diff options
Diffstat (limited to 'lib/compiler/src/beam_ssa_dead.erl')
-rw-r--r-- | lib/compiler/src/beam_ssa_dead.erl | 1113 |
1 files changed, 1113 insertions, 0 deletions
diff --git a/lib/compiler/src/beam_ssa_dead.erl b/lib/compiler/src/beam_ssa_dead.erl new file mode 100644 index 0000000000..e78e4647a8 --- /dev/null +++ b/lib/compiler/src/beam_ssa_dead.erl @@ -0,0 +1,1113 @@ +%% +%% %CopyrightBegin% +%% +%% Copyright Ericsson AB 2018. All Rights Reserved. +%% +%% Licensed under the Apache License, Version 2.0 (the "License"); +%% you may not use this file except in compliance with the License. +%% You may obtain a copy of the License at +%% +%% http://www.apache.org/licenses/LICENSE-2.0 +%% +%% Unless required by applicable law or agreed to in writing, software +%% distributed under the License is distributed on an "AS IS" BASIS, +%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +%% See the License for the specific language governing permissions and +%% limitations under the License. +%% +%% %CopyrightEnd% +%% +%% Dead code is code that is executed but has no effect. This +%% optimization pass either removes dead code or jumps around it, +%% potentially making it unreachable so that it can be dropped +%% the next time beam_ssa:linearize/1 is called. +%% + +-module(beam_ssa_dead). +-export([opt/1]). + +-include("beam_ssa.hrl"). +-import(lists, [append/1,keymember/3,last/1,member/2, + takewhile/2,reverse/1]). + +-type used_vars() :: #{beam_ssa:label():=cerl_sets:set(beam_ssa:var_name())}. + +-type basic_type_test() :: atom() | {'is_tagged_tuple',pos_integer(),atom()}. +-type type_test() :: basic_type_test() | {'not',basic_type_test()}. +-type op_name() :: atom(). +-type basic_rel_op() :: {op_name(),beam_ssa:b_var(),beam_ssa:value()} | + {basic_type_test(),beam_ssa:value()}. +-type rel_op() :: {op_name(),beam_ssa:b_var(),beam_ssa:value()} | + {type_test(),beam_ssa:value()}. + +-record(st, + {bs :: beam_ssa:block_map(), + us :: used_vars(), + skippable :: #{beam_ssa:label():='true'}, + rel_op=none :: 'none' | rel_op(), + target=any :: 'any' | 'one_way' | beam_ssa:label() + }). + +-spec opt([{Label0,Block0}]) -> [{Label,Block}] when + Label0 :: beam_ssa:label(), + Block0 :: beam_ssa:b_blk(), + Label :: beam_ssa:label(), + Block :: beam_ssa:b_blk(). + +opt(Linear) -> + {Used,Skippable} = used_vars(Linear), + Blocks0 = maps:from_list(Linear), + St0 = #st{bs=Blocks0,us=Used,skippable=Skippable}, + St = shortcut_opt(St0), + #st{bs=Blocks} = combine_eqs(St#st{us=#{}}), + beam_ssa:linearize(Blocks). + +%%% +%%% Shortcut br/switch targets. +%%% +%%% A br/switch may branch to another br/switch that in turn always +%%% branches to another target. Rewrite br/switch to refer to the +%%% ultimate targets directly. That will save execution time, but +%%% could also reduce the size of the code if some of the original +%%% targets become unreachable and be deleted. +%%% +%%% When rewriting branches, we must be careful not to skip instructions +%%% that have side effects or that bind variables that will be used +%%% at the new target. +%%% +%%% We must also avoid branching to phi nodes. The reason is +%%% twofold. First, we might create a critical edge which is strictly +%%% forbidden. Second, there will be a branch from a block that is not +%%% listed in the list of predecessors in the phi node. Those +%%% limitations could probably be overcome, but it is not clear how +%%% much that would improve the code. +%%% + +shortcut_opt(#st{bs=Blocks}=St) -> + %% Processing the blocks in reverse post order seems to give more + %% opportunities for optimizations compared to post order. (Based on + %% running scripts/diffable with both PO and RPO and looking at + %% the diff.) + %% + %% Unfortunately, processing the blocks in reverse post order + %% potentially makes the time complexity quadratic, instead of + %% linear for post order processing. We avoid drastic slowdowns by + %% limiting how far we search forward to a common block that + %% both the success and failure label will reach (see the comment + %% in the first clause of shortcut_2/5). + + Ls = beam_ssa:rpo(Blocks), + shortcut_opt(Ls, #{}, St). + +shortcut_opt([L|Ls], Bs, #st{bs=Blocks0}=St) -> + #b_blk{is=Is,last=Last0} = Blk0 = get_block(L, St), + case shortcut_terminator(Last0, Is, L, Bs, St) of + Last0 -> + %% No change. No need to update the block. + shortcut_opt(Ls, Bs, St); + Last -> + %% The terminator was simplified in some way. + %% Update the block. + Blk = Blk0#b_blk{last=Last}, + Blocks = Blocks0#{L=>Blk}, + shortcut_opt(Ls, Bs, St#st{bs=Blocks}) + end; +shortcut_opt([], _, St) -> St. + +shortcut_terminator(#b_br{bool=#b_literal{val=true},succ=Succ0}, + _Is, From, Bs, St0) -> + St = St0#st{rel_op=none}, + shortcut(Succ0, From, Bs, St); +shortcut_terminator(#b_br{bool=#b_var{}=Bool,succ=Succ0,fail=Fail0}=Br, + Is, From, Bs, St0) -> + St = St0#st{target=one_way}, + RelOp = get_rel_op(Bool, Is), + + %% The boolean in a `br` is seldom used by the successors. By + %% not binding its value unless it is actually used we might be able + %% to skip some work in shortcut/4 and sub/2. + SuccBs = bind_var_if_used(Succ0, Bool, #b_literal{val=true}, Bs, St), + BrSucc = shortcut(Succ0, From, SuccBs, St#st{rel_op=RelOp}), + FailBs = bind_var_if_used(Fail0, Bool, #b_literal{val=false}, Bs, St), + BrFail = shortcut(Fail0, From, FailBs, St#st{rel_op=invert_op(RelOp)}), + + case {BrSucc,BrFail} of + {#b_br{bool=#b_literal{val=true},succ=Succ}, + #b_br{bool=#b_literal{val=true},succ=Fail}} + when Succ =/= Succ0; Fail =/= Fail0 -> + %% One or both of the targets were cut short. + beam_ssa:normalize(Br#b_br{succ=Succ,fail=Fail}); + {_,_} -> + %% No change. + Br + end; +shortcut_terminator(#b_switch{arg=Bool,list=List0}=Sw, _Is, From, Bs, St) -> + List = shortcut_switch(List0, Bool, From, Bs, St), + beam_ssa:normalize(Sw#b_switch{list=List}); +shortcut_terminator(Last, _Is, _Bs, _From, _St) -> + Last. + +shortcut_switch([{Lit,L0}|T], Bool, From, Bs, St0) -> + RelOp = {'=:=',Bool,Lit}, + St = St0#st{rel_op=RelOp}, + #b_br{bool=#b_literal{val=true},succ=L} = + shortcut(L0, From, bind_var(Bool, Lit, Bs), St#st{target=one_way}), + [{Lit,L}|shortcut_switch(T, Bool, From, Bs, St0)]; +shortcut_switch([], _, _, _, _) -> []. + +shortcut(L, _From, Bs, #st{rel_op=none,target=one_way}) when map_size(Bs) =:= 0 -> + %% There is no way that we can find a suitable branch, because there is no + %% relational operator stored, there are no bindings, and the block L can't + %% have any phi nodes from which we could pick bindings because when the target + %% is `one_way`, it implies the From block has a two-way `br` terminator. + #b_br{bool=#b_literal{val=true},succ=L,fail=L}; +shortcut(L, From, Bs, St) -> + shortcut_1(L, From, Bs, cerl_sets:new(), St). + +shortcut_1(L, From, Bs0, UnsetVars0, St) -> + case shortcut_2(L, From, Bs0, UnsetVars0, St) of + none -> + %% No more shortcuts found. Package up the previous + %% label in an unconditional branch. + #b_br{bool=#b_literal{val=true},succ=L,fail=L}; + {#b_br{bool=#b_var{}}=Br,_,_} -> + %% This is a two-way branch. We can't do any better. + Br; + {#b_br{bool=#b_literal{val=true},succ=Succ},Bs,UnsetVars} -> + %% This is a safe `br`, but try to find a better one. + shortcut_1(Succ, L, Bs, UnsetVars, St) + end. + +%% Try to shortcut this block, branching to a successor. +shortcut_2(L, From, Bs, UnsetVars, St) -> + case cerl_sets:size(UnsetVars) of + SetSize when SetSize > 128 -> + %% This is an heuristic to limit the search for a forced label + %% before it drastically slows down the compiler. Experiments + %% with scripts/diffable showed that limits larger than 31 did not + %% find any more opportunities for optimization. + none; + _SetSize -> + shortcut_3(L, From, Bs, UnsetVars, St) + end. + +shortcut_3(L, From, Bs0, UnsetVars0, St) -> + #b_blk{is=Is,last=Last} = get_block(L, St), + case eval_is(Is, From, Bs0, St) of + none -> + %% It is not safe to avoid this block because it + %% has instructions with potential side effects. + none; + Bs -> + %% The instructions in the block (if any) don't + %% have any side effects and can be skipped. + %% Evaluate the terminator. + case eval_terminator(Last, Bs, St) of + none -> + %% The terminator is not suitable (could be + %% because it is a switch that can't be simplified + %% or it is a ret instruction). + none; + #b_br{}=Br -> + %% We have a potentially suitable br. + %% Now update the set of variables that will never + %% be set if this block will be skipped. + case update_unset_vars(L, Is, Br, UnsetVars0, St) of + unsafe -> + %% It is unsafe to use this br, + %% because it refers to a variable defined + %% in this block. + shortcut_unsafe_br(Br, L, Bs, UnsetVars0, St); + UnsetVars -> + %% Continue checking whether this br is + %% suitable. + shortcut_test_br(Br, L, Bs, UnsetVars, St) + end + end + end. + +shortcut_test_br(Br, From, Bs, UnsetVars, St) -> + case is_br_safe(UnsetVars, Br, St) of + false -> + shortcut_unsafe_br(Br, From, Bs, UnsetVars, St); + true -> + shortcut_safe_br(Br, From, Bs, UnsetVars, St) + end. + +shortcut_unsafe_br(Br, From, Bs, UnsetVars, #st{target=Target}=St) -> + %% Branching using this `br` is unsafe, either because it + %% is an unconditional branch to a phi node, or because + %% one or more of the variables that are not set will be + %% used. Try to follow branches of this `br`, to find a + %% safe `br`. + case Br of + #b_br{bool=#b_literal{val=true},succ=L} -> + case Target of + L -> + %% We have reached the forced target, and it + %% is unsafe. Give up. + none; + _ -> + %% Try following this branch to see whether it + %% leads to a safe `br`. + shortcut_2(L, From, Bs, UnsetVars, St) + end; + #b_br{bool=#b_var{},succ=Succ,fail=Fail} -> + case {Succ,Fail} of + {L,Target} -> + %% The failure label is the forced target. + %% Try following the success label to see + %% whether it also ultimately ends up at the + %% forced target. + shortcut_2(L, From, Bs, UnsetVars, St); + {Target,L} -> + %% The success label is the forced target. + %% Try following the failure label to see + %% whether it also ultimately ends up at the + %% forced target. + shortcut_2(L, From, Bs, UnsetVars, St); + {_,_} -> + case Target of + any -> + %% This two-way branch is unsafe. Try + %% reducing it to a one-way branch. + shortcut_two_way(Br, From, Bs, UnsetVars, St); + one_way -> + %% This two-way branch is unsafe. Try + %% reducing it to a one-way branch. + shortcut_two_way(Br, From, Bs, UnsetVars, St); + _ when is_integer(Target) -> + %% This two-way branch is unsafe, and + %% there already is a forced target. + %% Give up. + none + end + end + end. + +shortcut_safe_br(Br, From, Bs, UnsetVars, #st{target=Target}=St) -> + %% This `br` instruction is safe. It does not branch to a phi + %% node, and all variables that will be used are guaranteed to be + %% defined. + case Br of + #b_br{bool=#b_literal{val=true},succ=L} -> + %% This is a one-way branch. + case Target of + any -> + %% No forced target. Success! + {Br,Bs,UnsetVars}; + one_way -> + %% The target must be a one-way branch, which this + %% `br` is. Success! + {Br,Bs,UnsetVars}; + L when is_integer(Target) -> + %% The forced target is L. Success! + {Br,Bs,UnsetVars}; + _ when is_integer(Target) -> + %% Wrong forced target. Try following this branch + %% to see if it ultimately ends up at the forced + %% target. + shortcut_2(L, From, Bs, UnsetVars, St) + end; + #b_br{bool=#b_var{}} -> + %% This is a two-way branch. + if + Target =:= any; Target =:= one_way -> + %% No specific forced target. Try to reduce the + %% two-way branch to an one-way branch. + case shortcut_two_way(Br, From, Bs, UnsetVars, St) of + none when Target =:= any -> + %% This `br` can't be reduced to a one-way + %% branch. Return the `br` as-is. + {Br,Bs,UnsetVars}; + none when Target =:= one_way -> + %% This `br` can't be reduced to a one-way + %% branch. The caller wants a one-way + %% branch. Give up. + none; + {_,_,_}=Res -> + %% This `br` was successfully reduced to a + %% one-way branch. + Res + end; + is_integer(Target) -> + %% There is a forced target, which can't + %% be reached because this `br` is a two-way + %% branch. Give up. + none + end + end. + +update_unset_vars(L, Is, Br, UnsetVars, #st{skippable=Skippable}) -> + case