diff options
Diffstat (limited to 'lib/compiler/src/beam_ssa_bsm.erl')
-rw-r--r-- | lib/compiler/src/beam_ssa_bsm.erl | 1027 |
1 files changed, 1027 insertions, 0 deletions
diff --git a/lib/compiler/src/beam_ssa_bsm.erl b/lib/compiler/src/beam_ssa_bsm.erl new file mode 100644 index 0000000000..2efeb6b5b6 --- /dev/null +++ b/lib/compiler/src/beam_ssa_bsm.erl @@ -0,0 +1,1027 @@ +%% +%% %CopyrightBegin% +%% +%% Copyright Ericsson AB 2018. All Rights Reserved. +%% +%% Licensed under the Apache License, Version 2.0 (the "License"); +%% you may not use this file except in compliance with the License. +%% You may obtain a copy of the License at +%% +%% http://www.apache.org/licenses/LICENSE-2.0 +%% +%% Unless required by applicable law or agreed to in writing, software +%% distributed under the License is distributed on an "AS IS" BASIS, +%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +%% See the License for the specific language governing permissions and +%% limitations under the License. +%% +%% %CopyrightEnd% +%% + +%%% +%%% This pass optimizes bit syntax matching, and is centered around the concept +%%% of "match context reuse" which is best explained through example. To put it +%%% shortly we attempt to turn this: +%%% +%%% <<0,B/bits>> = A, +%%% <<1,C/bits>> = B, +%%% <<D,_/bits>> = C, +%%% D. +%%% +%%% ... Into this: +%%% +%%% <<0,1,D,_/bits>>=A, +%%% D. +%%% +%%% Which is much faster as it avoids the creation of intermediate terms. This +%%% is especially noticeable in loops where such garbage is generated on each +%%% iteration. +%%% +%%% The optimization itself is very simple and can be applied whenever there's +%%% matching on the tail end of a binary; instead of creating a new binary and +%%% starting a new match context on it, we reuse the match context used to +%%% extract the tail and avoid the creation of both objects. +%%% +%%% The catch is that a match context isn't a proper type and nothing outside +%%% of bit syntax match operations can handle them. We therefore need to make +%%% sure that they never "leak" into other instructions, and most of the pass +%%% revolves around getting around that limitation. +%%% +%%% Unlike most other passes we look at the whole module so we can combine +%%% matches across function boundaries, greatly increasing the performance of +%%% complex matches and loops. +%%% + +-module(beam_ssa_bsm). + +-export([module/2, format_error/1]). + +-include("beam_ssa.hrl"). + +-import(lists, [member/2, reverse/1, splitwith/2, map/2, foldl/3, mapfoldl/3, + nth/2, max/1, unzip/1]). + +-spec format_error(term()) -> nonempty_string(). + +format_error(OptInfo) -> + format_opt_info(OptInfo). + +-spec module(Module, Options) -> Result when + Module :: beam_ssa:b_module(), + Options :: [compile:option()], + Result :: {ok, beam_ssa:b_module(), list()}. + +-define(PASS(N), {N,fun N/1}). + +module(#b_module{body=Fs0}=Module, Opts) -> + ModInfo = analyze_module(Module), + + %% combine_matches is repeated after accept_context_args as the control + %% flow changes can enable further optimizations, as in the example below: + %% + %% a(<<0,X/binary>>) -> a(X); + %% a(A) when bit_size(A) =:= 52 -> bar; + %% a(<<1,X/binary>>) -> X. %% Match context will be reused here when + %% %% when repeated. + + {Fs, _} = compile:run_sub_passes( + [?PASS(combine_matches), + ?PASS(accept_context_args), + ?PASS(combine_matches), + ?PASS(allow_context_passthrough), + ?PASS(skip_outgoing_tail_extraction), + ?PASS(annotate_context_parameters)], + {Fs0, ModInfo}), + + Ws = case proplists:get_bool(bin_opt_info, Opts) of + true -> collect_opt_info(Fs); + false -> [] + end, + + {ok, Module#b_module{body=Fs}, Ws}. + +-type module_info() :: #{ func_id() => func_info() }. + +-type func_id() :: {Name :: atom(), Arity :: non_neg_integer()}. + +-type func_info() :: #{ has_bsm_ops => boolean(), + parameters => [#b_var{}], + parameter_info => #{ #b_var{} => param_info() } }. + +-type param_info() :: suitable_for_reuse | + {Problem :: atom(), Where :: term()}. + +-spec analyze_module(#b_module{}) -> module_info(). + +analyze_module(#b_module{body=Fs}) -> + foldl(fun(#b_function{args=Parameters}=F, I) -> + FuncInfo = #{ has_bsm_ops => has_bsm_ops(F), + parameters => Parameters, + parameter_info => #{} }, + FuncId = get_fa(F), + I#{ FuncId => FuncInfo } + end, #{}, Fs). + +has_bsm_ops(#b_function{bs=Blocks}) -> + hbo_blocks(maps:to_list(Blocks)). + +hbo_blocks([{_,#b_blk{is=Is}} | Blocks]) -> + case hbo_is(Is) of + false -> hbo_blocks(Blocks); + true -> true + end; +hbo_blocks([]) -> + false. + +hbo_is([#b_set{op=bs_start_match} | _]) -> true; +hbo_is([_I | Is]) -> hbo_is(Is); +hbo_is([]) -> false. + +%% Checks whether it's legal to make a call with the given argument as a match +%% context, returning the param_info() of the relevant parameter. +-spec check_context_call(#b_set{}, Arg, CtxChain, ModInfo) -> param_info() when + Arg :: #b_var{}, + CtxChain :: [#b_var{}], + ModInfo :: module_info(). +check_context_call(#b_set{args=Args}, Arg, CtxChain, ModInfo) -> + Aliases = [Arg | CtxChain], + ccc_1(Args, Arg, Aliases, ModInfo). + +ccc_1([#b_local{}=Call | Args], Ctx, Aliases, ModInfo) -> + %% Matching operations assume that their context isn't aliased (as in + %% pointer aliasing), so we must reject calls whose arguments contain more + %% than one reference to the context. + %% + %% TODO: Try to fall back to passing binaries in these cases. Partial reuse + %% is better than nothing. + UseCount = foldl(fun(Arg, C) -> + case member(Arg, Aliases) of + true -> C + 1; + false -> C + end + end, 0, Args), + if + UseCount =:= 1 -> + #b_local{name=#b_literal{val=Name},arity=Arity} = Call, + Callee = {Name, Arity}, + + ParamInfo = funcinfo_get(Callee, parameter_info, ModInfo), + Parameters = funcinfo_get(Callee, parameters, ModInfo), + Parameter = nth(1 + arg_index(Ctx, Args), Parameters), + + case maps:find(Parameter, ParamInfo) of + {ok, suitable_for_reuse} -> + suitable_for_reuse; + {ok, Other} -> + {unsuitable_call, {Call, Other}}; + error -> + {no_match_on_entry, Call} + end; + UseCount > 1 -> + {multiple_uses_in_call, Call} + end; +ccc_1([#b_remote{}=Call | _Args], _Ctx, _CtxChain, _ModInfo) -> + {remote_call, Call}; +ccc_1([Fun | _Args], _Ctx, _CtxChain, _ModInfo) -> + %% TODO: It may be possible to support this in the future for locally + %% defined funs, including ones with free variables. + {fun_call, Fun}. + +%% Returns the index of Var in Args. +arg_index(Var, Args) -> arg_index_1(Var, Args, 0). + +arg_index_1(Var, [Var | _Args], Index) -> Index; +arg_index_1(Var, [_Arg | Args], Index) -> arg_index_1(Var, Args, Index + 1). + +is_tail_binary(#b_set{op=bs_match,args=[#b_literal{val=binary} | Rest]}) -> + member(#b_literal{val=all}, Rest); +is_tail_binary(#b_set{op=bs_get_tail}) -> + true; +is_tail_binary(_) -> + false. + +is_tail_binary(#b_var{}=Var, Defs) -> + case find_match_definition(Var, Defs) of + {ok, Def} -> is_tail_binary(Def); + _ -> false + end; +is_tail_binary(_Literal, _Defs) -> + false. + +assert_match_context(#b_var{}=Var, Defs) -> + case maps:find(Var, Defs) of + {ok, #b_set{op=bs_match,args=[_,#b_var{}=Ctx|_]}} -> + assert_match_context(Ctx, Defs); + {ok, #b_set{op=bs_start_match}} -> + ok + end. + +find_match_definition(#b_var{}=Var, Defs) -> + case maps:find(Var, Defs) of + {ok, #b_set{op=bs_extract,args=[Ctx]}} -> maps:find(Ctx, Defs); + {ok, #b_set{op=bs_get_tail}=Def} -> {ok, Def}; + _ -> error + end. + +%% Returns a list of all contexts that were used to extract Var. +context_chain_of(#b_var{}=Var, Defs) -> + case maps:find(Var, Defs) of + {ok, #b_set{op=bs_match,args=[_,#b_var{}=Ctx|_]}} -> + [Ctx | context_chain_of(Ctx, Defs)]; + {ok, #b_set{op=bs_get_tail,args=[Ctx]}} -> + [Ctx | context_chain_of(Ctx, Defs)]; + {ok, #b_set{op=bs_extract,args=[Ctx]}} -> + [Ctx | context_chain_of(Ctx, Defs)]; + _ -> + [] + end. + +%% Grabs the match context used to produce the given variable. +match_context_of(#b_var{}=Var, Defs) -> + Ctx = match_context_of_1(Var, Defs), + assert_match_context(Ctx, Defs), + Ctx. + +match_context_of_1(Var, Defs) -> + case maps:get(Var, Defs) of + #b_set{op=bs_extract,args=[#b_var{}=Ctx0]} -> + #b_set{op=bs_match, + args=[_,#b_var{}=Ctx|_]} = maps:get(Ctx0, Defs), + Ctx; + #b_set{op=bs_get_tail,args=[#b_var{}=Ctx]} -> + Ctx + end. + +funcinfo_get(#b_function{}=F, Attribute, ModInfo) -> + funcinfo_get(get_fa(F), Attribute, ModInfo); +funcinfo_get({_,_}=Key, Attribute, ModInfo) -> + FuncInfo = maps:get(Key, ModInfo), + maps:get(Attribute, FuncInfo). + +funcinfo_set(#b_function{}=F, Attribute, Value, ModInfo) -> + funcinfo_set(get_fa(F), Attribute, Value, ModInfo); +funcinfo_set(Key, Attribute, Value, ModInfo) -> + FuncInfo = maps:put(Attribute, Value, maps:get(Key, ModInfo, #{})), + maps:put(Key, FuncInfo, ModInfo). + +get_fa(#b_function{ anno = Anno }) -> + {_,Name,Arity} = maps:get(func_info, Anno), + {Name,Arity}. + +%% Replaces matched-out binaries with aliases that are lazily converted to +%% binary form when used, allowing us to keep the "match path" free of binary +%% creation. + +-spec alias_matched_binaries(Blocks, Counter, AliasMap) -> Result when + Blocks :: beam_ssa:block_map(), + Counter :: non_neg_integer(), + AliasMap :: match_alias_map(), + Result :: {Blocks, Counter}. + +-type match_alias_map() :: + #{ Binary :: #b_var{} => + { %% Replace all uses of Binary with an alias after this + %% label. + AliasAfter :: beam_ssa:label(), + %% The match context whose tail is equal to Binary. + Context :: #b_var{} } }. + +%% Keeps track of the promotions we need to insert. They're partially keyed by +%% location because they may not be valid on all execution paths and we may +%% need to add redundant promotions in some cases. +-type promotion_map() :: + #{ { PromoteAt :: beam_ssa:label(), + Variable :: #b_var{} } => + Instruction :: #b_set{} }. + +-record(amb, { dominators :: beam_ssa:dominator_map(), + match_aliases :: match_alias_map(), + cnt :: non_neg_integer(), + promotions = #{} :: promotion_map() }). + +alias_matched_binaries(Blocks0, Counter, AliasMap) when AliasMap =/= #{} -> + State0 = #amb{ dominators = beam_ssa:dominators(Blocks0), + match_aliases = AliasMap, + cnt = Counter }, + {Blocks, State} = beam_ssa:mapfold_blocks_rpo(fun amb_1/3, [0], State0, + Blocks0), + {amb_insert_promotions(Blocks, State), State#amb.cnt}; +alias_matched_binaries(Blocks, Counter, _AliasMap) -> + {Blocks, Counter}. + +amb_1(Lbl, #b_blk{is=Is0,last=Last0}=Block, State0) -> + {Is, State1} = mapfoldl(fun(I, State) -> + amb_assign_set(I, Lbl, State) + end, State0, Is0), + {Last, State} = amb_assign_last(Last0, Lbl, State1), + {Block#b_blk{is=Is,last=Last}, State}. + +amb_assign_set(#b_set{op=phi,args=Args0}=I, _Lbl, State0) -> + %% Phi node aliases are relative to their source block, not their + %% containing block. + {Args, State} = + mapfoldl(fun({Arg0, Lbl}, Acc) -> + {Arg, State} = amb_get_alias(Arg0, Lbl, Acc), + {{Arg, Lbl}, State} + end, State0, Args0), + {I#b_set{args=Args}, State}; +amb_assign_set(#b_set{args=Args0}=I, Lbl, State0) -> + {Args, State} = mapfoldl(fun(Arg0, Acc) -> + amb_get_alias(Arg0, Lbl, Acc) + end, State0, Args0), + {I#b_set{args=Args}, State}. + +amb_assign_last(#b_ret{arg=Arg0}=T, Lbl, State0) -> + {Arg, State} = amb_get_alias(Arg0, Lbl, State0), + {T#b_ret{arg=Arg}, State}; +amb_assign_last(#b_switch{arg=Arg0}=T, Lbl, State0) -> + {Arg, State} = amb_get_alias(Arg0, Lbl, State0), + {T#b_switch{arg=Arg}, State}; +amb_assign_last(#b_br{bool=Arg0}=T, Lbl, State0) -> + {Arg, State} = amb_get_alias(Arg0, Lbl, State0), + {T#b_br{bool=Arg}, State}. + +amb_get_alias(#b_var{}=Arg, Lbl, State) -> + case maps:find(Arg, State#amb.match_aliases) of + {ok, {AliasAfter, Context}} -> + %% Our context may not have been created yet, so we skip assigning + %% an alias unless the given block is among our dominators. + Dominators = maps:get(Lbl, State#amb.dominators), + case ordsets:is_element(AliasAfter, Dominators) of + true -> amb_create_alias(Arg, Context, Lbl, State); + false -> {Arg, State} + end; + error -> + {Arg, State} + end; +amb_get_alias(Arg, _Lbl, State) -> + {Arg, State}. + +amb_create_alias(#b_var{}=Arg0, Context, Lbl, State0) -> + Dominators = maps:get(Lbl, State0#amb.dominators), + Promotions0 = State0#amb.promotions, + + PrevPromotions = + [maps:get({Dom, Arg0}, Promotions0) + || Dom <- Dominators, is_map_key({Dom, Arg0}, Promotions0)], + + case PrevPromotions of + [_|_] -> + %% We've already created an alias prior to this block, so we'll + %% grab the most recent one to minimize stack use. + + #b_set{dst=Alias} = max(PrevPromotions), + {Alias, State0}; + [] -> + %% If we haven't created an alias we need to do so now. The + %% promotion will be inserted later by amb_insert_promotions/2. + + Counter = State0#amb.cnt, + Alias = #b_var{name={'@ssa_bsm_alias', Counter}}, + Promotion = #b_set{op=bs_get_tail,dst=Alias,args=[Context]}, + + Promotions = maps:put({Lbl, Arg0}, Promotion, Promotions0), + State = State0#amb{ promotions=Promotions, cnt=Counter+1 }, + + {Alias, State} + end. + +amb_insert_promotions(Blocks0, State) -> + F = fun({Lbl, #b_var{}}, Promotion, Blocks) -> + Block = maps:get(Lbl, Blocks), + + Alias = Promotion#b_set.dst, + {Before, After} = splitwith(fun(#b_set{args=Args}) -> + not member(Alias, Args) + end, Block#b_blk.is), + Is = Before ++ [Promotion | After], + + maps:put(Lbl, Block#b_blk{is=Is}, Blocks) + end, + maps:fold(F, Blocks0, State#amb.promotions). + +%%% +%%% Subpasses +%%% + +%% Removes superflous chained bs_start_match instructions in the same +%% function. When matching on an extracted tail binary, or on a binary we've +%% already matched on, we reuse the original match context. +%% +%% This pass runs first since it makes subsequent optimizations more effective +%% by removing