aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_block.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src/beam_block.erl')
-rw-r--r--lib/compiler/src/beam_block.erl542
1 files changed, 161 insertions, 381 deletions
diff --git a/lib/compiler/src/beam_block.erl b/lib/compiler/src/beam_block.erl
index 7a30c68593..10dbaf462c 100644
--- a/lib/compiler/src/beam_block.erl
+++ b/lib/compiler/src/beam_block.erl
@@ -3,16 +3,17 @@
%%
%% Copyright Ericsson AB 1999-2013. All Rights Reserved.
%%
-%% The contents of this file are subject to the Erlang Public License,
-%% Version 1.1, (the "License"); you may not use this file except in
-%% compliance with the License. You should have received a copy of the
-%% Erlang Public License along with this software. If not, it can be
-%% retrieved online at http://www.erlang.org/.
+%% Licensed under the Apache License, Version 2.0 (the "License");
+%% you may not use this file except in compliance with the License.
+%% You may obtain a copy of the License at
%%
-%% Software distributed under the License is distributed on an "AS IS"
-%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
-%% the License for the specific language governing rights and limitations
-%% under the License.
+%% http://www.apache.org/licenses/LICENSE-2.0
+%%
+%% Unless required by applicable law or agreed to in writing, software
+%% distributed under the License is distributed on an "AS IS" BASIS,
+%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+%% See the License for the specific language governing permissions and
+%% limitations under the License.
%%
%% %CopyrightEnd%
%%
@@ -22,14 +23,13 @@
-module(beam_block).
-export([module/2]).
--import(lists, [mapfoldl/3,reverse/1,reverse/2,foldl/3,member/2]).
--define(MAXREG, 1024).
+-import(lists, [reverse/1,reverse/2,foldl/3,member/2]).
-module({Mod,Exp,Attr,Fs0,Lc0}, _Opt) ->
- {Fs,Lc} = mapfoldl(fun function/2, Lc0, Fs0),
+module({Mod,Exp,Attr,Fs0,Lc}, _Opt) ->
+ Fs = [function(F) || F <- Fs0],
{ok,{Mod,Exp,Attr,Fs,Lc}}.
-function({function,Name,Arity,CLabel,Is0}, Lc0) ->
+function({function,Name,Arity,CLabel,Is0}) ->
try
%% Collect basic blocks and optimize them.
Is1 = blockify(Is0),
@@ -39,11 +39,8 @@ function({function,Name,Arity,CLabel,Is0}, Lc0) ->
Is5 = opt_blocks(Is4),
Is6 = beam_utils:delete_live_annos(Is5),
- %% Optimize bit syntax.
- {Is,Lc} = bsm_opt(Is6, Lc0),
-
%% Done.
- {{function,Name,Arity,CLabel,Is},Lc}
+ {function,Name,Arity,CLabel,Is6}
catch
Class:Error ->
Stack = erlang:get_stacktrace(),
@@ -61,65 +58,15 @@ blockify(Is) ->
blockify([{loop_rec,{f,Fail},{x,0}},{loop_rec_end,_Lbl},{label,Fail}|Is], Acc) ->
%% Useless instruction sequence.
blockify(Is, Acc);
-
-%% New bit syntax matching.
-blockify([{bs_save2,R,Point}=I,{bs_restore2,R,Point}|Is], Acc) ->
- blockify([I|Is], Acc);
-blockify([{bs_save2,R,Point}=I,{test,is_eq_exact,_,_}=Test,
- {bs_restore2,R,Point}|Is], Acc) ->
- blockify([I,Test|Is], Acc);
-
-%% Do other peep-hole optimizations.
-blockify([{test,is_atom,{f,Fail},[Reg]}=I|
- [{select,select_val,Reg,{f,Fail},
- [{atom,false},{f,_}=BrFalse,
- {atom,true}=AtomTrue,{f,_}=BrTrue]}|Is]=Is0],
- [{block,Bl}|_]=Acc) ->
- case is_last_bool(Bl, Reg) of
- false ->
- blockify(Is0, [I|Acc]);
- true ->
- %% The last instruction is a boolean operator/guard BIF that can't fail.
