aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_ssa_codegen.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src/beam_ssa_codegen.erl')
-rw-r--r--lib/compiler/src/beam_ssa_codegen.erl2098
1 files changed, 2098 insertions, 0 deletions
diff --git a/lib/compiler/src/beam_ssa_codegen.erl b/lib/compiler/src/beam_ssa_codegen.erl
new file mode 100644
index 0000000000..08641e2abc
--- /dev/null
+++ b/lib/compiler/src/beam_ssa_codegen.erl
@@ -0,0 +1,2098 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2018. All Rights Reserved.
+%%
+%% Licensed under the Apache License, Version 2.0 (the "License");
+%% you may not use this file except in compliance with the License.
+%% You may obtain a copy of the License at
+%%
+%% http://www.apache.org/licenses/LICENSE-2.0
+%%
+%% Unless required by applicable law or agreed to in writing, software
+%% distributed under the License is distributed on an "AS IS" BASIS,
+%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+%% See the License for the specific language governing permissions and
+%% limitations under the License.
+%%
+%% %CopyrightEnd%
+%%
+%% Purpose: Generate BEAM assembly code from the SSA format.
+
+-module(beam_ssa_codegen).
+
+-export([module/2]).
+-export([classify_heap_need/2]). %Called from beam_ssa_pre_codegen.
+
+-export_type([ssa_register/0]).
+
+-include("beam_ssa.hrl").
+
+-import(lists, [foldl/3,keymember/3,keysort/2,last/1,map/2,mapfoldl/3,
+ reverse/1,reverse/2,sort/1,splitwith/2,takewhile/2]).
+
+-record(cg, {lcount=1 :: beam_label(), %Label counter
+ functable=#{} :: #{fa()=>beam_label()},
+ labels=#{} :: #{ssa_label()=>0|beam_label()},
+ used_labels=gb_sets:empty() :: gb_sets:set(ssa_label()),
+ regs=#{} :: #{beam_ssa:var_name()=>ssa_register()},
+ ultimate_fail=1 :: beam_label(),
+ catches=gb_sets:empty() :: gb_sets:set(ssa_label())
+ }).
+
+-spec module(beam_ssa:b_module(), [compile:option()]) ->
+ {'ok',beam_asm:module_code()}.
+
+module(#b_module{name=Mod,exports=Es,attributes=Attrs,body=Fs}, _Opts) ->
+ {Asm,St} = functions(Fs, {atom,Mod}),
+ {ok,{Mod,Es,Attrs,Asm,St#cg.lcount}}.
+
+-record(need, {h=0 :: non_neg_integer(),
+ f=0 :: non_neg_integer()}).
+
+-record(cg_blk, {anno=#{} :: anno(),
+ is=[] :: [instruction()],
+ last :: terminator()}).
+
+-record(cg_set, {anno=#{} :: anno(),
+ dst :: b_var(),
+ op :: beam_ssa:op(),
+ args :: [beam_ssa:argument() | xreg()]}).
+
+-record(cg_alloc, {anno=#{} :: anno(),
+ stack=none :: 'none' | pos_integer(),
+ words=#need{} :: #need{},
+ live :: 'undefined' | pos_integer(),
+ def_yregs=[] :: [yreg()]
+ }).
+
+-record(cg_br, {bool :: beam_ssa:value(),
+ succ :: ssa_label(),
+ fail :: ssa_label()
+ }).
+-record(cg_ret, {arg :: cg_value(),
+ dealloc=none :: 'none' | pos_integer()
+ }).
+-record(cg_switch, {arg :: cg_value(),
+ fail :: ssa_label(),
+ list :: [sw_list_item()]
+ }).
+
+-type fa() :: {beam_asm:function_name(),arity()}.
+-type ssa_label() :: beam_ssa:label().
+-type beam_label() :: beam_asm:label().
+
+-type anno() :: beam_ssa:anno().
+
+-type b_var() :: beam_ssa:b_var().
+-type b_literal() :: beam_ssa:b_literal().
+
+-type cg_value() :: beam_ssa:value() | xreg().
+
+-type cg_set() :: #cg_set{}.
+-type cg_alloc() :: #cg_alloc{}.
+
+-type instruction() :: cg_set() | cg_alloc().
+
+-type cg_br() :: #cg_br{}.
+-type cg_ret() :: #cg_ret{}.
+-type cg_switch() :: #cg_switch{}.
+-type terminator() :: cg_br() | cg_ret() | cg_switch().
+
+-type sw_list_item() :: {b_literal(),ssa_label()}.
+
+-type reg_num() :: beam_asm:reg_num().
+-type xreg() :: {'x',reg_num()}.
+-type yreg() :: {'y',reg_num()}.
+
+-type ssa_register() :: xreg() | yreg() | {'fr',reg_num()} | {'z',reg_num()}.
+
+functions(Forms, AtomMod) ->
+ mapfoldl(fun (F, St) -> function(F, AtomMod, St) end,
+ #cg{lcount=1}, Forms).
+
+function(#b_function{anno=Anno,bs=Blocks}, AtomMod, St0) ->
+ #{func_info:={_,Name,Arity}} = Anno,
+ try
+ assert_badarg_block(Blocks), %Assertion.
+ Regs = maps:get(registers, Anno),
+ St1 = St0#cg{labels=#{},used_labels=gb_sets:empty(),
+ regs=Regs},
+ {Fi,St2} = new_label(St1), %FuncInfo label
+ {Entry,St3} = local_func_label(Name, Arity, St2),
+ {Ult,St4} = new_label(St3), %Ultimate failure
+ Labels = (St4#cg.labels)#{0=>Entry,?BADARG_BLOCK=>0},
+ St5 = St4#cg{labels=Labels,used_labels=gb_sets:singleton(Entry),
+ ultimate_fail=Ult},
+ {Body,St} = cg_fun(Blocks, St5),
+ Asm = [{label,Fi},line(Anno),
+ {func_info,AtomMod,{atom,Name},Arity}] ++
+ add_parameter_annos(Body, Anno) ++
+ [{label,Ult},if_end],
+ Func = {function,Name,Arity,Entry,Asm},
+ {Func,St}
+ catch
+ Class:Error:Stack ->
+ io:fwrite("Function: ~w/~w\n", [Name,Arity]),
+ erlang:raise(Class, Error, Stack)
+ end.
+
+assert_badarg_block(Blocks) ->
+ %% Assertion: ?BADARG_BLOCK must be the call erlang:error(badarg).
+ case Blocks of
+ #{?BADARG_BLOCK:=Blk} ->
+ #b_blk{is=[#b_set{op=call,dst=Ret,
+ args=[#b_remote{mod=#b_literal{val=erlang},
+ name=#b_literal{val=error}},
+ #b_literal{val=badarg}]}],
+ last=#b_ret{arg=Ret}} = Blk,
+ ok;
+ #{} ->
+ %% ?BADARG_BLOCK has been removed because it was never used.
+ ok
+ end.
+
+add_parameter_annos([{label, _}=Entry | Body], Anno) ->
+ ParamInfo = maps:get(parameter_type_info, Anno, #{}),
+ Annos = maps:fold(
+ fun(K, V, Acc) when is_map_key(K, ParamInfo) ->
+ TypeInfo = maps:get(K, ParamInfo),
+ [{'%', {type_info, V, TypeInfo}} | Acc];
+ (_K, _V, Acc) ->
+ Acc
+ end, [], maps:get(registers, Anno)),
+ [Entry | sort(Annos)] ++ Body.
+
+cg_fun(Blocks, St0) ->
+ Linear0 = linearize(Blocks),
+ St = collect_catch_labels(Linear0, St0),
+ Linear1 = need_heap(Linear0),
+ Linear2 = prefer_xregs(Linear1, St),
+ Linear3 = liveness(Linear2, St),
+ Linear4 = defined(Linear3, St),
+ Linear = opt_allocate(Linear4, St),
+ cg_linear(Linear, St).
+
+%% collect_catch_labels(Linear, St) -> St.
+%% Collect all catch labels (labels for blocks that begin
+%% with 'landingpad' instructions) for later use.
+
+collect_catch_labels(Linear, St) ->
+ Labels = collect_catch_labels_1(Linear),
+ St#cg{catches=gb_sets:from_list(Labels)}.
+
+collect_catch_labels_1([{L,#cg_blk{is=[#cg_set{op=landingpad}|_]}}|Bs]) ->
+ [L|collect_catch_labels_1(Bs)];
+collect_catch_labels_1([_|Bs]) ->
+ collect_catch_labels_1(Bs);
+collect_catch_labels_1([]) -> [].
+
+%% need_heap([{BlockLabel,Block]) -> [{BlockLabel,Block}].
+%% Insert need_heap instructions in the instruction list. Try to be smart and
+%% collect them together as much as possible.
+
+need_heap(Bs0) ->
+ Bs1 = need_heap_allocs(Bs0, #{}),
+ {Bs,#need{h=0,f=0}} = need_heap_blks(reverse(Bs1), #need{}, []),
+ Bs.
+
+need_heap_allocs([{L,#cg_blk{is=Is0,last=Terminator}=Blk0}|Bs], Counts0) ->
+ Next = next_block(Bs),
+ Successors = successors(Terminator),
+ Counts = foldl(fun(S, Cnts) ->
+ case Cnts of
+ #{S:=C} -> Cnts#{S:=C+1};
+ #{} when S =:= Next -> Cnts#{S=>1};
+ #{} -> Cnts#{S=>42}
+ end
+ end, Counts0, Successors),
+ case Counts of
+ #{L:=1} ->
+ [{L,Blk0}|need_heap_allocs(Bs, Counts)];
+ #{L:=_} ->
+ %% This block has multiple predecessors. Force an allocation
+ %% in this block so that the predecessors don't need to do
+ %% an allocation on behalf of this block.
+ Is = case need_heap_never(Is0) of
+ true -> Is0;
+ false -> [#cg_alloc{}|Is0]
+ end,
+ Blk = Blk0#cg_blk{is=Is},
+ [{L,Blk}|need_heap_allocs(Bs, Counts)];
+ #{} ->
+ [{L,Blk0}|need_heap_allocs(Bs, Counts)]
+ end;
+need_heap_allocs([], _) -> [].
+
+need_heap_never([#cg_alloc{}|_]) -> true;
+need_heap_never([#cg_set{op=recv_next}|_]) -> true;
+need_heap_never([#cg_set{op=wait}|_]) -> true;
+need_heap_never(_) -> false.
+
+need_heap_blks([{L,#cg_blk{is=Is0}=Blk0}|Bs], H0, Acc) ->
+ {Is1,H1} = need_heap_is(reverse(Is0), H0, []),
+ {Ns,H} = need_heap_terminator(Bs, L, H1),
+ Is = Ns ++ Is1,
+ Blk = Blk0#cg_blk{is=Is},
+ need_heap_blks(Bs, H, [{L,Blk}|Acc]);
+need_heap_blks([], H, Acc) ->
+ {Acc,H}.
+
+need_heap_is([#cg_alloc{words=Words}=Alloc0|Is], N, Acc) ->
+ Alloc = Alloc0#cg_alloc{words=add_heap_words(N, Words)},
+ need_heap_is(Is, #need{}, [Alloc|Acc]);
+need_heap_is([#cg_set{anno=Anno,op=bs_init}=I0|Is], N, Acc) ->
+ Alloc = case need_heap_need(N) of
+ [#cg_alloc{words=Need}] -> alloc(Need);
+ [] -> 0
+ end,
+ I = I0#cg_set{anno=Anno#{alloc=>Alloc}},
+ need_heap_is(Is, #need{}, [I|Acc]);
+need_heap_is([#cg_set{op=Op,args=Args}=I|Is], N, Acc) ->
+ case classify_heap_need(Op, Args) of
+ {put,Words} ->
+ %% Pass through adding to needed heap.
+ need_heap_is(Is, add_heap_words(N, Words), [I|Acc]);
+ put_float ->
+ need_heap_is(Is, add_heap_float(N), [I|Acc]);
+ neutral ->
+ need_heap_is(Is, N, [I|Acc]);
+ gc ->
+ need_heap_is(Is, #need{}, [I]++need_heap_need(N)++Acc)
+ end;
+need_heap_is([], N, Acc) ->
+ {Acc,N}.
+
+need_heap_terminator([{_,#cg_blk{last=#cg_br{succ=L,fail=L}}}|_], L, N) ->
+ %% Fallthrough.
