aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_ssa_bsm.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src/beam_ssa_bsm.erl')
-rw-r--r--lib/compiler/src/beam_ssa_bsm.erl1027
1 files changed, 1027 insertions, 0 deletions
diff --git a/lib/compiler/src/beam_ssa_bsm.erl b/lib/compiler/src/beam_ssa_bsm.erl
new file mode 100644
index 0000000000..2efeb6b5b6
--- /dev/null
+++ b/lib/compiler/src/beam_ssa_bsm.erl
@@ -0,0 +1,1027 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2018. All Rights Reserved.
+%%
+%% Licensed under the Apache License, Version 2.0 (the "License");
+%% you may not use this file except in compliance with the License.
+%% You may obtain a copy of the License at
+%%
+%% http://www.apache.org/licenses/LICENSE-2.0
+%%
+%% Unless required by applicable law or agreed to in writing, software
+%% distributed under the License is distributed on an "AS IS" BASIS,
+%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+%% See the License for the specific language governing permissions and
+%% limitations under the License.
+%%
+%% %CopyrightEnd%
+%%
+
+%%%
+%%% This pass optimizes bit syntax matching, and is centered around the concept
+%%% of "match context reuse" which is best explained through example. To put it
+%%% shortly we attempt to turn this:
+%%%
+%%% <<0,B/bits>> = A,
+%%% <<1,C/bits>> = B,
+%%% <<D,_/bits>> = C,
+%%% D.
+%%%
+%%% ... Into this:
+%%%
+%%% <<0,1,D,_/bits>>=A,
+%%% D.
+%%%
+%%% Which is much faster as it avoids the creation of intermediate terms. This
+%%% is especially noticeable in loops where such garbage is generated on each
+%%% iteration.
+%%%
+%%% The optimization itself is very simple and can be applied whenever there's
+%%% matching on the tail end of a binary; instead of creating a new binary and
+%%% starting a new match context on it, we reuse the match context used to
+%%% extract the tail and avoid the creation of both objects.
+%%%
+%%% The catch is that a match context isn't a proper type and nothing outside
+%%% of bit syntax match operations can handle them. We therefore need to make
+%%% sure that they never "leak" into other instructions, and most of the pass
+%%% revolves around getting around that limitation.
+%%%
+%%% Unlike most other passes we look at the whole module so we can combine
+%%% matches across function boundaries, greatly increasing the performance of
+%%% complex matches and loops.
+%%%
+
+-module(beam_ssa_bsm).
+
+-export([module/2, format_error/1]).
+
+-include("beam_ssa.hrl").
+
+-import(lists, [member/2, reverse/1, splitwith/2, map/2, foldl/3, mapfoldl/3,
+ nth/2, max/1, unzip/1]).
+
+-spec format_error(term()) -> nonempty_string().
+
+format_error(OptInfo) ->
+ format_opt_info(OptInfo).
+
+-spec module(Module, Options) -> Result when
+ Module :: beam_ssa:b_module(),
+ Options :: [compile:option()],
+ Result :: {ok, beam_ssa:b_module(), list()}.
+
+-define(PASS(N), {N,fun N/1}).
+
+module(#b_module{body=Fs0}=Module, Opts) ->
+ ModInfo = analyze_module(Module),
+
+ %% combine_matches is repeated after accept_context_args as the control
+ %% flow changes can enable further optimizations, as in the example below:
+ %%
+ %% a(<<0,X/binary>>) -> a(X);
+ %% a(A) when bit_size(A) =:= 52 -> bar;
+ %% a(<<1,X/binary>>) -> X. %% Match context will be reused here when
+ %% %% when repeated.
+
+ {Fs, _} = compile:run_sub_passes(
+ [?PASS(combine_matches),
+ ?PASS(accept_context_args),
+ ?PASS(combine_matches),
+ ?PASS(allow_context_passthrough),
+ ?PASS(skip_outgoing_tail_extraction),
+ ?PASS(annotate_context_parameters)],
+ {Fs0, ModInfo}),
+
+ Ws = case proplists:get_bool(bin_opt_info, Opts) of
+ true -> collect_opt_info(Fs);
+ false -> []
+ end,
+
+ {ok, Module#b_module{body=Fs}, Ws}.
+
+-type module_info() :: #{ func_id() => func_info() }.
+
+-type func_id() :: {Name :: atom(), Arity :: non_neg_integer()}.
+
+-type func_info() :: #{ has_bsm_ops => boolean(),
+ parameters => [#b_var{}],
+ parameter_info => #{ #b_var{} => param_info() } }.
+
+-type param_info() :: suitable_for_reuse |
+ {Problem :: atom(), Where :: term()}.
+
+-spec analyze_module(#b_module{}) -> module_info().
+
+analyze_module(#b_module{body=Fs}) ->
+ foldl(fun(#b_function{args=Parameters}=F, I) ->
+ FuncInfo = #{ has_bsm_ops => has_bsm_ops(F),
+ parameters => Parameters,
+ parameter_info => #{} },
+ FuncId = get_fa(F),
+ I#{ FuncId => FuncInfo }
+ end, #{}, Fs).
+
+has_bsm_ops(#b_function{bs=Blocks}) ->
+ hbo_blocks(maps:to_list(Blocks)).
+
+hbo_blocks([{_,#b_blk{is=Is}} | Blocks]) ->
+ case hbo_is(Is) of
+ false -> hbo_blocks(Blocks);
+ true -> true
+ end;
+hbo_blocks([]) ->
+ false.
+
+hbo_is([#b_set{op=bs_start_match} | _]) -> true;
+hbo_is([_I | Is]) -> hbo_is(Is);
+hbo_is([]) -> false.
+
+%% Checks whether it's legal to make a call with the given argument as a match
+%% context, returning the param_info() of the relevant parameter.
+-spec check_context_call(#b_set{}, Arg, CtxChain, ModInfo) -> param_info() when
+ Arg :: #b_var{},
+ CtxChain :: [#b_var{}],
+ ModInfo :: module_info().
+check_context_call(#b_set{args=Args}, Arg, CtxChain, ModInfo) ->
+ Aliases = [Arg | CtxChain],
+ ccc_1(Args, Arg, Aliases, ModInfo).