- %% We can convert the three-way branch to a two-way branch (eliminating
- %% the reference to the failure label).
- blockify(Is, [{jump,BrTrue},
- {test,is_eq_exact,BrFalse,[Reg,AtomTrue]}|Acc])
- end;
-blockify([{test,is_atom,{f,Fail},[Reg]}=I|
- [{select,select_val,Reg,{f,Fail},
- [{atom,true}=AtomTrue,{f,_}=BrTrue,
- {atom,false},{f,_}=BrFalse]}|Is]=Is0],
- [{block,Bl}|_]=Acc) ->
- case is_last_bool(Bl, Reg) of
- false ->
- blockify(Is0, [I|Acc]);
- true ->
- blockify(Is, [{jump,BrTrue},
- {test,is_eq_exact,BrFalse,[Reg,AtomTrue]}|Acc])
- end;
blockify([I|Is0]=IsAll, Acc) ->
- case is_bs_put(I) of
- true ->
- {BsPuts0,Is} = collect_bs_puts(IsAll),
- BsPuts = opt_bs_puts(BsPuts0),
- blockify(Is, reverse(BsPuts, Acc));
- false ->
- case collect(I) of
- error -> blockify(Is0, [I|Acc]);
- Instr when is_tuple(Instr) ->
- {Block,Is} = collect_block(IsAll),
- blockify(Is, [{block,Block}|Acc])
- end
+ case collect(I) of
+ error -> blockify(Is0, [I|Acc]);
+ Instr when is_tuple(Instr) ->
+ {Block,Is} = collect_block(IsAll),
+ blockify(Is, [{block,Block}|Acc])
end;
blockify([], Acc) -> reverse(Acc).
-is_last_bool([{set,[Reg],As,{bif,N,_}}], Reg) ->
- Ar = length(As),
- erl_internal:new_type_test(N, Ar) orelse erl_internal:comp_op(N, Ar)
- orelse erl_internal:bool_op(N, Ar);
-is_last_bool([_|Is], Reg) -> is_last_bool(Is, Reg);
-is_last_bool([], _) -> false.
-
collect_block(Is) ->
collect_block(Is, []).
@@ -155,8 +102,12 @@ collect(remove_message) -> {set,[],[],remove_message};
collect({put_map,F,Op,S,D,R,{list,Puts}}) ->
{set,[D],[S|Puts],{alloc,R,{put_map,Op,F}}};
collect({get_map_elements,F,S,{list,Gets}}) ->
- {set,Gets,[S],{get_map_elements,F}};
-collect({'catch',R,L}) -> {set,[R],[],{'catch',L}};
+ {Ss,Ds} = beam_utils:split_even(Gets),
+ {set,Ds,[S|Ss],{get_map_elements,F}};
+collect({'catch'=Op,R,L}) ->
+ {set,[R],[],{try_catch,Op,L}};
+collect({'try'=Op,R,L}) ->
+ {set,[R],[],{try_catch,Op,L}};
collect(fclearerror) -> {set,[],[],fclearerror};
collect({fcheckerror,{f,0}}) -> {set,[],[],fcheckerror};
collect({fmove,S,D}) -> {set,[D],[S],fmove};
@@ -183,14 +134,16 @@ embed_lines([], Acc) -> Acc.
opt_blocks([{block,Bl0}|Is]) ->
%% The live annotation at the beginning is not useful.