is_map_key(L, Skippable) of + true -> + %% None of the variables used in this block are used in + %% the successors. Thus, there is no need to add the + %% variables to the set of unset variables. + case Br of + #b_br{bool=#b_var{}=Bool} -> + case keymember(Bool, #b_set.dst, Is) of + true -> + %% Bool is a variable defined in this + %% block. Using the br instruction from + %% this block (and skipping the body of + %% the block) is unsafe. + unsafe; + false -> + %% Bool is either a variable not defined + %% in this block or a literal. Adding it + %% to the UnsetVars set would not change + %% the outcome of the tests in + %% is_br_safe/2. + UnsetVars + end; + #b_br{} -> + UnsetVars + end; + false -> + %% Some variables defined in this block are used by + %% successors. We must update the set of unset variables. + SetInThisBlock = [V || #b_set{dst=V} <- Is], + cerl_sets:union(UnsetVars, cerl_sets:from_list(SetInThisBlock)) + end. + +shortcut_two_way(#b_br{succ=Succ,fail=Fail}, From, Bs0, UnsetVars0, St0) -> + case shortcut_2(Succ, From, Bs0, UnsetVars0, St0#st{target=Fail}) of + {#b_br{bool=#b_literal{},succ=Fail},_,_}=Res -> + Res; + none -> + St = St0#st{target=Succ}, + case shortcut_2(Fail, From, Bs0, UnsetVars0, St) of + {#b_br{bool=#b_literal{},succ=Succ},_,_}=Res -> + Res; + none -> + none + end + end. + +get_block(L, St) -> + #st{bs=#{L:=Blk}} = St, + Blk. + +is_br_safe(UnsetVars, Br, #st{us=Us}=St) -> + %% Check that none of the unset variables will be used. + case Br of + #b_br{bool=#b_var{}=V,succ=Succ,fail=Fail} -> + #{Succ:=Used0,Fail:=Used1} = Us, + + %% A two-way branch never branches to a phi node, so there + %% is no need to check for phi nodes here. + not cerl_sets:is_element(V, UnsetVars) andalso + cerl_sets:is_disjoint(Used0, UnsetVars) andalso + cerl_sets:is_disjoint(Used1, UnsetVars); + #b_br{succ=Same,fail=Same} -> + %% An unconditional branch must not jump to + %% a phi node. + not is_forbidden(Same, St) andalso + cerl_sets:is_disjoint(map_get(Same, Us), UnsetVars) + end. + +is_forbidden(L, St) -> + case get_block(L, St) of + #b_blk{is=[#b_set{op=phi}|_]} -> true; + #b_blk{is=[#b_set{op=peek_message}|_]} -> true; + #b_blk{} -> false + end. + + +%% Evaluate the instructions in the block. +%% Return the updated bindings, or 'none' if there is +%% any instruction with potential side effects. + +eval_is([#b_set{op=phi,dst=Dst,args=Args}|Is], From, Bs0, St) -> + Val = get_phi_arg(Args, From), + Bs = bind_var(Dst, Val, Bs0), + eval_is(Is, From, Bs, St); +eval_is([#b_set{op={bif,_},dst=Dst}=I0|Is], From, Bs, St) -> + I = sub(I0, Bs), + case eval_bif(I, St) of + #b_literal{}=Val -> + eval_is(Is, From, bind_var(Dst, Val, Bs), St); + none -> + eval_is(Is, From, Bs, St) + end; +eval_is([#b_set{op=Op,dst=Dst}=I|Is], From, Bs, St) + when Op =:= is_tagged_tuple; Op =:= is_nonempty_list -> + #b_set{args=Args} = sub(I, Bs), + case eval_rel_op(Op, Args, St) of + #b_literal{}=Val -> + eval_is(Is, From, bind_var(Dst, Val, Bs), St); + none -> + eval_is(Is, From, Bs, St) + end; +eval_is([#b_set{}=I|Is], From, Bs, St) -> + case beam_ssa:no_side_effect(I) of + true -> + %% This instruction has no side effects. It can + %% safely be omitted. + eval_is(Is, From, Bs, St); + false -> + %% This instruction may have some side effect. + %% It is not safe to avoid this instruction. + none + end; +eval_is([], _From, Bs, _St) -> Bs. + +get_phi_arg([{Val,From}|_], From) -> Val; +get_phi_arg([_|As], From) -> get_phi_arg(As, From). + +eval_terminator(#b_br{bool=#b_var{}=Bool}=Br, Bs, _St) -> + case get_value(Bool, Bs) of + #b_literal{val=Val}=Lit -> + case is_boolean(Val) of + true -> + beam_ssa:normalize(Br#b_br{bool=Lit}); + false -> + %% Non-boolean literal. This means that this `br` + %% terminator will never actually be reached with + %% these bindings. (There must be a previous two-way + %% branch that branches the other way when Bool + %% is bound to a non-boolean literal.) + none + end; + #b_var{}=Var -> + beam_ssa:normalize(Br#b_br{bool=Var}) + end; +eval_terminator(#b_br{bool=#b_literal{}}=Br, _Bs, _St) -> + beam_ssa:normalize(Br); +eval_terminator(#b_switch{arg=Arg,fail=Fail,list=List}=Sw, Bs, St) -> + case