+
+ccc_1([#b_local{}=Call | Args], Ctx, Aliases, ModInfo) ->
+ %% Matching operations assume that their context isn't aliased (as in
+ %% pointer aliasing), so we must reject calls whose arguments contain more
+ %% than one reference to the context.
+ %%
+ %% TODO: Try to fall back to passing binaries in these cases. Partial reuse
+ %% is better than nothing.
+ UseCount = foldl(fun(Arg, C) ->
+ case member(Arg, Aliases) of
+ true -> C + 1;
+ false -> C
+ end
+ end, 0, Args),
+ if
+ UseCount =:= 1 ->
+ #b_local{name=#b_literal{val=Name},arity=Arity} = Call,
+ Callee = {Name, Arity},
+
+ ParamInfo = funcinfo_get(Callee, parameter_info, ModInfo),
+ Parameters = funcinfo_get(Callee, parameters, ModInfo),
+ Parameter = nth(1 + arg_index(Ctx, Args), Parameters),
+
+ case maps:find(Parameter, ParamInfo) of
+ {ok, suitable_for_reuse} ->
+ suitable_for_reuse;
+ {ok, Other} ->
+ {unsuitable_call, {Call, Other}};
+ error ->
+ {no_match_on_entry, Call}
+ end;
+ UseCount > 1 ->
+ {multiple_uses_in_call, Call}
+ end;
+ccc_1([#b_remote{}=Call | _Args], _Ctx, _CtxChain, _ModInfo) ->
+ {remote_call, Call};
+ccc_1([Fun | _Args], _Ctx, _CtxChain, _ModInfo) ->
+ %% TODO: It may be possible to support this in the future for locally
+ %% defined funs, including ones with free variables.
+ {fun_call, Fun}.
+
+%% Returns the index of Var in Args.
+arg_index(Var, Args) -> arg_index_1(Var, Args, 0).
+
+arg_index_1(Var, [Var | _Args], Index) -> Index;
+arg_index_1(Var, [_Arg | Args], Index) -> arg_index_1(Var, Args, Index + 1).
+
+is_tail_binary(#b_set{op=bs_match,args=[#b_literal{val=binary} | Rest]}) ->
+ member(#b_literal{val=all}, Rest);
+is_tail_binary(#b_set{op=bs_get_tail}) ->
+ true;
+is_tail_binary(_) ->
+ false.
+
+is_tail_binary(#b_var{}=Var, Defs) ->
+ case find_match_definition(Var, Defs) of
+ {ok, Def} -> is_tail_binary(Def);
+ _ -> false
+ end;
+is_tail_binary(_Literal, _Defs) ->
+ false.
+
+assert_match_context(#b_var{}=Var, Defs) ->
+ case maps:find(Var, Defs) of
+ {ok, #b_set{op=bs_match,args=[_,#b_var{}=Ctx|_]}} ->
+ assert_match_context(Ctx, Defs);
+ {ok, #b_set{op=bs_start_match}} ->
+ ok
+ end.
+
+find_match_definition(#b_var{}=Var, Defs) ->
+ case maps:find(Var, Defs) of
+ {ok, #b_set{op=bs_extract,args=[Ctx]}} -> maps:find(Ctx, Defs);
+ {ok, #b_set{op=bs_get_tail}=Def} -> {ok, Def};
+ _ -> error
+ end.
+
+%% Returns a list of all contexts that were used to extract Var.
+context_chain_of(#b_var{}=Var, Defs) ->
+ case maps:find(Var, Defs) of
+ {ok, #b_set{op=bs_match,args=[_,#b_var{}=Ctx|_]}} ->
+ [Ctx | context_chain_of(Ctx, Defs)];
+ {ok, #b_set{op=bs_get_tail,args=[Ctx]}} ->
+ [Ctx | context_chain_of(Ctx, Defs)];
+ {ok, #b_set{op=bs_extract,args=[Ctx]}} ->
+ [Ctx | context_chain_of(Ctx, Defs)];
+ _ ->
+ []
+ end.
+
+%% Grabs the match context used to produce the given variable.
+match_context_of(#b_var{}=Var, Defs) ->
+ Ctx = match_context_of_1(Var, Defs),
+ assert_match_context(Ctx, Defs),
+ Ctx.
+
+match_context_of_1(Var, Defs) ->
+ case maps:get(Var, Defs) of
+ #b_set{op=bs_extract,args=[#b_var{}=Ctx0]} ->
+ #b_set{op=bs_match,
+ args=[_,#b_var{}=Ctx|_]} = maps:get(Ctx0, Defs),
+ Ctx;
+ #b_set{op=bs_get_tail,args=[#b_var{}=Ctx]} ->
+ Ctx
+ end.
+
+funcinfo_get(#b_function{}=F, Attribute, ModInfo) ->
+ funcinfo_get(get_fa(F), Attribute, ModInfo);
+funcinfo_get({_,_}=Key, Attribute, ModInfo) ->
+ FuncInfo = maps:get(Key, ModInfo),
+ maps:get(Attribute, FuncInfo).
+
+funcinfo_set(#b_function{}=F, Attribute, Value, ModInfo) ->
+ funcinfo_set(get_fa(F), Attribute, Value, ModInfo);
+funcinfo_set(Key, Attribute, Value, ModInfo) ->
+ FuncInfo = maps:put(Attribute, Value, maps:get(Key, ModInfo, #{})),
+ maps:put(Key, FuncInfo, ModInfo).
+
+get_fa(#b_function{ anno = Anno }) ->
+ {_,Name,Arity} = maps:get(func_info, Anno),
+ {Name,Arity}.
+
+%% Replaces matched-out binaries with aliases that are lazily converted to
+%% binary form when used, allowing us to keep the "match path" free of binary
+%% creation.
+
+-spec alias_matched_binaries(Blocks, Counter, AliasMap) -> Result when
+ Blocks :: beam_ssa:block_map(),
+ Counter :: non_neg_integer(),
+ AliasMap :: match_alias_map(),
+ Result :: {Blocks, Counter}.
+
+-type match_alias_map() ::
+ #{ Binary :: #b_var{} =>
+ { %% Replace all uses of Binary with an alias after this
+ %% label.