- [{'%live',_}|Bl] = Bl0,
+ [{'%live',_,_}|Bl] = Bl0,
[{block,opt_block(Bl)}|opt_blocks(Is)];
opt_blocks([I|Is]) ->
[I|opt_blocks(Is)];
opt_blocks([]) -> [].
opt_block(Is0) ->
- Is = find_fixpoint(fun opt/1, Is0),
+ Is = find_fixpoint(fun(Is) ->
+ opt_tuple_element(opt(Is))
+ end, Is0),
opt_alloc(Is).
find_fixpoint(OptFun, Is0) ->
@@ -251,13 +204,6 @@ combine_alloc({_,Ns,Nh1,Init}, {_,nostack,Nh2,[]}) ->
%% opt([Instruction]) -> [Instruction]
%% Optimize the instruction stream inside a basic block.
-opt([{set,[Dst],As,{bif,Bif,Fail}}=I1,
- {set,[Dst],[Dst],{bif,'not',Fail}}=I2|Is]) ->
- %% Get rid of the 'not' if the operation can be inverted.
- case inverse_comp_op(Bif) of
- none -> [I1,I2|opt(Is)];
- RevBif -> [{set,[Dst],As,{bif,RevBif,Fail}}|opt(Is)]
- end;
opt([{set,[X],[X],move}|Is]) -> opt(Is);
opt([{set,_,_,{line,_}}=Line1,
{set,[D1],[{integer,Idx1},Reg],{bif,element,{f,0}}}=I1,
@@ -265,10 +211,12 @@ opt([{set,_,_,{line,_}}=Line1,
{set,[D2],[{integer,Idx2},Reg],{bif,element,{f,0}}}=I2|Is])
when Idx1 < Idx2, D1 =/= D2, D1 =/= Reg, D2 =/= Reg ->
opt([Line2,I2,Line1,I1|Is]);
-opt([{set,Ds0,Ss,Op}|Is0]) ->
+opt([{set,[_|_],_Ss,{get_map_elements,_F}}=I|Is]) ->
+ [I|opt(Is)];
+opt([{set,Ds0,Ss,Op}|Is0]) ->
{Ds,Is} = opt_moves(Ds0, Is0),
[{set,Ds,Ss,Op}|opt(Is)];
-opt([{'%live',_}=I|Is]) ->
+opt([{'%live',_,_}=I|Is]) ->
[I|opt(Is)];
opt([]) -> [].
@@ -291,76 +239,151 @@ opt_moves([X0,Y0], Is0) ->
not_possible -> {[X,Y0],Is2};
{X,_} -> {[X,Y0],Is2};
{Y,Is} -> {[X,Y],Is}
- end;
-opt_moves(Ds, Is) ->
- %% multiple destinations -> pass through
- {Ds,Is}.
-
+ end.
%% opt_move(Dest, [Instruction]) -> {UpdatedDest,[Instruction]} | not_possible
%% If there is a {move,Dest,FinalDest} instruction
%% in the instruction stream, remove the move instruction
%% and let FinalDest be the destination.
-%%
-%% For this optimization to be safe, we must be sure that
-%% Dest will not be referenced in any other by other instructions
-%% in the rest of the instruction stream. Not even the indirect
-%% reference by an instruction that may allocate (such as
-%% test_heap/2 or a GC Bif) is allowed.
opt_move(Dest, Is) ->
- opt_move_1(Dest, Is, ?MAXREG, []).
-
-opt_move_1(R, [{set,_,_,{alloc,Live,_}}|_]=Is, SafeRegs, Acc) when Live < SafeRegs ->
- %% Downgrade number of safe regs and rescan the instruction, as it most probably
- %% is a gc_bif instruction.
- opt_move_1(R, Is, Live, Acc);
-opt_move_1(R, [{set,[{x,X}=D],[R],move}|Is], SafeRegs, Acc) ->
- case X < SafeRegs andalso beam_utils:is_killed_block(R, Is) of
- true -> opt_move_2(D, Acc, Is);
- false -> not_possible
+ opt_move_1(Dest, Is, []).
+
+opt_move_1(R, [{set,[D],[R],move}|Is0], Acc) ->
+ %% Provided that the source register is killed by instructions
+ %% that follow, the optimization is safe.
