aboutsummaryrefslogtreecommitdiffstats
path: root/lib/asn1/src
diff options
context:
space:
mode:
Diffstat (limited to 'lib/asn1/src')
-rw-r--r--lib/asn1/src/asn1ct_check.erl1184
-rw-r--r--lib/asn1/src/asn1ct_imm.erl5
-rw-r--r--lib/asn1/src/asn1ct_parser2.erl166
3 files changed, 520 insertions, 835 deletions
diff --git a/lib/asn1/src/asn1ct_check.erl b/lib/asn1/src/asn1ct_check.erl
index 568855a42d..d748042df6 100644
--- a/lib/asn1/src/asn1ct_check.erl
+++ b/lib/asn1/src/asn1ct_check.erl
@@ -841,6 +841,18 @@ check_object(S, _, #'ObjectSet'{class=ClassRef0,set=Set0}=ObjSet0) ->
Gen = gen_incl_set(S, Set, ClassDef),
ObjSet#'ObjectSet'{class=ClassRef,gen=Gen}.
+check_object_set({element_set,Root0,Ext0}, OSI0) ->
+ OSI = case Ext0 of
+ none -> OSI0;
+ _ -> OSI0#osi{ext=true}
+ end,
+ case {Root0,Ext0} of
+ {empty,empty} -> {[],OSI};
+ {empty,Ext} -> check_object_set(Ext, OSI);
+ {Root,none} -> check_object_set(Root, OSI);
+ {Root,empty} -> check_object_set(Root, OSI);
+ {Root,Ext} -> check_object_set_list([Root,Ext], OSI)
+ end;
check_object_set(#'Externaltypereference'{}=Ref, #osi{st=S}=OSI) ->
{_,#typedef{typespec=OSdef}=OS} = get_referenced_type(S, Ref),
ObjectSet = check_object(S, OS, OSdef),
@@ -859,8 +871,6 @@ check_object_set({'EXCEPT',Incl0,Excl0}, OSI) ->
Incl5 = sofs:to_external(Incl4),
Incl = [Obj || {_,Obj} <- Incl5],
{Incl,OSI};
-check_object_set('EXTENSIONMARK', OSI) ->
- {[],OSI#osi{ext=true}};
check_object_set({object,_,_}=Obj0, OSI) ->
#osi{st=S,classref=ClassRef} = OSI,
#'Object'{def=Def} =
@@ -898,13 +908,8 @@ check_object_set({pv,{simpledefinedvalue,DefinedObject},Params}=PV, OSI) ->
def={po,{object,DefinedObject},Args}}),
ObjList = check_object_set_mk(Def, OSI),
{ObjList,OSI};
-check_object_set({'SingleValue',Set}, OSI) when is_list(Set) ->
- check_object_set_list(Set, OSI);
check_object_set({'SingleValue',Val}, OSI) ->
check_object_set(Val, OSI);
-check_object_set({{'SingleValue',Root},Ext}, OSI) ->
- Set = merge_sets(Root, Ext),
- check_object_set_list(Set, OSI#osi{ext=true});
check_object_set({'ValueFromObject',{object,Object},FieldNames}, OSI) ->
#osi{st=S} = OSI,
case extract_field(S, Object, FieldNames) of
@@ -916,11 +921,10 @@ check_object_set({'ValueFromObject',{object,Object},FieldNames}, OSI) ->
end;
check_object_set(#type{def=Def}, OSI) ->
check_object_set(Def, OSI);
-check_object_set(union, OSI) ->
- {[],OSI};
-check_object_set({Root,Ext}, OSI) ->
- Set = merge_sets(Root, Ext),
- check_object_set_list(Set, OSI#osi{ext=true}).
+check_object_set({union,A0,B0}, OSI0) ->
+ {A,OSI1} = check_object_set(A0, OSI0),
+ {B,OSI} = check_object_set(B0, OSI1),
+ {A++B,OSI}.
check_object_set_list([H|T], OSI0) ->
{Set0,OSI1} = check_object_set(H, OSI0),
@@ -1069,14 +1073,6 @@ object_to_check(#valuedef{type=ClassName,value=ObjectRef}) ->
%% is parsed as a type
#'Object'{classname=ClassName#type.def,def=ObjectRef}.
-merge_sets(Root, Ext) ->
- case {is_list(Root),is_list(Ext)} of
- {false,false} -> [Root,Ext];
- {false,true} -> [Root|Ext];
- {true,false} -> Root ++ [Ext];
- {true,true} -> Root ++ Ext
- end.
-
check_referenced_object(S,ObjRef)
when is_record(ObjRef,'Externalvaluereference')->
case get_referenced_type(S,ObjRef) of
@@ -1607,6 +1603,8 @@ match_syntax_external(#state{mname=Mname}=S0, Name, Ref0) ->
{match,[{Name,Ref}]}
end.
+match_syntax_objset(_S, {element_set,_,_}=Set, ClassDef) ->
+ make_objset(ClassDef, Set);
match_syntax_objset(S, #'Externaltypereference'{}=Ref, _) ->
{_,T} = get_referenced_type(S, Ref),
T;
@@ -1615,10 +1613,6 @@ match_syntax_objset(S, #'Externalvaluereference'{}=Ref, _) ->
T;
match_syntax_objset(_, [_|_]=Set, ClassDef) ->
make_objset(ClassDef, Set);
-match_syntax_objset(_, {'SingleValue',_}=Set, ClassDef) ->
- make_objset(ClassDef, Set);
-match_syntax_objset(_, {{'SingleValue',_},_}=Set, ClassDef) ->
- make_objset(ClassDef, Set);
match_syntax_objset(S, {object,definedsyntax,Words}, ClassDef) ->
case Words of
[Word] ->
@@ -1784,8 +1778,7 @@ check_value(OldS,V) when is_record(V,typedef) ->
#typedef{typespec=TS} = V,
case TS of
#'ObjectSet'{class=ClassRef} ->
- {RefM,TSDef} = get_referenced_type(OldS,ClassRef),
- %%IsObjectSet(TSDef);
+ {_RefM,TSDef} = get_referenced_type(OldS, ClassRef),
case TSDef of
#classdef{} -> throw({objectsetdef});
#typedef{typespec=#type{def=Eref}} when
@@ -1793,14 +1786,12 @@ check_value(OldS,V) when is_record(V,typedef) ->
%% This case if the class reference is a defined
%% reference to class
check_value(OldS,V#typedef{typespec=TS#'ObjectSet'{class=Eref}});
- #typedef{} ->
+ #typedef{typespec=HostType} ->
% an ordinary value set with a type in #typedef.typespec
- ValueSet = TS#'ObjectSet'.set,
- Type=check_type(OldS,TSDef,TSDef#typedef.typespec),
- Value = check_value(OldS,#valuedef{type=Type,
- value=ValueSet,
- module=RefM}),
- {valueset,Type#type{constraint=Value#valuedef.value}}
+ ValueSet0 = TS#'ObjectSet'.set,
+ Constr = check_constraints(OldS, HostType, [ValueSet0]),
+ Type = check_type(OldS,TSDef,TSDef#typedef.typespec),
+ {valueset,Type#type{constraint=Constr}}
end;
_ ->
throw({objectsetdef})
@@ -2693,9 +2684,8 @@ check_type(S=#state{recordtopname=TopName},Type,Ts) when is_record(Ts,type) ->
case asn1ct_gen:prim_bif(asn1ct_gen:get_inner(RefType#type.def)) of
true ->
%% Here we expand to a built in type and inline it
- Constr2 = check_constraints(S, RefType, Constr),
- NewC = constraint_merge(S, Constr2 ++
- RefType#type.constraint),
+ NewC = check_constraints(S, RefType, Constr ++
+ RefType#type.constraint),
TempNewDef#newt{
type = RefType#type.def,
tag = merge_tags(Ct,RefType#type.tag),
@@ -2934,8 +2924,6 @@ check_type(S=#state{recordtopname=TopName},Type,Ts) when is_record(Ts,type) ->
TempNewDef#newt{tag=merge_tags(Tag,CheckedT#type.tag),
type=CheckedT#type.def};
- {valueset,Vtype} ->
- TempNewDef#newt{type={valueset,check_type(S,Type,Vtype)}};
{'SelectionType',Name,T} ->
CheckedT = check_selectiontype(S,Name,T),
TempNewDef#newt{tag=merge_tags(Tag,CheckedT#type.tag),
@@ -3062,8 +3050,10 @@ maybe_open_type(S, #objectclass{fields=Fs}=ClassSpec,
OCFT#'ObjectClassFieldType'{fieldname=FieldNames,
type=Type};
{typefieldreference,_} ->
+ %% Note: The constraints have not been checked yet,
+ %% so we must use a special lookup routine.
case {catch get_unique_fieldname(S,#classdef{typespec=ClassSpec}),
- asn1ct_gen:get_constraint(Constr, componentrelation)} of
+ get_componentrelation(Constr)} of
{Tuple,_} when tuple_size(Tuple) =:= 3 ->
OCFT#'ObjectClassFieldType'{fieldname=FieldNames,
type='ASN1_OPEN_TYPE'};
@@ -3076,6 +3066,13 @@ maybe_open_type(S, #objectclass{fields=Fs}=ClassSpec,
end
end.
+get_componentrelation([{element_set,{componentrelation,_,_}=Cr,none}|_]) ->
+ Cr;
+get_componentrelation([_|T]) ->
+ get_componentrelation(T);
+get_componentrelation([]) ->
+ no.
+
is_open_type(#'ObjectClassFieldType'{type='ASN1_OPEN_TYPE'}) ->
true;
is_open_type(#'ObjectClassFieldType'{}) ->
@@ -3303,15 +3300,438 @@ parse_objectset(Set) ->
Set.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%% check_constraints/2
-%%
-check_constraints(S, T, C) when is_list(C) ->
- check_constraints(S, T, C, []).