+ AliasAfter :: beam_ssa:label(),
+ %% The match context whose tail is equal to Binary.
+ Context :: #b_var{} } }.
+
+%% Keeps track of the promotions we need to insert. They're partially keyed by
+%% location because they may not be valid on all execution paths and we may
+%% need to add redundant promotions in some cases.
+-type promotion_map() ::
+ #{ { PromoteAt :: beam_ssa:label(),
+ Variable :: #b_var{} } =>
+ Instruction :: #b_set{} }.
+
+-record(amb, { dominators :: beam_ssa:dominator_map(),
+ match_aliases :: match_alias_map(),
+ cnt :: non_neg_integer(),
+ promotions = #{} :: promotion_map() }).
+
+alias_matched_binaries(Blocks0, Counter, AliasMap) when AliasMap =/= #{} ->
+ State0 = #amb{ dominators = beam_ssa:dominators(Blocks0),
+ match_aliases = AliasMap,
+ cnt = Counter },
+ {Blocks, State} = beam_ssa:mapfold_blocks_rpo(fun amb_1/3, [0], State0,
+ Blocks0),
+ {amb_insert_promotions(Blocks, State), State#amb.cnt};
+alias_matched_binaries(Blocks, Counter, _AliasMap) ->
+ {Blocks, Counter}.
+
+amb_1(Lbl, #b_blk{is=Is0,last=Last0}=Block, State0) ->
+ {Is, State1} = mapfoldl(fun(I, State) ->
+ amb_assign_set(I, Lbl, State)
+ end, State0, Is0),
+ {Last, State} = amb_assign_last(Last0, Lbl, State1),
+ {Block#b_blk{is=Is,last=Last}, State}.
+
+amb_assign_set(#b_set{op=phi,args=Args0}=I, _Lbl, State0) ->
+ %% Phi node aliases are relative to their source block, not their
+ %% containing block.
+ {Args, State} =
+ mapfoldl(fun({Arg0, Lbl}, Acc) ->
+ {Arg, State} = amb_get_alias(Arg0, Lbl, Acc),
+ {{Arg, Lbl}, State}
+ end, State0, Args0),
+ {I#b_set{args=Args}, State};
+amb_assign_set(#b_set{args=Args0}=I, Lbl, State0) ->
+ {Args, State} = mapfoldl(fun(Arg0, Acc) ->
+ amb_get_alias(Arg0, Lbl, Acc)
+ end, State0, Args0),
+ {I#b_set{args=Args}, State}.
+
+amb_assign_last(#b_ret{arg=Arg0}=T, Lbl, State0) ->
+ {Arg, State} = amb_get_alias(Arg0, Lbl, State0),
+ {T#b_ret{arg=Arg}, State};
+amb_assign_last(#b_switch{arg=Arg0}=T, Lbl, State0) ->
+ {Arg, State} = amb_get_alias(Arg0, Lbl, State0),
+ {T#b_switch{arg=Arg}, State};
+amb_assign_last(#b_br{bool=Arg0}=T, Lbl, State0) ->
+ {Arg, State} = amb_get_alias(Arg0, Lbl, State0),
+ {T#b_br{bool=Arg}, State}.
+
+amb_get_alias(#b_var{}=Arg, Lbl, State) ->
+ case maps:find(Arg, State#amb.match_aliases) of
+ {ok, {AliasAfter, Context}} ->
+ %% Our context may not have been created yet, so we skip assigning
+ %% an alias unless the given block is among our dominators.
+ Dominators = maps:get(Lbl, State#amb.dominators),
+ case ordsets:is_element(AliasAfter, Dominators) of
+ true -> amb_create_alias(Arg, Context, Lbl, State);
+ false -> {Arg, State}
+ end;
+ error ->
+ {Arg, State}
+ end;
+amb_get_alias(Arg, _Lbl, State) ->
+ {Arg, State}.
+
+amb_create_alias(#b_var{}=Arg0, Context, Lbl, State0) ->
+ Dominators = maps:get(Lbl, State0#amb.dominators),
+ Promotions0 = State0#amb.promotions,
+
+ PrevPromotions =
+ [maps:get({Dom, Arg0}, Promotions0)
+ || Dom <- Dominators, is_map_key({Dom, Arg0}, Promotions0)],
+
+ case PrevPromotions of
+ [_|_] ->
+ %% We've already created an alias prior to this block, so we'll
+ %% grab the most recent one to minimize stack use.
+
+ #b_set{dst=Alias} = max(PrevPromotions),
+ {Alias, State0};
+ [] ->
+ %% If we haven't created an alias we need to do so now. The
+ %% promotion will be inserted later by amb_insert_promotions/2.
+
+ Counter = State0#amb.cnt,
+ Alias = #b_var{name={'@ssa_bsm_alias', Counter}},
+ Promotion = #b_set{op=bs_get_tail,dst=Alias,args=[Context]},
+
+ Promotions = maps:put({Lbl, Arg0}, Promotion, Promotions0),
+ State = State0#amb{ promotions=Promotions, cnt=Counter+1 },
+
+ {Alias, State}
+ end.
+
+amb_insert_promotions(Blocks0, State) ->
+ F = fun({Lbl, #b_var{}}, Promotion, Blocks) ->
+ Block = maps:get(Lbl, Blocks),
+
+ Alias = Promotion#b_set.dst,
+ {Before, After} = splitwith(fun(#b_set{args=Args}) ->
+ not member(Alias, Args)
+ end, Block#b_blk.is),
+ Is = Before ++ [Promotion | After],
+
+ maps:put(Lbl, Block#b_blk{is=Is}, Blocks)
+ end,
+ maps:fold(F, Blocks0, State#amb.promotions).
+
+%%%
+%%% Subpasses
+%%%
+
+%% Removes superflous chained bs_start_match instructions in the same
+%% function. When matching on an extracted tail binary, or on a binary we've
+%% already matched on, we reuse the original match context.
+%%
+%% This pass runs first since it makes subsequent optimizations more effective
+%% by removing spots where promotion would be required.
+
+-type prior_match_map() ::
+ #{ Binary :: #b_var{} =>
+ [{ %% The context and success label of a previous
+ %% bs_start_match made on this binary.
