aboutsummaryrefslogtreecommitdiffstats
path: root/erts/emulator/internal_doc/CarrierMigration.md
diff options
context:
space:
mode:
Diffstat (limited to 'erts/emulator/internal_doc/CarrierMigration.md')
-rw-r--r--erts/emulator/internal_doc/CarrierMigration.md201
1 files changed, 201 insertions, 0 deletions
diff --git a/erts/emulator/internal_doc/CarrierMigration.md b/erts/emulator/internal_doc/CarrierMigration.md
new file mode 100644
index 0000000000..b93c11c6ec
--- /dev/null
+++ b/erts/emulator/internal_doc/CarrierMigration.md
@@ -0,0 +1,201 @@
+Carrier Migration
+=================
+
+The ERTS memory allocators manage memory blocks in two types of raw
+memory chunks. We call these chunks of raw memory
+*carriers*. Singleblock carriers which only contain one large block,
+and multiblock carriers which contain multiple blocks. A carrier is
+typically created using `mmap()` on unix systems. However, how a
+carrier is created is of minor importance. An allocator instance
+typically manages a mixture of single- and multiblock carriers.
+
+Problem
+-------
+
+When a carrier is empty, i.e. contains only one large free block, it
+is deallocated. Since multiblock carriers can contain both allocated
+blocks and free blocks at the same time, an allocator instance might
+be stuck with a large amount of poorly utilized carriers if the memory
+load decrease. After a peak in memory usage it is expected that not
+all memory can be returned since the blocks still allocated is likely
+to be dispersed over multiple carriers. Such poorly utilized carriers
+can usually be reused if the memory load increase again. However,
+since each scheduler thread manages its own set of allocator
+instances, and memory load is not necessarily connected to CPU load we
+might get into a situation where there are lots of poorly utilized
+multiblock carriers on some allocator instances while we need to
+allocate new multiblock carriers on other allocator instances. In
+scenarios like this, the demand for multiblock carriers in the system
+might increase at the same time as the actual memory demand in the
+system has decreased which is both unwanted and quite unexpected for
+the end user.
+
+Solution
+--------
+
+In order to prevent scenarios like this we've implemented support for
+migration of multiblock carriers between allocator instances of the
+same type.
+
+### Management of Free Blocks ###
+
+In order to be able to remove a carrier from one allocator instance
+and add it to another we need to be able to move references to the
+free blocks of the carrier between the allocator instances. The
+allocator instance specific data structure referring to the free
+blocks it manages often refers to the same carrier from multiple
+places. For example, when the address order bestfit strategy is used
+this data structure is a binary search tree spanning all carriers that
+the allocator instance manages. Free blocks in one specific carrier
+can be referred to from potentially every other carrier that is
+managed, and the amount of such references can be huge. That is, the
+work of removing the free blocks of such a carrier from the search
+tree will be huge. One way of solving this could be to not migrate
+carriers that contain lots of free blocks, but this would prevent us
+from migrating carriers that potentially needs to be migrated in order
+to solve the problem we set out to solve.
+
+By using one data structure of free blocks in each carrier and an
+allocator instance wide data structure of carriers managed by the
+allocator instance, the work needed in order to remove and add
+carriers can be kept to a minimum. When migration of carriers is
+enabled on a specific allocator type, we require that an allocation
+strategy with such an implementation is used. Currently we've
+implemented this for three different allocation strategies. All of
+these strategies use a search tree of carriers sorted so that we can
+find the carrier with the lowest address that can satisfy the
+request. Internally in carriers we use yet another search tree that
+either implement address order first fit, address order best fit,
+or best fit. The abbreviations used for these different allocation
+strategies are `aoff`, and `aoffcaobf`, `aoffcbf`.
+
+### Carrier Pool ###
+
+In order to migrate carriers between allocator instances we move them
+through a pool of carriers. In order for a carrier migration to
+complete, one scheduler needs to move the carrier into the pool, and
+another scheduler needs to take the carrier out of the pool.
+
+The pool is implemented as a lock free, circular, double linked,
+list. The list contains a sentinel which is used as the starting point
+when inserting to, or fetching from the pool. Carriers in the pool are
+elements in this list.
+
+The list can be modified by all scheduler threads
+simultaneously. During modifications the double linked list is allowed
+to get a bit "out of shape". For example, following the `next` pointer
+to the next element and then following the `prev` pointer does not
+always take you back to were you started. The following is however
+always true:
+
+* Repeatedly following `next` pointers will eventually take you to the
+ sentinel.
+* Repeatedly following `prev` pointers will eventually take you to the
+ sentinel.