+%%
+%% Check and simplify constraints.
+%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+check_constraints(_S, _HostType, []) ->
+ [];
+check_constraints(S, HostType0, [_|_]=Cs0) ->
+ HostType = get_real_host_type(HostType0, Cs0),
+ Cs1 = top_level_intersections(Cs0),
+ Cs2 = [coalesce_constraints(C) || C <- Cs1],
+ {_,Cs3} = filter_extensions(Cs2),
+ Cs = simplify_element_sets(S, HostType, Cs3),
+ finish_constraints(Cs).
+
+get_real_host_type(HostType, Cs) ->
+ case lists:keyfind(ocft, 1, Cs) of
+ false -> HostType;
+ {_,OCFT} -> HostType#type{def=OCFT}
+ end.
+
+top_level_intersections([{element_set,{intersection,_,_}=C,none}]) ->
+ top_level_intersections_1(C);
+top_level_intersections(Cs) ->
+ Cs.
+
+top_level_intersections_1({intersection,A,B}) ->
+ [{element_set,A,none}|top_level_intersections_1(B)];
+top_level_intersections_1(Other) ->
+ [{element_set,Other,none}].
+
+coalesce_constraints({element_set,
+ {Tag,{element_set,A,_}},
+ {Tag,{element_set,B,_}}}) ->
+ %% (SIZE (C1), ..., (SIZE (C2)) => (SIZE (C1, ..., C2))
+ {element_set,{Tag,{element_set,A,B}},none};
+coalesce_constraints(Other) ->
+ Other.
+
+%% Remove all outermost extensions except the last.
+
+filter_extensions([H0|T0]) ->
+ case filter_extensions(T0) of
+ {true,T} ->
+ H = remove_extension(H0),
+ {true,[H|T]};
+ {false,T} ->
+ {any_extension(H0),[H0|T]}
+ end;
+filter_extensions([]) ->
+ {false,[]}.
+
+remove_extension({element_set,Root,_}) ->
+ {element_set,remove_extension(Root),none};
+remove_extension(Tuple) when is_tuple(Tuple) ->
+ L = [remove_extension(El) || El <- tuple_to_list(Tuple)],
+ list_to_tuple(L);
+remove_extension(Other) -> Other.
+
+any_extension({element_set,_,Ext}) when Ext =/= none ->
+ true;
+any_extension(Tuple) when is_tuple(Tuple) ->
+ any_extension_tuple(1, Tuple);
+any_extension(_) -> false.
+
+any_extension_tuple(I, T) when I =< tuple_size(T) ->
+ any_extension(element(I, T)) orelse any_extension_tuple(I+1, T);
+any_extension_tuple(_, _) -> false.
+
+simplify_element_sets(S, HostType, [{element_set,R0,E0}|T0]) ->
+ R1 = simplify_element_set(S, HostType, R0),
+ E1 = simplify_element_set(S, HostType, E0),
+ case simplify_element_sets(S, HostType, T0) of
+ [{element_set,R2,E2}] ->
+ [{element_set,cs_intersection(S, R1, R2),
+ cs_intersection(S, E1, E2)}];
+ L when is_list(L) ->
+ [{element_set,R1,E1}|L]
+ end;
+simplify_element_sets(S, HostType, [H|T]) ->
+ [H|simplify_element_sets(S, HostType, T)];
+simplify_element_sets(_, _, []) ->
+ [].
+
+simplify_element_set(_S, _HostType, empty) ->
+ {set,[]};
+simplify_element_set(S, HostType, {'SingleValue',Vs0}) when is_list(Vs0) ->
+ Vs1 = [resolve_value(S, HostType, V) || V <- Vs0],
+ Vs = make_constr_set_vs(Vs1),
+ simplify_element_set(S, HostType, Vs);
+simplify_element_set(S, HostType, {'SingleValue',V0}) ->
+ V1 = resolve_value(S, HostType, V0),
+ V = {set,[{range,V1,V1}]},
+ simplify_element_set(S, HostType, V);
+simplify_element_set(S, HostType, {'ValueRange',{Lb0,Ub0}}) ->
+ Lb = resolve_value(S, HostType, Lb0),
+ Ub = resolve_value(S, HostType, Ub0),
+ V = make_constr_set(S, Lb, Ub),
+ simplify_element_set(S, HostType, V);
+simplify_element_set(S, HostType, {'ALL-EXCEPT',Set0}) ->
+ Set = simplify_element_set(S, HostType, Set0),
+ {'ALL-EXCEPT',Set};
+simplify_element_set(S, HostType, {intersection,A0,B0}) ->
+ A = simplify_element_set(S, HostType, A0),
+ B = simplify_element_set(S, HostType, B0),
+ cs_intersection(S, A, B);
+simplify_element_set(S, HostType, {union,A0,B0}) ->
+ A = simplify_element_set(S, HostType, A0),
+ B = simplify_element_set(S, HostType, B0),
+ cs_union(S, A, B);
+simplify_element_set(S, HostType, {simpletable,{element_set,Type,_}}) ->
+ check_simpletable(S, HostType, Type);
+simplify_element_set(S, _, {componentrelation,R,Id}) ->
+ check_componentrelation(S, R, Id);
+simplify_element_set(S, HostType, {Tag,{element_set,_,_}=El0}) ->
+ [El1] = simplify_element_sets(S, HostType, [El0]),
+ {Tag,El1};
+simplify_element_set(S, HostType, #type{}=Type) ->
+ simplify_element_set_type(S, HostType, Type);
+simplify_element_set(_, _, C) ->
+ C.
+
+simplify_element_set_type(S, HostType, #type{def=Def0}=Type0) ->
+ #'Externaltypereference'{} = Def0, %Assertion.
+ case get_referenced_type(S, Def0) of
+ {_,#valuedef{checked=false,value={valueset,Vs0}}} ->
+ [Vs1] = simplify_element_sets(S, HostType, [Vs0]),
+ case Vs1 of
+ {element_set,Set,none} ->
+ Set;
+ {element_set,Set,{set,[]}} ->
+ Set
+ end;
+ {_,{valueset,#type{def=#'Externaltypereference'{}}=Type}} ->
+ simplify_element_set_type(S, HostType, Type);
+ _ ->
+ case HostType of
+ #type{def=#'ObjectClassFieldType'{}} ->
+ %% Open type.
+ #type{def=Def} = check_type(S, HostType, Type0),
+ Def;
+ _ ->
+ #type{constraint=Cs} = check_type(S, HostType, Type0),
+ C = convert_back(Cs),
+ simplify_element_set(S, HostType, C)
+ end
+ end.
+
+convert_back([H1,H2|T]) ->
+ {intersection,H1,convert_back([H2|T])};
+convert_back([H]) ->
+ H;
+convert_back([]) ->
+ none.
+
+check_simpletable(S, HostType, Type) ->
+ case HostType of
+ #type{def=#'ObjectClassFieldType'{}} ->
+ ok;
+ _ ->
+ %% Table constraints may only be applied to
+ %% CLASS.&field constructs.
+ asn1_error(S, illegal_table_constraint)
+ end,
+ Def = case Type of
+ #type{def=D} -> D;
+ {'SingleValue',#'Externalvaluereference'{}=ObjRef} ->
+ ObjRef;
+ _ ->
+ asn1_error(S, invalid_table_constraint)
+ end,
+ C = match_parameter(S, Def),
+ case C of
+ #'Externaltypereference'{} ->
+ ERef = check_externaltypereference(S, C),
+ {simpletable,ERef#'Externaltypereference'.type};
+ #'Externalvaluereference'{} ->
+ %% This is an object set with a referenced object
+ {_,TorVDef} = get_referenced_type(S, C),
+ Set = case TorVDef of
+ #typedef{typespec=#'Object'{classname=ClassName}} ->
+ #'ObjectSet'{class=ClassName,
+ set={'SingleValue',C}};
+ #valuedef{type=#type{def=ClassDef},
+ value=#'Externalvaluereference'{}=Obj} ->
+ %% an object might reference another object
+ #'ObjectSet'{class=ClassDef,
+ set={'SingleValue',Obj}}
+ end,
+ {simpletable,check_object(S, Type, Set)};
+ {'ValueFromObject',{_,Object},FieldNames} ->
+ %% This is an ObjectFromObject.
+ {simpletable,extract_field(S, Object, FieldNames)}
+ end.
+
+check_componentrelation(S, {objectset,Opos,Objset0}, Id) ->
+ %% Objset is an 'Externaltypereference' record, since Objset is
+ %% a DefinedObjectSet.
+ ObjSet = match_parameter(S, Objset0),
+ Ext = check_externaltypereference(S, ObjSet),
+ {componentrelation,{objectset,Opos,Ext},Id}.
+
+%%%
+%%% Internal set representation.
+%%%
+%%% We represent sets as a union of strictly disjoint ranges:
+%%%
+%%% {set,[Range]}
+%%%
+%%% A range is represented as:
+%%%
+%%% Range = {a_range,UpperBound} | {range,LowerBound,UpperBound}
+%%%
+%%% We don't use the atom 'MIN' to represent MIN, because atoms
+%%% compare higher than integer. Instead we use {a_range,UpperBound}
+%%% to represent MIN..UpperBound. We represent MAX as 'MAX' because
+%%% 'MAX' compares higher than any integer.
+%%%
+%%% The ranges are sorted in term order. The ranges must not overlap
+%%% or be adjacent to each other. This invariant is established when
+%%% creating sets, and maintained by the intersection and union
+%%% operators.
