aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_dead.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src/beam_dead.erl')
-rw-r--r--lib/compiler/src/beam_dead.erl349
1 files changed, 335 insertions, 14 deletions
diff --git a/lib/compiler/src/beam_dead.erl b/lib/compiler/src/beam_dead.erl
index b15adfa889..9703b1a847 100644
--- a/lib/compiler/src/beam_dead.erl
+++ b/lib/compiler/src/beam_dead.erl
@@ -215,15 +215,13 @@ forward([{test,is_eq_exact,_,[Dst,Src]}=I,{move,Src,Dst}|Is], D, Lc, Acc) ->
forward([I|Is], D, Lc, Acc);
forward([{test,is_nil,_,[Dst]}=I,{move,nil,Dst}|Is], D, Lc, Acc) ->
forward([I|Is], D, Lc, Acc);
-forward([{test,is_eq_exact,_,_}=I|Is], D, Lc, Acc) ->
- case Is of
- [{label,_}|_] -> forward(Is, D, Lc, [I|Acc]);
- _ -> forward(Is, D, Lc+1, [{label,Lc},I|Acc])
- end;
-forward([{test,is_ne_exact,_,_}=I|Is], D, Lc, Acc) ->
- case Is of
- [{label,_}|_] -> forward(Is, D, Lc, [I|Acc]);
- _ -> forward(Is, D, Lc+1, [{label,Lc},I|Acc])
+forward([{test,_,_,_}=I|Is]=Is0, D, Lc, Acc) ->
+ %% Help the second, backward pass to by inserting labels after
+ %% relational operators so that they can be skipped if they are
+ %% known to be true.
+ case useful_to_insert_label(Is0) of
+ false -> forward(Is, D, Lc, [I|Acc]);
+ true -> forward(Is, D, Lc+1, [{label,Lc},I|Acc])
end;
forward([I|Is], D, Lc, Acc) ->
forward(Is, D, Lc, [I|Acc]);
@@ -239,6 +237,17 @@ update_value_dict([Lit,{f,Lbl}|T], Reg, D0) ->
update_value_dict(T, Reg, D);
update_value_dict([], _, D) -> D.
+useful_to_insert_label([_,{label,_}|_]) ->
+ false;
+useful_to_insert_label([{test,Op,_,_}|_]) ->
+ case Op of
+ is_lt -> true;
+ is_ge -> true;
+ is_eq_exact -> true;
+ is_ne_exact -> true;
+ _ -> false
+ end.
+
%%%
%%% Scan instructions in reverse execution order and remove dead code.
%%%
@@ -309,20 +318,22 @@ backward([{test,is_eq_exact,{f,To0},[Reg,{atom,Val}]=Ops}|Is], D, Acc) ->
backward([{test,Op,{f,To0},Ops0}|Is], D, Acc) ->
To1 = shortcut_bs_test(To0, Is, D),
To2 = shortcut_label(To1, D),
+ To3 = shortcut_rel_op(To2, Op, Ops0, D),
+
%% Try to shortcut a repeated test:
%%
%% test Op {f,Fail1} Operands test Op {f,Fail2} Operands
%% . . . ==> ...
%% Fail1: test Op {f,Fail2} Operands Fail1: test Op {f,Fail2} Operands
%%
- To = case beam_utils:code_at(To2, D) of
- [{test,Op,{f,To3},Ops}|_] ->
+ To = case beam_utils:code_at(To3, D) of
+ [{test,Op,{f,To4},Ops}|_] ->
case equal_ops(Ops0, Ops) of
- true -> To3;
- false -> To2
+ true -> To4;
+ false -> To3
end;
_Code ->
- To2
+ To3
end,
I = case Op of
is_eq_exact -> combine_eqs(To, Ops0, D, Acc);
@@ -562,3 +573,313 @@ shortcut_bs_start_match_2([{test,bs_start_match2,{f,To},_,[Reg|_],_}|_], Reg, _)
To;
shortcut_bs_start_match_2(_Is, _Reg, To) ->
To.