+ ValidAfter :: beam_ssa:label(),
+ Context :: #b_var{} }] }.
+
+-record(cm, { definitions :: beam_ssa:definition_map(),
+ dominators :: beam_ssa:dominator_map(),
+ blocks :: beam_ssa:block_map(),
+ match_aliases = #{} :: match_alias_map(),
+ prior_matches = #{} :: prior_match_map(),
+ renames = #{} :: beam_ssa:rename_map() }).
+
+combine_matches({Fs0, ModInfo}) ->
+ Fs = map(fun(F) -> combine_matches(F, ModInfo) end, Fs0),
+ {Fs, ModInfo}.
+
+combine_matches(#b_function{bs=Blocks0,cnt=Counter0}=F, ModInfo) ->
+ case funcinfo_get(F, has_bsm_ops, ModInfo) of
+ true ->
+ {Blocks1, State} =
+ beam_ssa:mapfold_blocks_rpo(
+ fun(Lbl, #b_blk{is=Is0}=Block0, State0) ->
+ {Is, State} = cm_1(Is0, [], Lbl, State0),
+ {Block0#b_blk{is=Is}, State}
+ end, [0],
+ #cm{ definitions = beam_ssa:definitions(Blocks0),
+ dominators = beam_ssa:dominators(Blocks0),
+ blocks = Blocks0 },
+ Blocks0),
+
+ Blocks2 = beam_ssa:rename_vars(State#cm.renames, [0], Blocks1),
+
+ {Blocks, Counter} = alias_matched_binaries(Blocks2, Counter0,
+ State#cm.match_aliases),
+
+ F#b_function{ bs=Blocks, cnt=Counter };
+ false ->
+ F
+ end.
+
+cm_1([#b_set{ op=bs_start_match,
+ dst=Ctx,
+ args=[Src] },
+ #b_set{ op=succeeded,
+ dst=Bool,
+ args=[Ctx] }]=MatchSeq, Acc0, Lbl, State0) ->
+ Acc = reverse(Acc0),
+ case is_tail_binary(Src, State0#cm.definitions) of
+ true -> cm_combine_tail(Src, Ctx, Bool, Acc, State0);
+ false -> cm_handle_priors(Src, Ctx, Bool, Acc, MatchSeq, Lbl, State0)
+ end;
+cm_1([I | Is], Acc, Lbl, State) ->
+ cm_1(Is, [I | Acc], Lbl, State);
+cm_1([], Acc, _Lbl, State) ->
+ {reverse(Acc), State}.
+
+%% If we're dominated by at least one match on the same source, we can reuse
+%% the context created by that match.
+cm_handle_priors(Src, DstCtx, Bool, Acc, MatchSeq, Lbl, State0) ->
+ PriorCtxs = case maps:find(Src, State0#cm.prior_matches) of
+ {ok, Priors} ->
+ %% We've seen other match contexts on this source, but
+ %% we can only consider the ones whose success path
+ %% dominate us.
+ Dominators = maps:get(Lbl, State0#cm.dominators, []),
+ [Ctx || {ValidAfter, Ctx} <- Priors,
+ ordsets:is_element(ValidAfter, Dominators)];
+ error ->
+ []
+ end,
+ case PriorCtxs of
+ [Ctx|_] ->
+ Renames0 = State0#cm.renames,
+ Renames = Renames0#{ Bool => #b_literal{val=true}, DstCtx => Ctx },
+ {Acc, State0#cm{ renames = Renames }};
+ [] ->
+ %% Since we lack a prior match, we need to register this one in
+ %% case we dominate another.
+ State = cm_register_prior(Src, DstCtx, Lbl, State0),
+ {Acc ++ MatchSeq, State}
+ end.
+
+cm_register_prior(Src, DstCtx, Lbl, State) ->
+ Block = maps:get(Lbl, State#cm.blocks),
+ #b_br{succ=ValidAfter} = Block#b_blk.last,
+
+ Priors0 = maps:get(Src, State#cm.prior_matches, []),
+ Priors = [{ValidAfter, DstCtx} | Priors0],
+
+ PriorMatches = maps:put(Src, Priors, State#cm.prior_matches),
+ State#cm{ prior_matches = PriorMatches }.
+
+cm_combine_tail(Src, DstCtx, Bool, Acc, State0) ->
+ SrcCtx = match_context_of(Src, State0#cm.definitions),
+
+ %% We replace the source with a context alias as it normally won't be used
+ %% on the happy path after being matched, and the added cost of conversion
+ %% is negligible if it is.
+ Aliases = maps:put(Src, {0, SrcCtx}, State0#cm.match_aliases),
+
+ Renames0 = State0#cm.renames,
+ Renames = Renames0#{ Bool => #b_literal{val=true}, DstCtx => SrcCtx },
+
+ State = State0#cm{ match_aliases = Aliases, renames = Renames },
+
+ {Acc, State}.
+
+%% Lets functions accept match contexts as arguments. The parameter must be
+%% unused before the bs_start_match instruction, and it must be matched in the
+%% first block.
+
+-record(aca, { unused_parameters :: ordsets:ordset(#b_var{}),
+ counter :: non_neg_integer(),
+ parameter_info = #{} :: #{ #b_var{} => param_info() },
+ match_aliases = #{} :: match_alias_map() }).
+
+accept_context_args({Fs, ModInfo}) ->
+ mapfoldl(fun accept_context_args/2, ModInfo, Fs).
+
+accept_context_args(#b_function{bs=Blocks0}=F, ModInfo0) ->
+ case funcinfo_get(F, has_bsm_ops, ModInfo0) of
+ true ->
+ Parameters = ordsets:from_list(funcinfo_get(F, parameters, ModInfo0)),
+ State0 = #aca{ unused_parameters = Parameters,
+ counter = F#b_function.cnt },
+
+ {Blocks1, State} = aca_1(Blocks0, State0),
+ {Blocks, Counter} = alias_matched_binaries(Blocks1,
+ State#aca.counter,
+ State#aca.match_aliases),
+
+ ModInfo = funcinfo_set(F, parameter_info, State#aca.parameter_info,
+ ModInfo0),
+
+ {F#b_function{bs=Blocks,cnt=Counter}, ModInfo};
+ false ->
+ {F, ModInfo0}
+ end.