+ {[],N};
+need_heap_terminator([{_,#cg_blk{is=Is,last=#cg_br{succ=L}}}|_], L, N) ->
+ case need_heap_need(N) of
+ [] ->
+ {[],#need{}};
+ [_|_]=Alloc ->
+ %% If the preceding instructions are a binary construction,
+ %% hoist the allocation and incorporate into the bs_init
+ %% instruction.
+ case reverse(Is) of
+ [#cg_set{op=succeeded},#cg_set{op=bs_init}|_] ->
+ {[],N};
+ [#cg_set{op=bs_put}|_] ->
+ {[],N};
+ _ ->
+ %% Not binary construction. Must emit an allocation
+ %% instruction in this block.
+ {Alloc,#need{}}
+ end
+ end;
+need_heap_terminator([{_,#cg_blk{}}|_], _, N) ->
+ {need_heap_need(N),#need{}};
+need_heap_terminator([], _, H) ->
+ {need_heap_need(H),#need{}}.
+
+need_heap_need(#need{h=0,f=0}) -> [];
+need_heap_need(#need{}=N) -> [#cg_alloc{words=N}].
+
+add_heap_words(#need{h=H1,f=F1}, #need{h=H2,f=F2}) ->
+ #need{h=H1+H2,f=F1+F2};
+add_heap_words(#need{h=Heap}=N, Words) when is_integer(Words) ->
+ N#need{h=Heap+Words}.
+
+add_heap_float(#need{f=F}=N) ->
+ N#need{f=F+1}.
+
+%% classify_heap_need(Operation, Arguments) ->
+%% gc | neutral | {put,Words} | put_float.
+%% Classify the heap need for this instruction. The return
+%% values have the following meaning.
+%%
+%% {put,Words} means that the instruction will use Words words to build
+%% something on the heap.
+%%
+%% 'put_float' means that the instruction will build one floating point
+%% number on the heap.
+%%
+%% 'gc' means that that the instruction can potentially do a GC or throw an
+%% exception. That means that an allocation instruction for any building
+%% must be placed after this instruction.
+%%
+%% 'neutral' means that the instruction does nothing to disturb the heap.
+
+-spec classify_heap_need(beam_ssa:op(), [beam_ssa:value()]) ->
+ 'gc' | 'neutral' |
+ {'put',non_neg_integer()} | 'put_float'.
+
+classify_heap_need(put_list, _) ->
+ {put,2};
+classify_heap_need(put_tuple_arity, [#b_literal{val=Words}]) ->
+ {put,Words+1};
+classify_heap_need(put_tuple, Elements) ->
+ {put,length(Elements)+1};
+classify_heap_need({bif,Name}, Args) ->
+ case is_gc_bif(Name, Args) of
+ false -> neutral;
+ true -> gc
+ end;
+classify_heap_need({float,Op}, _Args) ->
+ case Op of
+ get -> put_float;
+ _ -> neutral
+ end;
+classify_heap_need(Name, _Args) ->
+ classify_heap_need(Name).
+
+%% classify_heap_need(Operation) -> gc | neutral.
+%% Return either 'gc' or 'neutral'.
+%%
+%% 'gc' means that that the instruction can potentially do a GC or throw an
+%% exception. That means that an allocation instruction for any building
+%% must be placed after this instruction.
+%%
+%% 'neutral' means that the instruction does nothing to disturb the heap.
+%%
+%% Note: Only handle operations in this function that are not handled
+%% by classify_heap_need/2.
+
+classify_heap_need(bs_add) -> gc;
+classify_heap_need(bs_get) -> gc;
+classify_heap_need(bs_get_tail) -> gc;
+classify_heap_need(bs_init) -> gc;
+classify_heap_need(bs_init_writable) -> gc;
+classify_heap_need(bs_match_string) -> gc;
+classify_heap_need(bs_put) -> neutral;
+classify_heap_need(bs_restore) -> neutral;
+classify_heap_need(bs_save) -> neutral;
+classify_heap_need(bs_get_position) -> gc;
+classify_heap_need(bs_set_position) -> neutral;
+classify_heap_need(bs_skip) -> gc;
+classify_heap_need(bs_start_match) -> neutral;
+classify_heap_need(bs_test_tail) -> neutral;
+classify_heap_need(bs_utf16_size) -> neutral;
+classify_heap_need(bs_utf8_size) -> neutral;
+classify_heap_need(build_stacktrace) -> gc;
+classify_heap_need(call) -> gc;
+classify_heap_need(catch_end) -> gc;
+classify_heap_need(copy) -> neutral;
+classify_heap_need(extract) -> gc;
+classify_heap_need(get_hd) -> neutral;
+classify_heap_need(get_map_element) -> neutral;
+classify_heap_need(get_tl) -> neutral;
+classify_heap_need(get_tuple_element) -> neutral;
+classify_heap_need(has_map_field) -> neutral;
+classify_heap_need(is_nonempty_list) -> neutral;
+classify_heap_need(is_tagged_tuple) -> neutral;
+classify_heap_need(kill_try_tag) -> gc;
+classify_heap_need(landingpad) -> gc;
+classify_heap_need(make_fun) -> gc;
+classify_heap_need(new_try_tag) -> gc;
+classify_heap_need(peek_message) -> gc;
+classify_heap_need(put_map) -> gc;
+classify_heap_need(put_tuple_elements) -> neutral;
+classify_heap_need(raw_raise) -> gc;
+classify_heap_need(recv_next) -> gc;
+classify_heap_need(remove_message) -> neutral;
+classify_heap_need(resume) -> gc;
+classify_heap_need(set_tuple_element) -> gc;
+classify_heap_need(succeeded) -> neutral;
+classify_heap_need(timeout) -> gc;
+classify_heap_need(wait) -> gc;
+classify_heap_need(wait_timeout) -> gc.
+
+%%%
+%%% Because beam_ssa_pre_codegen has inserted 'copy' instructions to copy
+%%% variables that must be saved on the stack, a value can for some time
+%%% be in both an X register and a Y register.
+%%%
+%%% Here we will keep track of variables that have the same value and
+%%% rewrite instructions to use the variable that refers to the X
+%%% register instead of the Y register. That could improve performance,
+%%% since the BEAM interpreter have more optimized instructions
+%%% operating on X registers than on Y registers.
+%%%
+%%% 'call' and 'make_fun' are handled somewhat specially. If a value
+%%% already is in the correct X register, the X register will always
+%%% be used instead of the Y register. However, if there are one or more
+%%% values in the wrong X registers, the X registers variables will be
+%%% used only if that does not cause more 'move' instructions to be
+%%% be emitted than if the Y register variables were used.
+%%%
+%%% Here are some examples. The first example shows how a 'move' from
+%%% an Y register is eliminated:
+%%%
+%%% move x0 y1
+%%% move y1 x0 %%Will be eliminated.
+%%%
+%%% call f/1
+%%%
+%%% Here is an example when x0 and x1 must be swapped to load the argument
+%%% registers. Here the 'call' instruction will use the Y registers to
+%%% avoid introducing an extra 'move' insruction:
+%%%
+%%% move x0 y0
+%%% move x1 y1
+%%%
+%%% move y0 x1
+%%% move y1 x0
+%%%
+%%% call f/2
+%%%
+%%% Using the X register to load the argument registers would need
+%%% an extra 'move' instruction like this:
+%%%
+%%% move x0 y0
+%%% move x1 y1
+%%%
+%%% move x1 x2
+%%% move x0 x1
+%%% move x2 x0
+%%%
+%%% call f/2
+%%%
+
+prefer_xregs(Linear, St) ->
+ prefer_xregs(Linear, St, #{0=>#{}}).
+
+prefer_xregs([{L,#cg_blk{is=Is0,last=Last0}=Blk0}|Bs], St, Map0) ->
+ Copies0 = maps:get(L, Map0),
+ {Is,Copies} = prefer_xregs_is(Is0, St, Copies0, []),
+ Last = prefer_xregs_terminator(Last0, Copies, St),
+ Blk = Blk0#cg_blk{is=Is,last=Last},
+ Successors = successors(Last),
+ Map = prefer_xregs_successors(Successors, Copies, Map0),
+ [{L,Blk}|prefer_xregs(Bs, St, Map)];
+prefer_xregs([], _St, _Map) -> [].
+
+prefer_xregs_successors([L|Ls], Copies0, Map0) ->
+ case Map0 of
+ #{L:=Copies1} ->
+ Copies = merge_copies(Copies0, Copies1),
+ Map = Map0#{L:=Copies},
+ prefer_xregs_successors(Ls, Copies0, Map);
+ #{} ->
+ Map = Map0#{L=>Copies0},
+ prefer_xregs_successors(Ls, Copies0, Map)
+ end;
+prefer_xregs_successors([], _, Map) -> Map.
+
+prefer_xregs_is([#cg_alloc{}=I|Is], St, Copies0, Acc) ->
+ Copies = case I of
+ #cg_alloc{stack=none,words=#need{h=0,f=0}} ->
+ Copies0;
+ #cg_alloc{} ->
+ #{}
+ end,
+ prefer_xregs_is(Is, St, Copies, [I|Acc]);
+prefer_xregs_is([#cg_set{op=copy,dst=Dst,args=[Src]}=I|Is], St, Copies0, Acc) ->
+ Copies1 = prefer_xregs_prune(I, Copies0, St),
+ Copies = case beam_args([Src,Dst], St) of
+ [Same,Same] -> Copies1;
+ [_,_] -> Copies1#{Dst=>Src}
+ end,
+ prefer_xregs_is(Is, St, Copies, [I|Acc]);
+prefer_xregs_is([#cg_set{op=call,dst=Dst}=I0|Is], St, Copies, Acc) ->
+ I = prefer_xregs_call(I0, Copies, St),
+ prefer_xregs_is(Is, St, #{Dst=>{x,0}}, [I|Acc]);
+prefer_xregs_is([#cg_set{op=make_fun,dst=Dst}=I0|Is], St, Copies, Acc) ->
+ I = prefer_xregs_call(I0, Copies, St),
+ prefer_xregs_is(Is, St, #{Dst=>{x,0}}, [I|Acc]);
+prefer_xregs_is([#cg_set{op=set_tuple_element}=I|Is], St, Copies, Acc) ->
+ %% FIXME: HiPE translates the following code segment incorrectly:
+ %% {call_ext,3,{extfunc,erlang,setelement,3}}.
+ %% {move,{x,0},{y,3}}.
+ %% {set_tuple_element,{y,1},{y,3},1}.
+ %% Therefore, skip the translation of the arguments for set_tuple_element.
+ prefer_xregs_is(Is, St, Copies, [I|Acc]);
+prefer_xregs_is([#cg_set{args=Args0}=I0|Is], St, Copies0, Acc) ->
+ Args = [do_prefer_xreg(A, Copies0, St) || A <- Args0],
+ I = I0#cg_set{args=Args},
+ Copies = prefer_xregs_prune(I, Copies0, St),
+ prefer_xregs_is(Is, St, Copies, [I|Acc]);
+prefer_xregs_is([], _St, Copies, Acc) ->
+ {reverse(Acc),Copies}.
+
+prefer_xregs_terminator(#cg_br{bool=Arg0}=I, Copies, St) ->
+ Arg = do_prefer_xreg(Arg0, Copies, St),
+ I#cg_br{bool=Arg};
+prefer_xregs_terminator(#cg_ret{arg=Arg0}=I, Copies, St) ->
+ Arg = do_prefer_xreg(Arg0, Copies, St),
+ I#cg_ret{arg=Arg};
+prefer_xregs_terminator(#cg_switch{arg=Arg0}=I, Copies, St) ->
+ Arg = do_prefer_xreg(Arg0, Copies, St),
+ I#cg_switch{arg=Arg}.
+
+prefer_xregs_prune(#cg_set{anno=#{clobbers:=true}}, _, _) ->
+ #{};
+prefer_xregs_prune(#cg_set{dst=Dst}, Copies, St) ->
+ DstReg = beam_arg(Dst, St),
+ F = fun(_, Alias) ->
+ beam_arg(Alias, St) =/= DstReg
+ end,
+ maps:filter(F, Copies).
+
+%% prefer_xregs_call(Instruction, Copies, St) -> Instruction.
+%% Given a 'call' or 'make_fun' instruction, minimize the number
+%% of 'move' instructions to set up the argument registers.
+%% Prefer using X registers over Y registers, unless that will
+%% result in more 'move' instructions.
+
+prefer_xregs_call(#cg_set{args=[_]}=I, _Copies, _St) ->
+ I;
+prefer_xregs_call(#cg_set{args=[F|Args0]}=I, Copies, St) ->
+ case Args0 of
+ [A0] ->
+ %% Only one argument. Always prefer the X register
+ %% if available.
