</c>. + </item> + <item>If Gt is <c>( Gt_0 )</c>, then + Rep(Gt) = <c>Rep(Gt_0)</c>, that is, parenthesized + guard tests cannot be distinguished from their bodies.</item> </list> <p>Note that every guard test has the same source form as some expression, and is represented the same way as the corresponding expression.</p> </section> <section> - <title>The abstract format after preprocessing</title> - <p>The compilation option <c><![CDATA[debug_info]]></c> can be given to the - compiler to have the abstract code stored in - the <c><![CDATA[abstract_code]]></c> chunk in the BEAM file + <title>Types</title> + <list type="bulleted"> + <item>If T is an annotated type <c>Anno :: Type</c>, + where <c>Anno</c> is a variable and + <c>Type</c> is a type, then Rep(T) = + <c>{ann_type,LINE,[Rep(Anno),Rep(Type)]}</c>.</item> + <item>If T is an atom or integer literal L, then Rep(T) = Rep(L). + </item> + <item>If T is <c>L Op R</c>, + where <c>Op</c> is a binary operator and <c>L</c> and <c>R</c> + are types (this is an occurrence of an expression that can be + evaluated to an integer at compile time), then + Rep(T) = <c>{op,LINE,Op,Rep(L),Rep(R)}</c>.</item> + <item>If T is <c>Op A</c>, where <c>Op</c> is a + unary operator and <c>A</c> is a type (this is an occurrence of + an expression that can be evaluated to an integer at compile time), + then Rep(T) = <c>{op,LINE,Op,Rep(A)}</c>.</item> + <item>If T is a bitstring type <c><<_:M,_:_*N>></c>, + where <c>M</c> and <c>N</c> are singleton integer types, then Rep(T) = + <c>{type,LINE,binary,[Rep(M),Rep(N)]}</c>.</item> + <item>If T is the empty list type <c>[]</c>, then Rep(T) = + <c>{type,Line,nil,[]}</c>.</item> + <item>If T is a fun type <c>fun()</c>, then Rep(T) = + <c>{type,LINE,'fun',[]}</c>.</item> + <item>If T is a fun type <c>fun((...) -> B)</c>, + where <c>B</c> is a type, then + Rep(T) = <c>{type,LINE,'fun',[{type,LINE,any},Rep(B)]}</c>. + </item> + <item>If T is a fun type <c>fun(Ft)</c>, where + <c>Ft</c> is a function type, + then Rep(T) = <c>Rep(Ft)</c>.</item> + <item>If T is an integer range type <c>L .. H</c>, + where <c>L</c> and <c>H</c> are singleton integer types, then + Rep(T) = <c>{type,LINE,range,[Rep(L),Rep(H)]}</c>.</item> + <item>If T is a map type <c>map()</c>, then Rep(T) = + <c>{type,LINE,map,any}</c>.</item> + <item>If T is a map type <c>#{P_1, ..., P_k}</c>, where each + <c>P_i</c> is a map pair type, then Rep(T) = + <c>{type,LINE,map,[Rep(P_1), ..., Rep(P_k)]}</c>.</item> + <item>If T is a map pair type <c>K => V</c>, where + <c>K</c> and <c>V</c> are types, then Rep(T) = + <c>{type,LINE,map_field_assoc,[Rep(K),Rep(V)]}</c>.</item> + <item>If T is a predefined (or built-in) type <c>N(A_1, ..., A_k)</c>, + where each <c>A_i</c> is a type, then Rep(T) = + <c>{type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}</c>.</item> + <item>If T is a record type <c>#Name{F_1, ..., F_k}</c>, + where each <c>F_i</c> is a record field type, then Rep(T) = + <c>{type,LINE,record,[Rep(Name),Rep(F_1), ..., Rep(F_k)]}</c>. + </item> + <item>If T is a record field type <c>Name :: Type</c>, + where <c>Type</c> is a type, then Rep(T) = + <c>{type,LINE,field_type,[Rep(Name),Rep(Type)]}</c>.</item> + <item>If T is a remote type <c>M:N(A_1, ..., A_k)</c>, where + each <c>A_i</c> is a type, then Rep(T) = + <c>{remote_type,LINE,[Rep(M),Rep(N),[Rep(A_1), ..., Rep(A_k)]]}</c>. + </item> + <item>If T is a tuple type <c>tuple()</c>, then Rep(T) = + <c>{type,LINE,tuple,any}</c>.</item> + <item>If T is a tuple type <c>{A_1, ..., A_k}</c>, where + each <c>A_i</c> is a type, then Rep(T) = + <c>{type,LINE,tuple,[Rep(A_1), ..., Rep(A_k)]}</c>.</item> + <item>If T is a type union <c>T_1 | ... | T_k</c>, + where each <c>T_i</c> is a type, then Rep(T) = + <c>{type,LINE,union,[Rep(T_1), ..., Rep(T_k)]}</c>.</item> + <item>If T is a type variable <c>V</c>, then Rep(T) = + <c>{var,LINE,A}</c>, where <c>A</c> is an atom with a printname + consisting of the same characters as <c>V</c>. A type variable + is any variable except underscore (<c>_</c>).</item> + <item>If T is a user-defined type <c>N(A_1, ..., A_k)</c>, + where each <c>A_i</c> is a type, then Rep(T) = + <c>{user_type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}</c>.