get_value(Arg, Bs) of + #b_literal{}=Val -> + %% Literal argument. Simplify to a `br`. + beam_ssa:normalize(Sw#b_switch{arg=Val}); + #b_var{} -> + %% Try optimizing the switch. + case eval_switch(List, Arg, St, Fail) of + none -> + none; + To when is_integer(To) -> + %% Either one of the values in the switch + %% matched a previous value in a '=:=' test, or + %% none of the values matched a previous test. + #b_br{bool=#b_literal{val=true},succ=To,fail=To} + end + end; +eval_terminator(#b_ret{}, _Bs, _St) -> + none. + +eval_switch(List, Arg, #st{rel_op={_,Arg,_}=PrevOp}, Fail) -> + %% There is a previous relational operator testing the same variable. + %% Optimization may be possible. + eval_switch_1(List, Arg, PrevOp, Fail); +eval_switch(_, _, _, _) -> + %% There is either no previous relational operator, or it tests + %% a different variable. Nothing to optimize. + none. + +eval_switch_1([{Lit,Lbl}|T], Arg, PrevOp, Fail) -> + RelOp = {'=:=',Arg,Lit}, + case will_succeed(PrevOp, RelOp) of + yes -> + %% Success. This branch will always be taken. + Lbl; + no -> + %% This branch will never be taken. + eval_switch_1(T, Arg, PrevOp, Fail); + maybe -> + %% This label could be reached. + eval_switch_1(T, Arg, PrevOp, none) + end; +eval_switch_1([], _Arg, _PrevOp, Fail) -> + %% Fail is now either the failure label or 'none'. + Fail. + +bind_var_if_used(L, Var, Val0, Bs, #st{us=Us}) -> + case cerl_sets:is_element(Var, map_get(L, Us)) of + true -> + Val = get_value(Val0, Bs), + Bs#{Var=>Val}; + false -> + Bs + end. + +bind_var(Var, Val0, Bs) -> + Val = get_value(Val0, Bs), + Bs#{Var=>Val}. + +get_value(#b_var{}=Var, Bs) -> + case Bs of + #{Var:=Val} -> get_value(Val, Bs); + #{} -> Var + end; +get_value(#b_literal{}=Lit, _Bs) -> Lit. + +eval_bif(#b_set{op={bif,Bif},args=Args}, St) -> + Arity = length(Args), + case erl_bifs:is_pure(erlang, Bif, Arity) of + false -> + none; + true -> + case get_lit_args(Args) of + none -> + %% Not literal arguments. Try to evaluate + %% it based on a previous relational operator. + eval_rel_op({bif,Bif}, Args, St); + LitArgs -> + try apply(erlang, Bif, LitArgs) of + Val -> #b_literal{val=Val} + catch + error:_ -> none + end + end + end. + +get_lit_args([#b_literal{val=Lit1}]) -> + [Lit1]; +get_lit_args([#b_literal{val=Lit1}, + #b_literal{val=Lit2}]) -> + [Lit1,Lit2]; +get_lit_args([#b_literal{val=Lit1}, + #b_literal{val=Lit2}, + #b_literal{val=Lit3}]) -> + [Lit1,Lit2,Lit3]; +get_lit_args(_) -> none. + +%%% +%%% Handling of relational operators. +%%% + +get_rel_op(Bool, [_|_]=Is) -> + case last(Is) of + #b_set{op=Op,dst=Bool,args=Args} -> + normalize_op(Op, Args); + #b_set{} -> + none + end; +get_rel_op(_, []) -> none. + +%% normalize_op(Instruction) -> {Normalized,FailLabel} | error +%% Normalized = {Operator,Variable,Variable|Literal} | +%% {TypeTest,Variable} +%% Operation = '<' | '=<' | '=:=' | '=/=' | '>=' | '>' +%% TypeTest = is_atom | is_integer ... +%% Variable = #b_var{} +%% Literal = #b_literal{} +%% +%% Normalize a relational operator to facilitate further +%% comparisons between operators. Always make the register +%% operand the first operand. If there are two registers, +%% order the registers in lexical order. +%% +%% For example, this instruction: +%% +%% #b_set{op={bif,=<},args=[#b_literal{}, #b_var{}} +%% +%% will be normalized to: +%% +%% {'=<',#b_var{},#b_literal{}} + +-spec normalize_op(Op, Args) -> NormalizedOp | 'none' when + Op :: beam_ssa:op(), + Args :: [beam_ssa:value()], + NormalizedOp :: basic_rel_op(). + +normalize_op(is_tagged_tuple, [Arg,#b_literal{val=Size},#b_literal{val=Tag}]) + when is_integer(Size), is_atom(Tag) -> + {{is_tagged_tuple,Size,Tag},Arg}; +normalize_op(is_nonempty_list, [Arg]) -> + {is_nonempty_list,Arg}; +normalize_op({bif,Bif}, [Arg]) -> + case erl_internal:new_type_test(Bif, 1) of + true -> {Bif,Arg}; + false -> none + end; +normalize_op({bif,Bif}, [_,_]=Args) -> + case erl_internal:comp_op(Bif, 2) of + true -> + normalize_op_1(Bif, Args); + false -> + none + end; +normalize_op(_, _) -> none. + +normalize_op_1(Bif, Args) -> + case