+
+%% shortcut_rel_op(FailLabel, Operator, [Operand], D) -> FailLabel'
+%% Try to shortcut the given test instruction. Example:
+%%
+%% is_ge L1 {x,0} 48
+%% .
+%% .
+%% .
+%% L1: is_ge L2 {x,0} 65
+%%
+%% The first test instruction can be rewritten to "is_ge L2 {x,0} 48"
+%% since the instruction at L1 will also fail.
+%%
+%% If there are instructions between L1 and the other test instruction
+%% it may still be possible to do the shortcut. For example:
+%%
+%% L1: is_eq_exact L3 {x,0} 92
+%% is_ge L2 {x,0} 65
+%%
+%% Since the first test instruction failed, we know that {x,0} must
+%% be less than 48; therefore, we know that {x,0} cannot be equal to
+%% 92 and the jump to L3 cannot happen.
+
+shortcut_rel_op(To, Op, Ops, D) ->
+ case normalize_op({test,Op,{f,To},Ops}) of
+ {{NormOp,A,B},_} ->
+ Normalized = {negate_op(NormOp),A,B},
+ shortcut_rel_op_fp(To, Normalized, D);
+ {_,_} ->
+ To;
+ error ->
+ To
+ end.
+
+shortcut_rel_op_fp(To0, Normalized, D) ->
+ Code = beam_utils:code_at(To0, D),
+ case shortcut_any_label(Code, Normalized) of
+ error ->
+ To0;
+ To ->
+ shortcut_rel_op_fp(To, Normalized, D)
+ end.
+
+%% shortcut_any_label([Instruction], PrevCondition) -> FailLabel | error
+%% Using PrevCondition (a previous condition known to be true),
+%% try to shortcut to another failure label.
+
+shortcut_any_label([{jump,{f,Lbl}}|_], _Prev) ->
+ Lbl;
+shortcut_any_label([{label,Lbl}|_], _Prev) ->
+ Lbl;
+shortcut_any_label([{select,select_val,R,{f,Fail},L}|_], Prev) ->
+ shortcut_selectval(L, R, Fail, Prev);
+shortcut_any_label([I|Is], Prev) ->
+ case normalize_op(I) of
+ error ->
+ error;
+ {Normalized,Fail} ->
+ %% We have a relational operator.
+ case will_succeed(Prev, Normalized) of
+ no ->
+ %% This test instruction will always branch
+ %% to Fail.
+ Fail;
+ yes ->
+ %% This test instruction will never branch,
+ %% so we will look at the next instruction.
+ shortcut_any_label(Is, Prev);
+ maybe ->
+ %% May or may not branch. From now on, we can only
+ %% shortcut to the this specific failure label
+ %% Fail.
+ shortcut_specific_label(Is, Fail, Prev)
+ end
+ end.
+
+%% shortcut_specific_label([Instruction], FailLabel, PrevCondition) ->
+%% FailLabel | error
+%% We have previously encountered a test instruction that may or
+%% may not branch to FailLabel. Therefore we are only allowed
+%% to do the shortcut to the same fail label (FailLabel).
+
+shortcut_specific_label([{label,_}|Is], Fail, Prev) ->
+ shortcut_specific_label(Is, Fail, Prev);
+shortcut_specific_label([{select,select_val,R,{f,F},L}|_], Fail, Prev) ->
+ case shortcut_selectval(L, R, F, Prev) of
+ Fail -> Fail;
+ _ -> error
+ end;
+shortcut_specific_label([I|Is], Fail, Prev) ->
+ case normalize_op(I) of
+ error ->
+ error;
+ {Normalized,Fail} ->
+ case will_succeed(Prev, Normalized) of
+ no ->
+ %% Will branch to FailLabel.
+ Fail;
+ yes ->
+ %% Will definitely never branch.
+ shortcut_specific_label(Is, Fail, Prev);
+ maybe ->
+ %% May branch, but still OK since it will branch
+ %% to FailLabel.
+ shortcut_specific_label(Is, Fail, Prev)
+ end;
+ {Normalized,_} ->
+ %% This test instruction will branch to a different
+ %% fail label, if it branches at all.