</item> + <item>If T is <c>( T_0 )</c>, then Rep(T) = <c>Rep(T_0)</c>, + that is, parenthesized types cannot be distinguished from their + bodies.</item> + </list> + + <section> + <title>Function Types</title> + <list type="bulleted"> + <item>If Ft is a constrained function type <c>Ft_1 when Fc</c>, + where <c>Ft_1</c> is a function type and + <c>Fc</c> is a function constraint, then Rep(T) = + <c>{type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}</c>.</item> + <item>If Ft is a function type <c>(A_1, ..., A_n) -> B</c>, + where each <c>A_i</c> and <c>B</c> are types, then + Rep(Ft) = <c>{type,LINE,'fun',[{type,LINE,product,[Rep(A_1), + ..., Rep(A_n)]},Rep(B)]}</c>.</item> + </list> + </section> + + <section> + <title>Function Constraints</title> + <p>A function constraint Fc is a nonempty sequence of constraints + <c>C_1, ..., C_k</c>, and + Rep(Fc) = <c>[Rep(C_1), ..., Rep(C_k)]</c>.</p> + <list type="bulleted"> + <item>If C is a constraint <c>is_subtype(V, T)</c> or <c>V :: T</c>, + where <c>V</c> is a type variable and <c>T</c> is a type, then + Rep(C) = <c>{type,LINE,constraint,[{atom,LINE,is_subtype},[Rep(V),Rep(T)]]}</c>. + </item> + </list> + </section> + </section> + + <section> + <title>The Abstract Format After Preprocessing</title> + <p>The compilation option <c>debug_info</c> can be given to the + compiler to have the abstract code stored in + the <c>abstract_code</c> chunk in the BEAM file (for debugging purposes).</p> - <p>In OTP R9C and later, the <c><![CDATA[abstract_code]]></c> chunk will + <p>In OTP R9C and later, the <c>abstract_code</c> chunk will contain</p> - <p><c><![CDATA[{raw_abstract_v1,AbstractCode}]]></c></p> - <p>where <c><![CDATA[AbstractCode]]></c> is the abstract code as described + <p><c>{raw_abstract_v1,AbstractCode}</c></p> + <p>where <c>AbstractCode</c> is the abstract code as described in this document.</p> <p>In releases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM file. The first element of the - tuple would be either <c><![CDATA[abstract_v1]]></c> (R7B) or <c><![CDATA[abstract_v2]]></c> + tuple would be either <c>abstract_v1</c> (R7B) or <c>abstract_v2</c> (R8B).</p> </section> </chapter> diff --git a/erts/doc/src/erl.xml b/erts/doc/src/erl.xml index ec4a0dee05..e8621fecc3 100644 --- a/erts/doc/src/erl.xml +++ b/erts/doc/src/erl.xml @@ -382,6 +382,11 @@ similar to <c><![CDATA[code:add_pathsz/1]]></c>. See <seealso marker="kernel:code">code(3)</seealso>.</p> </item> + <tag><c><![CDATA[-path Dir1 Dir2 ...]]></c></tag> + <item> + <p>Replaces the path specified in the boot script. See + <seealso marker="sasl:script">script(4)</seealso>.</p> + </item> <tag><c><![CDATA[-remsh Node]]></c></tag> <item> <p>Starts Erlang with a remote shell connected to <c><![CDATA[Node]]></c>.</p> diff --git a/erts/doc/src/erl_driver.xml b/erts/doc/src/erl_driver.xml index 42b6a3bfef..e338e95938 100644 --- a/erts/doc/src/erl_driver.xml +++ b/erts/doc/src/erl_driver.xml @@ -347,6 +347,16 @@ the driver does not handle sizes that overflow an <c>int</c> all will work as before.</p> </item> + <tag><marker id="time_measurement"/>Time Measurement</tag> + <item><p>Support for time measurement in drivers: + <list> + <item><seealso marker="#ErlDrvTime"><c>ErlDrvTime</c></seealso></item> + <item><seealso marker="#ErlDrvTimeUnit"><c>ErlDrvTimeUnit</c></seealso></item> + <item><seealso marker="#erl_drv_monotonic_time"><c>erl_drv_monotonic_time()</c></seealso></item> + <item><seealso marker="#erl_drv_time_offset"><c>erl_drv_time_offset()</c></seealso></item> + <item><seealso marker="#erl_drv_convert_time_unit"><c>erl_drv_convert_time_unit()</c></seealso></item> + </list></p> + </item> </taglist> </section> @@ -860,6 +870,24 @@ typedef struct ErlIOVec { <seealso marker="#erl_drv_tsd_get">erl_drv_tsd_get()</seealso>. </p> </item> + <tag><marker id="ErlDrvTime"/>ErlDrvTime</tag> + <item> + <p>A signed 64-bit integer type for representation of time.</p> + </item> + <tag><marker id="ErlDrvTimeUnit"/>ErlDrvTimeUnit</tag> + <item> + <p>An enumeration of time units supported by the driver API:</p> + <taglist> + <tag><c>ERL_DRV_SEC</c></tag> + <item><p>Seconds</p></item> + <tag><c>ERL_DRV_MSEC</c></tag> + <item><p>Milliseconds</p></item> + <tag><c>ERL_DRV_USEC</c></tag> + <item><p>Microseconds</p></item> + <tag><c>ERL_DRV_NSEC</c></tag> + <item><p>Nanoseconds</p></item> + </taglist> + </item> </taglist> </section> @@ -1023,6 +1051,10 @@ typedef struct ErlIOVec { <fsummary>Read a system timestamp</fsummary> <desc> <marker id="driver_get_now"></marker> + <warning><p><em>This function is deprecated! Do not use it!