diff options
Diffstat (limited to 'lib/common_test/test')
-rw-r--r-- | lib/common_test/test/ct_netconfc_SUITE_data/netconfc1_SUITE.erl | 70 |
1 files changed, 37 insertions, 33 deletions
diff --git a/lib/common_test/test/ct_netconfc_SUITE_data/netconfc1_SUITE.erl b/lib/common_test/test/ct_netconfc_SUITE_data/netconfc1_SUITE.erl index 54526e8e83..0535eb924b 100644 --- a/lib/common_test/test/ct_netconfc_SUITE_data/netconfc1_SUITE.erl +++ b/lib/common_test/test/ct_netconfc_SUITE_data/netconfc1_SUITE.erl @@ -1,7 +1,7 @@ %%-------------------------------------------------------------------- %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2012. All Rights Reserved. +%% Copyright Ericsson AB 2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -1035,10 +1035,12 @@ make_dsa_files(Config, Type) -> file:write_file(DSAPrivateFile, PemBin), ok. + %%-------------------------------------------------------------------- -%% Creates a dsa key (OBS: for testing only) +%% @doc Creates a dsa key (OBS: for testing only) %% the sizes are in bytes -%% gen_dsa(::integer()) -> {::atom(), ::binary(), ::opaque()} +%% @spec (::integer()) -> {::atom(), ::binary(), ::opaque()} +%% @end %%-------------------------------------------------------------------- gen_dsa(LSize,NSize) when is_integer(LSize), is_integer(NSize) -> Key = gen_dsa2(LSize, NSize), @@ -1048,7 +1050,6 @@ encode_key(Key = #'DSAPrivateKey'{}) -> Der = public_key:der_encode('DSAPrivateKey', Key), {'DSAPrivateKey', Der, not_encrypted}. - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% DSA key generation (OBS: for testing only) %% See http://en.wikipedia.org/wiki/Digital_Signature_Algorithm @@ -1058,67 +1059,70 @@ gen_dsa2(LSize, NSize) -> Q = prime(NSize), %% Choose N-bit prime Q X0 = prime(LSize), P0 = prime((LSize div 2) +1), - + %% Choose L-bit prime modulus P such that p-1 is a multiple of q. case dsa_search(X0 div (2*Q*P0), P0, Q, 1000) of - error -> + error -> gen_dsa2(LSize, NSize); - P -> - G = crypto:mod_exp(2, (P-1) div Q, P), % Choose G a number whose multiplicative order modulo p is q. + P -> + G = crypto:mod_pow(2, (P-1) div Q, P), % Choose G a number whose multiplicative order modulo p is q. %% such that This may be done by setting g = h^(p-1)/q mod p, commonly h=2 is used. - + X = prime(20), %% Choose x by some random method, where 0 < x < q. - Y = crypto:mod_exp(G, X, P), %% Calculate y = g^x mod p. - - #'DSAPrivateKey'{version=0, p=P, q=Q, g=G, y=Y, x=X} + Y = crypto:mod_pow(G, X, P), %% Calculate y = g^x mod p. + + #'DSAPrivateKey'{version=0, p = P, q = Q, + g = crypto:bytes_to_integer(G), y = crypto:bytes_to_integer(Y), x = X} end. - + %% See fips_186-3.pdf dsa_search(T, P0, Q, Iter) when Iter > 0 -> P = 2*T*Q*P0 + 1, - case is_prime(crypto:mpint(P), 50) of + case is_prime(P, 50) of true -> P; false -> dsa_search(T+1, P0, Q, Iter-1) end; -dsa_search(_,_,_,_) -> +dsa_search(_,_,_,_) -> error. %%%%%%% Crypto Math %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% prime(ByteSize) -> Rand = odd_rand(ByteSize), - crypto:erlint(prime_odd(Rand, 0)). + prime_odd(Rand, 0). prime_odd(Rand, N) -> case is_prime(Rand, 50) of - true -> + true -> Rand; - false -> - NotPrime = crypto:erlint(Rand), - prime_odd(crypto:mpint(NotPrime+2), N+1) + false -> + prime_odd(Rand+2, N+1) end. %% see http://en.wikipedia.org/wiki/Fermat_primality_test is_prime(_, 0) -> true; -is_prime(Candidate, Test) -> - CoPrime = odd_rand(<<0,0,0,4, 10000:32>>, Candidate), - case crypto:mod_exp(CoPrime, Candidate, Candidate) of - CoPrime -> is_prime(Candidate, Test-1); - _ -> false - end. +is_prime(Candidate, Test) -> + CoPrime = odd_rand(10000, Candidate), + Result = crypto:mod_pow(CoPrime, Candidate, Candidate) , + is_prime(CoPrime, crypto:bytes_to_integer(Result), Candidate, Test). + +is_prime(CoPrime, CoPrime, Candidate, Test) -> + is_prime(Candidate, Test-1); +is_prime(_,_,_,_) -> + false. odd_rand(Size) -> Min = 1 bsl (Size*8-1), Max = (1 bsl (Size*8))-1, - odd_rand(crypto:mpint(Min), crypto:mpint(Max)). + odd_rand(Min, Max). odd_rand(Min,Max) -> - Rand = <<Sz:32, _/binary>> = crypto:rand_uniform(Min,Max), - BitSkip = (Sz+4)*8-1, - case Rand of - Odd = <<_:BitSkip, 1:1>> -> Odd; - Even = <<_:BitSkip, 0:1>> -> - crypto:mpint(crypto:erlint(Even)+1) + Rand = crypto:rand_uniform(Min,Max), + case Rand rem 2 of + 0 -> + Rand + 1; + _ -> + Rand end. copyfile(SrcDir, DstDir, Fn) -> |