+ A = do_prefer_xreg(A0, Copies, St),
+ I#cg_set{args=[F,A]};
+ [_|_] ->
+ %% Two or more arguments. Try rewriting arguments in
+ %% two ways and see which way produces the least
+ %% number of 'move' instructions.
+ Args1 = prefer_xregs_call_1(Args0, Copies, 0, St),
+ Args2 = [do_prefer_xreg(A, Copies, St) || A <- Args0],
+ case {count_moves(Args1, St),count_moves(Args2, St)} of
+ {N1,N2} when N1 < N2 ->
+ %% There will be fewer 'move' instructions if
+ %% we keep using Y registers.
+ I#cg_set{args=[F|Args1]};
+ {_,_} ->
+ %% Always use the values in X registers.
+ I#cg_set{args=[F|Args2]}
+ end
+ end.
+
+count_moves(Args, St) ->
+ length(setup_args(beam_args(Args, St))).
+
+prefer_xregs_call_1([#b_var{}=A|As], Copies, X, St) ->
+ case {beam_arg(A, St),Copies} of
+ {{y,_},#{A:=Other}} ->
+ case beam_arg(Other, St) of
+ {x,X} ->
+ %% This value is already in the correct X register.
+ %% It is always benefical to use the X register variable.
+ [Other|prefer_xregs_call_1(As, Copies, X+1, St)];
+ _ ->
+ %% This value is another X register. Keep using
+ %% the Y register variable.
+ [A|prefer_xregs_call_1(As, Copies, X+1, St)]
+ end;
+ {_,_} ->
+ %% The value is not available in an X register.
+ [A|prefer_xregs_call_1(As, Copies, X+1, St)]
+ end;
+prefer_xregs_call_1([A|As], Copies, X, St) ->
+ [A|prefer_xregs_call_1(As, Copies, X+1, St)];
+prefer_xregs_call_1([], _, _, _) -> [].
+
+do_prefer_xreg(#b_var{}=A, Copies, St) ->
+ case {beam_arg(A, St),Copies} of
+ {{y,_},#{A:=Copy}} ->
+ Copy;
+ {_,_} ->
+ A
+ end;
+do_prefer_xreg(A, _, _) -> A.
+
+merge_copies(Copies0, Copies1) when map_size(Copies0) =< map_size(Copies1) ->
+ maps:filter(fun(K, V) ->
+ case Copies1 of
+ #{K:=V} -> true;
+ #{} -> false
+ end
+ end, Copies0);
+merge_copies(Copies0, Copies1) ->
+ merge_copies(Copies1, Copies0).
+
+
+%%%
+%%% Add annotations for the number of live registers.
+%%%
+
+liveness(Linear, #cg{regs=Regs}) ->
+ liveness(reverse(Linear), #{}, Regs, []).
+
+liveness([{L,#cg_blk{is=Is0,last=Last0}=Blk0}|Bs], LiveMap0, Regs, Acc) ->
+ Successors = liveness_successors(Last0),
+ Live0 = ordsets:union([liveness_get(S, LiveMap0) || S <- Successors]),
+ Live1 = liveness_terminator(Last0, Live0),
+ {Is,Live} = liveness_is(reverse(Is0), Regs, Live1, []),
+ LiveMap = LiveMap0#{L=>Live},
+ Blk = Blk0#cg_blk{is=Is},
+ liveness(Bs, LiveMap, Regs, [{L,Blk}|Acc]);
+liveness([], _LiveMap, _Regs, Acc) -> Acc.
+
+liveness_get(S, LiveMap) ->
+ case LiveMap of
+ #{S:=Live} -> Live;
+ #{} -> []
+ end.
+
+liveness_successors(Terminator) ->
+ successors(Terminator) -- [?BADARG_BLOCK].
+
+liveness_is([#cg_alloc{}=I0|Is], Regs, Live, Acc) ->
+ I = I0#cg_alloc{live=num_live(Live, Regs)},
+ liveness_is(Is, Regs, Live, [I|Acc]);
+liveness_is([#cg_set{dst=Dst,args=Args}=I0|Is], Regs, Live0, Acc) ->
+ Live1 = liveness_clobber(I0, Live0, Regs),
+ I1 = liveness_yregs_anno(I0, Live1, Regs),
+ Live2 = liveness_args(Args, Live1),
+ Live = ordsets:del_element(Dst, Live2),
+ I = liveness_anno(I1, Live, Regs),
+ liveness_is(Is, Regs, Live, [I|Acc]);
+liveness_is([], _, Live, Acc) ->
+ {Acc,Live}.
+
+liveness_terminator(#cg_br{bool=Arg}, Live) ->
+ liveness_terminator_1(Arg, Live);
+liveness_terminator(#cg_switch{arg=Arg}, Live) ->
+ liveness_terminator_1(Arg, Live);
+liveness_terminator(#cg_ret{arg=Arg}, Live) ->
+ liveness_terminator_1(Arg, Live).
+
+liveness_terminator_1(#b_var{}=V, Live) ->
+ ordsets:add_element(V, Live);
+liveness_terminator_1(#b_literal{}, Live) ->
+ Live;
+liveness_terminator_1(Reg, Live) ->
+ _ = verify_beam_register(Reg),
+ ordsets:add_element(Reg, Live).
+
+liveness_args([#b_var{}=V|As], Live) ->
+ liveness_args(As, ordsets:add_element(V, Live));
+liveness_args([#b_remote{mod=Mod,name=Name}|As], Live) ->
+ liveness_args([Mod,Name|As], Live);
+liveness_args([A|As], Live) ->
+ case is_beam_register(A) of
+ true ->
+ liveness_args(As, ordsets:add_element(A, Live));
+ false ->
+ liveness_args(As, Live)
+ end;
+liveness_args([], Live) -> Live.
+
+liveness_anno(#cg_set{op=Op}=I, Live, Regs) ->
+ case need_live_anno(Op) of
+ true ->
+ NumLive = num_live(Live, Regs),
+ Anno = (I#cg_set.anno)#{live=>NumLive},
+ I#cg_set{anno=Anno};
+ false ->
+ I
+ end.
+
+liveness_yregs_anno(#cg_set{op=Op,dst=Dst}=I, Live0, Regs) ->
+ case need_live_anno(Op) of
+ true ->
+ Live = ordsets:del_element(Dst, Live0),
+ LiveYregs = [V || V <- Live, is_yreg(V, Regs)],
+ Anno = (I#cg_set.anno)#{live_yregs=>LiveYregs},
+ I#cg_set{anno=Anno};
+ false ->
+ I
+ end.
+
+liveness_clobber(#cg_set{anno=Anno}, Live, Regs) ->
+ case Anno of
+ #{clobbers:=true} ->
+ [R || R <- Live, is_yreg(R, Regs)];
+ _ ->
+ Live
+ end.
+
+is_yreg(R, Regs) ->
+ case Regs of
+ #{R:={y,_}} -> true;
+ #{} -> false
+ end.
+
+num_live(Live, Regs) ->
+ Rs = ordsets:from_list([get_register(V, Regs) || V <- Live]),
+ num_live_1(Rs, 0).
+
+num_live_1([{x,X}|T], X) ->
+ num_live_1(T, X+1);
+num_live_1([{x,_}|_]=T, X) ->
+ %% error({hole,{x,X},expected,Next});
+ num_live_1(T, X+1);
+num_live_1([{y,_}|_], X) ->
+ X;
+num_live_1([{z,_}|_], X) ->
+ X;
+num_live_1([{fr,_}|T], X) ->
+ num_live_1(T, X);
+num_live_1([], X) ->
+ X.
+
+get_live(#cg_set{anno=#{live:=Live}}) ->
+ Live.
+
+%% need_live_anno(Operation) -> true|false.
+%% Return 'true' if the instruction needs a 'live' annotation with
+%% the number live X registers, or 'false' otherwise.
+
+need_live_anno(Op) ->
+ case Op of
+ {bif,_} -> true;
+ bs_get -> true;
+ bs_init -> true;
+ bs_get_position -> true;
+ bs_get_tail -> true;
+ bs_start_match -> true;
+ bs_skip -> true;
+ call -> true;
+ put_map -> true;
+ _ -> false
+ end.
+
+%%%
+%%% Add the following annotations for Y registers:
+%%%
+%%% def_yregs An ordset with variables that refer to live Y registers.
+%%% That is, Y registers that that have been killed
+%%% are not included. This annotation is added to all
+%%% instructions that require Y registers to be initialized.
+%%%
+%%% kill_yregs This annotation is added to call instructions. It is
+%%% an ordset containing variables referring to Y registers
+%%% that will no longer be used after the call instruction.
+%%%
+
+defined(Linear, #cg{regs=Regs}) ->
+ def(Linear, #{}, Regs).
+
+def([{L,#cg_blk{is=Is0,last=Last}=Blk0}|Bs], DefMap0, Regs) ->
+ Def0 = def_get(L, DefMap0),
+ {Is,Def,MaybeDef} = def_is(Is0, Regs, Def0, []),
+ DefMap = def_successors(Last, Def, MaybeDef, DefMap0),
+ Blk = Blk0#cg_blk{is=Is},
+ [{L,Blk}|def(Bs, DefMap, Regs)];
+def([], _, _) -> [].
+
+def_get(L, DefMap) ->
+ case DefMap of
+ #{L:=Def} -> Def;
+ #{} -> []
+ end.
+
+def_is([#cg_alloc{anno=Anno0}=I0|Is], Regs, Def, Acc) ->
+ I = I0#cg_alloc{anno=Anno0#{def_yregs=>Def}},
+ def_is(Is, Regs, Def, [I|Acc]);
+def_is([#cg_set{op=succeeded,args=[Var]}=I], Regs, Def, Acc) ->
+ %% Var will only be defined on the success branch of the `br`
+ %% for this block.
+ MaybeDef = def_add_yreg(Var, [], Regs),
+ {reverse(Acc, [I]),Def,MaybeDef};
+def_is([#cg_set{op=kill_try_tag,args=[#b_var{}=Tag]}=I|Is], Regs, Def0, Acc) ->
+ Def = ordsets:del_element(Tag, Def0),
+ def_is(Is, Regs, Def, [I|Acc]);
+def_is([#cg_set{op=catch_end,args=[#b_var{}=Tag|_]}=I|Is], Regs, Def0, Acc) ->
+ Def = ordsets:del_element(Tag, Def0),
+ def_is(Is, Regs, Def, [I|Acc]);
+def_is([#cg_set{anno=Anno0,op=call,dst=Dst}=I0|Is],
+ Regs, Def0, Acc) ->
+ #{live_yregs:=LiveYregVars} = Anno0,
+ LiveRegs = gb_sets:from_list([maps:get(V, Regs) || V <- LiveYregVars]),
+ Kill0 = ordsets:subtract(Def0, LiveYregVars),
+
+ %% Kill0 is the set of variables that have just died. However, the registers
+ %% used for killed variables may have been reused, so we must check that the
+ %% registers to be killed are not used by other variables.
+ Kill = [K || K <- Kill0, not gb_sets:is_element(maps:get(K, Regs), LiveRegs)],
+ Anno = Anno0#{def_yregs=>Def0,kill_yregs=>Kill},
+ I = I0#cg_set{anno=Anno},
+ Def1 = ordsets:subtract(Def0, Kill),
+ Def = def_add_yreg(Dst, Def1, Regs),
+ def_is(Is, Regs, Def, [I|Acc]);
+def_is([#cg_set{anno=Anno0,op={bif,Bif},dst=Dst,args=Args}=I0|Is],
+ Regs, Def0, Acc) ->
+ Arity = length(Args),
+ I = case is_gc_bif(Bif, Args) orelse not erl_bifs:is_safe(erlang, Bif, Arity) of
+ true ->
+ I0#cg_set{anno=Anno0#{def_yregs=>Def0}};
+ false ->
+ I0
+ end,
+ Def = def_add_yreg(Dst, Def0, Regs),
+ def_is(Is, Regs, Def, [I|Acc]);
+def_is([#cg_set{anno=Anno0,dst=Dst}=I0|Is], Regs, Def0, Acc) ->
+ I = case need_y_init(I0) of
+ true ->
+ I0#cg_set{anno=Anno0#{def_yregs=>Def0}};
+ false ->
+ I0
+ end,
+ Def = def_add_yreg(Dst, Def0, Regs),
+ def_is(Is, Regs, Def, [I|Acc]);
+def_is([], _, Def, Acc) ->
+ {reverse(Acc),Def,[]}.