</em> + Use the documented + <seealso marker="#time_measurement">time measurement functionality</seealso> + instead.</p></warning> <p>This function reads a timestamp into the memory pointed to by the parameter <c>now</c>. See the description of <seealso marker="#ErlDrvNowData">ErlDrvNowData</seealso> for specification of its fields. </p> @@ -2811,7 +2843,7 @@ ERL_DRV_MAP int sz </func> <func> - <name><ret>int</ret><nametext>erl_drv_putenv(char *key, char *value)</nametext></name> + <name><ret>int</ret><nametext>erl_drv_putenv(const char *key, char *value)</nametext></name> <fsummary>Set the value of an environment variable</fsummary> <desc> <marker id="erl_drv_putenv"></marker> @@ -2840,7 +2872,7 @@ ERL_DRV_MAP int sz </desc> </func> <func> - <name><ret>int</ret><nametext>erl_drv_getenv(char *key, char *value, size_t *value_size)</nametext></name> + <name><ret>int</ret><nametext>erl_drv_getenv(const char *key, char *value, size_t *value_size)</nametext></name> <fsummary>Get the value of an environment variable</fsummary> <desc> <marker id="erl_drv_getenv"></marker> @@ -2997,6 +3029,86 @@ ERL_DRV_MAP int sz </desc> </func> + <func> + <name><ret>ErlDrvTime</ret><nametext>erl_drv_monotonic_time(ErlDrvTimeUnit time_unit)</nametext></name> + <fsummary>Get Erlang Monotonic Time</fsummary> + <desc> + <marker id="erl_drv_monotonic_time"></marker> + <p>Arguments:</p> + <taglist> + <tag><c>time_unit</c></tag> + <item>Time unit of returned value.</item> + </taglist> + <p> + Returns + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang + monotonic time</seealso>. Note that it is not uncommon with + negative values. + </p> + <p>Returns <c>ERL_DRV_TIME_ERROR</c> if called with an invalid + time unit argument, or if called from a thread that is not a + scheduler thread.</p> + <p>See also:</p> + <list> + <item><seealso marker="#ErlDrvTime"><c>ErlDrvTime</c></seealso></item> + <item><seealso marker="#ErlDrvTimeUnit"><c>ErlDrvTimeUnit</c></seealso></item> + </list> + </desc> + </func> + + <func> + <name><ret>ErlDrvTime</ret><nametext>erl_drv_time_offset(ErlDrvTimeUnit time_unit)</nametext></name> + <fsummary>Get current Time Offset</fsummary> + <desc> + <marker id="erl_drv_time_offset"></marker> + <p>Arguments:</p> + <taglist> + <tag><c>time_unit</c></tag> + <item>Time unit of returned value.</item> + </taglist> + <p>Returns the current time offset between + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang monotonic time</seealso> + and + <seealso marker="time_correction#Erlang_System_Time">Erlang system time</seealso> + converted into the <c>time_unit</c> passed as argument.</p> + <p>Returns <c>ERL_DRV_TIME_ERROR</c> if called with an invalid + time unit argument, or if called from a thread that is not a + scheduler thread.</p> + <p>See also:</p> + <list> + <item><seealso marker="#ErlDrvTime"><c>ErlDrvTime</c></seealso></item> + <item><seealso marker="#ErlDrvTimeUnit"><c>ErlDrvTimeUnit</c></seealso></item> + </list> + </desc> + </func> + + <func> + <name><ret>ErlDrvTime</ret><nametext>erl_drv_convert_time_unit(ErlDrvTime val, ErlDrvTimeUnit from, ErlDrvTimeUnit to)</nametext></name> + <fsummary>Convert time unit of a time value</fsummary> + <desc> + <marker id="erl_drv_convert_time_unit"></marker> + <p>Arguments:</p> + <taglist> + <tag><c>val</c></tag> + <item>Value to convert time unit for.</item> + <tag><c>from</c></tag> + <item>Time unit of <c>val</c>.</item> + <tag><c>to</c></tag> + <item>Time unit of returned value.</item> + </taglist> + <p>Converts the <c>val</c> value of time unit <c>from</c> to + the corresponding value of time unit <c>to</c>. The result is + rounded using the floor function.</p> + <p>Returns <c>ERL_DRV_TIME_ERROR</c> if called with an invalid + time unit argument.