spots where promotion would be required. + +-type prior_match_map() :: + #{ Binary :: #b_var{} => + [{ %% The context and success label of a previous + %% bs_start_match made on this binary. + ValidAfter :: beam_ssa:label(), + Context :: #b_var{} }] }. + +-record(cm, { definitions :: beam_ssa:definition_map(), + dominators :: beam_ssa:dominator_map(), + blocks :: beam_ssa:block_map(), + match_aliases = #{} :: match_alias_map(), + prior_matches = #{} :: prior_match_map(), + renames = #{} :: beam_ssa:rename_map() }). + +combine_matches({Fs0, ModInfo}) -> + Fs = map(fun(F) -> combine_matches(F, ModInfo) end, Fs0), + {Fs, ModInfo}. + +combine_matches(#b_function{bs=Blocks0,cnt=Counter0}=F, ModInfo) -> + case funcinfo_get(F, has_bsm_ops, ModInfo) of + true -> + {Blocks1, State} = + beam_ssa:mapfold_blocks_rpo( + fun(Lbl, #b_blk{is=Is0}=Block0, State0) -> + {Is, State} = cm_1(Is0, [], Lbl, State0), + {Block0#b_blk{is=Is}, State} + end, [0], + #cm{ definitions = beam_ssa:definitions(Blocks0), + dominators = beam_ssa:dominators(Blocks0), + blocks = Blocks0 }, + Blocks0), + + Blocks2 = beam_ssa:rename_vars(State#cm.renames, [0], Blocks1), + + {Blocks, Counter} = alias_matched_binaries(Blocks2, Counter0, + State#cm.match_aliases), + + F#b_function{ bs=Blocks, cnt=Counter }; + false -> + F + end. + +cm_1([#b_set{ op=bs_start_match, + dst=Ctx, + args=[Src] }, + #b_set{ op=succeeded, + dst=Bool, + args=[Ctx] }]=MatchSeq, Acc0, Lbl, State0) -> + Acc = reverse(Acc0), + case is_tail_binary(Src, State0#cm.definitions) of + true -> cm_combine_tail(Src, Ctx, Bool, Acc, State0); + false -> cm_handle_priors(Src, Ctx, Bool, Acc, MatchSeq, Lbl, State0) + end; +cm_1([I | Is], Acc, Lbl, State) -> + cm_1(Is, [I | Acc], Lbl, State); +cm_1([], Acc, _Lbl, State) -> + {reverse(Acc), State}. + +%% If we're dominated by at least one match on the same source, we can reuse +%% the context created by that match. +cm_handle_priors(Src, DstCtx, Bool, Acc, MatchSeq, Lbl, State0) -> + PriorCtxs = case maps:find(Src, State0#cm.prior_matches) of + {ok, Priors} -> + %% We've seen other match contexts on this source, but + %% we can only consider the ones whose success path + %% dominate us. + Dominators = maps:get(Lbl, State0#cm.dominators, []), + [Ctx || {ValidAfter, Ctx} <- Priors, + ordsets:is_element(ValidAfter, Dominators)]; + error -> + [] + end, + case PriorCtxs of + [Ctx|_] -> + Renames0 = State0#cm.renames, + Renames = Renames0#{ Bool => #b_literal{val=true}, DstCtx => Ctx }, + {Acc, State0#cm{ renames = Renames }}; + [] -> + %% Since we lack a prior match, we need to register this one in + %% case we dominate another. + State = cm_register_prior(Src, DstCtx, Lbl, State0), + {Acc ++ MatchSeq, State} + end. + +cm_register_prior(Src, DstCtx, Lbl, State) -> + Block = maps:get(Lbl, State#cm.blocks), + #b_br{succ=ValidAfter} = Block#b_blk.last, + + Priors0 = maps:get(Src, State#cm.prior_matches, []), + Priors = [{ValidAfter, DstCtx} | Priors0], + + PriorMatches = maps:put(Src, Priors, State#cm.prior_matches), + State#cm{ prior_matches = PriorMatches }. + +cm_combine_tail(Src, DstCtx, Bool, Acc, State0) -> + SrcCtx = match_context_of(Src, State0#cm.definitions), + + %% We replace the source with a context alias as it normally won't be used + %% on the happy path after being matched, and the added cost of conversion + %% is negligible if it is. + Aliases = maps:put(Src, {0, SrcCtx}, State0#cm.match_aliases), + + Renames0 = State0#cm.renames, + Renames = Renames0#{ Bool => #b_literal{val=true}, DstCtx => SrcCtx }, + + State = State0#cm{ match_aliases = Aliases, renames = Renames }, + + {Acc, State}. + +%% Lets functions accept match contexts as arguments. The parameter must be +%% unused before the bs_start_match instruction, and it must be matched in the +%% first block. + +-record(aca, { unused_parameters :: ordsets:ordset(#b_var{}), + counter :: non_neg_integer(), + parameter_info = #{} :: #{ #b_var{} => param_info() }, + match_aliases = #{} :: match_alias_map() }). + +accept_context_args({Fs, ModInfo}) -> + mapfoldl(fun accept_context_args/2, ModInfo, Fs). + +accept_context_args(#b_function{bs=Blocks0}=F, ModInfo0) -> + case funcinfo_get(F, has_bsm_ops, ModInfo0) of + true -> + Parameters = ordsets:from_list(funcinfo_get(F, parameters, ModInfo0)), + State0 = #aca{ unused_parameters = Parameters, + counter = F#b_function.cnt }, + + {Blocks1, State} = aca_1(Blocks0, State0), + {Blocks, Counter} = alias_matched_binaries(Blocks1, + State#aca.counter, + State#aca.match_aliases), + + ModInfo = funcinfo_set(F, parameter_info, State#aca.parameter_info, + ModInfo0), + + {F#b_function{bs=Blocks,cnt=Counter}, ModInfo}; + false -> + {F, ModInfo0} + end. + +aca_1(Blocks, State) -> + %% We only handle block 0 as we don't yet support starting a match after a + %% test. This is generally good enough as the sys_core_bsm pass makes the + %% match instruction come first if possible, and it's rare for a function + %% to binary-match several parameters at once. + EntryBlock = maps:get(0, Blocks), + aca_enable_reuse(EntryBlock#b_blk.is, EntryBlock, Blocks, [], State). + +aca_enable_reuse([#b_set{op=bs_start_match,args=[Src]}=I0 | Rest], + EntryBlock, Blocks0, Acc, State0) -> + case aca_is_reuse_safe(Src, State0) of + true -> + {I, Last, Blocks1, State} = + aca_reuse_context(I0, EntryBlock, Blocks0, State0), + + Is = reverse([I|Acc]) ++ Rest, + Blocks = maps:put(0, EntryBlock#b_blk{is=Is,last=Last}, Blocks1), + + {Blocks, State}; + false -> + {Blocks0, State0} + end; +aca_enable_reuse([I | Is], EntryBlock, Blocks, Acc, State0) -> + UnusedParams0 = State0#aca.unused_parameters, + case ordsets:intersection(UnusedParams0, beam_ssa:used(I)) of + [] -> + aca_enable_reuse(Is, EntryBlock, Blocks, [I | Acc], State0); + PrematureUses -> + UnusedParams = ordsets:subtract(UnusedParams0, PrematureUses), + + %% Mark the offending parameters as unsuitable for context reuse. + ParamInfo = foldl(fun(A, Ps) -> + maps:put(A, {used_before_match, I}, Ps) + end, State0#aca.parameter_info, PrematureUses), + + State = State0#aca{ unused_parameters = UnusedParams, + parameter_info = ParamInfo }, + aca_enable_reuse(Is, EntryBlock, Blocks, [I | Acc], State) + end; +aca_enable_reuse([], _EntryBlock, Blocks, _Acc, State) -> + {Blocks, State}. + +aca_is_reuse_safe(Src, State) -> + %% Context reuse is unsafe unless all uses are dominated by the start_match + %% instruction. Since we only process block 0 it's enough to check if + %% they're unused so far. + ordsets:is_element(Src, State#aca.unused_parameters). + +aca_reuse_context(#b_set{dst=Dst, args=[Src]}=I0, Block, Blocks0, State0) -> + %% When matching fails on a reused context it needs to be converted back + %% to a binary. We only need to do this on the success path since it can't + %% be a context on the type failure path, but it's very common for these + %% to converge which requires special handling. + {State1, Last, Blocks} = + aca_handle_convergence(Src, State0, Block#b_blk.last, Blocks0), + + Aliases = maps:put(Src, {Last#b_br.succ, Dst}, State1#aca.match_aliases), + ParamInfo = maps:put(Src, suitable_for_reuse, State1#aca.parameter_info), + + State = State1#aca{ match_aliases = Aliases, + parameter_info = ParamInfo }, + + I = beam_ssa:add_anno(accepts_match_contexts, true, I0), + + {I, Last, Blocks, State}. + +aca_handle_convergence(Src, State0, Last0, Blocks0) -> + #b_br{fail=Fail0,succ=Succ0} = Last0, + + SuccPath = beam_ssa:rpo([Succ0], Blocks0), + FailPath = beam_ssa:rpo([Fail0], Blocks0), + + %% The promotion logic in alias_matched_binaries breaks down if the source + %% is used after the fail/success paths converge, as we have no way to tell + %% whether the source is a match context or something else past that point. + %% + %% We could handle this through clever insertion of phi nodes but it's + %% far simpler to copy either branch in its entirety. It doesn't matter + %% which one as long as they become disjoint. + ConvergedPaths = ordsets:intersection( + ordsets:from_list(SuccPath), + ordsets:from_list(FailPath)), + + case maps:is_key(Src, beam_ssa:uses(ConvergedPaths, Blocks0)) of + true -> + case shortest(SuccPath, FailPath) of + left -> + {Succ, Blocks, Counter} = + aca_copy_successors(Succ0, Blocks0, State0#aca.counter), + State = State0#aca{ counter = Counter }, + {State, Last0#b_br{succ=Succ}, Blocks}; + right -> + {Fail, Blocks, Counter} = + aca_copy_successors(Fail0, Blocks0, State0#aca.counter), + State = State0#aca{ counter = Counter }, + {State, Last0#b_br{fail=Fail}, Blocks} + end; + false -> + {State0, Last0, Blocks0} + end. + +shortest([_|As], [_|Bs]) -> shortest(As, Bs); +shortest([], _) -> left; +shortest(_, []) -> right. + +%% Copies all successor blocks of Lbl, returning the label to the entry block +%% of this copy. Since the copied blocks aren't referenced anywhere else, they +%% are all guaranteed to be dominated by Lbl. +aca_copy_successors(Lbl0, Blocks0, Counter0) -> + %% Building the block rename map up front greatly simplifies phi node + %% handling. + Path = beam_ssa:rpo([Lbl0], Blocks0), + {BRs, Counter1} = aca_cs_build_brs(Path, Counter0, #{}), + {Blocks, Counter} = aca_cs_1(Path, Blocks0, Counter1, #{}, BRs, #{}), + Lbl = maps:get(Lbl0, BRs), + {Lbl, Blocks, Counter}. + +aca_cs_build_brs([Lbl | Path], Counter0, Acc) -> + aca_cs_build_brs(Path, Counter0 + 1, maps:put(Lbl, Counter0, Acc)); +aca_cs_build_brs([], Counter, Acc) -> + {Acc, Counter}. + +aca_cs_1([Lbl0 | Path], Blocks, Counter0, VRs0, BRs, Acc0) -> + Block0 = maps:get(Lbl0, Blocks), + Lbl = maps:get(Lbl0, BRs), + {VRs, Block, Counter} = aca_cs_block(Block0, Counter0, VRs0, BRs), + Acc = maps:put(Lbl, Block, Acc0), + aca_cs_1(Path, Blocks, Counter, VRs, BRs, Acc); +aca_cs_1([], Blocks, Counter, _VRs, _BRs, Acc) -> + {maps:merge(Blocks, Acc), Counter}. + +aca_cs_block(#b_blk{is=Is0,last=Last0}=Block0, Counter0, VRs0, BRs) -> + {VRs, Is, Counter} = aca_cs_is(Is0, Counter0, VRs0, BRs, []), + Last = aca_cs_last(Last0, VRs, BRs), + Block = Block0#b_blk{is=Is,last=Last}, + {VRs, Block, Counter}. + +aca_cs_is([#b_set{op=Op, + dst=Dst0, + args=Args0}=I0 | Is], + Counter0, VRs0, BRs, Acc) -> + Args = case Op of + phi -> aca_cs_args_phi(Args0, VRs0, BRs); + _ -> aca_cs_args(Args0, VRs0) + end, + Counter = Counter0 + 1, + Dst = #b_var{name={'@ssa_bsm_aca',Counter}}, + I = I0#b_set{dst=Dst,args=Args}, + VRs = maps:put(Dst0, Dst, VRs0), + aca_cs_is(Is, Counter, VRs, BRs, [I | Acc]); +aca_cs_is([], Counter, VRs, _BRs, Acc) -> + {VRs, reverse(Acc), Counter}. + +aca_cs_last(#b_switch{arg=Arg0,list=Switch0,fail=Fail0}=Sw, VRs, BRs) -> + Switch = [{Literal, maps:get(Lbl, BRs)} || {Literal, Lbl} <- Switch0], + Sw#b_switch{arg=aca_cs_arg(Arg0, VRs), + fail=maps:get(Fail0, BRs), + list=Switch}; +aca_cs_last(#b_br{bool=Arg0,succ=Succ0,fail=Fail0}=Br, VRs, BRs) -> + Br#b_br{bool=aca_cs_arg(Arg0, VRs), + succ=maps:get(Succ0, BRs), + fail=maps:get(Fail0, BRs)}; +aca_cs_last(#b_ret{arg=Arg0}=Ret, VRs, _BRs) -> + Ret#b_ret{arg=aca_cs_arg(Arg0, VRs)}. + +aca_cs_args_phi([{Arg, Lbl} | Args], VRs, BRs) -> + case BRs of + #{ Lbl := New } -> + [{aca_cs_arg(Arg, VRs), New} | aca_cs_args_phi(Args, VRs, BRs)]; + #{} -> + aca_cs_args_phi(Args, VRs, BRs) + end; +aca_cs_args_phi([], _VRs, _BRs) -> + []. + +aca_cs_args([Arg | Args], VRs) -> + [aca_cs_arg(Arg, VRs) | aca_cs_args(Args, VRs)]; +aca_cs_args([], _VRs) -> + []. + +aca_cs_arg(Arg, VRs) -> + case VRs of + #{ Arg := New } -> New; + #{} -> Arg + end. + +%% Allows contexts to pass through "wrapper functions" where the context is +%% passed directly to a function that accepts match contexts (including other +%% wrappers). +%% +%% This does not alter the function in any way, it only changes parameter info +%% so that skip_outgoing_tail_extraction is aware that it's safe to pass +%% contexts to us. + +allow_context_passthrough({Fs, ModInfo0}) -> + ModInfo = + acp_forward_params([{F, beam_ssa:uses(F#b_function.bs)} || F <- Fs], + ModInfo0), + {Fs, ModInfo}. + +acp_forward_params(FsUses, ModInfo0) -> + F = fun({#b_function{args=Parameters}=Func, UseMap}, ModInfo) -> + ParamInfo = + foldl(fun(Param, ParamInfo) -> + Uses = maps:get(Param, UseMap, []), + acp_1(Param, Uses, ModInfo, ParamInfo) + end, + funcinfo_get(Func, parameter_info, ModInfo), + Parameters), + funcinfo_set(Func, parameter_info, ParamInfo, ModInfo) + end, + %% Allowing context passthrough on one function may make it possible to + %% enable it on another, so it needs to be repeated for maximum effect. + case foldl(F, ModInfo0, FsUses) of + ModInfo0 -> ModInfo0; + Changed -> acp_forward_params(FsUses, Changed) + end. + +%% We have no way to know if an argument is a context, so it's only safe to +%% forward them if they're passed exactly once in the first block. Any other +%% uses are unsafe, including function_clause errors. +acp_1(Param, [{0, #b_set{op=call}=I}], ModInfo, ParamInfo) -> + %% We don't need to provide a context chain as our callers make sure that + %% multiple arguments never reference the same context. + case check_context_call(I, Param, [], ModInfo) of + {no_match_on_entry, _} -> ParamInfo; + Other -> maps:put(Param, Other, ParamInfo) + end; +acp_1(_Param, _Uses, _ModInfo, ParamInfo) -> + ParamInfo. + +%% This is conceptually similar to combine_matches but operates across +%% functions. Whenever a tail binary is passed to a parameter that accepts +%% match contexts we'll pass the context instead, improving performance by +%% avoiding the creation of a new match context in the callee. +%% +%% We also create an alias to delay extraction until it's needed as an actual +%% binary, which is often rare on the happy path. The cost of being wrong is +%% negligible (`bs_test_unit + bs_get_tail` vs `bs_get_binary`) so we're +%% applying it unconditionally to keep things simple. + +-record(sote, { definitions :: beam_ssa:definition_map(), + mod_info :: module_info(), + match_aliases = #{} :: match_alias_map() }). + +skip_outgoing_tail_extraction({Fs0, ModInfo}) -> + Fs = map(fun(F) -> skip_outgoing_tail_extraction(F, ModInfo) end, Fs0), + {Fs, ModInfo}. + +skip_outgoing_tail_extraction(#b_function{bs=Blocks0}=F, ModInfo) -> + case funcinfo_get(F, has_bsm_ops, ModInfo) of + true -> + State0 = #sote{ definitions = beam_ssa:definitions(Blocks0), + mod_info = ModInfo }, + + {Blocks1, State} = beam_ssa:mapfold_instrs_rpo( + fun sote_rewrite_calls/2, [0], State0, Blocks0), + + {Blocks, Counter} = alias_matched_binaries(Blocks1, + F#b_function.cnt, + State#sote.match_aliases), + + F#b_function{bs=Blocks,cnt=Counter}; + false -> + F + end. + +sote_rewrite_calls(#b_set{op=call,args=Args}=Call, State) -> + sote_rewrite_call(Call, Args, [], State); +sote_rewrite_calls(I, State) -> + {I, State}. + +sote_rewrite_call(Call, [], ArgsOut, State) -> + {Call#b_set{args=reverse(ArgsOut)}, State}; +sote_rewrite_call(Call0, [Arg | ArgsIn], ArgsOut, State0) -> + case is_tail_binary(Arg, State0#sote.definitions) of + true -> + CtxChain = context_chain_of(Arg, State0#sote.definitions), + case check_context_call(Call0, Arg, CtxChain, State0#sote.mod_info) of + suitable_for_reuse -> + Ctx = match_context_of(Arg, State0#sote.definitions), + + MatchAliases0 = State0#sote.match_aliases, + MatchAliases = maps:put(Arg, {0, Ctx}, MatchAliases0), + State = State0#sote{ match_aliases = MatchAliases }, + + Call = beam_ssa:add_anno(bsm_info, context_reused, Call0), + sote_rewrite_call(Call, ArgsIn, [Ctx | ArgsOut], State); + Other -> + Call = beam_ssa:add_anno(bsm_info, Other, Call0), + sote_rewrite_call(Call, ArgsIn, [Arg | ArgsOut], State0) + end; + false -> + sote_rewrite_call(Call0, ArgsIn, [Arg | ArgsOut], State0) + end. + +%% Adds parameter_type_info annotations to help the validator determine whether +%% our optimizations were safe. + +annotate_context_parameters({Fs, ModInfo}) -> + mapfoldl(fun annotate_context_parameters/2, ModInfo, Fs). + +annotate_context_parameters(F, ModInfo) -> + ParamInfo = funcinfo_get(F, parameter_info, ModInfo), + TypeAnno0 = beam_ssa:get_anno(parameter_type_info, F, #{}), + TypeAnno = maps:fold(fun(K, _V, Acc) when is_map_key(K, Acc) -> + %% Assertion. + error(conflicting_parameter_types); + (K, suitable_for_reuse, Acc) -> + Acc#{ K => match_context }; + (_K, _V, Acc) -> + Acc + end, TypeAnno0, ParamInfo), + {beam_ssa:add_anno(parameter_type_info, TypeAnno, F), ModInfo}. + +%%% +%%% +bin_opt_info +%%% + +collect_opt_info(Fs) -> + foldl(fun(#b_function{bs=Blocks}=F, Acc0) -> + UseMap = beam_ssa:uses(Blocks), + Where = beam_ssa:get_anno(location, F, []), + beam_ssa:fold_instrs_rpo( + fun(I, Acc) -> + collect_opt_info_1(I, Where, UseMap, Acc) + end, [0], Acc0, Blocks) + end, [], Fs). + +collect_opt_info_1(#b_set{op=Op,anno=Anno,dst=Dst}=I, Where, UseMap, Acc0) -> + case is_tail_binary(I) of + true when Op =:= bs_match -> + %% The uses include when the context is passed raw, so we discard + %% everything but the bs_extract instruction to limit warnings to + %% unoptimized uses. + Uses0 = maps:get(Dst, UseMap, []), + case [E || {_, #b_set{op=bs_extract}=E} <- Uses0] of + [Use] -> add_unopt_binary_info(Use, false, Where, UseMap, Acc0); + [] -> Acc0 + end; + true -> + %% Add a warning for each use. Note that we don't do anything + %% special if unused as a later pass will remove this instruction + %% anyway. + Uses = maps:get(Dst, UseMap, []), + foldl(fun({_Lbl, Use}, Acc) -> + add_unopt_binary_info(Use, false, Where, UseMap, Acc) + end, Acc0, Uses); + false -> + add_opt_info(Anno, Where, Acc0) + end; +collect_opt_info_1(#b_ret{anno=Anno}, Where, _UseMap, Acc) -> + add_opt_info(Anno, Where, Acc); +collect_opt_info_1(_I, _Where, _Uses, Acc) -> + Acc. + +add_opt_info(Anno, Where, Acc) -> + case maps:find(bsm_info, Anno) of + {ok, Term} -> [make_warning(Term, Anno, Where) | Acc]; + error -> Acc + end. + +%% When an alias is promoted we need to figure out where it goes to ignore +%% warnings for compiler-generated things, and provide more useful warnings in +%% general. +%% +%% We track whether the binary has been used to build another term because it +%% can be helpful when there's no line information. + +add_unopt_binary_info(#b_set{op=Follow,dst=Dst}, _Nested, Where, UseMap, Acc0) + when Follow =:= put_tuple; + Follow =:= put_list; + Follow =:= put_map -> + %% Term-building instructions. + {_, Uses} = unzip(maps:get(Dst, UseMap, [])), + foldl(fun(Use, Acc) -> + add_unopt_binary_info(Use, true, Where, UseMap, Acc) + end, Acc0, Uses); +add_unopt_binary_info(#b_set{op=Follow,dst=Dst}, Nested, Where, UseMap, Acc0) + when