+ case will_succeed(Prev, Normalized) of
+ yes ->
+ %% Still OK, since the branch will never be
+ %% taken.
+ shortcut_specific_label(Is, Fail, Prev);
+ no ->
+ %% Give up. The branch will definitely be taken
+ %% to a different fail label.
+ error;
+ maybe ->
+ %% Give up. If the branch is taken, it will be
+ %% to a different fail label.
+ error
+ end
+ end.
+
+
+%% shortcut_selectval(List, Reg, Fail, PrevCond) -> FailLabel | error
+%% Try to shortcut a selectval instruction. A selectval instruction
+%% is equivalent to the following instruction sequence:
+%%
+%% is_ne_exact L1 Reg Value1
+%% .
+%% .
+%% .
+%% is_ne_exact LN Reg ValueN
+%% jump DefaultFailLabel
+%%
+shortcut_selectval([Val,{f,Lbl}|T], R, Fail, Prev) ->
+ case will_succeed(Prev, {'=/=',R,get_literal(Val)}) of
+ yes -> shortcut_selectval(T, R, Fail, Prev);
+ no -> Lbl;
+ maybe -> error
+ end;
+shortcut_selectval([], _, Fail, _) -> Fail.
+
+%% will_succeed(PrevCondition, Condition) -> yes | no | maybe
+%% PrevCondition is a condition known to be true. This function
+%% will tell whether Condition will succeed.
+
+will_succeed({Op1,Reg,A}, {Op2,Reg,B}) ->
+ will_succeed_1(Op1, A, Op2, B);
+will_succeed({'=:=',Reg,{literal,A}}, {TypeTest,Reg}) ->
+ case erlang:TypeTest(A) of
+ false -> no;
+ true -> yes
+ end;
+will_succeed({_,_,_}, maybe) ->
+ maybe;
+will_succeed({_,_,_}, Test) when is_tuple(Test) ->
+ maybe.
+
+will_succeed_1('=:=', A, '<', B) ->
+ if
+ B =< A -> no;
+ true -> yes
+ end;
+will_succeed_1('=:=', A, '=<', B) ->
+ if
+ B < A -> no;
+ true -> yes
+ end;
+will_succeed_1('=:=', A, '=:=', B) ->
+ if
+ A =:= B -> yes;
+ true -> no
+ end;
+will_succeed_1('=:=', A, '=/=', B) ->
+ if
+ A =:= B -> no;
+ true -> yes
+ end;
+will_succeed_1('=:=', A, '>=', B) ->
+ if
+ B > A -> no;
+ true -> yes
+ end;
+will_succeed_1('=:=', A, '>', B) ->
+ if
+ B >= A -> no;
+ true -> yes
+ end;
+
+will_succeed_1('=/=', A, '=/=', B) when A =:= B -> yes;
+will_succeed_1('=/=', A, '=:=', B) when A =:= B -> no;
+
+will_succeed_1('<', A, '=:=', B) when B >= A -> no;
+will_succeed_1('<', A, '=/=', B) when B >= A -> yes;
+will_succeed_1('<', A, '<', B) when B >= A -> yes;
+will_succeed_1('<', A, '=<', B) when B > A -> yes;
+will_succeed_1('<', A, '>=', B) when B > A -> no;
+will_succeed_1('<', A, '>', B) when B >= A -> no;
+
+will_succeed_1('=<', A, '=:=', B) when B > A -> no;
+will_succeed_1('=<', A, '=/=', B) when B > A -> yes;
+will_succeed_1('=<', A, '<', B) when B > A -> yes;
+will_succeed_1('=<', A, '=<', B) when B >= A -> yes;
+will_succeed_1('=<', A, '>=', B) when B > A -> no;
+will_succeed_1('=<', A, '>', B) when B >= A -> no;
+
+will_succeed_1('>=', A, '=:=', B) when B < A -> no;
+will_succeed_1('>=', A, '=/=', B) when B < A -> yes;
+will_succeed_1('>=', A, '<', B) when B =< A -> no;
+will_succeed_1('>=', A, '=<', B) when B < A -> no;
+will_succeed_1('>=', A, '>=', B) when B =< A -> yes;
+will_succeed_1('>=', A, '>', B) when B < A -> yes;
+
+will_succeed_1('>', A, '=:=', B) when B =< A -> no;
+will_succeed_1('>', A, '=/=', B) when B =< A -> yes;
+will_succeed_1('>', A, '<', B) when B =< A -> no;
+will_succeed_1('>', A, '=<', B) when B < A -> no;
+will_succeed_1('>', A, '>=', B) when B =< A -> yes;
+will_succeed_1('>', A, '>', B) when B < A -> yes;
+
+will_succeed_1(_, _, _, _) -> maybe.