</p> + <p>See also:</p> + <list> + <item><seealso marker="#ErlDrvTime"><c>ErlDrvTime</c></seealso></item> + <item><seealso marker="#ErlDrvTimeUnit"><c>ErlDrvTimeUnit</c></seealso></item> + </list> + </desc> + </func> + </funcs> <section> <title>SEE ALSO</title> diff --git a/erts/doc/src/erl_nif.xml b/erts/doc/src/erl_nif.xml index dae14b8d08..420c9fea38 100644 --- a/erts/doc/src/erl_nif.xml +++ b/erts/doc/src/erl_nif.xml @@ -317,6 +317,17 @@ ok libraries might however fail if deprecated features are used. </p></item> + <tag><marker id="time_measurement"/>Time Measurement</tag> + <item><p>Support for time measurement in NIF libraries: + <list> + <item><seealso marker="#ErlNifTime"><c>ErlNifTime</c></seealso></item> + <item><seealso marker="#ErlNifTimeUnit"><c>ErlNifTimeUnit</c></seealso></item> + <item><seealso marker="#enif_monotonic_time"><c>enif_monotonic_time()</c></seealso></item> + <item><seealso marker="#enif_time_offset"><c>enif_time_offset()</c></seealso></item> + <item><seealso marker="#enif_convert_time_unit"><c>enif_convert_time_unit()</c></seealso></item> + </list></p> + </item> + <tag>Long-running NIFs</tag> <item><p><marker id="dirty_nifs"/>Native functions <seealso marker="#lengthy_work"> @@ -560,6 +571,25 @@ typedef enum { <item><p>A native signed 64-bit integer type.</p></item> <tag><marker id="ErlNifUInt64"/>ErlNifUInt64</tag> <item><p>A native unsigned 64-bit integer type.</p></item> + + <tag><marker id="ErlNifTime"/>ErlNifTime</tag> + <item> + <p>A signed 64-bit integer type for representation of time.</p> + </item> + <tag><marker id="ErlNifTimeUnit"/>ErlNifTimeUnit</tag> + <item> + <p>An enumeration of time units supported by the NIF API:</p> + <taglist> + <tag><c>ERL_NIF_SEC</c></tag> + <item><p>Seconds</p></item> + <tag><c>ERL_NIF_MSEC</c></tag> + <item><p>Milliseconds</p></item> + <tag><c>ERL_NIF_USEC</c></tag> + <item><p>Microseconds</p></item> + <tag><c>ERL_NIF_NSEC</c></tag> + <item><p>Nanoseconds</p></item> + </taglist> + </item> </taglist> </section> @@ -791,6 +821,10 @@ typedef enum { and return true, or return false if <c>term</c> is not an unsigned integer or is outside the bounds of type <c>unsigned long</c>.</p></desc> </func> + <func><name><ret>int</ret><nametext>enif_getenv(const char* key, char* value, size_t *value_size)</nametext></name> + <fsummary>Get the value of an environment variable</fsummary> + <desc><p>Same as <seealso marker="erl_driver#erl_drv_getenv">erl_drv_getenv</seealso>.</p></desc> + </func> <func><name><ret>int</ret><nametext>enif_has_pending_exception(ErlNifEnv* env, ERL_NIF_TERM* reason)</nametext></name> <fsummary>Check if an exception has been raised</fsummary> <desc><p>Return true if a pending exception is associated @@ -1482,6 +1516,88 @@ enif_map_iterator_destroy(env, &iter); <desc><p>Same as <seealso marker="erl_driver#erl_drv_tsd_set">erl_drv_tsd_set</seealso>. </p></desc> </func> + + + <func> + <name><ret>ErlNifTime</ret><nametext>enif_monotonic_time(ErlNifTimeUnit time_unit)</nametext></name> + <fsummary>Get Erlang Monotonic Time</fsummary> + <desc> + <marker id="enif_monotonic_time"></marker> + <p>Arguments:</p> + <taglist> + <tag><c>time_unit</c></tag> + <item>Time unit of returned value.</item> + </taglist> + <p> + Returns + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang + monotonic time</seealso>. Note that it is not uncommon with + negative values. + </p> + <p>Returns <c>ERL_NIF_TIME_ERROR</c> if called with an invalid + time unit argument, or if called from a thread that is not a + scheduler thread.</p> + <p>See also:</p> + <list> + <item><seealso marker="#ErlNifTime"><c>ErlNifTime</c></seealso></item> + <item><seealso marker="#ErlNifTimeUnit"><c>ErlNifTimeUnit</c></seealso></item> + </list> + </desc> + </func> + + <func> + <name><ret>ErlNifTime</ret><nametext>enif_time_offset(ErlNifTimeUnit time_unit)</nametext></name> + <fsummary>Get current Time Offset</fsummary> + <desc> + <marker id="enif_time_offset"></marker> + <p>Arguments:</p> + <taglist> + <tag><c>time_unit</c></tag> + <item>Time unit of returned value.</item> + </taglist> + <p>Returns the current time offset between + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang monotonic time</seealso> + and + <seealso marker="time_correction#Erlang_System_Time">Erlang system time</seealso> + converted into the <c>time_unit</c> passed as argument.</p> + <p>Returns <c>ERL_NIF_TIME_ERROR</c> if called with an invalid + time unit argument, or if called from a thread that is not a + scheduler thread.