+ case eliminate_use_of_from_reg(Is0, R, D, []) of
+ {yes,Is} -> opt_move_rev(D, Acc, Is);
+ no -> not_possible
end;
-opt_move_1(R, [{set,[D],[R],move}|Is], _SafeRegs, Acc) ->
- case beam_utils:is_killed_block(R, Is) of
- true -> opt_move_2(D, Acc, Is);
- false -> not_possible
+opt_move_1({x,_}, [{set,_,_,{alloc,_,_}}|_], _) ->
+ %% The optimization is not possible. If the X register is not
+ %% killed by allocation, the optimization would not be safe.
+ %% If the X register is killed, it means that there cannot
+ %% follow a 'move' instruction with this X register as the
+ %% source.
+ not_possible;
+opt_move_1(R, [{set,_,_,_}=I|Is], Acc) ->
+ %% If the source register is either killed or used by this
+ %% instruction, the optimimization is not possible.
+ case is_killed_or_used(R, I) of
+ true -> not_possible;
+ false -> opt_move_1(R, Is, [I|Acc])
end;
-opt_move_1(R, [I|Is], SafeRegs, Acc) ->
- case is_transparent(R, I) of
- false -> not_possible;
- true -> opt_move_1(R, Is, SafeRegs, [I|Acc])
- end.
+opt_move_1(_, _, _) ->
+ not_possible.
+
+%% opt_tuple_element([Instruction]) -> [Instruction]
+%% If possible, move get_tuple_element instructions forward
+%% in the instruction stream to a move instruction, eliminating
+%% the move instruction. Example:
+%%
+%% get_tuple_element Tuple Pos Dst1
+%% ...
+%% move Dst1 Dst2
+%%
+%% This code may be possible to rewrite to:
+%%
+%% %%(Moved get_tuple_element instruction)
+%% ...
+%% get_tuple_element Tuple Pos Dst2
+%%
+
+opt_tuple_element([{set,[D],[S],{get_tuple_element,_}}=I|Is0]) ->
+ case opt_tuple_element_1(Is0, I, {S,D}, []) of
+ no ->
+ [I|opt_tuple_element(Is0)];
+ {yes,Is} ->
+ opt_tuple_element(Is)
+ end;
+opt_tuple_element([I|Is]) ->
+ [I|opt_tuple_element(Is)];
+opt_tuple_element([]) -> [].
+
+opt_tuple_element_1([{set,_,_,{alloc,_,_}}|_], _, _, _) ->
+ no;
+opt_tuple_element_1([{set,_,_,{try_catch,_,_}}|_], _, _, _) ->
+ no;
+opt_tuple_element_1([{set,[D],[S],move}|Is0], I0, {_,S}, Acc) ->
+ case eliminate_use_of_from_reg(Is0, S, D, []) of
+ no ->
+ no;
+ {yes,Is} ->
+ {set,[S],Ss,Op} = I0,
+ I = {set,[D],Ss,Op},
+ {yes,reverse(Acc, [I|Is])}
+ end;
+opt_tuple_element_1([{set,Ds,Ss,_}=I|Is], MovedI, {S,D}=Regs, Acc) ->
+ case member(S, Ds) orelse member(D, Ss) of
+ true ->
+ no;
+ false ->
+ opt_tuple_element_1(Is, MovedI, Regs, [I|Acc])
+ end;
+opt_tuple_element_1(_, _, _, _) -> no.
-%% Reverse the instructions, while checking that there are no instructions that
-%% would interfere with using the new destination register chosen.
+%% Reverse the instructions, while checking that there are no
+%% instructions that would interfere with using the new destination
+%% register (D).
-opt_move_2(D, [I|Is], Acc) ->
- case is_transparent(D, I) of
- false -> not_possible;
- true -> opt_move_2(D, Is, [I|Acc])
+opt_move_rev(D, [I|Is], Acc) ->
+ case is_killed_or_used(D, I) of
+ true -> not_possible;
+ false -> opt_move_rev(D, Is, [I|Acc])
end;
-opt_move_2(D, [], Acc) -> {D,Acc}.