+* Following a `next` or a `prev` pointer will take you to either an
+ element in the pool, or an element that used to be in the pool.
+
+When inserting a new element we search for a place to insert the
+element by only following `next` pointers, and we always begin by
+skipping the first element encountered. When trying to fetch an
+element we do the same thing, but instead only follow `prev` pointers.
+
+By going different directions when inserting and fetching, we avoid
+contention between threads inserting and threads fetching as much as
+possible. By skipping one element when we begin searching, we preserve
+the sentinel unmodified as much as possible. This is beneficial since
+all search operations need to read the content of the sentinel. If we
+were to modify the sentinel, the cache line containing the sentinel
+would unnecessarily be bounced between processors.
+
+The `prev`, and `next` fields in the elements of the list contains the
+value of the pointer, a modification marker, and a deleted
+marker. Memory operations on these fields are done using atomic memory
+operations. When a thread has set the modification marker in a field,
+no-one except the thread that set the marker is allowed to modify the
+field. If multiple modification markers needs to be set, we always
+begin with `next` fields followed by `prev` fields in the order
+following the actual pointers. This guarantees that no deadlocks will
+occur.
+
+When a carrier is being removed from a pool, we mark it with a thread
+progress value that needs to be reached before we are allowed to
+modify the `next`, and `prev` fields. That is, until we reach this
+thread progress we are not allowed to insert the carrier into the pool
+again, and we are not allowed to deallocate the carrier. This ensures
+that threads inspecting the pool always will be able to traverse the
+pool and reach valid elements. Once we have reached the thread
+progress value that the carrier was tagged with, we know that no
+threads may have references to it via the pool.
+
+### Migration ###
+
+There exist one pool for each allocator type enabling migration of
+carriers between scheduler specific allocator instances of the same
+allocator type.
+
+Each allocator instance keeps track of the current utilization of its
+multiblock carriers. When the utilization falls below the "abandon
+carrier utilization limit" it starts to inspect the utilization of the
+current carrier when deallocations are made. If also the utilization
+of the carrier falls below the "abandon carrier utilization limit" it
+unlinks the carrier from its data structure of available free blocks
+and inserts the carrier into the pool.
+
+Since the carrier has been unlinked from the data structure of
+available free blocks, no more allocations will be made in the
+carrier. The allocator instance putting the carrier into the pool,
+however, still has the responsibility of performing deallocations in
+it while it remains in the pool.
+
+Each carrier has a flag field containing information about allocator
+instance owning the carrier, a flag indicating if the carrier is in
+the pool or not, and a flag indicating if it is busy or not. When the
+carrier is in the pool, the owning allocator instance needs to mark it
+as busy while operating on it. If another thread inspects it in order
+to try to fetch it from the pool, it will abort the fetch if it is
+busy. When fetching the carrier from the pool, ownership will changed
+and further deallocations in the carrier will be redirected to the new
+owner using the delayed dealloc functionality.
+
+If a carrier in the pool becomes empty, it will be withdrawn from the
+pool. All carriers that become empty are also always passed to its
+originating allocator instance for deallocation using the delayed
+dealloc functionality. Since carriers this way always will be
+deallocated by the allocator instance that allocated the carrier the
+underlying functionality of allocating and deallocating carriers can
+remain simple and doesn't have to bother about multiple threads. In a
+NUMA system we will also not mix carriers originating from multiple
+NUMA nodes.
+
+When an allocator instance needs more carrier space, it always begins
+by inspecting its own carriers that are waiting for thread progress
+before they can be deallocated. If no such carrier could be found, it
+then inspects the pool. If no carrier could be fetched from the pool,
+it will allocate a new carrier. Regardless of where the allocator
+instance gets the carrier from it the just links in the carrier into
+its data structure of free blocks.
+
+### Result ###
+
+The use of this strategy of abandoning carriers with poor utilization
+and reusing these in allocator instances with an increased carrier
+demand is extremely effective and completely eliminates the problems
+that otherwise sometimes occurred when CPU load dropped while memory
+load did not.
+
+When using the `aoffcaobf` or `aoff` strategies compared to `gf` or
+`bf`, we loose some performance since we get more modifications in the
+data structure of free blocks. This performance penalty is however
+reduced using the `aoffcbf` strategy. A tradeoff between memory
+consumption and performance is however inevitable, and it is up to
+the user to decide what is most important.
+
+Further work
+------------
+
+It would be quite easy to extend this to allow migration of multiblock
+carriers between all allocator types. More or less the only obstacle
+is maintenance of the statistics information.
+
+