</p> + <p>See also:</p> + <list> + <item><seealso marker="#ErlNifTime"><c>ErlNifTime</c></seealso></item> + <item><seealso marker="#ErlNifTimeUnit"><c>ErlNifTimeUnit</c></seealso></item> + </list> + </desc> + </func> + + <func> + <name><ret>ErlNifTime</ret><nametext>enif_convert_time_unit(ErlNifTime val, ErlNifTimeUnit from, ErlNifTimeUnit to)</nametext></name> + <fsummary>Convert time unit of a time value</fsummary> + <desc> + <marker id="enif_convert_time_unit"></marker> + <p>Arguments:</p> + <taglist> + <tag><c>val</c></tag> + <item>Value to convert time unit for.</item> + <tag><c>from</c></tag> + <item>Time unit of <c>val</c>.</item> + <tag><c>to</c></tag> + <item>Time unit of returned value.</item> + </taglist> + <p>Converts the <c>val</c> value of time unit <c>from</c> to + the corresponding value of time unit <c>to</c>. The result is + rounded using the floor function.</p> + <p>Returns <c>ERL_NIF_TIME_ERROR</c> if called with an invalid + time unit argument.</p> + <p>See also:</p> + <list> + <item><seealso marker="#ErlNifTime"><c>ErlNifTime</c></seealso></item> + <item><seealso marker="#ErlNifTimeUnit"><c>ErlNifTimeUnit</c></seealso></item> + </list> + </desc> + </func> + </funcs> <section> <title>SEE ALSO</title> diff --git a/erts/doc/src/erlang.xml b/erts/doc/src/erlang.xml index c37ed3bea5..964601f195 100644 --- a/erts/doc/src/erlang.xml +++ b/erts/doc/src/erlang.xml @@ -5684,8 +5684,31 @@ true</pre> <anno>Dest</anno>, <anno>Msg</anno>, [])</c></seealso>.</p> </desc> </func> + <func> <name name="statistics" arity="1" clause_i="1"/> + <fsummary>Information about active processes and ports.</fsummary> + <desc><marker id="statistics_active_tasks"></marker> + <p> + Returns a list where each element represents the amount + of active processes and ports on each run queue and its + associated scheduler. That is, the number of processes and + ports that are ready to run, or are currently running. The + element location in the list corresponds to the scheduler + and its run queue. The first element corresponds to scheduler + number 1 and so on. The information is <em>not</em> gathered + atomically. That is, the result is not necessarily a + consistent snapshot of the state, but instead quite + efficiently gathered. See also, + <seealso marker="#statistics_total_active_tasks"><c>statistics(total_active_tasks)</c></seealso>, + <seealso marker="#statistics_run_queue_lengths"><c>statistics(run_queue_lengths)</c></seealso>, and + <seealso marker="#statistics_total_run_queue_lengths"><c>statistics(total_run_queue_lengths)</c></seealso>. + </p> + </desc> + </func> + + <func> + <name name="statistics" arity="1" clause_i="2"/> <fsummary>Information about context switches.</fsummary> <desc> <p>Returns the total number of context switches since the @@ -5694,7 +5717,7 @@ true</pre> </func> <func> - <name name="statistics" arity="1" clause_i="2"/> + <name name="statistics" arity="1" clause_i="3"/> <fsummary>Information about exact reductions.</fsummary> <desc> <marker id="statistics_exact_reductions"></marker> @@ -5708,7 +5731,7 @@ true</pre> </func> <func> - <name name="statistics" arity="1" clause_i="3"/> + <name name="statistics" arity="1" clause_i="4"/> <fsummary>Information about garbage collection.</fsummary> <desc> <p>Returns information about garbage collection, for example:</p> @@ -5720,7 +5743,7 @@ true</pre> </func> <func> - <name name="statistics" arity="1" clause_i="4"/> + <name name="statistics" arity="1" clause_i="5"/> <fsummary>Information about I/O.</fsummary> <desc> <p>Returns <c><anno>Input</anno></c>, @@ -5731,7 +5754,7 @@ true</pre> </func> <func> - <name name="statistics" arity="1" clause_i="5"/> + <name name="statistics" arity="1" clause_i="6"/> <fsummary>Information about reductions.</fsummary> <desc> <marker id="statistics_reductions"></marker> @@ -5749,16 +5772,43 @@ true</pre> </func> <func> - <name name="statistics" arity="1" clause_i="6"/> - <fsummary>Information about the run-queue.</fsummary> - <desc> - <p>Returns the total length of run-queues, that is, the number - of processes that are ready to run on all available run-queues.</p> + <name name="statistics" arity="1" clause_i="7"/> + <fsummary>Information about the run-queues.