+%%%
+%%% Example of invalid set representaions:
+%%%
+%%% [{range,0,10},{range,5,10}] %Overlapping ranges
+%%% [{range,0,5},{range,6,10}] %Adjancent ranges
+%%% [{range,10,20},{a_range,100}] %Not sorted
+%%%
+
+make_constr_set(_, 'MIN', Ub) ->
+ {set,[{a_range,make_constr_set_val(Ub)}]};
+make_constr_set(_, Lb, Ub) when Lb =< Ub ->
+ {set,[{range,make_constr_set_val(Lb),
+ make_constr_set_val(Ub)}]};
+make_constr_set(S, _, _) ->
+ asn1_error(S, reversed_range).
+
+make_constr_set_val([C]) when is_integer(C) -> C;
+make_constr_set_val(Val) -> Val.
+
+make_constr_set_vs(Vs) ->
+ {set,make_constr_set_vs_1(Vs)}.
+
+make_constr_set_vs_1([]) ->
+ [];
+make_constr_set_vs_1([V]) ->
+ [{range,V,V}];
+make_constr_set_vs_1([V0|Vs]) ->
+ V1 = make_constr_set_vs_1(Vs),
+ range_union([{range,V0,V0}], V1).
+
+%%%
+%%% Set operators.
+%%%
+
+cs_intersection(_S, Other, none) ->
+ Other;
+cs_intersection(_S, none, Other) ->
+ Other;
+cs_intersection(_S, {set,SetA}, {set,SetB}) ->
+ {set,range_intersection(SetA, SetB)};
+cs_intersection(_S, A, B) ->
+ {intersection,A,B}.
+
+range_intersection([], []) ->
+ [];
+range_intersection([_|_], []) ->
+ [];
+range_intersection([], [_|_]) ->
+ [];
+range_intersection([H1|_]=A, [H2|_]=B) when H1 > H2 ->
+ range_intersection(B, A);
+range_intersection([H1|T1], [H2|T2]=B) ->
+ %% Now H1 =< H2.
+ case {H1,H2} of
+ {{a_range,Ub0},{a_range,Ub1}} when Ub0 < Ub1 ->
+ %% Ub0 =/= 'MAX'
+ [H1|range_intersection(T1, [{range,Ub0+1,Ub1}|T2])];
+ {{a_range,_},{a_range,_}} ->
+ %% Must be equal.
+ [H1|range_intersection(T1, T2)];
+ {{a_range,Ub0},{range,Lb1,_Ub1}} when Ub0 < Lb1 ->
+ %% No intersection.
+ range_intersection(T1, B);
+ {{a_range,Ub0},{range,Lb1,Ub1}} when Ub0 < Ub1 ->
+ %% Ub0 =/= 'MAX'
+ [{range,Lb1,Ub0}|range_intersection(T1, [{range,Ub0+1,Ub1}|T2])];
+ {{a_range,Ub},{range,_Lb1,Ub}} ->
+ %% The first range covers the second range, but does not
+ %% go beyond. We handle this case specially because Ub may
+ %% be 'MAX', and evaluating 'MAX'+1 will fail.
+ [H2|range_intersection(T1, T2)];
+ {{a_range,Ub0},{range,_Lb1,Ub1}} ->
+ %% Ub0 > Ub1, Ub1 =/= 'MAX'. The first range completely
+ %% covers and extends beyond the second range.
+ [H2|range_intersection([{range,Ub1+1,Ub0}|T1], T2)];
+ {{range,_Lb0,Ub0},{range,Lb1,_Ub1}} when Ub0 < Lb1 ->
+ %% Lb0 < Lb1. No intersection.
+ range_intersection(T1, B);
+ {{range,_Lb0,Ub0},{range,Lb1,Ub1}} when Ub0 < Ub1 ->
+ %% Ub0 >= Lb1, Ub0 =/= 'MAX'. Partial overlap.
+ [{range,Lb1,Ub0}|range_intersection(T1, [{range,Ub0+1,Ub1}|T2])];
+ {{range,_Lb0,Ub},{range,_Lb1,Ub}} ->
+ %% The first range covers the second range, but does not
+ %% go beyond. We handle this case specially because Ub may
+ %% be 'MAX', and evaluating 'MAX'+1 will fail.
+ [H2|range_intersection(T1, T2)];
+ {{range,_Lb0,Ub0},{range,_Lb1,Ub1}} ->
+ %% Ub1 =/= MAX. The first range completely covers and
+ %% extends beyond the second.
+ [H2|range_intersection([{range,Ub1+1,Ub0}|T1], T2)]
+ end.
+
+cs_union(_S, {set,SetA}, {set,SetB}) ->
+ {set,range_union(SetA, SetB)};
+cs_union(_S, A, B) ->
+ {union,A,B}.
+
+range_union(A, B) ->
+ range_union_1(lists:merge(A, B)).
+
+range_union_1([{a_range,Ub0},{a_range,Ub1}|T]) ->
+ range_union_1([{a_range,max(Ub0, Ub1)}|T]);
+range_union_1([{a_range,Ub0},{range,Lb1,Ub1}|T]) when Lb1-1 =< Ub0 ->
+ range_union_1([{a_range,max(Ub0, Ub1)}|T]);
+range_union_1([{a_range,_}=H|T]) ->
+ %% Ranges are disjoint.
+ [H|range_union_1(T)];
+range_union_1([{range,Lb0,Ub0},{range,Lb1,Ub1}|T]) when Lb1-1 =< Ub0 ->
+ range_union_1([{range,Lb0,max(Ub0, Ub1)}|T]);
+range_union_1([{range,_,_}=H|T]) ->
+ %% Ranges are disjoint.
+ [H|range_union_1(T)];
+range_union_1([]) ->
+ [].
+
+%%%
+%%% Finish up constrains, making them suitable for the back-ends.
+%%%
+%%% A 'PermittedAlphabet' (FROM) constraint will be reduced to:
+%%%
+%%% {'SingleValue',[integer()]}
+%%%
+%%% A 'SizeConstraint' (SIZE) constraint will be reduced to:
+%%%
+%%% {Lb,Ub}
+%%%
+%%% All other constraints will be reduced to:
+%%%
+%%% {'SingleValue',[integer()]} | {'ValueRange',Lb,Ub}
+%%%
+
+finish_constraints(Cs) ->
+ finish_constraints_1(Cs, fun smart_collapse/1).
+
+finish_constraints_1([{element_set,{Tag,{element_set,_,_}=Set0},none}|T],
+ Collapse0) ->
+ Collapse = collapse_fun(Tag),
+ case finish_constraints_1([Set0], Collapse) of
+ [] ->
+ finish_constraints_1(T, Collapse0);
+ [Set] ->
+ [{Tag,Set}|finish_constraints_1(T, Collapse0)]
+ end;
+finish_constraints_1([{element_set,{set,[{a_range,'MAX'}]},_}|T], Collapse) ->
+ finish_constraints_1(T, Collapse);
+finish_constraints_1([{element_set,{intersection,A0,B0},none}|T], Collapse) ->
+ A = {element_set,A0,none},
+ B = {element_set,B0,none},
+ finish_constraints_1([A,B|T], Collapse);
+finish_constraints_1([{element_set,Root,Ext}|T], Collapse) ->
+ case finish_constraint(Root, Ext, Collapse) of
+ none ->
+ finish_constraints_1(T, Collapse);
+ Constr ->
+ [Constr|finish_constraints_1(T, Collapse)]
+ end;
+finish_constraints_1([H|T], Collapse) ->
+ [H|finish_constraints_1(T, Collapse)];
+finish_constraints_1([], _) ->
+ [].
+
+finish_constraint({set,Root0}, Ext, Collapse) ->
+ case Collapse(Root0) of
+ none -> none;
+ Root -> finish_constraint(Root, Ext, Collapse)
+ end;
+finish_constraint(Root, Ext, _Collapse) ->
+ case Ext of
+ none -> Root;
+ _ -> {Root,[]}
+ end.
+
+collapse_fun('SizeConstraint') ->
+ fun size_constraint_collapse/1;
+collapse_fun('PermittedAlphabet') ->
+ fun single_value_collapse/1.
+
+single_value_collapse(V) ->
+ {'SingleValue',ordsets:from_list(single_value_collapse_1(V))}.
+
+single_value_collapse_1([{range,Lb,Ub}|T]) when is_integer(Lb),
+ is_integer(Ub) ->
+ lists:seq(Lb, Ub) ++ single_value_collapse_1(T);
+single_value_collapse_1([]) ->
+ [].
-resolve_tuple_or_list(S, HostType, List) when is_list(List) ->
- [resolve_value(S, HostType, X) || X <- List];
-resolve_tuple_or_list(S, HostType, {Lb,Ub}) ->
- {resolve_value(S, HostType, Lb),resolve_value(S, HostType, Ub)}.
+smart_collapse([{a_range,Ub}]) ->
+ {'ValueRange',{'MIN',Ub}};
+smart_collapse([{a_range,_}|T]) ->
+ {range,_,Ub} = lists:last(T),
+ {'ValueRange',{'MIN',Ub}};
+smart_collapse([{range,Lb,Ub}]) ->
+ {'ValueRange',{Lb,Ub}};
+smart_collapse([_|_]=L) ->
+ V = lists:foldr(fun({range,Lb,Ub}, A) ->
+ seq(Lb, Ub) ++ A
+ end, [], L),
+ {'SingleValue',V}.
+
+size_constraint_collapse([{range,0,'MAX'}]) ->
+ none;
+size_constraint_collapse(Root) ->
+ [{range,Lb,_}|_] = Root,
+ {range,_,Ub} = lists:last(Root),
+ {Lb,Ub}.