+
+def_add_yreg(Dst, Def, Regs) ->
+ case is_yreg(Dst, Regs) of
+ true -> ordsets:add_element(Dst, Def);
+ false -> Def
+ end.
+
+def_successors(#cg_br{bool=#b_var{},succ=Succ,fail=Fail}, Def, MaybeDef, DefMap0) ->
+ DefMap = def_successors([Fail], ordsets:subtract(Def, MaybeDef), DefMap0),
+ def_successors([Succ], Def, DefMap);
+def_successors(Last, Def, [], DefMap) ->
+ def_successors(successors(Last), Def, DefMap).
+
+def_successors([S|Ss], Def0, DefMap) ->
+ case DefMap of
+ #{S:=Def1} ->
+ Def = ordsets:intersection(Def0, Def1),
+ def_successors(Ss, Def0, DefMap#{S:=Def});
+ #{} ->
+ def_successors(Ss, Def0, DefMap#{S=>Def0})
+ end;
+def_successors([], _, DefMap) -> DefMap.
+
+%% need_y_init(#cg_set{}) -> true|false.
+%% Return true if this instructions needs initialized Y registers
+%% (because the instruction may do a GC or cause an exception
+%% so that the stack will be scanned), or false otherwise.
+
+need_y_init(#cg_set{anno=#{clobbers:=Clobbers}}) -> Clobbers;
+need_y_init(#cg_set{op=bs_get}) -> true;
+need_y_init(#cg_set{op=bs_get_position}) -> true;
+need_y_init(#cg_set{op=bs_get_tail}) -> true;
+need_y_init(#cg_set{op=bs_init}) -> true;
+need_y_init(#cg_set{op=bs_skip,args=[#b_literal{val=Type}|_]}) ->
+ case Type of
+ utf8 -> true;
+ utf16 -> true;
+ utf32 -> true;
+ _ -> false
+ end;
+need_y_init(#cg_set{op=bs_start_match}) -> true;
+need_y_init(#cg_set{op=put_map}) -> true;
+need_y_init(#cg_set{}) -> false.
+
+%% opt_allocate([{BlockLabel,Block}], #st{}) -> [BeamInstruction].
+%% Update the def_yregs field of each #cg_alloc{} that allocates
+%% a stack frame. #cg_alloc.def_yregs will list all Y registers
+%% that will be initialized by the subsequent code (thus, the
+%% listed Y registers don't require init/1 instructions).
+
+opt_allocate(Linear, #cg{regs=Regs}) ->
+ opt_allocate_1(Linear, Regs).
+
+opt_allocate_1([{L,#cg_blk{is=[#cg_alloc{stack=Stk}=I0|Is]}=Blk0}|Bs]=Bs0, Regs)
+ when is_integer(Stk) ->
+ %% Collect the variables that are initialized by copy
+ %% instruction in this block.
+ case ordsets:from_list(opt_allocate_defs(Is, Regs)) of
+ Yregs when length(Yregs) =:= Stk ->
+ %% Those copy instructions are sufficient to fully
+ %% initialize the stack frame.
+ I = I0#cg_alloc{def_yregs=Yregs},
+ [{L,Blk0#cg_blk{is=[I|Is]}}|opt_allocate_1(Bs, Regs)];
+ Yregs0 ->
+ %% Determine a conservative approximation of the Y
+ %% registers that are guaranteed to be initialized by all
+ %% successors of this block, and to it add the variables
+ %% initialized by copy instructions in this block.
+ Yregs1 = opt_alloc_def(Bs0, gb_sets:singleton(L), []),
+ Yregs = ordsets:union(Yregs0, Yregs1),
+ I = I0#cg_alloc{def_yregs=Yregs},
+ [{L,Blk0#cg_blk{is=[I|Is]}}|opt_allocate_1(Bs, Regs)]
+ end;
+opt_allocate_1([B|Bs], Regs) ->
+ [B|opt_allocate_1(Bs, Regs)];
+opt_allocate_1([], _) -> [].
+
+opt_allocate_defs([#cg_set{op=copy,dst=Dst}|Is], Regs) ->
+ case is_yreg(Dst, Regs) of
+ true -> [Dst|opt_allocate_defs(Is, Regs)];
+ false -> []
+ end;
+opt_allocate_defs(_, _Regs) -> [].
+
+opt_alloc_def([{L,#cg_blk{is=Is,last=Last}}|Bs], Ws0, Def0) ->
+ case gb_sets:is_member(L, Ws0) of
+ false ->
+ opt_alloc_def(Bs, Ws0, Def0);
+ true ->
+ case opt_allocate_is(Is) of
+ none ->
+ Succ = successors(Last),
+ Ws = gb_sets:union(Ws0, gb_sets:from_list(Succ)),
+ opt_alloc_def(Bs, Ws, Def0);
+ Def1 when is_list(Def1) ->
+ Def = [Def1|Def0],
+ opt_alloc_def(Bs, Ws0, Def)
+ end
+ end;
+opt_alloc_def([], _, Def) ->
+ ordsets:intersection(Def).
+
+opt_allocate_is([#cg_set{anno=Anno}|Is]) ->
+ case Anno of
+ #{def_yregs:=Yregs} ->
+ Yregs;
+ #{} ->
+ opt_allocate_is(Is)
+ end;
+opt_allocate_is([#cg_alloc{anno=#{def_yregs:=Yregs},stack=none}|_]) ->
+ Yregs;
+opt_allocate_is([#cg_alloc{}|Is]) ->
+ opt_allocate_is(Is);
+opt_allocate_is([]) -> none.
+
+%%%
+%%% Here follows the main code generation functions.
+%%%
+
+%% cg_linear([{BlockLabel,Block}]) -> [BeamInstruction].
+%% Generate BEAM instructions.
+
+cg_linear([{L,#cg_blk{anno=#{recv_set:=L}=Anno0}=B0}|Bs], St0) ->
+ Anno = maps:remove(recv_set, Anno0),
+ B = B0#cg_blk{anno=Anno},
+ {Is,St1} = cg_linear([{L,B}|Bs], St0),
+ {Fail,St} = use_block_label(L, St1),
+ {[{recv_set,Fail}|Is],St};
+cg_linear([{L,#cg_blk{is=Is0,last=Last}}|Bs], St0) ->
+ Next = next_block(Bs),
+ St1 = new_block_label(L, St0),
+ {Is1,St2} = cg_block(Is0, Last, Next, St1),
+ {Is2,St} = cg_linear(Bs, St2),
+ {def_block_label(L, St)++Is1++Is2,St};
+cg_linear([], St) -> {[],St}.
+
+cg_block([#cg_set{op=recv_next}], #cg_br{succ=Lr0}, _Next, St0) ->
+ {Lr,St} = use_block_label(Lr0, St0),
+ {[{loop_rec_end,Lr}],St};
+cg_block([#cg_set{op=wait}], #cg_br{succ=Lr0}, _Next, St0) ->
+ {Lr,St} = use_block_label(Lr0, St0),
+ {[{wait,Lr}],St};
+cg_block(Is0, Last, Next, St0) ->
+ case Last of
+ #cg_br{succ=Next,fail=Next} ->
+ cg_block(Is0, none, St0);
+ #cg_br{succ=Same,fail=Same} ->
+ {Fail,St1} = use_block_label(Same, St0),
+ {Is,St} = cg_block(Is0, none, St1),
+ {Is++[jump(Fail)],St};
+ #cg_br{bool=Bool,succ=Next,fail=Fail0} ->
+ {Fail,St1} = use_block_label(Fail0, St0),
+ {Is,St} = cg_block(Is0, {Bool,Fail}, St1),
+ {Is,St};
+ #cg_br{bool=Bool,succ=Succ0,fail=Fail0} ->
+ {[Succ,Fail],St1} = use_block_labels([Succ0,Fail0], St0),
+ {Is,St} = cg_block(Is0, {Bool,Fail}, St1),
+ {Is++[jump(Succ)],St};
+ #cg_ret{arg=Src0,dealloc=N} ->
+ Src = beam_arg(Src0, St0),
+ cg_block(Is0, {return,Src,N}, St0);
+ #cg_switch{} ->
+ cg_switch(Is0, Last, St0)
+ end.
+
+cg_switch(Is0, Last, St0) ->
+ #cg_switch{arg=Src0,fail=Fail0,list=List0} = Last,
+ Src = beam_arg(Src0, St0),
+ {Fail1,St1} = use_block_label(Fail0, St0),
+ Fail = ensure_label(Fail1, St1),
+ {List1,St2} =
+ flatmapfoldl(fun({V,L}, S0) ->
+ {Lbl,S} = use_block_label(L, S0),
+ {[beam_arg(V, S),Lbl],S}
+ end, St1, List0),
+ {Is1,St} = cg_block(Is0, none, St2),
+ case reverse(Is1) of
+ [{bif,tuple_size,_,[Tuple],{z,_}=Src}|More] ->
+ List = map(fun({integer,Arity}) -> Arity;
+ ({f,_}=F) -> F
+ end, List1),
+ Is = reverse(More, [{select_tuple_arity,Tuple,Fail,{list,List}}]),
+ {Is,St};
+ _ ->
+ SelectVal = {select_val,Src,Fail,{list,List1}},
+ {Is1 ++ [SelectVal],St}
+ end.
+
+jump({f,_}=Fail) ->
+ {jump,Fail};
+jump({catch_tag,Fail}) ->
+ {jump,Fail}.
+
+bif_fail({f,_}=Fail) -> Fail;
+bif_fail({catch_tag,_}) -> {f,0}.
+
+next_block([]) -> none;
+next_block([{Next,_}|_]) -> Next.
+
+%% Certain instructions (such as get_map_element or is_nonempty_list)
+%% are only used in guards and **must** have a non-zero label;
+%% otherwise, the loader will refuse to load the
+%% module. ensure_label/2 replaces a zero label with the "ultimate
+%% failure" label to make the module loadable. The instruction that
+%% have had the zero label replaced is **not** supposed to ever fail
+%% and actually jump to the label.
+
+ensure_label(Fail0, #cg{ultimate_fail=Lbl}) ->
+ case bif_fail(Fail0) of
+ {f,0} -> {f,Lbl};
+ {f,_}=Fail -> Fail
+ end.
+
+cg_block([#cg_set{anno=#{recv_mark:=L}=Anno0}=I0|T], Context, St0) ->
+ Anno = maps:remove(recv_mark, Anno0),
+ I = I0#cg_set{anno=Anno},
+ {Is,St1} = cg_block([I|T], Context, St0),
+ {Fail,St} = use_block_label(L, St1),
+ {[{recv_mark,Fail}|Is],St};
+cg_block([#cg_set{op=new_try_tag,dst=Tag,args=Args}], {Tag,Fail0}, St) ->
+ {catch_tag,Fail} = Fail0,
+ [Reg,{atom,Kind}] = beam_args([Tag|Args], St),
+ {[{Kind,Reg,Fail}],St};
+cg_block([#cg_set{anno=Anno,op={bif,Name},dst=Dst0,args=Args0}=I,
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail0}, St) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St),
+ Line0 = call_line(body, {extfunc,erlang,Name,length(Args)}, Anno),
+ Fail = bif_fail(Fail0),
+ Line = case Fail of
+ {f,0} -> Line0;
+ {f,_} -> []
+ end,
+ case is_gc_bif(Name, Args) of
+ true ->
+ Live = get_live(I),
+ Kill = kill_yregs(Anno, St),
+ {Kill++Line++[{gc_bif,Name,Fail,Live,Args,Dst}],St};
+ false ->
+ {Line++[{bif,Name,Fail,Args,Dst}],St}
+ end;
+cg_block([#cg_set{op={bif,tuple_size},dst=Arity0,args=[Tuple0]},
+ #cg_set{op={bif,'=:='},dst=Bool,args=[Arity0,#b_literal{val=Ar}]}=Eq],
+ {Bool,Fail}=Context, St0) ->
+ Tuple = beam_arg(Tuple0, St0),
+ case beam_arg(Arity0, St0) of
+ {z,_} ->
+ %% The size will only be used once. Combine to a test_arity instruction.
+ Test = {test,test_arity,ensure_label(Fail, St0),[Tuple,Ar]},
+ {[Test],St0};
+ Arity ->
+ %% The size will be used more than once. Must do an explicit
+ %% BIF call followed by the '==' test.