</fsummary> + <desc><marker id="statistics_run_queue"></marker> + <p> + Returns the total length of the run-queues. That is, the number + of processes and ports that are ready to run on all available + run-queues. The information is gathered atomically. That + is, the result is a consistent snapshot of the state, but + this operation is much more expensive compared to + <seealso marker="#statistics_total_run_queue_lengths"><c>statistics(total_run_queue_lengths)</c></seealso>. + This especially when a large amount of schedulers is used. + </p> </desc> </func> <func> - <name name="statistics" arity="1" clause_i="7"/> + <name name="statistics" arity="1" clause_i="8"/> + <fsummary>Information about the run-queue lengths.</fsummary> + <desc><marker id="statistics_run_queue_lengths"></marker> + <p> + Returns a list where each element represents the amount + of processes and ports ready to run for each run queue. The + element location in the list corresponds to the run queue + of a scheduler. The first element corresponds to the run + queue of scheduler number 1 and so on. The information is + <em>not</em> gathered atomically. That is, the result is + not necessarily a consistent snapshot of the state, but + instead quite efficiently gathered. See also, + <seealso marker="#statistics_total_run_queue_lengths"><c>statistics(total_run_queue_lengths)</c></seealso>, + <seealso marker="#statistics_active_tasks"><c>statistics(active_tasks)</c></seealso>, and + <seealso marker="#statistics_total_active_tasks"><c>statistics(total_active_tasks)</c></seealso>. + </p> + </desc> + </func> + + <func> + <name name="statistics" arity="1" clause_i="9"/> <fsummary>Information about runtime.</fsummary> <desc> <p>Returns information about runtime, in milliseconds.</p> @@ -5773,7 +5823,7 @@ true</pre> </func> <func> - <name name="statistics" arity="1" clause_i="8"/> + <name name="statistics" arity="1" clause_i="10"/> <fsummary>Information about each schedulers work time.</fsummary> <desc> <marker id="statistics_scheduler_wall_time"></marker> @@ -5844,7 +5894,44 @@ ok </func> <func> - <name name="statistics" arity="1" clause_i="9"/> + <name name="statistics" arity="1" clause_i="11"/> + <fsummary>Information about active processes and ports.</fsummary> + <desc><marker id="statistics_total_active_tasks"></marker> + <p> + Returns the total amount of active processes and ports in + the system. That is, the number of processes and ports that + are ready to run, or are currently running. The information + is <em>not</em> gathered atomically. That is, the result + is not necessarily a consistent snapshot of the state, but + instead quite efficiently gathered. See also, + <seealso marker="#statistics_active_tasks"><c>statistics(active_tasks)</c></seealso>, + <seealso marker="#statistics_run_queue_lengths"><c>statistics(run_queue_lengths)</c></seealso>, and + <seealso marker="#statistics_total_run_queue_lengths"><c>statistics(total_run_queue_lengths)</c></seealso>. + </p> + </desc> + </func> + + <func> + <name name="statistics" arity="1" clause_i="12"/> + <fsummary>Information about the run-queue lengths.</fsummary> + <desc><marker id="statistics_total_run_queue_lengths"></marker> + <p> + Returns the total length of the run-queues. That is, the number + of processes and ports that are ready to run on all available + run-queues. The information is <em>not</em> gathered atomically. + That is, the result is not necessarily a consistent snapshot of + the state, but much more efficiently gathered compared to + <seealso marker="#statistics_run_queue"><c>statistics(run_queue)</c></seealso>. + See also, + <seealso marker="#statistics_run_queue_lengths"><c>statistics(run_queue_lengths)</c></seealso>, + <seealso marker="#statistics_total_active_tasks"><c>statistics(total_active_tasks)</c></seealso>, and + <seealso marker="#statistics_active_tasks"><c>statistics(active_tasks)</c></seealso>. + </p> + </desc> + </func> + + <func> + <name name="statistics" arity="1" clause_i="13"/> <fsummary>Information about wall clock.</fsummary> <desc> <p>Returns information about wall clock. <c>wall_clock</c> can @@ -7652,6 +7739,13 @@ ok <c>inactive</c>, and later <c>active</c> when the port callback returns.</p> </item> + <tag><c>monotonic_timestamp</c></tag> + <item> + <p>Timestamps in profile messages will use + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang + monotonic time</seealso>. The time-stamp (Ts) has the same + format and value as produced by <c>erlang:monotonic_time()</c>.