+
+aca_1(Blocks, State) ->
+ %% We only handle block 0 as we don't yet support starting a match after a
+ %% test. This is generally good enough as the sys_core_bsm pass makes the
+ %% match instruction come first if possible, and it's rare for a function
+ %% to binary-match several parameters at once.
+ EntryBlock = maps:get(0, Blocks),
+ aca_enable_reuse(EntryBlock#b_blk.is, EntryBlock, Blocks, [], State).
+
+aca_enable_reuse([#b_set{op=bs_start_match,args=[Src]}=I0 | Rest],
+ EntryBlock, Blocks0, Acc, State0) ->
+ case aca_is_reuse_safe(Src, State0) of
+ true ->
+ {I, Last, Blocks1, State} =
+ aca_reuse_context(I0, EntryBlock, Blocks0, State0),
+
+ Is = reverse([I|Acc]) ++ Rest,
+ Blocks = maps:put(0, EntryBlock#b_blk{is=Is,last=Last}, Blocks1),
+
+ {Blocks, State};
+ false ->
+ {Blocks0, State0}
+ end;
+aca_enable_reuse([I | Is], EntryBlock, Blocks, Acc, State0) ->
+ UnusedParams0 = State0#aca.unused_parameters,
+ case ordsets:intersection(UnusedParams0, beam_ssa:used(I)) of
+ [] ->
+ aca_enable_reuse(Is, EntryBlock, Blocks, [I | Acc], State0);
+ PrematureUses ->
+ UnusedParams = ordsets:subtract(UnusedParams0, PrematureUses),
+
+ %% Mark the offending parameters as unsuitable for context reuse.
+ ParamInfo = foldl(fun(A, Ps) ->
+ maps:put(A, {used_before_match, I}, Ps)
+ end, State0#aca.parameter_info, PrematureUses),
+
+ State = State0#aca{ unused_parameters = UnusedParams,
+ parameter_info = ParamInfo },
+ aca_enable_reuse(Is, EntryBlock, Blocks, [I | Acc], State)
+ end;
+aca_enable_reuse([], _EntryBlock, Blocks, _Acc, State) ->
+ {Blocks, State}.
+
+aca_is_reuse_safe(Src, State) ->
+ %% Context reuse is unsafe unless all uses are dominated by the start_match
+ %% instruction. Since we only process block 0 it's enough to check if
+ %% they're unused so far.
+ ordsets:is_element(Src, State#aca.unused_parameters).
+
+aca_reuse_context(#b_set{dst=Dst, args=[Src]}=I0, Block, Blocks0, State0) ->
+ %% When matching fails on a reused context it needs to be converted back
+ %% to a binary. We only need to do this on the success path since it can't
+ %% be a context on the type failure path, but it's very common for these
+ %% to converge which requires special handling.
+ {State1, Last, Blocks} =
+ aca_handle_convergence(Src, State0, Block#b_blk.last, Blocks0),
+
+ Aliases = maps:put(Src, {Last#b_br.succ, Dst}, State1#aca.match_aliases),
+ ParamInfo = maps:put(Src, suitable_for_reuse, State1#aca.parameter_info),
+
+ State = State1#aca{ match_aliases = Aliases,
+ parameter_info = ParamInfo },
+
+ I = beam_ssa:add_anno(accepts_match_contexts, true, I0),
+
+ {I, Last, Blocks, State}.
+
+aca_handle_convergence(Src, State0, Last0, Blocks0) ->
+ #b_br{fail=Fail0,succ=Succ0} = Last0,
+
+ SuccPath = beam_ssa:rpo([Succ0], Blocks0),
+ FailPath = beam_ssa:rpo([Fail0], Blocks0),
+
+ %% The promotion logic in alias_matched_binaries breaks down if the source
+ %% is used after the fail/success paths converge, as we have no way to tell
+ %% whether the source is a match context or something else past that point.
+ %%
+ %% We could handle this through clever insertion of phi nodes but it's
+ %% far simpler to copy either branch in its entirety. It doesn't matter
+ %% which one as long as they become disjoint.
+ ConvergedPaths = ordsets:intersection(
+ ordsets:from_list(SuccPath),
+ ordsets:from_list(FailPath)),
+
+ case maps:is_key(Src, beam_ssa:uses(ConvergedPaths, Blocks0)) of
+ true ->
+ case shortest(SuccPath, FailPath) of
+ left ->
+ {Succ, Blocks, Counter} =
+ aca_copy_successors(Succ0, Blocks0, State0#aca.counter),
+ State = State0#aca{ counter = Counter },
+ {State, Last0#b_br{succ=Succ}, Blocks};
+ right ->
+ {Fail, Blocks, Counter} =
+ aca_copy_successors(Fail0, Blocks0, State0#aca.counter),
+ State = State0#aca{ counter = Counter },
+ {State, Last0#b_br{fail=Fail}, Blocks}
+ end;
+ false ->
+ {State0, Last0, Blocks0}
+ end.
+
+shortest([_|As], [_|Bs]) -> shortest(As, Bs);
+shortest([], _) -> left;
+shortest(_, []) -> right.
+
+%% Copies all successor blocks of Lbl, returning the label to the entry block
+%% of this copy. Since the copied blocks aren't referenced anywhere else, they
+%% are all guaranteed to be dominated by Lbl.
+aca_copy_successors(Lbl0, Blocks0, Counter0) ->
+ %% Building the block rename map up front greatly simplifies phi node
+ %% handling.
+ Path = beam_ssa:rpo([Lbl0], Blocks0),
+ {BRs, Counter1} = aca_cs_build_brs(Path, Counter0, #{}),
+ {Blocks, Counter} = aca_cs_1(Path, Blocks0, Counter1, #{}, BRs, #{}),
+ Lbl = maps:get(Lbl0, BRs),
+ {Lbl, Blocks, Counter}.
+
+aca_cs_build_brs([Lbl | Path], Counter0, Acc) ->
+ aca_cs_build_brs(Path, Counter0 + 1, maps:put(Lbl, Counter0, Acc));
+aca_cs_build_brs([], Counter, Acc) ->
+ {Acc, Counter}.