Args of + [#b_literal{}=Arg1,#b_var{}=Arg2] -> + {turn_op(Bif),Arg2,Arg1}; + [#b_var{}=Arg1,#b_literal{}=Arg2] -> + {Bif,Arg1,Arg2}; + [#b_var{}=A,#b_var{}=B] -> + if A < B -> {Bif,A,B}; + true -> {turn_op(Bif),B,A} + end; + [#b_literal{},#b_literal{}] -> + none + end. + +-spec invert_op(basic_rel_op() | 'none') -> rel_op() | 'none'. + +invert_op({Op,Arg1,Arg2}) -> + {invert_op_1(Op),Arg1,Arg2}; +invert_op({TypeTest,Arg}) -> + {{'not',TypeTest},Arg}; +invert_op(none) -> none. + +invert_op_1('>=') -> '<'; +invert_op_1('<') -> '>='; +invert_op_1('=<') -> '>'; +invert_op_1('>') -> '=<'; +invert_op_1('=:=') -> '=/='; +invert_op_1('=/=') -> '=:='; +invert_op_1('==') -> '/='; +invert_op_1('/=') -> '=='. + +turn_op('<') -> '>'; +turn_op('=<') -> '>='; +turn_op('>') -> '<'; +turn_op('>=') -> '=<'; +turn_op('=:='=Op) -> Op; +turn_op('=/='=Op) -> Op; +turn_op('=='=Op) -> Op; +turn_op('/='=Op) -> Op. + +eval_rel_op(_Bif, _Args, #st{rel_op=none}) -> + none; +eval_rel_op(Bif, Args, #st{rel_op=Prev}) -> + case normalize_op(Bif, Args) of + none -> + none; + RelOp -> + case will_succeed(Prev, RelOp) of + yes -> #b_literal{val=true}; + no -> #b_literal{val=false}; + maybe -> none + end + end. + +%% will_succeed(PrevCondition, Condition) -> yes | no | maybe +%% PrevCondition is a condition known to be true. This function +%% will tell whether Condition will succeed. + +will_succeed({_Op,_Var,_Value}=Same, {_Op,_Var,_Value}=Same) -> + %% Repeated test. + yes; +will_succeed({Op1,Var,#b_literal{val=A}}, {Op2,Var,#b_literal{val=B}}) -> + will_succeed_1(Op1, A, Op2, B); +will_succeed({Op1,Var,#b_var{}=A}, {Op2,Var,#b_var{}=B}) -> + will_succeed_vars(Op1, A, Op2, B); +will_succeed({'=:=',Var,#b_literal{val=A}}, {TypeTest,Var}) -> + eval_type_test(TypeTest, A); +will_succeed({_,_}=Same, {_,_}=Same) -> + %% Repeated type test. + yes; +will_succeed({Test1,Var}, {Test2,Var}) -> + will_succeed_test(Test1, Test2); +will_succeed({_,_}, {_,_}) -> + maybe; +will_succeed({_,_}, {_,_,_}) -> + maybe; +will_succeed({_,_,_}, {_,_}) -> + maybe; +will_succeed({_,_,_}, {_,_,_}) -> + maybe. + +will_succeed_test({'not',Test1}, Test2) -> + case Test1 =:= Test2 of + true -> no; + false -> maybe + end; +will_succeed_test(is_tuple, {is_tagged_tuple,_,_}) -> + maybe; +will_succeed_test({is_tagged_tuple,_,_}, is_tuple) -> + yes; +will_succeed_test(is_list, is_nonempty_list) -> + maybe; +will_succeed_test(is_nonempty_list, is_list) -> + yes; +will_succeed_test(_T1, _T2) -> + maybe. + +will_succeed_1('=:=', A, '<', B) -> + if + B =< A -> no; + true -> yes + end; +will_succeed_1('=:=', A, '=<', B) -> + if + B < A -> no; + true -> yes + end; +will_succeed_1('=:=', A, '=:=', B) when A =/= B -> + no; +will_succeed_1('=:=', A, '=/=', B) -> + if + A =:= B -> no; + true -> yes + end; +will_succeed_1('=:=', A, '>=', B) -> + if + B > A -> no; + true -> yes + end; +will_succeed_1('=:=', A, '>', B) -> + if + B >= A -> no; + true -> yes + end; + +will_succeed_1('=/=', A, '=:=', B) when A =:= B -> no; + +will_succeed_1('<', A, '=:=', B) when B >= A -> no; +will_succeed_1('<', A, '=/=', B) when B >= A -> yes; +will_succeed_1('<', A, '<', B) when B >= A -> yes; +will_succeed_1('<', A, '=<', B) when B > A -> yes; +will_succeed_1('<', A, '>=', B) when B > A -> no; +will_succeed_1('<', A, '>', B) when B >= A -> no; + +will_succeed_1('=<', A, '=:=', B) when B > A -> no; +will_succeed_1('=<', A, '=/=', B) when B > A -> yes; +will_succeed_1('=<', A, '<', B) when B > A -> yes; +will_succeed_1('=<', A, '=<', B) when B >= A -> yes; +will_succeed_1('=<', A, '>=', B) when B > A -> no; +will_succeed_1('=<', A, '>', B) when B >= A -> no; + +will_succeed_1('>=', A, '=:=', B) when B < A -> no; +will_succeed_1('>=', A, '=/=', B) when B < A -> yes; +will_succeed_1('>=', A, '<', B) when B =< A -> no; +will_succeed_1('>=', A, '=<', B) when B < A -> no; +will_succeed_1('>=', A, '>=', B) when B =< A -> yes; +will_succeed_1('>=', A, '>', B) when B < A -> yes; + +will_succeed_1('>', A, '=:=', B) when B =< A -> no; +will_succeed_1('>', A, '=/=', B) when B =< A -> yes; +will_succeed_1('>', A, '<', B) when