-
-%% is_transparent(Register, Instruction) -> true | false
-%% Returns true if Instruction does not in any way references Register
-%% (even indirectly by an allocation instruction).
-%% Returns false if Instruction does reference Register, or we are
-%% not sure.
-
-is_transparent({x,X}, {set,_,_,{alloc,Live,_}}) when X < Live ->
- false;
-is_transparent(R, {set,Ds,Ss,_Op}) ->
- case member(R, Ds) of
- true -> false;
- false -> not member(R, Ss)
+opt_move_rev(D, [], Acc) -> {D,Acc}.
+
+%% is_killed_or_used(Register, {set,_,_,_}) -> bool()
+%% Test whether the register is used by the instruction.
+
+is_killed_or_used(R, {set,Ss,Ds,_}) ->
+ member(R, Ds) orelse member(R, Ss).
+
+%% eliminate_use_of_from_reg([Instruction], FromRegister, ToRegister, Acc) ->
+%% {yes,Is} | no
+%% Eliminate any use of FromRegister in the instruction sequence
+%% by replacing uses of FromRegister with ToRegister. If FromRegister
+%% is referenced by an allocation instruction, return 'no' to indicate
+%% that FromRegister is still used and that the optimization is not
+%% possible.
+
+eliminate_use_of_from_reg([{set,_,_,{alloc,Live,_}}|_]=Is0, {x,X}, _, Acc) ->
+ if
+ X < Live ->
+ no;
+ true ->
+ {yes,reverse(Acc, Is0)}
+ end;
+eliminate_use_of_from_reg([{set,Ds,Ss0,Op}=I0|Is], From, To, Acc) ->
+ I = case member(From, Ss0) of
+ true ->
+ Ss = [case S of
+ From -> To;
+ _ -> S
+ end || S <- Ss0],
+ {set,Ds,Ss,Op};
+ false ->
+ I0
+ end,
+ case member(From, Ds) of
+ true ->
+ {yes,reverse(Acc, [I|Is])};
+ false ->
+ eliminate_use_of_from_reg(Is, From, To, [I|Acc])
end;
-is_transparent(_, _) -> false.
+eliminate_use_of_from_reg([I]=Is, From, _To, Acc) ->
+ case beam_utils:is_killed_block(From, [I]) of
+ true ->
+ {yes,reverse(Acc, Is)};
+ false ->
+ no
+ end.
%% opt_alloc(Instructions) -> Instructions'
%% Optimises all allocate instructions.
opt_alloc([{set,[],[],{alloc,R,{_,Ns,Nh,[]}}}|Is]) ->
- [{set,[],[],opt_alloc(Is, Ns, Nh, R)}|opt(Is)];
+ [{set,[],[],opt_alloc(Is, Ns, Nh, R)}|Is];
opt_alloc([I|Is]) -> [I|opt_alloc(Is)];
opt_alloc([]) -> [].
@@ -426,246 +449,3 @@ x_dead([], Regs) -> Regs.
x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N));
x_live([_|Rs], Regs) -> x_live(Rs, Regs);
x_live([], Regs) -> Regs.
-
-%% inverse_comp_op(Op) -> none|RevOp
-
-inverse_comp_op('=:=') -> '=/=';
-inverse_comp_op('=/=') -> '=:=';
-inverse_comp_op('==') -> '/=';
-inverse_comp_op('/=') -> '==';
-inverse_comp_op('>') -> '=<';
-inverse_comp_op('<') -> '>=';
-inverse_comp_op('>=') -> '<';
-inverse_comp_op('=<') -> '>';
-inverse_comp_op(_) -> none.
-
-%%%
-%%% Evaluation of constant bit fields.
-%%%
-
-is_bs_put({bs_put,_,{bs_put_integer,_,_},_}) -> true;
-is_bs_put({bs_put,_,{bs_put_float,_,_},_}) -> true;
-is_bs_put(_) -> false.