+
+seq(Same, Same) ->
+ [Same];
+seq(Lb, Ub) when is_integer(Lb), is_integer(Ub) ->
+ lists:seq(Lb, Ub).
%%%-----------------------------------------
%% If the constraint value is a defined value the valuename
@@ -3373,611 +3793,10 @@ resolve_namednumber_1(S, Name, NameList, Type) ->
catch _:_ ->
not_named
end.
-
-check_constraints(S, HostType, [{'ContainedSubtype',Type}|T], Acc) ->
- {RefMod,CTDef} = get_referenced_type(S,Type#type.def),
- NewS = S#state{module=load_asn1_module(S,RefMod),mname=RefMod,
- type=CTDef,tname=get_datastr_name(CTDef)},
- CType = check_type(NewS,S#state.tname,CTDef#typedef.typespec),
- check_constraints(S, HostType, T, CType#type.constraint ++ Acc);
-check_constraints(S, HostType, [C0|T], Acc) ->
- C = check_constraint(S, HostType, C0),
- check_constraints(S, HostType, T, [C|Acc]);
-check_constraints(S, _, [], Acc) ->
- constraint_merge(S,Acc).
-
-
-range_check(F={FixV,FixV}) ->
-% FixV;
- F;
-range_check(VR={Lb,Ub}) when Lb < Ub ->
- VR;
-range_check(Err={_,_}) ->
- throw({error,{asn1,{illegal_size_constraint,Err}}});
-range_check(Value) ->
- Value.
-
-check_constraint(S, _HostType, #'Externaltypereference'{}=Ext) ->
- check_externaltypereference(S, Ext);
-check_constraint(S, HostType, {'SizeConstraint',{Lb,Ub}})
- when is_list(Lb); tuple_size(Lb) =:= 2 ->
- NewLb = range_check(resolve_tuple_or_list(S, HostType, Lb)),
- NewUb = range_check(resolve_tuple_or_list(S, HostType, Ub)),
- {'SizeConstraint',{NewLb,NewUb}};
-check_constraint(S, HostType, {'SizeConstraint',{Lb,Ub}}) ->
- case {resolve_value(S, HostType, Lb),resolve_value(S, HostType, Ub)} of
- {FixV,FixV} ->
- {'SizeConstraint',FixV};
- {Low,High} when Low < High ->
- {'SizeConstraint',{Low,High}};
- Err ->
- throw({error,{asn1,{illegal_size_constraint,Err}}})
- end;
-check_constraint(S, HostType, {'SizeConstraint',Lb}) ->
- {'SizeConstraint',resolve_value(S, HostType, Lb)};
-check_constraint(S, HostType, {'SingleValue', L}) when is_list(L) ->
- F = fun(A) -> resolve_value(S, HostType, A) end,
- {'SingleValue',lists:sort(lists:map(F,L))};
-check_constraint(S, HostType, {'SingleValue', V}) ->
- {'SingleValue',resolve_value(S, HostType, V)};
-check_constraint(S, HostType, {'ValueRange', {Lb, Ub}}) ->
- {'ValueRange',{resolve_value(S, HostType, Lb),
- resolve_value(S, HostType, Ub)}};
-%% In case of a constraint with extension marks like (1..Ub,...)
-check_constraint(S, HostType, {VR={'ValueRange', {_Lb, _Ub}},Rest}) ->
- {check_constraint(S, HostType, VR),Rest};
-check_constraint(_S, _HostType, {'PermittedAlphabet',PA}) ->
- {'PermittedAlphabet',permitted_alphabet_cnstr(PA)};
-check_constraint(S, HostType, {valueset,Type}) ->
- {valueset,check_type(S, #typedef{typespec=HostType}, Type)};
-check_constraint(_S, _HostType, {simpletable,Type}=ST) when is_atom(Type) ->
- %% An already checked constraint
- ST;
-check_constraint(S, HostType, {simpletable,Type}) ->
- Def = case Type of
- #type{def=D} -> D;
- {'SingleValue',ObjRef = #'Externalvaluereference'{}} ->
- ObjRef
- end,
- C = match_parameter(S, Def),
- case C of
- #'Externaltypereference'{} ->
- ERef = check_externaltypereference(S,C),
- {simpletable,ERef#'Externaltypereference'.type};
- {valueset,#type{def=ERef=#'Externaltypereference'{}}} -> % this is an object set
- {_,TDef} = get_referenced_type(S,ERef),
- case TDef#typedef.typespec of
- #'ObjectSet'{} ->
- check_object(S,TDef,TDef#typedef.typespec),
- {simpletable,ERef#'Externaltypereference'.type};
- Err ->
- exit({error,{internal_error,Err}})
- end;
- #'Externalvaluereference'{} ->
- %% This is an object set with a referenced object
- {_,TorVDef} = get_referenced_type(S,C),
- GetObjectSet =
- fun(#typedef{typespec=O}) when is_record(O,'Object') ->
- #'ObjectSet'{class=O#'Object'.classname,
- set={'SingleValue',C}};
- (#valuedef{type=Cl,value=O})
- when is_record(O,'Externalvaluereference'),
- is_record(Cl,type) ->
- %% an object might reference another object
- #'ObjectSet'{class=Cl#type.def,
- set={'SingleValue',O}};
- (Err) ->
- exit({error,{internal_error,simpletable_constraint,Err}})
- end,
- ObjSet = GetObjectSet(TorVDef),
- {simpletable,check_object(S,Type,ObjSet)};
- #'ObjectSet'{} ->
- io:format("ALERT: simpletable forbidden case!~n",[]),
- {simpletable,check_object(S,Type,C)};
- {'ValueFromObject',{_,Object},FieldNames} ->
- %% This is an ObjectFromObject.
- {simpletable,extract_field(S, Object, FieldNames)};
- _ ->
- check_type(S, HostType, Type),%% this seems stupid.
- OSName = Def#'Externaltypereference'.type,
- {simpletable,OSName}
- end;
-check_constraint(S, _HostType, {componentrelation,{objectset,Opos,Objset},Id}) ->
- %% Objset is an 'Externaltypereference' record, since Objset is
- %% a DefinedObjectSet.
- RealObjset = match_parameter(S, Objset),
- ObjSetRef =
- case RealObjset of
- #'Externaltypereference'{} -> RealObjset;
- #type{def=#'Externaltypereference'{}} -> RealObjset#type.def;
- {valueset,OS = #type{def=#'Externaltypereference'{}}} -> OS#type.def
- end,
- Ext = check_externaltypereference(S,ObjSetRef),
- {componentrelation,{objectset,Opos,Ext},Id};
-check_constraint(S, HostType, #type{}=Type) ->
- #type{def=Def} = check_type(S, HostType, Type),
- Def;
-check_constraint(S, HostType, C) when is_list(C) ->
- [check_constraint(S, HostType, X) || X <- C];
-%% else keep the constraint unchanged
-check_constraint(_S, _HostType, Any) ->
- Any.
-
-permitted_alphabet_cnstr(T) when is_tuple(T) ->
- permitted_alphabet_cnstr([T]);
-permitted_alphabet_cnstr(L) when is_list(L) ->
- VRexpand = fun({'ValueRange',{A,B}}) ->
- {'SingleValue',expand_valuerange(A,B)};
- (Other) ->
- Other
- end,
- L2 = lists:map(VRexpand,L),
- %% first perform intersection
- L3 = permitted_alphabet_intersection(L2),
- [Res] = permitted_alphabet_union(L3),
- Res.
-
-expand_valuerange([A],[A]) ->
- [A];
-expand_valuerange([A],[B]) when A < B ->
- [A|expand_valuerange([A+1],[B])].
-
-permitted_alphabet_intersection(C) ->
- permitted_alphabet_merge(C,intersection, []).
-
-permitted_alphabet_union(C) ->
- permitted_alphabet_merge(C,union, []).
-
-permitted_alphabet_merge([],_,Acc) ->
- lists:reverse(Acc);
-permitted_alphabet_merge([{'SingleValue',L1},
- UorI,
- {'SingleValue',L2}|Rest],UorI,Acc)
- when is_list(L1),is_list(L2) ->
- UI = ordsets:UorI([ordsets:from_list(L1),ordsets:from_list(L2)]),
- permitted_alphabet_merge([{'SingleValue',UI}|Rest],UorI,Acc);
-permitted_alphabet_merge([C1|Rest],UorI,Acc) ->
- permitted_alphabet_merge(Rest,UorI,[C1|Acc]).
-
-
-%% constraint_merge/2
-%% Compute the intersection of the outermost level of the constraint list.
-%% See Dubuisson second paragraph and fotnote on page 285.
-%% If constraints with extension are included in combined constraints. The
-%% resulting combination will have the extension of the last constraint. Thus,
-%% there will be no extension if the last constraint is without extension.
-%% The rootset of all constraints are considered in the "outermoust
-%% intersection". See section 13.1.2 in Dubuisson.
-constraint_merge(St, Cs0) ->
- Cs = constraint_merge_1(St, Cs0),
- normalize_cs(Cs).
-
-normalize_cs([{'SingleValue',[V]}|Cs]) ->
- [{'SingleValue',V}|normalize_cs(Cs)];
-normalize_cs([{'SingleValue',[_|_]=L0}|Cs]) ->
- [H|T] = L = lists:usort(L0),
- [case is_range(H, T) of
- false -> {'SingleValue',L};
- true -> {'ValueRange',{H,lists:last(T)}}
- end|normalize_cs(Cs)];
-normalize_cs([{'ValueRange',{Sv,Sv}}|Cs]) ->
- [{'SingleValue',Sv}|normalize_cs(Cs)];
-normalize_cs([{'ValueRange',{'MIN','MAX'}}|Cs]) ->
- normalize_cs(Cs);
-normalize_cs([{'SizeConstraint',C0}|Cs]) ->
- case normalize_size_constraint(C0) of
- none ->
- normalize_cs(Cs);
- C ->
- [{'SizeConstraint',C}|normalize_cs(Cs)]
- end;
-normalize_cs([H|T]) ->
- [H|normalize_cs(T)];
-normalize_cs([]) -> [].