B =< A -> no; +will_succeed_1('>', A, '=<', B) when B < A -> no; +will_succeed_1('>', A, '>=', B) when B =< A -> yes; +will_succeed_1('>', A, '>', B) when B < A -> yes; + +will_succeed_1('==', A, '==', B) -> + if + A == B -> yes; + true -> no + end; +will_succeed_1('==', A, '/=', B) -> + if + A == B -> no; + true -> yes + end; +will_succeed_1('/=', A, '/=', B) when A == B -> yes; +will_succeed_1('/=', A, '==', B) when A == B -> no; + +will_succeed_1(_, _, _, _) -> maybe. + +will_succeed_vars('=/=', Val, '=:=', Val) -> no; +will_succeed_vars('=:=', Val, '=/=', Val) -> no; +will_succeed_vars('=:=', Val, '>=', Val) -> yes; +will_succeed_vars('=:=', Val, '=<', Val) -> yes; + +will_succeed_vars('/=', Val1, '==', Val2) when Val1 == Val2 -> no; +will_succeed_vars('==', Val1, '/=', Val2) when Val1 == Val2 -> no; + +will_succeed_vars(_, _, _, _) -> maybe. + +eval_type_test(Test, Arg) -> + case eval_type_test_1(Test, Arg) of + true -> yes; + false -> no + end. + +eval_type_test_1(is_nonempty_list, Arg) -> + case Arg of + [_|_] -> true; + _ -> false + end; +eval_type_test_1({is_tagged_tuple,Sz,Tag}, Arg) -> + if + tuple_size(Arg) =:= Sz, element(1, Arg) =:= Tag -> + true; + true -> + false + end; +eval_type_test_1(Test, Arg) -> + erlang:Test(Arg). + +%%% +%%% Combine bif:'=:=' and switch instructions +%%% to switch instructions. +%%% +%%% Consider this code: +%%% +%%% 0: +%%% @ssa_bool = bif:'=:=' Var, literal 1 +%%% br @ssa_bool, label 2, label 3 +%%% +%%% 2: +%%% ret literal a +%%% +%%% 3: +%%% @ssa_bool:7 = bif:'=:=' Var, literal 2 +%%% br @ssa_bool:7, label 4, label 999 +%%% +%%% 4: +%%% ret literal b +%%% +%%% 999: +%%% . +%%% . +%%% . +%%% +%%% The two bif:'=:=' instructions can be combined +%%% to a switch: +%%% +%%% 0: +%%% switch Var, label 999, [ { literal 1, label 2 }, +%%% { literal 2, label 3 } ] +%%% +%%% 2: +%%% ret literal a +%%% +%%% 4: +%%% ret literal b +%%% +%%% 999: +%%% . +%%% . +%%% . +%%% + +combine_eqs(#st{bs=Blocks}=St) -> + Ls = reverse(beam_ssa:rpo(Blocks)), + combine_eqs_1(Ls, St). + +combine_eqs_1([L|Ls], #st{bs=Blocks0}=St0) -> + case comb_get_sw(L, St0) of + none -> + combine_eqs_1(Ls, St0); + {_,Arg,_,Fail0,List0} -> + case comb_get_sw(Fail0, St0) of + {true,Arg,Fail1,Fail,List1} -> + %% Another switch/br with the same arguments was + %% found. Try combining them. + case combine_lists(Fail1, List0, List1, Blocks0) of + none -> + %% Different types of literals in the lists, + %% or the success cases in the first switch + %% could branch to the second switch + %% (increasing code size and repeating tests). + combine_eqs_1(Ls, St0); + List -> + %% Everything OK! Combine the lists. + Sw0 = #b_switch{arg=Arg,fail=Fail,list=List}, + Sw = beam_ssa:normalize(Sw0), + Blk0 = map_get(L, Blocks0), + Blk = Blk0#b_blk{last=Sw}, + Blocks = Blocks0#{L:=Blk}, + St = St0#st{bs=Blocks}, + combine_eqs_1(Ls, St) + end; + {true,_OtherArg,_,_,_} -> + %% The other switch/br uses a different Arg. + combine_eqs_1(Ls, St0); + {false,_,_,_,_} -> + %% Not safe: Bindings of variables that will be used + %% or execution of instructions with potential + %% side effects will be skipped. + combine_eqs_1(Ls, St0); + none -> + %% No switch/br at this label. + combine_eqs_1(Ls, St0) + end + end; +combine_eqs_1([], St) -> St. + +comb_get_sw(L, Blocks) -> + comb_get_sw(L, true, Blocks). + +comb_get_sw(L, Safe0, #st{bs=Blocks,skippable=Skippable}) -> + #b_blk{is=Is,last=Last} = map_get(L, Blocks), + Safe1 = Safe0 andalso is_map_key(L, Skippable), + case Last of + #b_ret{} -> + none; + #b_br{bool=#b_var{}=Bool,succ=Succ,fail=Fail} -> + case comb_is(Is, Bool, Safe1) of + {none,_} -> + none; + {#b_set{op={bif,'=:='},args=[#b_var{}=Arg,#b_literal{}=Lit]},Safe} -> + {Safe,Arg,L,Fail,[{Lit,Succ}]}; + {#b_set{},_} -> + none + end; + #b_br{} -> + none; + #b_switch{arg=#b_var{}=Arg,fail=Fail,list=List} -> + {none,Safe} = comb_is(Is, none, Safe1), + {Safe,Arg,L,Fail,List} + end. + +comb_is([#b_set{dst=#b_var{}=Bool}=I], Bool, Safe) -> + {I,Safe}; +comb_is([#b_set{}=I|Is], Bool, Safe0) -> + Safe = Safe0 andalso