-
-collect_bs_puts(Is) ->
- collect_bs_puts_1(Is, []).
-
-collect_bs_puts_1([I|Is]=Is0, Acc) ->
- case is_bs_put(I) of
- false -> {reverse(Acc),Is0};
- true -> collect_bs_puts_1(Is, [I|Acc])
- end.
-
-opt_bs_puts(Is) ->
- opt_bs_1(Is, []).
-
-opt_bs_1([{bs_put,Fail,
- {bs_put_float,1,Flags0},[{integer,Sz},Src]}=I0|Is], Acc) ->
- try eval_put_float(Src, Sz, Flags0) of
- <<Int:Sz>> ->
- Flags = force_big(Flags0),
- I = {bs_put,Fail,{bs_put_integer,1,Flags},
- [{integer,Sz},{integer,Int}]},
- opt_bs_1([I|Is], Acc)
- catch
- error:_ ->
- opt_bs_1(Is, [I0|Acc])
- end;
-opt_bs_1([{bs_put,_,{bs_put_integer,1,_},[{integer,8},{integer,_}]}|_]=IsAll,
- Acc0) ->
- {Is,Acc} = bs_collect_string(IsAll, Acc0),
- opt_bs_1(Is, Acc);
-opt_bs_1([{bs_put,Fail,{bs_put_integer,1,F},[{integer,Sz},{integer,N}]}=I|Is0],
- Acc) when Sz > 8 ->
- case field_endian(F) of
- big ->
- %% We can do this optimization for any field size without risk
- %% for code explosion.
- case bs_split_int(N, Sz, Fail, Is0) of
- no_split -> opt_bs_1(Is0, [I|Acc]);
- Is -> opt_bs_1(Is, Acc)
- end;
- little when Sz < 128 ->
- %% We only try to optimize relatively small fields, to avoid
- %% an explosion in code size.
- <<Int:Sz>> = <<N:Sz/little>>,
- Flags = force_big(F),
- Is = [{bs_put,Fail,{bs_put_integer,1,Flags},
- [{integer,Sz},{integer,Int}]}|Is0],
- opt_bs_1(Is, Acc);
- _ -> %native or too wide little field
- opt_bs_1(Is0, [I|Acc])
- end;
-opt_bs_1([{bs_put,Fail,{Op,U,F},[{integer,Sz},Src]}|Is], Acc) when U > 1 ->
- opt_bs_1([{bs_put,Fail,{Op,1,F},[{integer,U*Sz},Src]}|Is], Acc);
-opt_bs_1([I|Is], Acc) ->
- opt_bs_1(Is, [I|Acc]);
-opt_bs_1([], Acc) -> reverse(Acc).
-
-eval_put_float(Src, Sz, Flags) when Sz =< 256 -> %Only evaluate if Sz is reasonable.
- Val = value(Src),
- case field_endian(Flags) of
- little -> <<Val:Sz/little-float-unit:1>>;
- big -> <<Val:Sz/big-float-unit:1>>
- %% native intentionally not handled here - we can't optimize it.
- end.
-
-value({integer,I}) -> I;
-value({float,F}) -> F.
-
-bs_collect_string(Is, [{bs_put,_,{bs_put_string,Len,{string,Str}},[]}|Acc]) ->
- bs_coll_str_1(Is, Len, reverse(Str), Acc);
-bs_collect_string(Is, Acc) ->
- bs_coll_str_1(Is, 0, [], Acc).
-
-bs_coll_str_1([{bs_put,_,{bs_put_integer,U,_},[{integer,Sz},{integer,V}]}|Is],
- Len, StrAcc, IsAcc) when U*Sz =:= 8 ->
- Byte = V band 16#FF,
- bs_coll_str_1(Is, Len+1, [Byte|StrAcc], IsAcc);
-bs_coll_str_1(Is, Len, StrAcc, IsAcc) ->
- {Is,[{bs_put,{f,0},{bs_put_string,Len,{string,reverse(StrAcc)}},[]}|IsAcc]}.