-
-%% Normalize a size constraint to make it non-ambiguous and
-%% easy to interpret for the backends.
-%%
-%% Returns one of the following terms:
-%% {LowerBound,UpperBound}
-%% {{LowerBound,UpperBound},[]} % Extensible
-%% none % Remove size constraint from list
-%%
-%% where:
-%% LowerBound = integer()
-%% UpperBound = integer() | 'MAX'
-
-normalize_size_constraint(Sv) when is_integer(Sv) ->
- {Sv,Sv};
-normalize_size_constraint({Root,Ext}) when is_list(Ext) ->
- {normalize_size_constraint(Root),[]};
-normalize_size_constraint({{_,_},Ext}) when is_integer(Ext) ->
- normalize_size_constraint(Ext);
-normalize_size_constraint([H|T]) ->
- {H,lists:last(T)};
-normalize_size_constraint({0,'MAX'}) ->
- none;
-normalize_size_constraint({Lb,Ub}=Range)
- when is_integer(Lb), is_integer(Ub) orelse Ub =:= 'MAX' ->
- Range.
-
-is_range(Prev, [H|T]) when Prev =:= H - 1 -> is_range(H, T);
-is_range(_, [_|_]) -> false;
-is_range(_, []) -> true.
-
-constraint_merge_1(_S, [H]=C) when is_tuple(H) ->
- C;
-constraint_merge_1(_S, []) ->
- [];
-constraint_merge_1(S, C) ->
- %% skip all extension but the last extension
- C1 = filter_extensions(C),
- %% perform all internal level intersections, intersections first
- %% since they have precedence over unions
- C2 = lists:map(fun(X)when is_list(X)->constraint_intersection(S,X);
- (X) -> X end,
- C1),
- %% perform all internal level unions
- C3 = lists:map(fun(X)when is_list(X)->constraint_union(S,X);
- (X) -> X end,
- C2),
-
- %% now get intersection of the outermost level
- %% get the least common single value constraint
- SVs = get_constraints(C3,'SingleValue'),
- CombSV = intersection_of_sv(S,SVs),
- %% get the least common value range constraint
- VRs = get_constraints(C3,'ValueRange'),
- CombVR = intersection_of_vr(S,VRs),
- %% get the least common size constraint
- SZs = get_constraints(C3,'SizeConstraint'),
- CombSZ = intersection_of_size(S,SZs),
- RestC = ordsets:subtract(ordsets:from_list(C3),
- ordsets:from_list(SZs ++ VRs ++ SVs)),
- %% get the least common combined constraint. That is the union of each
- %% deep constraint and merge of single value and value range constraints.
- %% FIXME: Removing 'intersection' from the flattened list essentially
- %% means that intersections are converted to unions!
- Cs = combine_constraints(S, CombSV, CombVR, CombSZ++RestC),
- [X || X <- lists:flatten(Cs),
- X =/= intersection,
- X =/= union].
-
-%% constraint_union(S,C) takes a list of constraints as input and
-%% merge them to a union. Unions are performed when two
-%% constraints is found with an atom union between.
-%% The list may be nested. Fix that later !!!
-constraint_union(_S,[]) ->
- [];
-constraint_union(_S,C=[_E]) ->
- C;
-constraint_union(S,C) when is_list(C) ->
- case lists:member(union,C) of
- true ->
- constraint_union1(S,C,[]);
- _ ->
- C
- end;
-% SV = get_constraints(C,'SingleValue'),
-% SV1 = constraint_union_sv(S,SV),
-% VR = get_constraints(C,'ValueRange'),
-% VR1 = constraint_union_vr(VR),
-% RestC = ordsets:filter(fun({'SingleValue',_})->false;
-% ({'ValueRange',_})->false;
-% (_) -> true end,ordsets:from_list(C)),
-% SV1++VR1++RestC;
-constraint_union(_S,C) ->
- [C].
-
-constraint_union1(S, [{'ValueRange',{Lb1,Ub1}},union,
- {'ValueRange',{Lb2,Ub2}}|Rest], Acc) ->
- AunionB = {'ValueRange',{c_min(Lb1, Lb2),max(Ub1, Ub2)}},
- constraint_union1(S, [AunionB|Rest], Acc);
-constraint_union1(S,[A={'SingleValue',_},union,B={'SingleValue',_}|Rest],Acc) ->
- AunionB = constraint_union_sv(S,[A,B]),
- constraint_union1(S,Rest,Acc ++ AunionB);
-constraint_union1(S,[A={'SingleValue',_},union,B={'ValueRange',_}|Rest],Acc) ->
- AunionB = union_sv_vr(S,A,B),
- constraint_union1(S, AunionB++Rest, Acc);
-constraint_union1(S,[A={'ValueRange',_},union,B={'SingleValue',_}|Rest],Acc) ->
- AunionB = union_sv_vr(S,B,A),
- constraint_union1(S, AunionB++Rest, Acc);
-constraint_union1(S,[union|Rest],Acc) -> %skip when unsupported constraints
- constraint_union1(S,Rest,Acc);
-constraint_union1(S,[A|Rest],Acc) ->
- constraint_union1(S,Rest,[A|Acc]);
-constraint_union1(_S,[],Acc) ->
- Acc.
-
-constraint_union_sv(_S,SV) ->
- Values=lists:map(fun({_,V})->V end,SV),
- case ordsets:from_list(Values) of
- [] -> [];
- [N] -> [{'SingleValue',N}];
- L -> [{'SingleValue',L}]
- end.
-c_min('MIN', _) -> 'MIN';
-c_min(_, 'MIN') -> 'MIN';
-c_min(A, B) -> min(A, B).
-
-union_sv_vr(_S,{'SingleValue',SV},VR)
- when is_integer(SV) ->
- union_sv_vr(_S,{'SingleValue',[SV]},VR);
-union_sv_vr(_S,{'SingleValue',SV},{'ValueRange',{VLb,VUb}})
- when is_list(SV) ->
- L = lists:sort(SV++[VLb,VUb]),
- {Lb,L1} = case lists:member('MIN',L) of
- true -> {'MIN',L--['MIN']}; % remove 'MIN' so it does not disturb
- false -> {hd(L),tl(L)}
- end,
- Ub = case lists:member('MAX',L1) of
- true -> 'MAX';
- false -> lists:last(L1)
- end,
- case SV of
- [H] -> H;
- _ -> SV
- end,
- %% for now we through away the Singlevalues so that they don't disturb
- %% in the code generating phase (the effective Valuerange is already
- %% calculated. If we want to keep the Singlevalues as well for
- %% use in code gen phases we need to introduce a new representation
- %% like {'ValueRange',{Lb,Ub},[ListOfRanges|AntiValues|Singlevalues]
- %% These could be used to generate guards which allows only the specific
- %% values , not the full range
- [{'ValueRange',{Lb,Ub}}].
-
-
-%% get_constraints/2
-%% Arguments are a list of constraints, which has the format {key,value},
-%% and a constraint type
-%% Returns a list of constraints only of the requested type or the atom
-%% 'no' if no such constraints were found
-get_constraints(L=[{CType,_}],CType) ->
- L;
-get_constraints(C,CType) ->
- keysearch_allwithkey(CType,1,C).
-
-%% keysearch_allwithkey(Key,Ix,L)
-%% Types:
-%% Key = is_atom()
-%% Ix = integer()
-%% L = [TwoTuple]
-%% TwoTuple = [{atom(),term()}|...]
-%% Returns a List that contains all
-%% elements from L that has a key Key as element Ix
-keysearch_allwithkey(Key,Ix,L) ->
- lists:filter(fun(X) when is_tuple(X) ->
- case element(Ix,X) of
- Key -> true;
- _ -> false
- end;
- (_) -> false
- end, L).
-
-
-%% filter_extensions(C)
-%% takes a list of constraints as input and returns a list with the
-%% constraints and all extensions but the last are removed.
-filter_extensions([L]) when is_list(L) ->
- [filter_extensions(L)];
-filter_extensions(C=[_H]) ->
- C;
-filter_extensions(C) when is_list(C) ->
- filter_extensions(C,[], []).
-
-filter_extensions([],Acc,[]) ->
- Acc;
-filter_extensions([],Acc,[EC|ExtAcc]) ->
- CwoExt = remove_extension(ExtAcc,[]),
- CwoExt ++ [EC|Acc];
-filter_extensions([C={A,_E}|T],Acc,ExtAcc) when is_tuple(A) ->
- filter_extensions(T,Acc,[C|ExtAcc]);
-filter_extensions([C={'SizeConstraint',{A,_B}}|T],Acc,ExtAcc)
- when is_list(A);is_tuple(A) ->
- filter_extensions(T,Acc,[C|ExtAcc]);
-filter_extensions([C={'PermittedAlphabet',{{'SingleValue',_},E}}|T],Acc,ExtAcc)
- when is_tuple(E); is_list(E) ->
- filter_extensions(T,Acc,[C|ExtAcc]);
-filter_extensions([H|T],Acc,ExtAcc) ->
- filter_extensions(T,[H|Acc],ExtAcc).
-
-remove_extension([],Acc) ->
- Acc;
-remove_extension([{'SizeConstraint',{A,_B}}|R],Acc) ->
- remove_extension(R,[{'SizeConstraint',A}|Acc]);
-remove_extension([{C,_E}|R],Acc) when is_tuple(C) ->
- remove_extension(R,[C|Acc]);
-remove_extension([{'PermittedAlphabet',{A={'SingleValue',_},
- E}}|R],Acc)
- when is_tuple(E);is_list(E) ->
- remove_extension(R,[{'PermittedAlphabet',A}|Acc]).