+
+%% normalize_op(Instruction) -> {Normalized,FailLabel} | error
+%% Normalized = {Operator,Register,Literal} |
+%% {TypeTest,Register} |
+%% maybe
+%% Operation = '<' | '=<' | '=:=' | '=/=' | '>=' | '>'
+%% TypeTest = is_atom | is_integer ...
+%% Literal = {literal,Term}
+%%
+%% Normalize a relational operator to facilitate further
+%% comparisons between operators. Always make the register
+%% operand the first operand. Thus the following instruction:
+%%
+%% {test,is_ge,{f,99},{integer,13},{x,0}}
+%%
+%% will be normalized to:
+%%
+%% {'=<',{x,0},{literal,13}}
+%%
+%% NOTE: Bit syntax test instructions are scary. They may change the
+%% state of match contexts and update registers, so we don't dare
+%% mess with them.
+
+normalize_op({test,is_ge,{f,Fail},Ops}) ->
+ normalize_op_1('>=', Ops, Fail);
+normalize_op({test,is_lt,{f,Fail},Ops}) ->
+ normalize_op_1('<', Ops, Fail);
+normalize_op({test,is_eq_exact,{f,Fail},Ops}) ->
+ normalize_op_1('=:=', Ops, Fail);
+normalize_op({test,is_ne_exact,{f,Fail},Ops}) ->
+ normalize_op_1('=/=', Ops, Fail);
+normalize_op({test,is_nil,{f,Fail},[R]}) ->
+ normalize_op_1('=:=', [R,nil], Fail);
+normalize_op({test,Op,{f,Fail},[R]}) ->
+ case erl_internal:new_type_test(Op, 1) of
+ true -> {{Op,R},Fail};
+ false -> {maybe,Fail}
+ end;
+normalize_op({test,_,{f,Fail},_}=I) ->
+ case beam_utils:is_pure_test(I) of
+ true -> {maybe,Fail};
+ false -> error
+ end;
+normalize_op(_) ->
+ error.
+
+normalize_op_1(Op, [Op1,Op2], Fail) ->
+ case {get_literal(Op1),get_literal(Op2)} of
+ {error,error} ->
+ %% Both operands are registers.
+ {maybe,Fail};
+ {error,Lit} ->
+ {{Op,Op1,Lit},Fail};
+ {Lit,error} ->
+ {{turn_op(Op),Op2,Lit},Fail};
+ {_,_} ->
+ %% Both operands are literals. Can probably only
+ %% happen if the Core Erlang optimizations passes were
+ %% turned off, so don't bother trying to do something
+ %% smart here.
+ {maybe,Fail}
+ end.
+
+turn_op('<') -> '>';
+turn_op('>=') -> '=<';
+turn_op('=:='=Op) -> Op;
+turn_op('=/='=Op) -> Op.
+
+negate_op('>=') -> '<';
+negate_op('<') -> '>=';
+negate_op('=<') -> '>';
+negate_op('>') -> '=<';
+negate_op('=:=') -> '=/=';
+negate_op('=/=') -> '=:='.
+
+get_literal({atom,Val}) ->
+ {literal,Val};
+get_literal({integer,Val}) ->
+ {literal,Val};
+get_literal({float,Val}) ->
+ {literal,Val};
+get_literal(nil) ->
+ {literal,[]};
+get_literal({literal,_}=Lit) ->
+ Lit;
+get_literal({_,_}) -> error.