+
+aca_cs_1([Lbl0 | Path], Blocks, Counter0, VRs0, BRs, Acc0) ->
+ Block0 = maps:get(Lbl0, Blocks),
+ Lbl = maps:get(Lbl0, BRs),
+ {VRs, Block, Counter} = aca_cs_block(Block0, Counter0, VRs0, BRs),
+ Acc = maps:put(Lbl, Block, Acc0),
+ aca_cs_1(Path, Blocks, Counter, VRs, BRs, Acc);
+aca_cs_1([], Blocks, Counter, _VRs, _BRs, Acc) ->
+ {maps:merge(Blocks, Acc), Counter}.
+
+aca_cs_block(#b_blk{is=Is0,last=Last0}=Block0, Counter0, VRs0, BRs) ->
+ {VRs, Is, Counter} = aca_cs_is(Is0, Counter0, VRs0, BRs, []),
+ Last = aca_cs_last(Last0, VRs, BRs),
+ Block = Block0#b_blk{is=Is,last=Last},
+ {VRs, Block, Counter}.
+
+aca_cs_is([#b_set{op=Op,
+ dst=Dst0,
+ args=Args0}=I0 | Is],
+ Counter0, VRs0, BRs, Acc) ->
+ Args = case Op of
+ phi -> aca_cs_args_phi(Args0, VRs0, BRs);
+ _ -> aca_cs_args(Args0, VRs0)
+ end,
+ Counter = Counter0 + 1,
+ Dst = #b_var{name={'@ssa_bsm_aca',Counter}},
+ I = I0#b_set{dst=Dst,args=Args},
+ VRs = maps:put(Dst0, Dst, VRs0),
+ aca_cs_is(Is, Counter, VRs, BRs, [I | Acc]);
+aca_cs_is([], Counter, VRs, _BRs, Acc) ->
+ {VRs, reverse(Acc), Counter}.
+
+aca_cs_last(#b_switch{arg=Arg0,list=Switch0,fail=Fail0}=Sw, VRs, BRs) ->
+ Switch = [{Literal, maps:get(Lbl, BRs)} || {Literal, Lbl} <- Switch0],
+ Sw#b_switch{arg=aca_cs_arg(Arg0, VRs),
+ fail=maps:get(Fail0, BRs),
+ list=Switch};
+aca_cs_last(#b_br{bool=Arg0,succ=Succ0,fail=Fail0}=Br, VRs, BRs) ->
+ Br#b_br{bool=aca_cs_arg(Arg0, VRs),
+ succ=maps:get(Succ0, BRs),
+ fail=maps:get(Fail0, BRs)};
+aca_cs_last(#b_ret{arg=Arg0}=Ret, VRs, _BRs) ->
+ Ret#b_ret{arg=aca_cs_arg(Arg0, VRs)}.
+
+aca_cs_args_phi([{Arg, Lbl} | Args], VRs, BRs) ->
+ case BRs of
+ #{ Lbl := New } ->
+ [{aca_cs_arg(Arg, VRs), New} | aca_cs_args_phi(Args, VRs, BRs)];
+ #{} ->
+ aca_cs_args_phi(Args, VRs, BRs)
+ end;
+aca_cs_args_phi([], _VRs, _BRs) ->
+ [].
+
+aca_cs_args([Arg | Args], VRs) ->
+ [aca_cs_arg(Arg, VRs) | aca_cs_args(Args, VRs)];
+aca_cs_args([], _VRs) ->
+ [].
+
+aca_cs_arg(Arg, VRs) ->
+ case VRs of
+ #{ Arg := New } -> New;
+ #{} -> Arg
+ end.
+
+%% Allows contexts to pass through "wrapper functions" where the context is
+%% passed directly to a function that accepts match contexts (including other
+%% wrappers).
+%%
+%% This does not alter the function in any way, it only changes parameter info
+%% so that skip_outgoing_tail_extraction is aware that it's safe to pass
+%% contexts to us.
+
+allow_context_passthrough({Fs, ModInfo0}) ->
+ ModInfo =
+ acp_forward_params([{F, beam_ssa:uses(F#b_function.bs)} || F <- Fs],
+ ModInfo0),
+ {Fs, ModInfo}.
+
+acp_forward_params(FsUses, ModInfo0) ->
+ F = fun({#b_function{args=Parameters}=Func, UseMap}, ModInfo) ->
+ ParamInfo =
+ foldl(fun(Param, ParamInfo) ->
+ Uses = maps:get(Param, UseMap, []),
+ acp_1(Param, Uses, ModInfo, ParamInfo)
+ end,
+ funcinfo_get(Func, parameter_info, ModInfo),
+ Parameters),
+ funcinfo_set(Func, parameter_info, ParamInfo, ModInfo)
+ end,
+ %% Allowing context passthrough on one function may make it possible to
+ %% enable it on another, so it needs to be repeated for maximum effect.
+ case foldl(F, ModInfo0, FsUses) of
+ ModInfo0 -> ModInfo0;
+ Changed -> acp_forward_params(FsUses, Changed)
+ end.
+
+%% We have no way to know if an argument is a context, so it's only safe to
+%% forward them if they're passed exactly once in the first block. Any other
+%% uses are unsafe, including function_clause errors.
+acp_1(Param, [{0, #b_set{op=call}=I}], ModInfo, ParamInfo) ->
+ %% We don't need to provide a context chain as our callers make sure that
+ %% multiple arguments never reference the same context.
+ case check_context_call(I, Param, [], ModInfo) of
+ {no_match_on_entry, _} -> ParamInfo;
+ Other -> maps:put(Param, Other, ParamInfo)
+ end;
+acp_1(_Param, _Uses, _ModInfo, ParamInfo) ->
+ ParamInfo.
+
+%% This is conceptually similar to combine_matches but operates across
+%% functions. Whenever a tail binary is passed to a parameter that accepts
+%% match contexts we'll pass the context instead, improving performance by
+%% avoiding the creation of a new match context in the callee.
+%%
+%% We also create an alias to delay extraction until it's needed as an actual
+%% binary, which is often rare on the happy path. The cost of being wrong is
+%% negligible (`bs_test_unit + bs_get_tail` vs `bs_get_binary`) so we're
+%% applying it unconditionally to keep things simple.