-
-%% constraint_intersection(S,C) takes a list of constraints as input and
-%% performs intersections. Intersecions are performed when an
-%% atom intersection is found between two constraints.
-%% The list may be nested. Fix that later !!!
-constraint_intersection(_S,[]) ->
- [];
-constraint_intersection(_S,C=[_E]) ->
- C;
-constraint_intersection(S,C) when is_list(C) ->
-% io:format("constraint_intersection: ~p~n",[C]),
- case lists:member(intersection,C) of
- true ->
- constraint_intersection1(S,C,[]);
- _ ->
- C
- end;
-constraint_intersection(_S,C) ->
- [C].
-
-constraint_intersection1(S,[A,intersection,B|Rest],Acc) ->
- AisecB = c_intersect(S,A,B),
- constraint_intersection1(S, AisecB++Rest, Acc);
-constraint_intersection1(S,[A|Rest],Acc) ->
- constraint_intersection1(S,Rest,[A|Acc]);
-constraint_intersection1(_, [], [C]) ->
- C;
-constraint_intersection1(_,[],Acc) ->
- lists:reverse(Acc).
-
-c_intersect(S,C1={'SingleValue',_},C2={'SingleValue',_}) ->
- intersection_of_sv(S,[C1,C2]);
-c_intersect(S,C1={'ValueRange',_},C2={'ValueRange',_}) ->
- intersection_of_vr(S,[C1,C2]);
-c_intersect(S,C1={'ValueRange',_},C2={'SingleValue',_}) ->
- intersection_sv_vr(S,[C2],[C1]);
-c_intersect(S,C1={'SingleValue',_},C2={'ValueRange',_}) ->
- intersection_sv_vr(S,[C1],[C2]);
-c_intersect(_S,C1,C2) ->
- [C1,C2].
-
-%% combine_constraints(S,SV,VR,CComb)
-%% Types:
-%% S = is_record(state,S)
-%% SV = [] | [SVC]
-%% VR = [] | [VRC]
-%% CComb = [] | [Lists]
-%% SVC = {'SingleValue',integer()} | {'SingleValue',[integer(),...]}
-%% VRC = {'ValueRange',{Lb,Ub}}
-%% Lists = List of lists containing any constraint combination
-%% Lb = 'MIN' | integer()
-%% Ub = 'MAX' | integer()
-%% Returns a combination of the least common constraint among SV,VR and all
-%% elements in CComb
-combine_constraints(_S,[],VR,CComb) ->
- VR ++ CComb;
-% combine_combined_cnstr(S,VR,CComb);
-combine_constraints(_S,SV,[],CComb) ->
- SV ++ CComb;
-% combine_combined_cnstr(S,SV,CComb);
-combine_constraints(S,SV,VR,CComb) ->
- C=intersection_sv_vr(S,SV,VR),
- C ++ CComb.
-% combine_combined_cnstr(S,C,CComb).
-
-intersection_sv_vr(_S,[C1={'SingleValue',SV}],[C2={'ValueRange',{_Lb,_Ub}}])
- when is_integer(SV) ->
- case is_int_in_vr(SV,C2) of
- true -> [C1];
- _ -> %%error({type,{"asn1 illegal constraint",C1,C2},S})
- %throw({error,{"asn1 illegal constraint",C1,C2}})
- %io:format("warning: could not analyze constraint ~p~n",[[C1,C2]]),
- [C1,C2]
- end;
-intersection_sv_vr(_S,[C1={'SingleValue',SV}],[C2])
- when is_list(SV) ->
- case lists:filter(fun(X)->is_int_in_vr(X,C2) end,SV) of
- [] ->
- %%error({type,{"asn1 illegal constraint",C1,C2},S});
- %throw({error,{"asn1 illegal constraint",C1,C2}});
- %io:format("warning: could not analyze constraint ~p~n",[[C1,C2]]),
- [C1,C2];
- [V] -> [{'SingleValue',V}];
- L -> [{'SingleValue',L}]
- end.
-
-
-%% Size constraint [{'SizeConstraint',1},{'SizeConstraint',{{1,64},[]}}]
-intersection_of_size(_,[]) ->
- [];
-intersection_of_size(_,C=[_SZ]) ->
- C;
-intersection_of_size(S,[SZ,SZ|Rest]) ->
- intersection_of_size(S,[SZ|Rest]);
-intersection_of_size(S,C=[C1={_,Int},{_,Range}|Rest])
- when is_integer(Int),is_tuple(Range) ->
- case Range of
- {Lb,Ub} when Int >= Lb,
- Int =< Ub ->
- intersection_of_size(S,[C1|Rest]);
- {{Lb,Ub},Ext} when is_list(Ext),Int >= Lb,Int =< Ub ->
- intersection_of_size(S,[C1|Rest]);
- _ ->
- throw({error,{asn1,{illegal_size_constraint,C}}})
- end;
-intersection_of_size(S,[C1={_,Range},C2={_,Int}|Rest])
- when is_integer(Int),is_tuple(Range) ->
- intersection_of_size(S,[C2,C1|Rest]);
-intersection_of_size(S,[{_,{Lb1,Ub1}},{_,{Lb2,Ub2}}|Rest]) ->
- Lb=greatest_LB(ordsets:from_list([Lb1,Lb2])),
- Ub=smallest_UB(ordsets:from_list([Ub1,Ub2])),
- intersection_of_size(S,[{'SizeConstraint',{Lb,Ub}}|Rest]);
-intersection_of_size(_,SZ) ->
- throw({error,{asn1,{illegal_size_constraint,SZ}}}).
-
-intersection_of_vr(_,[]) ->
- [];
-intersection_of_vr(_,VR=[_C]) ->
- VR;
-intersection_of_vr(S,[{_,{Lb1,Ub1}},{_,{Lb2,Ub2}}|Rest]) ->
- Lb=greatest_LB(ordsets:from_list([Lb1,Lb2])),
- Ub=smallest_UB(ordsets:from_list([Ub1,Ub2])),
- intersection_of_vr(S,[{'ValueRange',{Lb,Ub}}|Rest]);
-intersection_of_vr(_S,VR) ->
- %%error({type,{asn1,{illegal_value_range_constraint,VR}},S});
- throw({error,{asn1,{illegal_value_range_constraint,VR}}}).
-
-intersection_of_sv(_,[]) ->
- [];
-intersection_of_sv(_,SV=[_C]) ->
- SV;
-intersection_of_sv(S,[SV,SV|Rest]) ->
- intersection_of_sv(S,[SV|Rest]);
-intersection_of_sv(S,[{_,Int},{_,SV}|Rest]) when is_integer(Int),
- is_list(SV) ->
- SV2=intersection_of_sv1(S,Int,SV),
- intersection_of_sv(S,[SV2|Rest]);
-intersection_of_sv(S,[{_,SV},{_,Int}|Rest]) when is_integer(Int),
- is_list(SV) ->
- SV2=intersection_of_sv1(S,Int,SV),
- intersection_of_sv(S,[SV2|Rest]);
-intersection_of_sv(S,[{_,SV1},{_,SV2}|Rest]) when is_list(SV1),
- is_list(SV2) ->
- SV3=common_set(SV1,SV2),
- intersection_of_sv(S,[SV3|Rest]);
-intersection_of_sv(_S,SV) ->
- %%error({type,{asn1,{illegal_single_value_constraint,SV}},S}).
- throw({error,{asn1,{illegal_single_value_constraint,SV}}}).
-
-intersection_of_sv1(_S,Int,SV) when is_integer(Int),is_list(SV) ->
- case lists:member(Int,SV) of
- true -> {'SingleValue',Int};
- _ ->
- %%error({type,{asn1,{illegal_single_value_constraint,Int,SV}},S})
- throw({error,{asn1,{illegal_single_value_constraint,Int,SV}}})
- end;
-intersection_of_sv1(_S,SV1,SV2) ->
- %%error({type,{asn1,{illegal_single_value_constraint,SV1,SV2}},S}).
- throw({error,{asn1,{illegal_single_value_constraint,SV1,SV2}}}).
-
-greatest_LB([H]) ->
- H;
-greatest_LB(L) ->
- greatest_LB1(lists:reverse(L)).
-greatest_LB1(['MIN',H2|_T])->
- H2;
-greatest_LB1([H|_T]) ->
- H.
-smallest_UB(L) ->
- hd(L).
-
-common_set(SV1,SV2) ->
- lists:filter(fun(X)->lists:member(X,SV1) end,SV2).
-
-is_int_in_vr(Int,{_,{'MIN','MAX'}}) when is_integer(Int) ->
- true;
-is_int_in_vr(Int,{_,{'MIN',Ub}}) when is_integer(Int),Int =< Ub ->
- true;
-is_int_in_vr(Int,{_,{Lb,'MAX'}}) when is_integer(Int),Int >= Lb ->
- true;
-is_int_in_vr(Int,{_,{Lb,Ub}}) when is_integer(Int),Int >= Lb,Int =< Ub ->
- true;
-is_int_in_vr(_,_) ->
- false.
-
+%%%
+%%% End of constraint handling.
+%%%
check_imported(S,Imodule,Name) ->
check_imported(S,Imodule,Name,false).