+ TupleSize = {bif,tuple_size,{f,0},[Tuple],Arity},
+ {Is,St} = cg_block([Eq], Context, St0),
+ {[TupleSize|Is],St}
+ end;
+cg_block([#cg_set{op={bif,Name},dst=Dst0,args=Args0}]=Is0, {Dst0,Fail}, St0) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St0),
+ case Dst of
+ {z,_} ->
+ %% The result of the BIF call will only be used once. Convert to
+ %% a test instruction.
+ {Test,St1} = bif_to_test(Name, Args, ensure_label(Fail, St0), St0),
+ {Test,St1};
+ _ ->
+ %% Must explicitly call the BIF since the result will be used
+ %% more than once.
+ {Is1,St1} = cg_block(Is0, none, St0),
+ {Is2,St} = cg_block([], {Dst0,Fail}, St1),
+ {Is1++Is2,St}
+ end;
+cg_block([#cg_set{anno=Anno,op={bif,Name},dst=Dst0,args=Args0}=I|T],
+ Context, St0) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St0),
+ {Is0,St} = cg_block(T, Context, St0),
+ case is_gc_bif(Name, Args) of
+ true ->
+ Line = call_line(body, {extfunc,erlang,Name,length(Args)}, Anno),
+ Live = get_live(I),
+ Kill = kill_yregs(Anno, St),
+ Is = Kill++Line++[{gc_bif,Name,{f,0},Live,Args,Dst}|Is0],
+ {Is,St};
+ false ->
+ Is = [{bif,Name,{f,0},Args,Dst}|Is0],
+ {Is,St}
+ end;
+cg_block([#cg_set{op=bs_init,dst=Dst0,args=Args0,anno=Anno}=I,
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail0}, St) ->
+ Fail = bif_fail(Fail0),
+ Line = line(Anno),
+ Alloc = map_get(alloc, Anno),
+ [#b_literal{val=Kind}|Args1] = Args0,
+ case Kind of
+ new ->
+ [Dst,Size,{integer,Unit}] = beam_args([Dst0|Args1], St),
+ Live = get_live(I),
+ {[Line|cg_bs_init(Dst, Size, Alloc, Unit, Live, Fail)],St};
+ private_append ->
+ [Dst,Src,Bits,{integer,Unit}] = beam_args([Dst0|Args1], St),
+ Flags = {field_flags,[]},
+ Is = [Line,{bs_private_append,Fail,Bits,Unit,Src,Flags,Dst}],
+ {Is,St};
+ append ->
+ [Dst,Src,Bits,{integer,Unit}] = beam_args([Dst0|Args1], St),
+ Flags = {field_flags,[]},
+ Live = get_live(I),
+ Is = [Line,{bs_append,Fail,Bits,Alloc,Live,Unit,Src,Flags,Dst}],
+ {Is,St}
+ end;
+cg_block([#cg_set{anno=Anno,op=bs_start_match,dst=Ctx0,args=[Bin0]}=I,
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail}, St) ->
+ [Dst,Bin1] = beam_args([Ctx0,Bin0], St),
+ {Bin,Pre} = force_reg(Bin1, Dst),
+ Live = get_live(I),
+ %% num_slots is only set when using the old instructions.
+ case maps:find(num_slots, Anno) of
+ {ok, Slots} ->
+ Is = Pre ++ [{test,bs_start_match2,Fail,Live,[Bin,Slots],Dst}],
+ {Is,St};
+ error ->
+ Is = Pre ++ [{test,bs_start_match3,Fail,Live,[Bin],Dst}],
+ {Is,St}
+ end;
+cg_block([#cg_set{op=bs_get}=Set,
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail}, St) ->
+ {cg_bs_get(Fail, Set, St),St};
+cg_block([#cg_set{op=bs_match_string,args=[CtxVar,#b_literal{val=String}]},
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail}, St) ->
+ CtxReg = beam_arg(CtxVar, St),
+ Is = [{test,bs_match_string,Fail,[CtxReg,String]}],
+ {Is,St};
+cg_block([#cg_set{dst=Dst0,op=landingpad,args=Args0}|T], Context, St0) ->
+ [Dst,{atom,Kind},Tag] = beam_args([Dst0|Args0], St0),
+ case Kind of
+ 'catch' ->
+ cg_catch(Dst, T, Context, St0);
+ 'try' ->
+ cg_try(Dst, Tag, T, Context, St0)
+ end;
+cg_block([#cg_set{op=kill_try_tag,args=Args0}|Is], Context, St0) ->
+ [Reg] = beam_args(Args0, St0),
+ {Is0,St} = cg_block(Is, Context, St0),
+ {[{try_end,Reg}|Is0],St};
+cg_block([#cg_set{op=catch_end,dst=Dst0,args=Args0}|Is], Context, St0) ->
+ [Dst,Reg,{x,0}] = beam_args([Dst0|Args0], St0),
+ {Is0,St} = cg_block(Is, Context, St0),
+ {[{catch_end,Reg}|copy({x,0}, Dst)++Is0],St};
+cg_block([#cg_set{op=call}=I,
+ #cg_set{op=succeeded,dst=Bool}], {Bool,_Fail}, St) ->
+ %% A call in try/catch block.
+ cg_block([I], none, St);
+cg_block([#cg_set{op=get_map_element,dst=Dst0,args=Args0},
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail0}, St) ->
+ [Dst,Map,Key] = beam_args([Dst0|Args0], St),
+ Fail = ensure_label(Fail0, St),
+ {[{get_map_elements,Fail,Map,{list,[Key,Dst]}}],St};
+cg_block([#cg_set{op=Op,dst=Dst0,args=Args0}=I,
+ #cg_set{op=succeeded,dst=Bool}], {Bool,Fail}, St) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St),
+ {cg_test(Op, bif_fail(Fail), Args, Dst, I),St};
+cg_block([#cg_set{op=bs_put,dst=Bool,args=Args0}], {Bool,Fail}, St) ->
+ Args = beam_args(Args0, St),
+ {cg_bs_put(bif_fail(Fail), Args),St};
+cg_block([#cg_set{op=bs_test_tail,dst=Bool,args=Args0}], {Bool,Fail}, St) ->
+ [Ctx,{integer,Bits}] = beam_args(Args0, St),
+ {[{test,bs_test_tail2,bif_fail(Fail),[Ctx,Bits]}],St};
+cg_block([#cg_set{op={float,checkerror},dst=Bool}], {Bool,Fail}, St) ->
+ {[{fcheckerror,bif_fail(Fail)}],St};
+cg_block([#cg_set{op=is_tagged_tuple,dst=Bool,args=Args0}], {Bool,Fail}, St) ->
+ [Src,{integer,Arity},Tag] = beam_args(Args0, St),
+ {[{test,is_tagged_tuple,ensure_label(Fail, St),[Src,Arity,Tag]}],St};
+cg_block([#cg_set{op=is_nonempty_list,dst=Bool,args=Args0}], {Bool,Fail}, St) ->
+ Args = beam_args(Args0, St),
+ {[{test,is_nonempty_list,ensure_label(Fail, St),Args}],St};
+cg_block([#cg_set{op=has_map_field,dst=Bool,args=Args0}], {Bool,Fail}, St) ->
+ [Src,Key] = beam_args(Args0, St),
+ {[{test,has_map_fields,Fail,Src,{list,[Key]}}],St};
+cg_block([#cg_set{op=call}=Call], {_Bool,_Fail}=Context, St0) ->
+ {Is0,St1} = cg_call(Call, body, none, St0),
+ {Is1,St} = cg_block([], Context, St1),
+ {Is0++Is1,St};
+cg_block([#cg_set{op=call,dst=Dst0}=Call], Context, St) ->
+ Dst = beam_arg(Dst0, St),
+ case Context of
+ {return,Dst,_} ->
+ cg_call(Call, tail, Context, St);
+ _ ->
+ cg_call(Call, body, Context, St)
+ end;
+cg_block([#cg_set{op=call}=Call|T], Context, St0) ->
+ {Is0,St1} = cg_call(Call, body, none, St0),
+ {Is1,St} = cg_block(T, Context, St1),
+ {Is0++Is1,St};
+cg_block([#cg_set{op=make_fun,dst=Dst0,args=[Local|Args0]}|T],
+ Context, St0) ->
+ #b_local{name=#b_literal{val=Func},arity=Arity} = Local,
+ [Dst|Args] = beam_args([Dst0|Args0], St0),
+ {FuncLbl,St1} = local_func_label(Func, Arity, St0),
+ Is0 = setup_args(Args) ++
+ [{make_fun2,{f,FuncLbl},0,0,length(Args)}|copy({x,0}, Dst)],
+ {Is1,St} = cg_block(T, Context, St1),
+ {Is0++Is1,St};
+cg_block([#cg_set{op=copy}|_]=T0, Context, St0) ->
+ {Is0,T} = cg_copy(T0, St0),
+ {Is1,St} = cg_block(T, Context, St0),
+ Is = Is0 ++ Is1,
+ case is_call(T) of
+ {yes,Arity} ->
+ {opt_call_moves(Is, Arity),St};
+ no ->
+ {Is,St}
+ end;
+cg_block([#cg_set{op=Op,dst=Dst0,args=Args0}=Set], none, St) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St),
+ Is = cg_instr(Op, Args, Dst, Set),
+ {Is,St};
+cg_block([#cg_set{op=Op,dst=Dst0,args=Args0}=Set|T], Context, St0) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St0),
+ Is0 = cg_instr(Op, Args, Dst, Set),
+ {Is1,St} = cg_block(T, Context, St0),
+ {Is0++Is1,St};
+cg_block([#cg_alloc{}=Alloc|T], Context, St0) ->
+ Is0 = cg_alloc(Alloc, St0),
+ {Is1,St} = cg_block(T, Context, St0),
+ {Is0++Is1,St};
+cg_block([], {return,Arg,none}, St) ->
+ Is = copy(Arg, {x,0}) ++ [return],
+ {Is,St};
+cg_block([], {return,Arg,N}, St) ->
+ Is = copy(Arg, {x,0}) ++ [{deallocate,N},return],
+ {Is,St};
+cg_block([], none, St) ->
+ {[],St};
+cg_block([], {Bool0,Fail}, St) ->
+ [Bool] = beam_args([Bool0], St),
+ {[{test,is_eq_exact,Fail,[Bool,{atom,true}]}],St}.
+
+cg_copy(T0, St) ->
+ {Copies,T} = splitwith(fun(#cg_set{op=copy}) -> true;
+ (_) -> false
+ end, T0),
+ Moves0 = cg_copy_1(Copies, St),
+ Moves1 = [Move || {move,Src,Dst}=Move <- Moves0, Src =/= Dst],
+ Scratch = {x,1022},
+ Moves = order_moves(Moves1, Scratch),
+ {Moves,T}.
+
+cg_copy_1([#cg_set{dst=Dst0,args=Args}|T], St) ->
+ [Dst,Src] = beam_args([Dst0|Args], St),
+ Copies = cg_copy_1(T, St),
+ case keymember(Dst, 3, Copies) of
+ true ->
+ %% Will be overwritten. Don't generate a move instruction.
+ Copies;
+ false ->
+ [{move,Src,Dst}|Copies]
+ end;
+cg_copy_1([], _St) -> [].
+
+-define(IS_LITERAL(Val), (Val =:= nil orelse
+ element(1, Val) =:= integer orelse
+ element(1, Val) =:= float orelse
+ element(1, Val) =:= atom orelse
+ element(1, Val) =:= literal)).
+
+bif_to_test('or', [V1,V2], {f,Lbl}=Fail, St0) when Lbl =/= 0 ->
+ {SuccLabel,St} = new_label(St0),
+ {[{test,is_eq_exact,{f,SuccLabel},[V1,{atom,false}]},
+ {test,is_eq_exact,Fail,[V2,{atom,true}]},
+ {label,SuccLabel}],St};
+bif_to_test(Op, Args, Fail, St) ->
+ {bif_to_test(Op, Args, Fail),St}.
+
+bif_to_test('and', [V1,V2], Fail) ->
+ [{test,is_eq_exact,Fail,[V1,{atom,true}]},
+ {test,is_eq_exact,Fail,[V2,{atom,true}]}];
+bif_to_test('not', [Var], Fail) ->
+ [{test,is_eq_exact,Fail,[Var,{atom,false}]}];
+bif_to_test(Name, Args, Fail) ->
+ [bif_to_test_1(Name, Args, Fail)].