+
+-record(sote, { definitions :: beam_ssa:definition_map(),
+ mod_info :: module_info(),
+ match_aliases = #{} :: match_alias_map() }).
+
+skip_outgoing_tail_extraction({Fs0, ModInfo}) ->
+ Fs = map(fun(F) -> skip_outgoing_tail_extraction(F, ModInfo) end, Fs0),
+ {Fs, ModInfo}.
+
+skip_outgoing_tail_extraction(#b_function{bs=Blocks0}=F, ModInfo) ->
+ case funcinfo_get(F, has_bsm_ops, ModInfo) of
+ true ->
+ State0 = #sote{ definitions = beam_ssa:definitions(Blocks0),
+ mod_info = ModInfo },
+
+ {Blocks1, State} = beam_ssa:mapfold_instrs_rpo(
+ fun sote_rewrite_calls/2, [0], State0, Blocks0),
+
+ {Blocks, Counter} = alias_matched_binaries(Blocks1,
+ F#b_function.cnt,
+ State#sote.match_aliases),
+
+ F#b_function{bs=Blocks,cnt=Counter};
+ false ->
+ F
+ end.
+
+sote_rewrite_calls(#b_set{op=call,args=Args}=Call, State) ->
+ sote_rewrite_call(Call, Args, [], State);
+sote_rewrite_calls(I, State) ->
+ {I, State}.
+
+sote_rewrite_call(Call, [], ArgsOut, State) ->
+ {Call#b_set{args=reverse(ArgsOut)}, State};
+sote_rewrite_call(Call0, [Arg | ArgsIn], ArgsOut, State0) ->
+ case is_tail_binary(Arg, State0#sote.definitions) of
+ true ->
+ CtxChain = context_chain_of(Arg, State0#sote.definitions),
+ case check_context_call(Call0, Arg, CtxChain, State0#sote.mod_info) of
+ suitable_for_reuse ->
+ Ctx = match_context_of(Arg, State0#sote.definitions),
+
+ MatchAliases0 = State0#sote.match_aliases,
+ MatchAliases = maps:put(Arg, {0, Ctx}, MatchAliases0),
+ State = State0#sote{ match_aliases = MatchAliases },
+
+ Call = beam_ssa:add_anno(bsm_info, context_reused, Call0),
+ sote_rewrite_call(Call, ArgsIn, [Ctx | ArgsOut], State);
+ Other ->
+ Call = beam_ssa:add_anno(bsm_info, Other, Call0),
+ sote_rewrite_call(Call, ArgsIn, [Arg | ArgsOut], State0)
+ end;
+ false ->
+ sote_rewrite_call(Call0, ArgsIn, [Arg | ArgsOut], State0)
+ end.
+
+%% Adds parameter_type_info annotations to help the validator determine whether
+%% our optimizations were safe.
+
+annotate_context_parameters({Fs, ModInfo}) ->
+ mapfoldl(fun annotate_context_parameters/2, ModInfo, Fs).
+
+annotate_context_parameters(F, ModInfo) ->
+ ParamInfo = funcinfo_get(F, parameter_info, ModInfo),
+ TypeAnno0 = beam_ssa:get_anno(parameter_type_info, F, #{}),
+ TypeAnno = maps:fold(fun(K, _V, Acc) when is_map_key(K, Acc) ->
+ %% Assertion.
+ error(conflicting_parameter_types);
+ (K, suitable_for_reuse, Acc) ->
+ Acc#{ K => match_context };
+ (_K, _V, Acc) ->
+ Acc
+ end, TypeAnno0, ParamInfo),
+ {beam_ssa:add_anno(parameter_type_info, TypeAnno, F), ModInfo}.
+
+%%%
+%%% +bin_opt_info
+%%%
+
+collect_opt_info(Fs) ->
+ foldl(fun(#b_function{bs=Blocks}=F, Acc0) ->
+ UseMap = beam_ssa:uses(Blocks),
+ Where = beam_ssa:get_anno(location, F, []),
+ beam_ssa:fold_instrs_rpo(
+ fun(I, Acc) ->
+ collect_opt_info_1(I, Where, UseMap, Acc)
+ end, [0], Acc0, Blocks)
+ end, [], Fs).
+
+collect_opt_info_1(#b_set{op=Op,anno=Anno,dst=Dst}=I, Where, UseMap, Acc0) ->
+ case is_tail_binary(I) of
+ true when Op =:= bs_match ->
+ %% The uses include when the context is passed raw, so we discard
+ %% everything but the bs_extract instruction to limit warnings to
+ %% unoptimized uses.
+ Uses0 = maps:get(Dst, UseMap, []),
+ case [E || {_, #b_set{op=bs_extract}=E} <- Uses0] of
+ [Use] -> add_unopt_binary_info(Use, false, Where, UseMap, Acc0);
+ [] -> Acc0
+ end;
+ true ->
+ %% Add a warning for each use. Note that we don't do anything
+ %% special if unused as a later pass will remove this instruction
+ %% anyway.
+ Uses = maps:get(Dst, UseMap, []),
+ foldl(fun({_Lbl, Use}, Acc) ->
+ add_unopt_binary_info(Use, false, Where, UseMap, Acc)
+ end, Acc0, Uses);
+ false ->
+ add_opt_info(Anno, Where, Acc0)
+ end;
+collect_opt_info_1(#b_ret{anno=Anno}, Where, _UseMap, Acc) ->
+ add_opt_info(Anno, Where, Acc);
+collect_opt_info_1(_I, _Where, _Uses, Acc) ->
+ Acc.
+
+add_opt_info(Anno, Where, Acc) ->
+ case maps:find(bsm_info, Anno) of
+ {ok, Term} -> [make_warning(Term, Anno, Where) | Acc];
+ error -> Acc
+ end.
+
+%% When an alias is promoted we need to figure out where it goes to ignore
+%% warnings for compiler-generated things, and provide more useful warnings in
+%% general.
+%%
+%% We track whether the binary has been used to build another term because it
+%% can be helpful when there's no line information.
+
+add_unopt_binary_info(#b_set{op=Follow,dst=Dst}, _Nested, Where, UseMap, Acc0)
+ when Follow =:= put_tuple;
+ Follow =:= put_list;
+ Follow =:= put_map ->
+ %% Term-building instructions.