</p> + </item> <tag><c>runnable_procs</c></tag> <item> <p>If a process is put into or removed from the run queue, a @@ -7672,6 +7766,25 @@ ok <c>{profile, scheduler, Id, State, NoScheds, Ts}</c>, is sent to <c><anno>ProfilerPid</anno></c>.</p> </item> + <tag><c>strict_monotonic_timestamp</c></tag> + <item> + <p>Timestamps in profile messages will consisting of + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang + monotonic time</seealso> and a monotonically increasing + integer. The time-stamp (Ts) has the same format and value + as produced by <c>{erlang:monotonic_time(), + erlang:unique_integer([monotonic])}</c>.</p> + </item> + <tag><c>timestamp</c></tag> + <item> + <p>Timestamps in profile messages will include a + time-stamp (Ts) that has the same form as returned by + <c>erlang:now()</c>. This is also the default if no + timestamp flag is given. If <c>cpu_timestamp</c> has + been enabled via <c>erlang:trace/3</c>, this will also + effect the timestamp produced in profiling messages + when <c>timestamp</c> flag is enabled.</p> + </item> </taglist> <note><p><c>erlang:system_profile</c> is considered experimental and its behavior can change in a future release.</p> @@ -8031,7 +8144,10 @@ timestamp() -> <tag><c>cpu_timestamp</c></tag> <item> <p>A global trace flag for the Erlang node that makes all - trace time-stamps to be in CPU time, not wall clock time. + trace time-stamps using the <c>timestamp</c> flag to be + in CPU time, not wall clock time. That is, <c>cpu_timestamp</c> + will not be used if <c>monotonic_timestamp</c>, or + <c>strict_monotonic_timestamp</c> is enabled. Only allowed with <c>PidSpec==all</c>. If the host machine OS does not support high-resolution CPU time measurements, <c>trace/3</c> exits with @@ -8039,6 +8155,26 @@ timestamp() -> not synchronize this value across cores, so be prepared that time might seem to go backwards when using this option.</p> </item> + <tag><c>monotonic_timestamp</c></tag> + <item> + <p>Includes an + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang + monotonic time</seealso> time-stamp in all trace messages. The + time-stamp (Ts) has the same format and value as produced by + <c>erlang:monotonic_time()</c>. This flag overrides + the <c>cpu_timestamp</c> flag.</p> + </item> + <tag><c>strict_monotonic_timestamp</c></tag> + <item> + <p>Includes an timestamp consisting of + <seealso marker="time_correction#Erlang_Monotonic_Time">Erlang + monotonic time</seealso> and a monotonically increasing + integer in all trace messages. The time-stamp (Ts) has the + same format and value as produced by + <c>{erlang:monotonic_time(), + erlang:unique_integer([monotonic])}</c>. This flag overrides + the <c>cpu_timestamp</c> flag.</p> + </item> <tag><c>arity</c></tag> <item> <p>Used with the <c>call</c> trace flag. @@ -8085,9 +8221,16 @@ timestamp() -> in the following list. <c>Pid</c> is the process identifier of the traced process in which the traced event has occurred. The third tuple element is the message tag.</p> - <p>If flag <c>timestamp</c> is given, the first tuple - element is <c>trace_ts</c> instead, and the time-stamp - is added last in the message tuple.</p> + <p>If flag <c>timestamp</c>, <c>strict_monotonic_timestamp</c>, or + <c>monotonic_timestamp</c> is given, the first tuple + element is <c>trace_ts</c> instead, and the time-stamp + is added as an extra element last in the message tuple. If + multiple timestamp flags are passed, <c>timestamp</c> has + precedence over <c>strict_monotonic_timestamp</c> which + in turn has precedence over <c>monotonic_timestamp</c>. All + timestamp flags are remembered, so if two are passed + and the one with highest precedence later is disabled + the other one will become active.</p> <marker id="trace_3_trace_messages"></marker> <taglist> <tag><c>{trace, Pid, 'receive', Msg}</c></tag> @@ -8182,14 +8325,14 @@ timestamp() -> <p>When <c>Pid</c> is scheduled to run. The process runs in function <c>{M, F, Arity}</c>. On some rare occasions, the current function cannot be determined, - then the last element <c>Arity</c> is <c>0</c>.</p> + then the last element is <c>0</c>.