+
+bif_to_test_1(is_atom, [_]=Ops, Fail) ->
+ {test,is_atom,Fail,Ops};
+bif_to_test_1(is_boolean, [_]=Ops, Fail) ->
+ {test,is_boolean,Fail,Ops};
+bif_to_test_1(is_binary, [_]=Ops, Fail) ->
+ {test,is_binary,Fail,Ops};
+bif_to_test_1(is_bitstring,[_]=Ops, Fail) ->
+ {test,is_bitstr,Fail,Ops};
+bif_to_test_1(is_float, [_]=Ops, Fail) ->
+ {test,is_float,Fail,Ops};
+bif_to_test_1(is_function, [_]=Ops, Fail) ->
+ {test,is_function,Fail,Ops};
+bif_to_test_1(is_function, [_,_]=Ops, Fail) ->
+ {test,is_function2,Fail,Ops};
+bif_to_test_1(is_integer, [_]=Ops, Fail) ->
+ {test,is_integer,Fail,Ops};
+bif_to_test_1(is_list, [_]=Ops, Fail) ->
+ {test,is_list,Fail,Ops};
+bif_to_test_1(is_map, [_]=Ops, Fail) ->
+ {test,is_map,Fail,Ops};
+bif_to_test_1(is_number, [_]=Ops, Fail) ->
+ {test,is_number,Fail,Ops};
+bif_to_test_1(is_pid, [_]=Ops, Fail) ->
+ {test,is_pid,Fail,Ops};
+bif_to_test_1(is_port, [_]=Ops, Fail) ->
+ {test,is_port,Fail,Ops};
+bif_to_test_1(is_reference, [_]=Ops, Fail) ->
+ {test,is_reference,Fail,Ops};
+bif_to_test_1(is_tuple, [_]=Ops, Fail) ->
+ {test,is_tuple,Fail,Ops};
+bif_to_test_1('=<', [A,B], Fail) ->
+ {test,is_ge,Fail,[B,A]};
+bif_to_test_1('>', [A,B], Fail) ->
+ {test,is_lt,Fail,[B,A]};
+bif_to_test_1('<', [_,_]=Ops, Fail) ->
+ {test,is_lt,Fail,Ops};
+bif_to_test_1('>=', [_,_]=Ops, Fail) ->
+ {test,is_ge,Fail,Ops};
+bif_to_test_1('==', [C,A], Fail) when ?IS_LITERAL(C) ->
+ {test,is_eq,Fail,[A,C]};
+bif_to_test_1('==', [_,_]=Ops, Fail) ->
+ {test,is_eq,Fail,Ops};
+bif_to_test_1('/=', [C,A], Fail) when ?IS_LITERAL(C) ->
+ {test,is_ne,Fail,[A,C]};
+bif_to_test_1('/=', [_,_]=Ops, Fail) ->
+ {test,is_ne,Fail,Ops};
+bif_to_test_1('=:=', [C,A], Fail) when ?IS_LITERAL(C) ->
+ {test,is_eq_exact,Fail,[A,C]};
+bif_to_test_1('=:=', [_,_]=Ops, Fail) ->
+ {test,is_eq_exact,Fail,Ops};
+bif_to_test_1('=/=', [C,A], Fail) when ?IS_LITERAL(C) ->
+ {test,is_ne_exact,Fail,[A,C]};
+bif_to_test_1('=/=', [_,_]=Ops, Fail) ->
+ {test,is_ne_exact,Fail,Ops}.
+
+opt_call_moves(Is0, Arity) ->
+ {Moves0,Is} = splitwith(fun({move,_,_}) -> true;
+ ({kill,_}) -> true;
+ (_) -> false
+ end, Is0),
+ Moves = opt_call_moves_1(Moves0, Arity),
+ Moves ++ Is.
+
+opt_call_moves_1([{move,Src,{x,_}=Tmp}=M1|[{kill,_}|_]=Is], Arity) ->
+ %% There could be a {move,Tmp,{x,0}} instruction after the
+ %% kill/1 instructions (moved to there by opt_move_to_x0/1).
+ case splitwith(fun({kill,_}) -> true;
+ (_) -> false
+ end, Is) of
+ {Kills,[{move,{x,_}=Tmp,{x,0}}=M2]} ->
+ %% The two move/2 instructions (M1 and M2) can be combined
+ %% to one. The question is, though, is it safe to place
+ %% them after the kill/1 instructions?
+ case is_killed(Src, Kills, Arity) of
+ true ->
+ %% Src (a Y register) is killed by one of the
+ %% kill/1 instructions. Thus M1 and M2
+ %% must be placed before the kill/1 instructions
+ %% (essentially undoing what opt_move_to_x0/1
+ %% did, which turned out to be a pessimization
+ %% in this case).
+ opt_call_moves_1([M1,M2|Kills], Arity);
+ false ->
+ %% Src is not killed by any of the kill/1
+ %% instructions. Thus it is safe to place
+ %% M1 and M2 after the kill/1 instructions.
+ opt_call_moves_1(Kills++[M1,M2], Arity)
+ end;
+ {_,_} ->
+ [M1|Is]
+ end;
+opt_call_moves_1([{move,Src,{x,_}=Tmp}=M1,{move,Tmp,Dst}=M2|Is], Arity) ->
+ case is_killed(Tmp, Is, Arity) of
+ true ->
+ %% The X register Tmp is never used again. We can collapse
+ %% the two move instruction into one.
+ [{move,Src,Dst}|opt_call_moves_1(Is, Arity)];
+ false ->
+ [M1|opt_call_moves_1([M2|Is], Arity)]
+ end;
+opt_call_moves_1([M|Ms], Arity) ->
+ [M|opt_call_moves_1(Ms, Arity)];
+opt_call_moves_1([], _Arity) -> [].
+
+is_killed(Y, [{kill,Y}|_], _) ->
+ true;
+is_killed(R, [{kill,_}|Is], Arity) ->
+ is_killed(R, Is, Arity);
+is_killed(R, [{move,R,_}|_], _) ->
+ false;
+is_killed(R, [{move,_,R}|_], _) ->
+ true;
+is_killed(R, [{move,_,_}|Is], Arity) ->
+ is_killed(R, Is, Arity);
+is_killed({x,X}, [], Arity) ->
+ X >= Arity;
+is_killed({y,_}, [], _) ->
+ false.
+
+cg_alloc(#cg_alloc{stack=none,words=#need{h=0,f=0}}, _St) ->
+ [];
+cg_alloc(#cg_alloc{stack=none,words=Need,live=Live}, _St) ->
+ [{test_heap,alloc(Need),Live}];
+cg_alloc(#cg_alloc{stack=Stk,words=Need,live=Live,def_yregs=DefYregs},
+ #cg{regs=Regs}) when is_integer(Stk) ->
+ Alloc = alloc(Need),
+ All = [{y,Y} || Y <- lists:seq(0, Stk-1)],
+ Def = ordsets:from_list([maps:get(V, Regs) || V <- DefYregs]),
+ NeedInit = ordsets:subtract(All, Def),
+ NoZero = length(Def)*2 > Stk,
+ I = case {NoZero,Alloc} of
+ {true,0} -> {allocate,Stk,Live};
+ {true,_} -> {allocate_heap,Stk,Alloc,Live};
+ {false,0} -> {allocate_zero,Stk,Live};
+ {false,_} -> {allocate_heap_zero,Stk,Alloc,Live}
+ end,
+ [I|case NoZero of
+ true -> [{init,Y} || Y <- NeedInit];
+ false -> []
+ end].
+
+alloc(#need{h=Words,f=0}) ->
+ Words;
+alloc(#need{h=Words,f=Floats}) ->
+ {alloc,[{words,Words},{floats,Floats}]}.
+
+is_call([#cg_set{op=call,args=[#b_var{}|Args]}|_]) ->
+ {yes,1+length(Args)};
+is_call([#cg_set{op=call,args=[_|Args]}|_]) ->
+ {yes,length(Args)};
+is_call([#cg_set{op=make_fun,args=[_|Args]}|_]) ->
+ {yes,length(Args)};
+is_call(_) ->
+ no.
+
+cg_call(#cg_set{anno=Anno,op=call,dst=Dst0,args=[#b_local{}=Func0|Args0]},
+ Where, Context, St0) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St0),
+ #b_local{name=Name0,arity=Arity} = Func0,
+ {atom,Name} = beam_arg(Name0, St0),
+ {FuncLbl,St} = local_func_label(Name, Arity, St0),
+ Line = call_line(Where, local, Anno),
+ Call = build_call(call, Arity, {f,FuncLbl}, Context, Dst),
+ Is = setup_args(Args, Anno, Context, St) ++ Line ++ Call,
+ case Anno of
+ #{ result_type := Info } ->
+ {Is ++ [{'%', {type_info, Dst, Info}}], St};
+ #{} ->
+ {Is, St}
+ end;
+cg_call(#cg_set{anno=Anno0,op=call,dst=Dst0,args=[#b_remote{}=Func0|Args0]},
+ Where, Context, St) ->
+ [Dst|Args] = beam_args([Dst0|Args0], St),
+ #b_remote{mod=Mod0,name=Name0,arity=Arity} = Func0,
+ case {beam_arg(Mod0, St),beam_arg(Name0, St)} of
+ {{atom,Mod},{atom,Name}} ->
+ Func = {extfunc,Mod,Name,Arity},
+ Line = call_line(Where, Func, Anno0),
+ Call = build_call(call_ext, Arity, Func, Context, Dst),
+ Anno = case erl_bifs:is_exit_bif(Mod, Name, Arity) of
+ true ->
+ %% There is no need to kill Y registers
+ %% before calling an exit BIF.
+ maps:remove(kill_yregs, Anno0);
+ false ->
+ Anno0
+ end,
+ Is = setup_args(Args, Anno, Context, St) ++ Line ++ Call,
+ {Is,St};
+ {Mod,Name} ->
+ Apply = build_apply(Arity, Context, Dst),
+ Is = setup_args(Args++[Mod,Name], Anno0, Context, St) ++
+ [line(Anno0)] ++ Apply,
+ {Is,St}
+ end;
+cg_call(#cg_set{anno=Anno,op=call,dst=Dst0,args=Args0},
+ Where, Context, St) ->
+ [Dst,Func|Args] = beam_args([Dst0|Args0], St),
+ Line = call_line(Where, Func, Anno),
+ Arity = length(Args),
+ Call = build_call(call_fun, Arity, Func, Context, Dst),
+ Is = setup_args(Args++[Func], Anno, Context, St) ++ Line ++ Call,
+ {Is,St}.
+
+build_call(call_fun, Arity, _Func, none, Dst) ->
+ [{call_fun,Arity}|copy({x,0}, Dst)];
+build_call(call_fun, Arity, _Func, {return,Dst,N}, Dst) when is_integer(N) ->
+ [{call_fun,Arity},{deallocate,N},return];
+build_call(call_fun, Arity, _Func, {return,Val,N}, _Dst) when is_integer(N) ->
+ [{call_fun,Arity},{move,Val,{x,0}},{deallocate,N},return];
+build_call(call_ext, 2, {extfunc,erlang,'!',2}, none, Dst) ->
+ [send|copy({x,0}, Dst)];
+build_call(call_ext, 2, {extfunc,erlang,'!',2}, {return,Dst,N}, Dst)
+ when is_integer(N) ->
+ [send,{deallocate,N},return];
+build_call(Prefix, Arity, Func, {return,Dst,none}, Dst) ->
+ I = case Prefix of
+ call -> call_only;
+ call_ext -> call_ext_only
+ end,
+ [{I,Arity,Func}];
+build_call(call_ext, Arity, {extfunc,Mod,Name,Arity}=Func, {return,_,none}, _Dst) ->
+ true = erl_bifs:is_exit_bif(Mod, Name, Arity), %Assertion.
+ [{call_ext_only,Arity,Func}];
+build_call(Prefix, Arity, Func, {return,Dst,N}, Dst) when is_integer(N) ->
+ I = case Prefix of
+ call -> call_last;
+ call_ext -> call_ext_last
+ end,
+ [{I,Arity,Func,N}];
+build_call(I, Arity, Func, {return,Val,N}, _Dst) when is_integer(N) ->
+ [{I,Arity,Func}|copy(Val, {x,0})++[{deallocate,N},return]];
+build_call(I, Arity, Func, none, Dst) ->
+ [{I,Arity,Func}|copy({x,0}, Dst)].
+
+build_apply(Arity, {return,Dst,N}, Dst) when is_integer(N) ->
+ [{apply_last,Arity,N}];
+build_apply(Arity, {return,Val,N}, _Dst) when is_integer(N) ->
+ [{apply,Arity}|copy(Val, {x,0})++[{deallocate,N},return]];
+build_apply(Arity, none, Dst) ->
+ [{apply,Arity}|copy({x,0}, Dst)].