-
-field_endian({field_flags,F}) -> field_endian_1(F).
-
-field_endian_1([big=E|_]) -> E;
-field_endian_1([little=E|_]) -> E;
-field_endian_1([native=E|_]) -> E;
-field_endian_1([_|Fs]) -> field_endian_1(Fs).
-
-force_big({field_flags,F}) ->
- {field_flags,force_big_1(F)}.
-
-force_big_1([big|_]=Fs) -> Fs;
-force_big_1([little|Fs]) -> [big|Fs];
-force_big_1([F|Fs]) -> [F|force_big_1(Fs)].
-
-bs_split_int(0, Sz, _, _) when Sz > 64 ->
- %% We don't want to split in this case because the
- %% string will consist of only zeroes.
- no_split;
-bs_split_int(-1, Sz, _, _) when Sz > 64 ->
- %% We don't want to split in this case because the
- %% string will consist of only 255 bytes.
- no_split;
-bs_split_int(N, Sz, Fail, Acc) ->
- FirstByteSz = case Sz rem 8 of
- 0 -> 8;
- Rem -> Rem
- end,
- bs_split_int_1(N, FirstByteSz, Sz, Fail, Acc).
-
-bs_split_int_1(-1, _, Sz, Fail, Acc) when Sz > 64 ->
- I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
- [{integer,Sz},{integer,-1}]},
- [I|Acc];
-bs_split_int_1(0, _, Sz, Fail, Acc) when Sz > 64 ->
- I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
- [{integer,Sz},{integer,0}]},
- [I|Acc];
-bs_split_int_1(N, ByteSz, Sz, Fail, Acc) when Sz > 0 ->
- Mask = (1 bsl ByteSz) - 1,
- I = {bs_put,Fail,{bs_put_integer,1,{field_flags,[big]}},
- [{integer,ByteSz},{integer,N band Mask}]},
- bs_split_int_1(N bsr ByteSz, 8, Sz-ByteSz, Fail, [I|Acc]);
-bs_split_int_1(_, _, _, _, Acc) -> Acc.
-
-
-%%%
-%%% Optimization of new bit syntax matching: get rid
-%%% of redundant bs_restore2/2 instructions across select_val
-%%% instructions, as well as a few other simple peep-hole optimizations.
-%%%
-
-bsm_opt(Is0, Lc0) ->
- {Is1,D0,Lc} = bsm_scan(Is0, [], Lc0, []),
- Is2 = case D0 of
- [] ->
- Is1;
- _ ->
- D = gb_trees:from_orddict(orddict:from_list(D0)),
- bsm_reroute(Is1, D, none, [])
- end,
- Is = beam_clean:bs_clean_saves(Is2),
- {bsm_opt_2(Is, []),Lc}.
-
-bsm_scan([{label,L}=Lbl,{bs_restore2,_,Save}=R|Is], D0, Lc, Acc0) ->
- D = [{{L,Save},Lc}|D0],
- Acc = [{label,Lc},R,Lbl|Acc0],
- bsm_scan(Is, D, Lc+1, Acc);
-bsm_scan([I|Is], D, Lc, Acc) ->
- bsm_scan(Is, D, Lc, [I|Acc]);
-bsm_scan([], D, Lc, Acc) ->
- {reverse(Acc),D,Lc}.