@@ -4311,6 +4130,8 @@ match_parameter(#state{parameters=Ps}=S, Name) ->
match_parameter(_S, Name, []) ->
Name;
+match_parameter(S, {valueset,{element_set,#type{}=Ts,none}}, Ps) ->
+ match_parameter(S, {valueset,Ts}, Ps);
match_parameter(_S, #'Externaltypereference'{type=Name},
[{#'Externaltypereference'{type=Name},NewName}|_T]) ->
NewName;
@@ -4523,13 +4344,11 @@ iof_associated_type1(S,C) ->
%% returns the leading attribute, the constraint of the components and
%% the tablecinf value for the second component.
-instance_of_constraints(S, Constr) ->
- case lists:keyfind(simpletable, 1, Constr) of
- false ->
- {false,[],[],[]};
- {simpletable,Type} ->
- instance_of_constraints_1(S, Type)
- end.
+instance_of_constraints(_, []) ->
+ {false,[],[],[]};
+instance_of_constraints(S, [{element_set,{simpletable,C},none}]) ->
+ {element_set,Type,none} = C,
+ instance_of_constraints_1(S, Type).
instance_of_constraints_1(S, Type) ->
#type{def=#'Externaltypereference'{type=Name}} = Type,
@@ -6064,49 +5883,6 @@ merge_tags2([H|T],Acc) ->
merge_tags2([], Acc) ->
lists:reverse(Acc).
-%% merge_constraints(C1, []) ->
-%% C1;
-%% merge_constraints([], C2) ->
-%% C2;
-%% merge_constraints(C1, C2) ->
-%% {SList,VList,PAList,Rest} = splitlist(C1++C2,[],[],[],[]),
-%% SizeC = merge_constraints(SList),
-%% ValueC = merge_constraints(VList),
-%% PermAlphaC = merge_constraints(PAList),
-%% case Rest of
-%% [] ->
-%% SizeC ++ ValueC ++ PermAlphaC;
-%% _ ->
-%% throw({error,{asn1,{not_implemented,{merge_constraints,Rest}}}})
-%% end.
-
-%% merge_constraints([]) -> [];
-%% merge_constraints([C1 = {_,{Low1,High1}},{_,{Low2,High2}}|Rest]) when Low1 >= Low2,
-%% High1 =< High2 ->
-%% merge_constraints([C1|Rest]);
-%% merge_constraints([C1={'PermittedAlphabet',_},C2|Rest]) ->
-%% [C1|merge_constraints([C2|Rest])];
-%% merge_constraints([C1 = {_,{_Low1,_High1}},C2 = {_,{_Low2,_High2}}|_Rest]) ->
-%% throw({error,asn1,{conflicting_constraints,{C1,C2}}});
-%% merge_constraints([C]) ->
-%% [C].
-
-%% splitlist([C={'SizeConstraint',_}|Rest],Sacc,Vacc,PAacc,Restacc) ->
-%% splitlist(Rest,[C|Sacc],Vacc,PAacc,Restacc);
-%% splitlist([C={'ValueRange',_}|Rest],Sacc,Vacc,PAacc,Restacc) ->
-%% splitlist(Rest,Sacc,[C|Vacc],PAacc,Restacc);
-%% splitlist([C={'PermittedAlphabet',_}|Rest],Sacc,Vacc,PAacc,Restacc) ->
-%% splitlist(Rest,Sacc,Vacc,[C|PAacc],Restacc);
-%% splitlist([C|Rest],Sacc,Vacc,PAacc,Restacc) ->
-%% splitlist(Rest,Sacc,Vacc,PAacc,[C|Restacc]);
-%% splitlist([],Sacc,Vacc,PAacc,Restacc) ->
-%% {lists:reverse(Sacc),
-%% lists:reverse(Vacc),
-%% lists:reverse(PAacc),
-%% lists:reverse(Restacc)}.
-
-
-
storeindb(S,M) when is_record(M,module) ->
TVlist = M#module.typeorval,
NewM = M#module{typeorval=findtypes_and_values(TVlist)},
@@ -6208,12 +5984,16 @@ format_error(illegal_octet_string_value) ->
"expecting a bstring or an hstring as value for an OCTET STRING";
format_error({illegal_typereference,Name}) ->
io_lib:format("'~p' is used as a typereference, but does not start with an uppercase letter", [Name]);
+format_error(illegal_table_constraint) ->
+ "table constraints may only be applied to CLASS.&field constructs";
format_error(illegal_value) ->
"expected a value";
format_error({invalid_fields,Fields,Obj}) ->
io_lib:format("invalid ~s in ~p", [format_fields(Fields),Obj]);
format_error({invalid_bit_number,Bit}) ->
io_lib:format("the bit number '~p' is invalid", [Bit]);
+format_error(invalid_table_constraint) ->
+ "the table constraint is not an object set";
format_error({missing_mandatory_fields,Fields,Obj}) ->
io_lib:format("missing mandatory ~s in ~p",
[format_fields(Fields),Obj]);
@@ -6224,6 +6004,8 @@ format_error({missing_ocft,Component}) ->
io_lib:format("the component '~s' must be an ObjectClassFieldType (CLASSNAME.&field-name)", [Component]);
format_error({namelist_redefinition,Name}) ->
io_lib:format("the name '~s' can not be redefined", [Name]);
+format_error(reversed_range) ->
+ "ranges must be given in increasing order";
format_error({syntax_duplicated_fields,Fields}) ->
io_lib:format("~s must only occur once in the syntax list",
[format_fields(Fields)]);
diff --git a/lib/asn1/src/asn1ct_imm.erl b/lib/asn1/src/asn1ct_imm.erl
index bdd14871d1..4f528b6f95 100644
--- a/lib/asn1/src/asn1ct_imm.erl
+++ b/lib/asn1/src/asn1ct_imm.erl
@@ -499,6 +499,8 @@ per_dec_enumerated_fix_list([], Tail, _) -> Tail.
per_dec_integer_1([{'SingleValue',Value}], _Aligned) ->
{value,Value};
+per_dec_integer_1([{'ValueRange',{'MIN',_}}], Aligned) ->
+ per_dec_unconstrained(Aligned);
per_dec_integer_1([{'ValueRange',{Lb,'MAX'}}], Aligned) when is_integer(Lb) ->
per_decode_semi_constrained(Lb, Aligned);
per_dec_integer_1([{'ValueRange',{Lb,Ub}}], Aligned) when is_integer(Lb),
@@ -1094,6 +1096,9 @@ per_enc_integer_1(Val0, [Constr], Aligned) ->
per_enc_integer_2(Val, {'SingleValue',Sv}, Aligned) when is_integer(Sv) ->
per_enc_constrained(Val, Sv, Sv, Aligned);
+per_enc_integer_2(Val, {'ValueRange',{'MIN',Ub}}, Aligned)
+ when is_integer(Ub) ->
+ {[],{lt,Val,Ub+1},per_enc_unconstrained(Val, Aligned)};
per_enc_integer_2(Val0, {'ValueRange',{Lb,'MAX'}}, Aligned)
when is_integer(Lb) ->
{Prefix,Val} = sub_lb(Val0, Lb),
diff --git a/lib/asn1/src/asn1ct_parser2.erl b/lib/asn1/src/asn1ct_parser2.erl
index 9b2fc0b046..c19811ea49 100644
--- a/lib/asn1/src/asn1ct_parser2.erl
+++ b/lib/asn1/src/asn1ct_parser2.erl
@@ -655,7 +655,8 @@ parse_TypeWithConstraint([{'SEQUENCE',_},Lpar = {'(',_}|Rest]) ->
parse_TypeWithConstraint([{'SEQUENCE',_},{'SIZE',_},Lpar = {'(',_}|Rest]) ->
{Constraint,Rest2} = parse_Constraint([Lpar|Rest]),
#constraint{c=C} = Constraint,
- Constraint2 = Constraint#constraint{c={'SizeConstraint',C}},
+ Constraint2 = Constraint#constraint{c={element_set,{'SizeConstraint',C},
+ none}},
Rest4 = case Rest2 of
[{'OF',_}, {identifier,_,_Id}|Rest3] ->
%%% TODO: make some use of the identifier, maybe useful in the XML mapping
@@ -689,7 +690,8 @@ parse_TypeWithConstraint([{'SET',_},Lpar = {'(',_}|Rest]) ->
parse_TypeWithConstraint([{'SET',_},{'SIZE',_},Lpar = {'(',_}|Rest]) ->
{Constraint,Rest2} = parse_Constraint([Lpar|Rest]),
#constraint{c=C} = Constraint,
- Constraint2 = Constraint#constraint{c={'SizeConstraint',C}},
+ Constraint2 = Constraint#constraint{c={element_set,
+ {'SizeConstraint',C},none}},
Rest4 = case Rest2 of
[{'OF',_}, {identifier,_,_Id}|Rest3] ->
%%% TODO: make some use of the identifier, maybe useful in the XML mapping
@@ -876,19 +878,16 @@ parse_TypeColonValue(Tokens) ->
parse_SubtypeConstraint(Tokens) ->
parse_ElementSetSpecs(Tokens).