</p> </item> <tag><c>{trace, Pid, out, {M, F, Arity} | 0}</c></tag> <item> <p>When <c>Pid</c> is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions, the current function cannot be determined, then the last - element <c>Arity</c> is <c>0</c>.</p> + element is <c>0</c>.</p> </item> <tag><c>{trace, Pid, gc_start, Info}</c></tag> <item> diff --git a/erts/doc/src/notes.xml b/erts/doc/src/notes.xml index f27e73b9d3..a726cc7b97 100644 --- a/erts/doc/src/notes.xml +++ b/erts/doc/src/notes.xml @@ -31,8 +31,134 @@ </header> <p>This document describes the changes made to the ERTS application.</p> -<section><title>Erts 7.1</title> +<section><title>Erts 7.2.1</title> + + <section><title>Fixed Bugs and Malfunctions</title> + <list> + <item> + <p> + Revert "Fix erroneous splitting of emulator path"</p> + <p> + Own Id: OTP-13202</p> + </item> + <item> + <p> + Fix HiPE enabled emulator for FreeBSD.</p> + <p> + Own Id: OTP-13204 Aux Id: pr926 </p> + </item> + </list> + </section> + +</section> + +<section><title>Erts 7.2</title> + + <section><title>Fixed Bugs and Malfunctions</title> + <list> + <item> + <p> + Small documentation fixes</p> + <p> + Own Id: OTP-13017</p> + </item> + <item> + <p> + Fix memory corruption bug caused by disabling + distribution and then re-enable distribution with a node + name that has previously been used by a remote node.</p> + <p> + Own Id: OTP-13076 Aux Id: seq12959 </p> + </item> + <item> + <p> + Renamed variables with name bool as Visual Studio 2015 + now treats this is a keyword.</p> + <p> + Own Id: OTP-13079</p> + </item> + <item> + <p><c>erl_prim_loader</c> has not supported custom + loaders for several releases. In the documentation for + <c>erl_prim_loader</c>, all references to custom loaders + have now been removed.</p> + <p> + Own Id: OTP-13102</p> + </item> + <item> + <p> + Fixed compilation of erts together with libc versions + that do not define __uint32_t.</p> + <p> + Own Id: OTP-13105</p> + </item> + <item> + <p> + erl -make now returns non-zero exit codes on failure</p> + <p> + Own Id: OTP-13107</p> + </item> + <item> + <p> + Fix crash on init:restart in embedded mode caused by + on_load handler process not being relaunched leading to + load failure for modules such as crypto and asn1rt_nif + that need it to be present for correct NIF loading.</p> + <p> + Own Id: OTP-13115</p> + </item> + <item> + <p> + Fix maps decode in erlang:binary_to_term/1</p> + <p>Decoding a term with a large (HAMT) map in an small + (FLAT) map could cause a critical error if the external + format was not produced by beam.</p> + <p> + Own Id: OTP-13125</p> + </item> + <item> + <p> + Fix very rare bug in GC when big maps with a lot of hash + collisions from a remote node are waiting in inner + message queue.</p> + <p> + Own Id: OTP-13146</p> + </item> + <item> + <p> + Fixed a bug that could cause a crash dump to become + almost empty.</p> + <p> + Own Id: OTP-13150</p> + </item> + </list> + </section> + + + <section><title>Improvements and New Features</title> + <list> + <item> + <p> Updated the xmllint target to just check the xml + files with real documentation content.<br/> Corrected + some errors and added some missing target in the DTD's. + </p> + <p> + Own Id: OTP-13026</p> + </item> + <item> + <p> + Add function enif_getenv to read OS environment variables + in a portable way from NIFs.</p> + <p> + Own Id: OTP-13147</p> + </item> + </list> + </section> + +</section> + +<section><title>Erts 7.1</title> <section><title>Fixed Bugs and Malfunctions</title> <list> <item> @@ -981,6 +1107,42 @@ </section> +<section><title>Erts 6.4.1.5</title> + + <section><title>Fixed Bugs and Malfunctions</title> + <list> + <item> + <p> + Fixed a bug that could cause a crash dump to become + almost empty.</p> + <p> + Own Id: OTP-13150</p> + </item> + </list> + </section> + +</section> + +<section><title>Erts 6.4.1.4</title> + + <section><title>Fixed Bugs and Malfunctions</title> + <list> + <item> + <p> + The 'raw' socket option could not be used multiple times + in one call to any e.g gen_tcp function because only one + of the occurrences were used. This bug has been fixed, + and also a small bug concerning propagating error codes + from within inet:setopts/2.</p> + <p> + Own Id: OTP-11482 Aux Id: seq12872 </p> + </item> + </list> + </section> + +</section> + + <section><title>Erts 6.4.1</title> <section><title>Fixed Bugs and Malfunctions</title> |