Follow =:= bs_extract; + Follow =:= phi -> + %% Non-building instructions that need to be followed. + {_, Uses} = unzip(maps:get(Dst, UseMap, [])), + foldl(fun(Use, Acc) -> + add_unopt_binary_info(Use, Nested, Where, UseMap, Acc) + end, Acc0, Uses); +add_unopt_binary_info(#b_set{op=call, + args=[#b_remote{mod=#b_literal{val=erlang}, + name=#b_literal{val=error}} | + _Ignored]}, + _Nested, _Where, _UseMap, Acc) -> + %% There's no nice way to tell compiler-generated exceptions apart from + %% user ones so we ignore them all. I doubt anyone cares. + Acc; +add_unopt_binary_info(#b_switch{anno=Anno}=I, Nested, Where, _UseMap, Acc) -> + [make_promotion_warning(I, Nested, Anno, Where) | Acc]; +add_unopt_binary_info(#b_set{anno=Anno}=I, Nested, Where, _UseMap, Acc) -> + [make_promotion_warning(I, Nested, Anno, Where) | Acc]; +add_unopt_binary_info(#b_ret{anno=Anno}=I, Nested, Where, _UseMap, Acc) -> + [make_promotion_warning(I, Nested, Anno, Where) | Acc]; +add_unopt_binary_info(#b_br{anno=Anno}=I, Nested, Where, _UseMap, Acc) -> + [make_promotion_warning(I, Nested, Anno, Where) | Acc]. + +make_promotion_warning(I, Nested, Anno, Where) -> + make_warning({binary_created, I, Nested}, Anno, Where). + +make_warning(Term, Anno, Where) -> + {File, Line} = maps:get(location, Anno, Where), + {File,[{Line,?MODULE,Term}]}. + +format_opt_info(context_reused) -> + "OPTIMIZED: match context reused"; +format_opt_info({binary_created, _, _}=Promotion) -> + io_lib:format("BINARY CREATED: ~s", [format_opt_info_1(Promotion)]); +format_opt_info(Other) -> + io_lib:format("NOT OPTIMIZED: ~s", [format_opt_info_1(Other)]). + +format_opt_info_1({binary_created, #b_set{op=call,args=[Call|_]}, false}) -> + io_lib:format("binary is used in call to ~s which doesn't support " + "context reuse", [format_call(Call)]); +format_opt_info_1({binary_created, #b_set{op=call,args=[Call|_]}, true}) -> + io_lib:format("binary is used in term passed to ~s", + [format_call(Call)]); +format_opt_info_1({binary_created, #b_set{op={bif, BIF},args=Args}, false}) -> + io_lib:format("binary is used in ~p/~p which doesn't support context " + "reuse", [BIF, length(Args)]); +format_opt_info_1({binary_created, #b_set{op={bif, BIF},args=Args}, true}) -> + io_lib:format("binary is used in term passed to ~p/~p", + [BIF, length(Args)]); +format_opt_info_1({binary_created, #b_set{op=Op}, false}) -> + io_lib:format("binary is used in '~p' which doesn't support context " + "reuse", [Op]); +format_opt_info_1({binary_created, #b_set{op=Op}, true}) -> + io_lib:format("binary is used in term passed to '~p'", [Op]); +format_opt_info_1({binary_created, #b_ret{}, false}) -> + io_lib:format("binary is returned from the function", []); +format_opt_info_1({binary_created, #b_ret{}, true}) -> + io_lib:format("binary is used in a term that is returned from the " + "function", []); +format_opt_info_1({unsuitable_call, {Call, Inner}}) -> + io_lib:format("binary used in call to ~s, where ~s", + [format_call(Call), format_opt_info_1(Inner)]); +format_opt_info_1({remote_call, Call}) -> + io_lib:format("binary is used in remote call to ~s", [format_call(Call)]); +format_opt_info_1({fun_call, Call}) -> + io_lib:format("binary is used in fun call (~s)", + [format_call(Call)]); +format_opt_info_1({multiple_uses_in_call, Call}) -> + io_lib:format("binary is passed as multiple arguments to ~s", + [format_call(Call)]); +format_opt_info_1({no_match_on_entry, Call}) -> + io_lib:format("binary is used in call to ~s which does not begin with a " + "suitable binary match", [format_call(Call)]); +format_opt_info_1({used_before_match, #b_set{op=call,args=[Call|_]}}) -> + io_lib:format("binary is used in call to ~s before being matched", + [format_call(Call)]); +format_opt_info_1({used_before_match, #b_set{op={bif, BIF},args=Args}}) -> + io_lib:format("binary is used in ~p/~p before being matched", + [BIF, length(Args)]); +format_opt_info_1({used_before_match, #b_set{op=phi}}) -> + io_lib:format("binary is returned from an expression before being " + "matched", []); +format_opt_info_1({used_before_match, #b_set{op=Op}}) -> + io_lib:format("binary is used in '~p' before being matched",[Op]); +format_opt_info_1(Term) -> + io_lib:format("~w", [Term]). + +format_call(#b_local{name=#b_literal{val=F},arity=A}) -> + io_lib:format("~p/~p", [F, A]); +format_call(#b_remote{mod=#b_literal{val=M},name=#b_literal{val=F},arity=A}) -> + io_lib:format("~p:~p/~p", [M, F, A]); +format_call(Fun) -> + io_lib:format("~p", [Fun]). |