-parse_ElementSetSpecs([{'...',_}|Rest]) ->
- {Elements,Rest2} = parse_ElementSetSpec(Rest),
- {{[],Elements},Rest2};
parse_ElementSetSpecs(Tokens) ->
{RootElems,Rest} = parse_ElementSetSpec(Tokens),
case Rest of
[{',',_},{'...',_},{',',_}|Rest2] ->
{AdditionalElems,Rest3} = parse_ElementSetSpec(Rest2),
- {{RootElems,AdditionalElems},Rest3};
+ {{element_set,RootElems,AdditionalElems},Rest3};
[{',',_},{'...',_}|Rest2] ->
- {{RootElems,[]},Rest2};
+ {{element_set,RootElems,empty},Rest2};
_ ->
- {RootElems,Rest}
+ {{element_set,RootElems,none},Rest}
end.
parse_ElementSetSpec([{'ALL',_},{'EXCEPT',_}|Rest]) ->
@@ -909,14 +908,8 @@ parse_Unions(Tokens) ->
case {InterSec,Unions} of
{InterSec,[]} ->
{InterSec,Rest2};
- {{'SingleValue',V1},{'SingleValue',V2}} ->
- {{'SingleValue',ordsets:union(to_set(V1),to_set(V2))},Rest2};
- {V1,V2} when is_list(V2) ->
- {[V1] ++ [union|V2],Rest2};
{V1,V2} ->
- {[V1,union,V2],Rest2}
-% Other ->
-% throw(Other)
+ {{union,V1,V2},Rest2}
end.
parse_UnionsRec([{'|',_}|Rest]) ->
@@ -925,12 +918,8 @@ parse_UnionsRec([{'|',_}|Rest]) ->
case {InterSec,URec} of
{V1,[]} ->
{V1,Rest3};
- {{'SingleValue',V1},{'SingleValue',V2}} ->
- {{'SingleValue',ordsets:union(to_set(V1),to_set(V2))},Rest3};
- {V1,V2} when is_list(V2) ->
- {[V1] ++ [union|V2],Rest3};
{V1,V2} ->
- {[V1,union,V2],Rest3}
+ {{union,V1,V2},Rest3}
end;
parse_UnionsRec([{'UNION',Info}|Rest]) ->
parse_UnionsRec([{'|',Info}|Rest]);
@@ -943,13 +932,8 @@ parse_Intersections(Tokens) ->
case {InterSec,IRec} of
{V1,[]} ->
{V1,Rest2};
- {{'SingleValue',V1},{'SingleValue',V2}} ->
- {{'SingleValue',
- ordsets:intersection(to_set(V1),to_set(V2))},Rest2};
- {V1,V2} when is_list(V2) ->
- {[V1] ++ [intersection|V2],Rest2};
{V1,V2} ->
- {[V1,intersection,V2],Rest2}
+ {{intersection,V1,V2},Rest2}
end.
%% parse_IElemsRec(Tokens) -> Result
@@ -958,15 +942,10 @@ parse_IElemsRec([{'^',_}|Rest]) ->
{InterSec,Rest2} = parse_IntersectionElements(Rest),
{IRec,Rest3} = parse_IElemsRec(Rest2),
case {InterSec,IRec} of
- {{'SingleValue',V1},{'SingleValue',V2}} ->
- {{'SingleValue',
- ordsets:intersection(to_set(V1),to_set(V2))},Rest3};
{V1,[]} ->
- {V1,Rest3};
- {V1,V2} when is_list(V2) ->
- {[V1] ++ [intersection|V2],Rest3};
+ {V1,Rest2};
{V1,V2} ->
- {[V1,intersection,V2],Rest3}
+ {{intersection,V1,V2},Rest3}
end;
parse_IElemsRec([{'INTERSECTION',Info}|Rest]) ->
parse_IElemsRec([{'^',Info}|Rest]);
@@ -1589,14 +1568,11 @@ parse_ObjectSet(Tokens) ->
throw({asn1_error,{get_line(hd(Tokens)),get(asn1_module),
[got,get_token(hd(Tokens)),expected,'{']}}).
-parse_ObjectSetSpec([{'...',_}|Rest]) ->
- case Rest of
- [{',',_}|Rest2] ->
- {Elements,Rest3}=parse_ElementSetSpecs(Rest2),
- {{[],Elements},Rest3};
- _ ->
- {['EXTENSIONMARK'],Rest}
- end;
+parse_ObjectSetSpec([{'...',_},{',',_}|Tokens0]) ->
+ {Elements,Tokens} = parse_ElementSetSpec(Tokens0),
+ {{element_set,empty,Elements},Tokens};
+parse_ObjectSetSpec([{'...',_}|Tokens]) ->
+ {{element_set,empty,empty},Tokens};
parse_ObjectSetSpec(Tokens) ->
parse_ElementSetSpecs(Tokens).
@@ -1885,7 +1861,7 @@ parse_TableConstraint(Tokens) ->
parse_SimpleTableConstraint(Tokens) ->
{ObjectSet,Rest} = parse_ObjectSet(Tokens),
- {{simpletable,ObjectSet},Rest}.
+ {{element_set,{simpletable,ObjectSet},none},Rest}.
parse_ComponentRelationConstraint([{'{',_}|Rest]) ->
{ObjectSet,Rest2} = parse_DefinedObjectSet(Rest),
@@ -1894,7 +1870,10 @@ parse_ComponentRelationConstraint([{'{',_}|Rest]) ->
{AtNot,Rest4} = parse_AtNotationList(Rest3,[]),
case Rest4 of
[{'}',_}|Rest5] ->
- {{componentrelation,ObjectSet,AtNot},Rest5};
+ Ret = {element_set,
+ {componentrelation,ObjectSet,AtNot},
+ none},
+ {Ret,Rest5};
[H|_T] ->
throw({asn1_error,{get_line(H),get(asn1_module),
[got,get_token(H),expected,'}']}})
@@ -2333,12 +2312,6 @@ check_rest([]) ->
check_rest(_) ->
false.
-
-to_set(V) when is_list(V) ->
- ordsets:from_list(V);
-to_set(V) ->
- ordsets:from_list([V]).
-
parse_AlternativeTypeLists(Tokens) ->
parse_AlternativeTypeLists(Tokens,[]).
@@ -3062,95 +3035,20 @@ parse_PresenceConstraint(Tokens) ->
{asn1_empty,Tokens}.
-% merge_constraints({Rlist,ExtList}) -> % extensionmarker in constraint
-% {merge_constraints(Rlist,[],[]),
-% merge_constraints(ExtList,[],[])};
-
-%% An arg with a constraint with extension marker will look like
-%% [#constraint{c={Root,Ext}}|Rest]
-
merge_constraints(Clist) ->
merge_constraints(Clist, [], []).
-merge_constraints([Ch|Ct],Cacc, Eacc) ->
- NewEacc = case Ch#constraint.e of
- undefined -> Eacc;
- E -> [E|Eacc]
- end,
- merge_constraints(Ct,[fixup_constraint(Ch#constraint.c)|Cacc],NewEacc);
-
-merge_constraints([],Cacc,[]) ->
-%% lists:flatten(Cacc);
+merge_constraints([#constraint{c=C,e=E}|T], Cacc0, Eacc0) ->
+ Eacc = case E of
+ undefined -> Eacc0;
+ E -> [E|Eacc0]
+ end,
+ Cacc = [C|Cacc0],
+ merge_constraints(T, Cacc, Eacc);
+merge_constraints([], Cacc, []) ->
lists:reverse(Cacc);
-merge_constraints([],Cacc,Eacc) ->
-%% lists:flatten(Cacc) ++ [{'Errors',Eacc}].
- lists:reverse(Cacc) ++ [{'Errors',Eacc}].
-
-
-fixup_constraint(C) ->
- case C of
- {'SingleValue',SubType} when element(1,SubType) == 'ContainedSubtype' ->
- SubType;
- {'SingleValue',V} when is_list(V) ->
- C;
- %% [C,{'ValueRange',{lists:min(V),lists:max(V)}}];
- %% bug, turns wrong when an element in V is a reference to a defined value
- {'PermittedAlphabet',{'SingleValue',V}} when is_list(V) ->
- %%sort and remove duplicates
- V2 = {'SingleValue',
- ordsets:from_list(lists:flatten(V))},
- {'PermittedAlphabet',V2};
- {'PermittedAlphabet',{'SingleValue',V}} ->
- V2 = {'SingleValue',[V]},
- {'PermittedAlphabet',V2};
- {'SizeConstraint',Sc} ->
- {'SizeConstraint',fixup_size_constraint(Sc)};
-
- List when is_list(List) -> %% In This case maybe a union or intersection
- [fixup_constraint(Xc)||Xc <- List];
- Other ->
- Other
- end.
-
-fixup_size_constraint({'ValueRange',{Lb,Ub}}) ->
- {Lb,Ub};
-fixup_size_constraint({{'ValueRange',R},[]}) ->
- {R,[]};
-fixup_size_constraint({[],{'ValueRange',R}}) ->
- {[],R};
-fixup_size_constraint({{'ValueRange',R1},{'ValueRange',R2}}) ->
- {R1,R2};
-fixup_size_constraint({'SingleValue',[Sv]}) ->
- fixup_size_constraint({'SingleValue',Sv});
-fixup_size_constraint({'SingleValue',L}) when is_list(L) ->
- ordsets:from_list(L);
-fixup_size_constraint({'SingleValue',L}) ->
- {L,L};
-fixup_size_constraint({'SizeConstraint',C}) ->
- %% this is a second SIZE
- fixup_size_constraint(C);
-fixup_size_constraint({C1,C2}) ->
- %% this is with extension marks
- {turn2vr(fixup_size_constraint(C1)), extension_size(fixup_size_constraint(C2))};
-fixup_size_constraint(CList) when is_list(CList) ->
- [fixup_constraint(Xc)||Xc <- CList].
-
-turn2vr(L) when is_list(L) ->
- L2 =[X||X<-ordsets:from_list(L),is_integer(X)],
- case L2 of
- [H|_] ->
- {H,hd(lists:reverse(L2))};
- _ ->
- L
- end;
-turn2vr(VR) ->
- VR.
-extension_size({I,I}) ->
- [I];
-extension_size({I1,I2}) ->
- [I1,I2];
-extension_size(C) ->
- C.
+merge_constraints([], Cacc, Eacc) ->
+ lists:reverse(Cacc) ++ [{element_set,{'Errors',Eacc},none}].
get_line({_,Pos,Token}) when is_integer(Pos),is_atom(Token) ->
Pos;