-
-bsm_reroute([{bs_save2,Reg,Save}=I|Is], D, _, Acc) ->
- bsm_reroute(Is, D, {Reg,Save}, [I|Acc]);
-bsm_reroute([{bs_restore2,Reg,Save}=I|Is], D, _, Acc) ->
- bsm_reroute(Is, D, {Reg,Save}, [I|Acc]);
-bsm_reroute([{label,_}=I|Is], D, S, Acc) ->
- bsm_reroute(Is, D, S, [I|Acc]);
-bsm_reroute([{select,select_val,Reg,F0,Lbls0}|Is], D, {_,Save}=S, Acc0) ->
- [F|Lbls] = bsm_subst_labels([F0|Lbls0], Save, D),
- Acc = [{select,select_val,Reg,F,Lbls}|Acc0],
- bsm_reroute(Is, D, S, Acc);
-bsm_reroute([{test,TestOp,F0,TestArgs}=I|Is], D, {_,Save}=S, Acc0) ->
- F = bsm_subst_label(F0, Save, D),
- Acc = [{test,TestOp,F,TestArgs}|Acc0],
- case bsm_not_bs_test(I) of
- true ->
- %% The test instruction will not update the bit offset for the
- %% binary being matched. Therefore the save position can be kept.
- bsm_reroute(Is, D, S, Acc);
- false ->
- %% The test instruction might update the bit offset. Kill our
- %% remembered Save position.
- bsm_reroute(Is, D, none, Acc)
- end;
-bsm_reroute([{test,TestOp,F0,Live,TestArgs,Dst}|Is], D, {_,Save}, Acc0) ->
- F = bsm_subst_label(F0, Save, D),
- Acc = [{test,TestOp,F,Live,TestArgs,Dst}|Acc0],
- %% The test instruction will update the bit offset. Kill our
- %% remembered Save position.
- bsm_reroute(Is, D, none, Acc);
-bsm_reroute([{block,[{set,[],[],{alloc,_,_}}]}=Bl,
- {bs_context_to_binary,_}=I|Is], D, S, Acc) ->
- %% To help further bit syntax optimizations.
- bsm_reroute([I,Bl|Is], D, S, Acc);
-bsm_reroute([I|Is], D, _, Acc) ->
- bsm_reroute(Is, D, none, [I|Acc]);
-bsm_reroute([], _, _, Acc) -> reverse(Acc).
-
-bsm_opt_2([{test,bs_test_tail2,F,[Ctx,Bits]}|Is],
- [{test,bs_skip_bits2,F,[Ctx,{integer,I},Unit,_Flags]}|Acc]) ->
- bsm_opt_2(Is, [{test,bs_test_tail2,F,[Ctx,Bits+I*Unit]}|Acc]);
-bsm_opt_2([{test,bs_skip_bits2,F,[Ctx,{integer,I1},Unit1,_]}|Is],
- [{test,bs_skip_bits2,F,[Ctx,{integer,I2},Unit2,Flags]}|Acc]) ->
- bsm_opt_2(Is, [{test,bs_skip_bits2,F,
- [Ctx,{integer,I1*Unit1+I2*Unit2},1,Flags]}|Acc]);
-bsm_opt_2([I|Is], Acc) ->
- bsm_opt_2(Is, [I|Acc]);
-bsm_opt_2([], Acc) -> reverse(Acc).
-
-%% bsm_not_bs_test({test,Name,_,Operands}) -> true|false.
-%% Test whether is the test is a "safe", i.e. does not move the
-%% bit offset for a binary.
-%%
-%% 'true' means that the test is safe, 'false' that we don't know or
-%% that the test moves the offset (e.g. bs_get_integer2).
-
-bsm_not_bs_test({test,bs_test_tail2,_,[_,_]}) -> true;
-bsm_not_bs_test(Test) -> beam_utils:is_pure_test(Test).
-
-bsm_subst_labels(Fs, Save, D) ->
- bsm_subst_labels_1(Fs, Save, D, []).
-
-bsm_subst_labels_1([F|Fs], Save, D, Acc) ->
- bsm_subst_labels_1(Fs, Save, D, [bsm_subst_label(F, Save, D)|Acc]);
-bsm_subst_labels_1([], _, _, Acc) ->
- reverse(Acc).
-
-bsm_subst_label({f,Lbl0}=F, Save, D) ->
- case gb_trees:lookup({Lbl0,Save}, D) of
- {value,Lbl} -> {f,Lbl};
- none -> F
- end;
-bsm_subst_label(Other, _, _) -> Other.