+
+cg_instr(put_map, [{atom,assoc},SrcMap|Ss], Dst, Set) ->
+ Live = get_live(Set),
+ [{put_map_assoc,{f,0},SrcMap,Dst,Live,{list,Ss}}];
+cg_instr(bs_get_tail, [Src], Dst, Set) ->
+ Live = get_live(Set),
+ [{bs_get_tail,Src,Dst,Live}];
+cg_instr(bs_get_position, [Ctx], Dst, Set) ->
+ Live = get_live(Set),
+ [{bs_get_position,Ctx,Dst,Live}];
+cg_instr(Op, Args, Dst, _Set) ->
+ cg_instr(Op, Args, Dst).
+
+cg_instr(bs_init_writable, Args, Dst) ->
+ setup_args(Args) ++ [bs_init_writable|copy({x,0}, Dst)];
+cg_instr(bs_restore, [Ctx,Slot], _Dst) ->
+ case Slot of
+ {integer,N} ->
+ [{bs_restore2,Ctx,N}];
+ {atom,start} ->
+ [{bs_restore2,Ctx,Slot}]
+ end;
+cg_instr(bs_save, [Ctx,Slot], _Dst) ->
+ {integer,N} = Slot,
+ [{bs_save2,Ctx,N}];
+cg_instr(bs_set_position, [Ctx,Pos], _Dst) ->
+ [{bs_set_position,Ctx,Pos}];
+cg_instr(build_stacktrace, Args, Dst) ->
+ setup_args(Args) ++ [build_stacktrace|copy({x,0}, Dst)];
+cg_instr(set_tuple_element=Op, [New,Tuple,{integer,Index}], _Dst) ->
+ [{Op,New,Tuple,Index}];
+cg_instr({float,clearerror}, [], _Dst) ->
+ [fclearerror];
+cg_instr({float,get}, [Src], Dst) ->
+ [{fmove,Src,Dst}];
+cg_instr({float,put}, [Src], Dst) ->
+ [{fmove,Src,Dst}];
+cg_instr(get_hd=Op, [Src], Dst) ->
+ [{Op,Src,Dst}];
+cg_instr(get_tl=Op, [Src], Dst) ->
+ [{Op,Src,Dst}];
+cg_instr(get_tuple_element=Op, [Src,{integer,N}], Dst) ->
+ [{Op,Src,N,Dst}];
+cg_instr(put_list=Op, [Hd,Tl], Dst) ->
+ [{Op,Hd,Tl,Dst}];
+cg_instr(put_tuple, Elements, Dst) ->
+ [{put_tuple2,Dst,{list,Elements}}];
+cg_instr(put_tuple_arity, [{integer,Arity}], Dst) ->
+ [{put_tuple,Arity,Dst}];
+cg_instr(put_tuple_elements, Elements, _Dst) ->
+ [{put,E} || E <- Elements];
+cg_instr(raw_raise, Args, Dst) ->
+ setup_args(Args) ++ [raw_raise|copy({x,0}, Dst)];
+cg_instr(remove_message, [], _Dst) ->
+ [remove_message];
+cg_instr(resume, [A,B], _Dst) ->
+ [{bif,raise,{f,0},[A,B],{x,0}}];
+cg_instr(timeout, [], _Dst) ->
+ [timeout].
+
+cg_test(bs_add=Op, Fail, [Src1,Src2,{integer,Unit}], Dst, _I) ->
+ [{Op,Fail,[Src1,Src2,Unit],Dst}];
+cg_test(bs_skip, Fail, Args, _Dst, I) ->
+ cg_bs_skip(Fail, Args, I);
+cg_test(bs_utf8_size=Op, Fail, [Src], Dst, _I) ->
+ [{Op,Fail,Src,Dst}];
+cg_test(bs_utf16_size=Op, Fail, [Src], Dst, _I) ->
+ [{Op,Fail,Src,Dst}];
+cg_test({float,convert}, Fail, [Src], Dst, _I) ->
+ {f,0} = Fail, %Assertion.
+ [{fconv,Src,Dst}];
+cg_test({float,Op0}, Fail, Args, Dst, #cg_set{anno=Anno}) ->
+ Op = case Op0 of
+ '+' -> fadd;
+ '-' when length(Args) =:= 2 -> fsub;
+ '-' -> fnegate;
+ '*' -> fmul;
+ '/' -> fdiv
+ end,
+ [line(Anno),{bif,Op,Fail,Args,Dst}];
+cg_test(peek_message, Fail, [], Dst, _I) ->
+ [{loop_rec,Fail,{x,0}}|copy({x,0}, Dst)];
+cg_test(put_map, Fail, [{atom,exact},SrcMap|Ss], Dst, Set) ->
+ Live = get_live(Set),
+ [{put_map_exact,Fail,SrcMap,Dst,Live,{list,Ss}}];
+cg_test(wait_timeout, Fail, [Timeout], _Dst, _) ->
+ case Timeout of
+ {atom,infinity} ->
+ [{wait,Fail}];
+ _ ->
+ [{wait_timeout,Fail,Timeout}]
+ end.
+
+cg_bs_get(Fail, #cg_set{dst=Dst0,args=[#b_literal{val=Type}|Ss0]}=Set, St) ->
+ Op = case Type of
+ integer -> bs_get_integer2;
+ float -> bs_get_float2;
+ binary -> bs_get_binary2;
+ utf8 -> bs_get_utf8;
+ utf16 -> bs_get_utf16;
+ utf32 -> bs_get_utf32
+ end,
+ [Dst|Ss1] = beam_args([Dst0|Ss0], St),
+ Ss = case Ss1 of
+ [Ctx,{literal,Flags},Size,{integer,Unit}] ->
+ %% Plain integer/float/binary.
+ [Ctx,Size,Unit,field_flags(Flags, Set)];
+ [Ctx,{literal,Flags}] ->
+ %% Utf8/16/32.
+ [Ctx,field_flags(Flags, Set)]
+ end,
+ Live = get_live(Set),
+ [{test,Op,Fail,Live,Ss,Dst}].
+
+cg_bs_skip(Fail, [{atom,Type}|Ss0], Set) ->
+ Op = case Type of
+ utf8 -> bs_skip_utf8;
+ utf16 -> bs_skip_utf16;
+ utf32 -> bs_skip_utf32;
+ _ -> bs_skip_bits2
+ end,
+ Live = get_live(Set),
+ Ss = case Ss0 of
+ [Ctx,{literal,Flags},Size,{integer,Unit}] ->
+ %% Plain integer/float/binary.
+ [Ctx,Size,Unit,field_flags(Flags, Set)];
+ [Ctx,{literal,Flags}] ->
+ %% Utf8/16/32.
+ [Ctx,Live,field_flags(Flags, Set)]
+ end,
+ case {Type,Ss} of
+ {binary,[_,{atom,all},1,_]} ->
+ [];
+ {binary,[R,{atom,all},U,_]} ->
+ [{test,bs_test_unit,Fail,[R,U]}];
+ {_,_} ->
+ [{test,Op,Fail,Ss}]
+ end.
+
+field_flags(Flags, #cg_set{anno=#{location:={File,Line}}}) ->
+ {field_flags,[{anno,[Line,{file,File}]}|Flags]};
+field_flags(Flags, _) ->
+ {field_flags,Flags}.
+
+cg_bs_put(Fail, [{atom,Type},{literal,Flags}|Args]) ->
+ Op = case Type of
+ integer -> bs_put_integer;
+ float -> bs_put_float;
+ binary -> bs_put_binary;
+ utf8 -> bs_put_utf8;
+ utf16 -> bs_put_utf16;
+ utf32 -> bs_put_utf32
+ end,
+ case Args of
+ [Src,Size,{integer,Unit}] ->
+ [{Op,Fail,Size,Unit,{field_flags,Flags},Src}];
+ [Src] ->
+ [{Op,Fail,{field_flags,Flags},Src}]
+ end.
+
+cg_bs_init(Dst, Size0, Alloc, Unit, Live, Fail) ->
+ Op = case Unit of
+ 1 -> bs_init_bits;
+ 8 -> bs_init2
+ end,
+ Size = cg_bs_init_size(Size0),
+ [{Op,Fail,Size,Alloc,Live,{field_flags,[]},Dst}].
+
+cg_bs_init_size({x,_}=R) -> R;
+cg_bs_init_size({y,_}=R) -> R;
+cg_bs_init_size({integer,Int}) -> Int.
+
+cg_catch(Agg, T0, Context, St0) ->
+ {Moves,T1} = cg_extract(T0, Agg, St0),
+ {T,St} = cg_block(T1, Context, St0),
+ {Moves++T,St}.
+
+cg_try(Agg, Tag, T0, Context, St0) ->
+ {Moves0,T1} = cg_extract(T0, Agg, St0),
+ Moves = order_moves(Moves0, {x,3}),
+ [#cg_set{op=kill_try_tag}|T2] = T1,
+ {T,St} = cg_block(T2, Context, St0),
+ {[{try_case,Tag}|Moves++T],St}.
+
+cg_extract([#cg_set{op=extract,dst=Dst0,args=Args0}|Is0], Agg, St) ->
+ [Dst,Agg,{integer,X}] = beam_args([Dst0|Args0], St),
+ {Ds,Is} = cg_extract(Is0, Agg, St),
+ case keymember(Dst, 3, Ds) of
+ true ->
+ %% This destination will be overwritten.
+ {Ds,Is};
+ false ->
+ {copy({x,X}, Dst)++Ds,Is}
+ end;
+cg_extract(Is, _, _) ->
+ {[],Is}.
+
+copy(Src, Src) -> [];
+copy(Src, Dst) -> [{move,Src,Dst}].
+
+force_reg({literal,_}=Lit, Reg) ->
+ {Reg,[{move,Lit,Reg}]};
+force_reg({integer,_}=Lit, Reg) ->
+ {Reg,[{move,Lit,Reg}]};
+force_reg({atom,_}=Lit, Reg) ->
+ {Reg,[{move,Lit,Reg}]};
+force_reg({float,_}=Lit, Reg) ->
+ {Reg,[{move,Lit,Reg}]};
+force_reg(nil=Lit, Reg) ->
+ {Reg,[{move,Lit,Reg}]};
+force_reg({Kind,_}=R, _) when Kind =:= x; Kind =:= y ->
+ {R,[]}.
+
+%% successors(Terminator) -> [Successor].
+%% Return an ordset of all successors for the given terminator.
+
+successors(#cg_br{succ=Succ,fail=Fail}) ->
+ ordsets:from_list([Succ,Fail]);
+successors(#cg_switch{fail=Fail,list=List}) ->
+ ordsets:from_list([Fail|[Lbl || {_,Lbl} <- List]]);
+successors(#cg_ret{}) -> [].
+
+%% linearize(Blocks) -> [{BlockLabel,#cg_blk{}}].
+%% Linearize the intermediate representation of the code. Also
+%% translate blocks from the SSA records to internal record types
+%% used only in this module.
+
+linearize(Blocks) ->
+ Linear = beam_ssa:linearize(Blocks),
+ linearize_1(Linear, Blocks).
+
+linearize_1([{?BADARG_BLOCK,_}|Ls], Blocks) ->
+ linearize_1(Ls, Blocks);
+linearize_1([{L,Block0}|Ls], Blocks) ->
+ Block = translate_block(L, Block0, Blocks),
+ [{L,Block}|linearize_1(Ls, Blocks)];
+linearize_1([], _Blocks) -> [].
+
+%% translate_block(BlockLabel, #b_blk{}, Blocks) -> #cg_blk{}.
+%% Translate a block to the internal records used in this module.
+%% Also eliminate phi nodes, replacing them with 'copy' instructions
+%% in the predecessor blocks.
+
+translate_block(L, #b_blk{anno=Anno,is=Is0,last=Last0}, Blocks) ->
+ Last = translate_terminator(Last0),
+ PhiCopies = translate_phis(L, Last, Blocks),
+ Is1 = translate_is(Is0, PhiCopies),
+ Is = case Anno of
+ #{frame_size:=Size} ->
+ Alloc = #cg_alloc{stack=Size},
+ [Alloc|Is1];
+ #{} -> Is1
+ end,
+ #cg_blk{anno=Anno,is=Is,last=Last}.