+ {_, Uses} = unzip(maps:get(Dst, UseMap, [])),
+ foldl(fun(Use, Acc) ->
+ add_unopt_binary_info(Use, true, Where, UseMap, Acc)
+ end, Acc0, Uses);
+add_unopt_binary_info(#b_set{op=Follow,dst=Dst}, Nested, Where, UseMap, Acc0)
+ when Follow =:= bs_extract;
+ Follow =:= phi ->
+ %% Non-building instructions that need to be followed.
+ {_, Uses} = unzip(maps:get(Dst, UseMap, [])),
+ foldl(fun(Use, Acc) ->
+ add_unopt_binary_info(Use, Nested, Where, UseMap, Acc)
+ end, Acc0, Uses);
+add_unopt_binary_info(#b_set{op=call,
+ args=[#b_remote{mod=#b_literal{val=erlang},
+ name=#b_literal{val=error}} |
+ _Ignored]},
+ _Nested, _Where, _UseMap, Acc) ->
+ %% There's no nice way to tell compiler-generated exceptions apart from
+ %% user ones so we ignore them all. I doubt anyone cares.
+ Acc;
+add_unopt_binary_info(#b_switch{anno=Anno}=I, Nested, Where, _UseMap, Acc) ->
+ [make_promotion_warning(I, Nested, Anno, Where) | Acc];
+add_unopt_binary_info(#b_set{anno=Anno}=I, Nested, Where, _UseMap, Acc) ->
+ [make_promotion_warning(I, Nested, Anno, Where) | Acc];
+add_unopt_binary_info(#b_ret{anno=Anno}=I, Nested, Where, _UseMap, Acc) ->
+ [make_promotion_warning(I, Nested, Anno, Where) | Acc];
+add_unopt_binary_info(#b_br{anno=Anno}=I, Nested, Where, _UseMap, Acc) ->
+ [make_promotion_warning(I, Nested, Anno, Where) | Acc].
+
+make_promotion_warning(I, Nested, Anno, Where) ->
+ make_warning({binary_created, I, Nested}, Anno, Where).
+
+make_warning(Term, Anno, Where) ->
+ {File, Line} = maps:get(location, Anno, Where),
+ {File,[{Line,?MODULE,Term}]}.
+
+format_opt_info(context_reused) ->
+ "OPTIMIZED: match context reused";
+format_opt_info({binary_created, _, _}=Promotion) ->
+ io_lib:format("BINARY CREATED: ~s", [format_opt_info_1(Promotion)]);
+format_opt_info(Other) ->
+ io_lib:format("NOT OPTIMIZED: ~s", [format_opt_info_1(Other)]).
+
+format_opt_info_1({binary_created, #b_set{op=call,args=[Call|_]}, false}) ->
+ io_lib:format("binary is used in call to ~s which doesn't support "
+ "context reuse", [format_call(Call)]);
+format_opt_info_1({binary_created, #b_set{op=call,args=[Call|_]}, true}) ->
+ io_lib:format("binary is used in term passed to ~s",
+ [format_call(Call)]);
+format_opt_info_1({binary_created, #b_set{op={bif, BIF},args=Args}, false}) ->
+ io_lib:format("binary is used in ~p/~p which doesn't support context "
+ "reuse", [BIF, length(Args)]);
+format_opt_info_1({binary_created, #b_set{op={bif, BIF},args=Args}, true}) ->
+ io_lib:format("binary is used in term passed to ~p/~p",
+ [BIF, length(Args)]);
+format_opt_info_1({binary_created, #b_set{op=Op}, false}) ->
+ io_lib:format("binary is used in '~p' which doesn't support context "
+ "reuse", [Op]);
+format_opt_info_1({binary_created, #b_set{op=Op}, true}) ->
+ io_lib:format("binary is used in term passed to '~p'", [Op]);
+format_opt_info_1({binary_created, #b_ret{}, false}) ->
+ io_lib:format("binary is returned from the function", []);
+format_opt_info_1({binary_created, #b_ret{}, true}) ->
+ io_lib:format("binary is used in a term that is returned from the "
+ "function", []);
+format_opt_info_1({unsuitable_call, {Call, Inner}}) ->
+ io_lib:format("binary used in call to ~s, where ~s",
+ [format_call(Call), format_opt_info_1(Inner)]);
+format_opt_info_1({remote_call, Call}) ->
+ io_lib:format("binary is used in remote call to ~s", [format_call(Call)]);
+format_opt_info_1({fun_call, Call}) ->
+ io_lib:format("binary is used in fun call (~s)",
+ [format_call(Call)]);
+format_opt_info_1({multiple_uses_in_call, Call}) ->
+ io_lib:format("binary is passed as multiple arguments to ~s",
+ [format_call(Call)]);
+format_opt_info_1({no_match_on_entry, Call}) ->
+ io_lib:format("binary is used in call to ~s which does not begin with a "
+ "suitable binary match", [format_call(Call)]);
+format_opt_info_1({used_before_match, #b_set{op=call,args=[Call|_]}}) ->
+ io_lib:format("binary is used in call to ~s before being matched",
+ [format_call(Call)]);
+format_opt_info_1({used_before_match, #b_set{op={bif, BIF},args=Args}}) ->
+ io_lib:format("binary is used in ~p/~p before being matched",
+ [BIF, length(Args)]);
+format_opt_info_1({used_before_match, #b_set{op=phi}}) ->
+ io_lib:format("binary is returned from an expression before being "
+ "matched", []);
+format_opt_info_1({used_before_match, #b_set{op=Op}}) ->
+ io_lib:format("binary is used in '~p' before being matched",[Op]);
+format_opt_info_1(Term) ->
+ io_lib:format("~w", [Term]).
+
+format_call(#b_local{name=#b_literal{val=F},arity=A}) ->
+ io_lib:format("~p/~p", [F, A]);
+format_call(#b_remote{mod=#b_literal{val=M},name=#b_literal{val=F},arity=A}) ->
+ io_lib:format("~p:~p/~p", [M, F, A]);
+format_call(Fun) ->
+ io_lib:format("~p", [Fun]).