+
+translate_is([#b_set{op=phi}|Is], Tail) ->
+ translate_is(Is, Tail);
+translate_is([#b_set{anno=Anno0,op=Op,dst=Dst,args=Args}=I|Is], Tail) ->
+ Anno = case beam_ssa:clobbers_xregs(I) of
+ true -> Anno0#{clobbers=>true};
+ false -> Anno0
+ end,
+ [#cg_set{anno=Anno,op=Op,dst=Dst,args=Args}|translate_is(Is, Tail)];
+translate_is([], Tail) -> Tail.
+
+translate_terminator(#b_ret{anno=Anno,arg=Arg}) ->
+ Dealloc = case Anno of
+ #{deallocate:=N} -> N;
+ #{} -> none
+ end,
+ #cg_ret{arg=Arg,dealloc=Dealloc};
+translate_terminator(#b_br{bool=#b_literal{val=true},succ=Succ}) ->
+ #cg_br{bool=#b_literal{val=true},succ=Succ,fail=Succ};
+translate_terminator(#b_br{bool=#b_literal{val=false},fail=Fail}) ->
+ #cg_br{bool=#b_literal{val=true},succ=Fail,fail=Fail};
+translate_terminator(#b_br{bool=Bool,succ=Succ,fail=Fail}) ->
+ #cg_br{bool=Bool,succ=Succ,fail=Fail};
+translate_terminator(#b_switch{arg=Bool,fail=Fail,list=List}) ->
+ #cg_switch{arg=Bool,fail=Fail,list=List}.
+
+translate_phis(L, #cg_br{succ=Target,fail=Target}, Blocks) ->
+ #b_blk{is=Is} = maps:get(Target, Blocks),
+ Phis = takewhile(fun(#b_set{op=phi}) -> true;
+ (#b_set{}) -> false
+ end, Is),
+ phi_copies(Phis, L);
+translate_phis(_, _, _) -> [].
+
+phi_copies([#b_set{dst=Dst,args=PhiArgs}|Sets], L) ->
+ CopyArgs = [V || {V,Target} <- PhiArgs, Target =:= L],
+ [#cg_set{op=copy,dst=Dst,args=CopyArgs}|phi_copies(Sets, L)];
+phi_copies([], _) -> [].
+
+%% opt_move_to_x0([Instruction]) -> [Instruction].
+%% Simple peep-hole optimization to move a {move,Any,{x,0}} past
+%% any kill up to the next call instruction. (To give the loader
+%% an opportunity to combine the 'move' and the 'call' instructions.)
+
+opt_move_to_x0(Moves) ->
+ opt_move_to_x0(Moves, []).
+
+opt_move_to_x0([{move,_,{x,0}}=I|Is0], Acc0) ->
+ case move_past_kill(Is0, I, Acc0) of
+ impossible -> opt_move_to_x0(Is0, [I|Acc0]);
+ {Is,Acc} -> opt_move_to_x0(Is, Acc)
+ end;
+opt_move_to_x0([I|Is], Acc) ->
+ opt_move_to_x0(Is, [I|Acc]);
+opt_move_to_x0([], Acc) -> reverse(Acc).
+
+move_past_kill([{kill,Src}|_], {move,Src,_}, _) ->
+ impossible;
+move_past_kill([{kill,_}=I|Is], Move, Acc) ->
+ move_past_kill(Is, Move, [I|Acc]);
+move_past_kill(Is, Move, Acc) ->
+ {Is,[Move|Acc]}.
+
+%% setup_args(Args, Anno, Context) -> [Instruction].
+%% setup_args(Args) -> [Instruction].
+%% Set up X registers for a call.
+
+setup_args(Args, Anno, none, St) ->
+ case {setup_args(Args),kill_yregs(Anno, St)} of
+ {Moves,[]} ->
+ Moves;
+ {Moves,Kills} ->
+ opt_move_to_x0(Moves ++ Kills)
+ end;
+setup_args(Args, _, _, _) ->
+ setup_args(Args).
+
+setup_args([]) ->
+ [];
+setup_args([_|_]=Args) ->
+ Moves = gen_moves(Args, 0, []),
+ Scratch = {x,1+last(sort([length(Args)-1|[X || {x,X} <- Args]]))},
+ order_moves(Moves, Scratch).
+
+%% kill_yregs(Anno, #cg{}) -> [{kill,{y,Y}}].
+%% Kill Y registers that will not be used again.
+
+kill_yregs(#{kill_yregs:=Kill}, #cg{regs=Regs}) ->
+ ordsets:from_list([{kill,maps:get(V, Regs)} || V <- Kill]);
+kill_yregs(#{}, #cg{}) -> [].
+
+%% gen_moves(As, I, Acc)
+%% Generate the basic move instruction to move the arguments
+%% to their proper registers. The list will be sorted on
+%% destinations. (I.e. the move to {x,0} will be first --
+%% see the comment to order_moves/2.)
+
+gen_moves([A|As], I, Acc) ->
+ gen_moves(As, I+1, copy(A, {x,I}) ++ Acc);
+gen_moves([], _, Acc) ->
+ keysort(3, Acc).
+
+%% order_moves([Move], ScratchReg) -> [Move]
+%% Orders move instruction so that source registers are not
+%% destroyed before they are used. If there are cycles
+%% (such as {move,{x,0},{x,1}}, {move,{x,1},{x,1}}),
+%% the scratch register is used to break up the cycle.
+%% If possible, the first move of the input list is placed
+%% last in the result list (to make the move to {x,0} occur
+%% just before the call to allow the Beam loader to coalesce
+%% the instructions).
+
+order_moves(Ms, Scr) -> order_moves(Ms, Scr, []).
+
+order_moves([{move,_,_}=M|Ms0], ScrReg, Acc0) ->
+ {Chain,Ms} = collect_chain(Ms0, [M], ScrReg),
+ Acc = reverse(Chain, Acc0),
+ order_moves(Ms, ScrReg, Acc);
+order_moves([], _, Acc) -> Acc.
+
+collect_chain(Ms, Path, ScrReg) ->
+ collect_chain(Ms, Path, [], ScrReg).
+
+collect_chain([{move,Src,Same}=M|Ms0], [{move,Same,_}|_]=Path, Others, ScrReg) ->
+ case keymember(Src, 3, Path) of
+ false ->
+ collect_chain(reverse(Others, Ms0), [M|Path], [], ScrReg);
+ true ->
+ %% There is a cycle, which we must break up.
+ {break_up_cycle(M, Path, ScrReg),reverse(Others, Ms0)}
+ end;
+collect_chain([M|Ms], Path, Others, ScrReg) ->
+ collect_chain(Ms, Path, [M|Others], ScrReg);
+collect_chain([], Path, Others, _) ->
+ {Path,Others}.
+
+break_up_cycle({move,Src,_}=M, Path, ScrReg) ->
+ [{move,ScrReg,Src},M|break_up_cycle1(Src, Path, ScrReg)].
+
+break_up_cycle1(Dst, [{move,Src,Dst}|Path], ScrReg) ->
+ [{move,Src,ScrReg}|Path];
+break_up_cycle1(Dst, [M|Path], LastMove) ->
+ [M|break_up_cycle1(Dst, Path, LastMove)].
+
+%%%
+%%% General utility functions.
+%%%
+
+verify_beam_register({x,_}=Reg) -> Reg.
+
+is_beam_register({x,_}) -> true;
+is_beam_register(_) -> false.
+
+get_register(V, Regs) ->
+ case is_beam_register(V) of
+ true -> V;
+ false -> maps:get(V, Regs)
+ end.
+
+beam_args(As, St) ->
+ [beam_arg(A, St) || A <- As].
+
+beam_arg(#b_var{}=Name, #cg{regs=Regs}) ->
+ maps:get(Name, Regs);
+beam_arg(#b_literal{val=Val}, _) ->
+ if
+ is_atom(Val) -> {atom,Val};
+ is_float(Val) -> {float,Val};
+ is_integer(Val) -> {integer,Val};
+ Val =:= [] -> nil;
+ true -> {literal,Val}
+ end;
+beam_arg(Reg, _) ->
+ verify_beam_register(Reg).
+
+new_block_label(L, St0) ->
+ {_Lbl,St} = label_for_block(L, St0),
+ St.
+
+def_block_label(L, #cg{labels=Labels,used_labels=Used}) ->
+ Lbl = maps:get(L, Labels),
+ case gb_sets:is_member(Lbl, Used) of
+ false -> [];
+ true -> [{label,Lbl}]
+ end.
+
+use_block_labels(Ls, St) ->
+ mapfoldl(fun use_block_label/2, St, Ls).
+
+use_block_label(L, #cg{used_labels=Used,catches=Catches}=St0) ->
+ {Lbl,St} = label_for_block(L, St0),
+ case gb_sets:is_member(L, Catches) of
+ true ->
+ {{catch_tag,{f,Lbl}},
+ St#cg{used_labels=gb_sets:add(Lbl, Used)}};
+ false ->
+ {{f,Lbl},St#cg{used_labels=gb_sets:add(Lbl, Used)}}
+ end.
+
+label_for_block(L, #cg{labels=Labels0}=St0) ->
+ case Labels0 of
+ #{L:=Lbl} ->
+ {Lbl,St0};
+ #{} ->
+ {Lbl,St} = new_label(St0),
+ Labels = Labels0#{L=>Lbl},
+ {Lbl,St#cg{labels=Labels}}
+ end.
+
+%% local_func_label(Name, Arity, State) -> {Label,State'}
+%% local_func_label({Name,Arity}, State) -> {Label,State'}
+%% Get the function entry label for a local function.
+
+local_func_label(Name, Arity, St) ->
+ local_func_label({Name,Arity}, St).
+
+local_func_label(Key, #cg{functable=Map}=St0) ->
+ case Map of
+ #{Key := Label} ->
+ {Label,St0};
+ _ ->
+ {Label,St} = new_label(St0),
+ {Label,St#cg{functable=Map#{Key => Label}}}
+ end.
+
+%% is_gc_bif(Name, Args) -> true|false.
+%% Determines whether the BIF Name/Arity might do a GC.
+
+-spec is_gc_bif(atom(), [beam_ssa:value()]) -> boolean().
+
+is_gc_bif(hd, [_]) -> false;
+is_gc_bif(tl, [_]) -> false;
+is_gc_bif(self, []) -> false;
+is_gc_bif(node, []) -> false;
+is_gc_bif(node, [_]) -> false;
+is_gc_bif(element, [_,_]) -> false;
+is_gc_bif(get, [_]) -> false;
+is_gc_bif(is_map_key, [_,_]) -> false;
+is_gc_bif(map_get, [_,_]) -> false;
+is_gc_bif(tuple_size, [_]) -> false;
+is_gc_bif(Bif, Args) ->
+ Arity = length(Args),
+ not (erl_internal:bool_op(Bif, Arity) orelse
+ erl_internal:new_type_test(Bif, Arity) orelse
+ erl_internal:comp_op(Bif, Arity)).
+
+%% new_label(St) -> {L,St}.
+
+new_label(#cg{lcount=Next}=St) ->
+ {Next,St#cg{lcount=Next+1}}.
+
+%% call_line(tail|body, Func, Anno) -> [] | [{line,...}].
+%% Produce a line instruction if it will be needed by the
+%% call to Func.
+
+call_line(_Context, {extfunc,Mod,Name,Arity}, Anno) ->
+ case erl_bifs:is_safe(Mod, Name, Arity) of
+ false ->
+ %% The call could be to a BIF.
+ %% We'll need a line instruction in case the
+ %% BIF call fails.
+ [line(Anno)];
+ true ->
+ %% Call to a safe BIF. Since it cannot fail,
+ %% we don't need any line instruction here.
+ []
+ end;
+call_line(body, _, Anno) ->
+ [line(Anno)];
+call_line(tail, local, _) ->
+ %% Tail-recursive call to a local function. A line
+ %% instruction will not be useful.
+ [];
+call_line(tail, _, Anno) ->
+ %% Call to a fun.
+ [line(Anno)].
+
+%% line(Le) -> {line,[] | {location,File,Line}}
+%% Create a line instruction, containing information about
+%% the current filename and line number. A line information
+%% instruction should be placed before any operation that could
+%% cause an exception.
+
+line(#{location:={File,Line}}) ->
+ {line,[{location,File,Line}]};
+line(#{}) ->
+ {line,[]}.
+
+flatmapfoldl(F, Accu0, [Hd|Tail]) ->
+ {R,Accu1} = F(Hd, Accu0),
+ {Rs,Accu2} = flatmapfoldl(F, Accu1, Tail),
+ {R++Rs,Accu2};
+flatmapfoldl(_, Accu, []) -> {[],Accu}.