beam_ssa:no_side_effect(I), + comb_is(Is, Bool, Safe); +comb_is([], _Bool, Safe) -> + {none,Safe}. + +%% combine_list(Fail, List1, List2, Blocks) -> List|none. +%% Try to combine two switch lists, returning the combined +%% list or 'none' if not possible. +%% +%% The values in the two lists must be all of the same type. +%% +%% The code reached from the labels in the first list must +%% not reach the failure label (if they do, tests could +%% be repeated). +%% + +combine_lists(Fail, L1, L2, Blocks) -> + Ls = beam_ssa:rpo([Lbl || {_,Lbl} <- L1], Blocks), + case member(Fail, Ls) of + true -> + %% One or more of labels in the first list + %% could reach the failure label. That + %% means that the second switch/br instruction + %% will be retained, increasing code size and + %% potentially also execution time. + none; + false -> + %% The combined switch will replace both original + %% br/switch instructions, leading to a reduction in code + %% size and potentially also in execution time. + combine_lists_1(L1, L2) + end. + +combine_lists_1(List0, List1) -> + case are_lists_compatible(List0, List1) of + true -> + First = maps:from_list(List0), + List0 ++ [{Val,Lbl} || {Val,Lbl} <- List1, + not is_map_key(Val, First)]; + false -> + none + end. + +are_lists_compatible([{#b_literal{val=Val1},_}|_], + [{#b_literal{val=Val2},_}|_]) -> + case lit_type(Val1) of + none -> false; + Type -> Type =:= lit_type(Val2) + end. + +lit_type(Val) -> + if + is_atom(Val) -> atom; + is_float(Val) -> float; + is_integer(Val) -> integer; + true -> none + end. + +%%% +%%% Calculate used variables for each block. +%%% + +used_vars(Linear) -> + used_vars(reverse(Linear), #{}, #{}). + +used_vars([{L,#b_blk{is=Is}=Blk}|Bs], UsedVars0, Skip0) -> + %% Calculate the variables used by each block and its + %% successors. This information is used by + %% shortcut_opt/1. + + Successors = beam_ssa:successors(Blk), + Used0 = used_vars_succ(Successors, L, UsedVars0, cerl_sets:new()), + Used = used_vars_blk(Blk, Used0), + UsedVars = used_vars_phis(Is, L, Used, UsedVars0), + + %% combine_eqs/1 needs different variable usage information than + %% shortcut_opt/1. The Skip map will have an entry for each block + %% that can be skipped (does not bind any variable used in + %% successor). This information is also useful for speeding up + %% shortcut_opt/1. + + Defined0 = [Def || #b_set{dst=Def} <- Is], + Defined = cerl_sets:from_list(Defined0), + MaySkip = cerl_sets:is_disjoint(Defined, Used0), + case MaySkip of + true -> + Skip = Skip0#{L=>true}, + used_vars(Bs, UsedVars, Skip); + false -> + used_vars(Bs, UsedVars, Skip0) + end; +used_vars([], UsedVars, Skip) -> + {UsedVars,Skip}. + +used_vars_succ([S|Ss], L, LiveMap, Live0) -> + Key = {S,L}, + case LiveMap of + #{Key:=Live} -> + %% The successor has a phi node, and the value for + %% this block in the phi node is a variable. + used_vars_succ(Ss, L, LiveMap, cerl_sets:union(Live, Live0)); + #{S:=Live} -> + %% No phi node in the successor, or the value for + %% this block in the phi node is a literal. + used_vars_succ(Ss, L, LiveMap, cerl_sets:union(Live, Live0)); + #{} -> + %% A peek_message block which has not been processed yet. + used_vars_succ(Ss, L, LiveMap, Live0) + end; +used_vars_succ([], _, _, Acc) -> Acc. + +used_vars_phis(Is, L, Live0, UsedVars0) -> + UsedVars = UsedVars0#{L=>Live0}, + Phis = takewhile(fun(#b_set{op=Op}) -> Op =:= phi end, Is), + case Phis of + [] -> + UsedVars; + [_|_] -> + PhiArgs = append([Args || #b_set{args=Args} <- Phis]), + case [{P,V} || {#b_var{}=V,P} <- PhiArgs] of + [_|_]=PhiVars -> + PhiLive0 = rel2fam(PhiVars), + PhiLive = [{{L,P},cerl_sets:union(cerl_sets:from_list(Vs), Live0)} || + {P,Vs} <- PhiLive0], + maps:merge(UsedVars, maps:from_list(PhiLive)); + [] -> + %% There were only literals in the phi node(s). + UsedVars + end + end. + +used_vars_blk(#b_blk{is=Is,last=Last}, Used0) -> + Used = cerl_sets:union(Used0, cerl_sets:from_list(beam_ssa:used(Last))), + used_vars_is(reverse(Is), Used). + +used_vars_is([#b_set{op=phi}|Is], Used) -> + used_vars_is(Is, Used); +used_vars_is([#b_set{dst=Dst}=I|Is], Used0) -> + Used1 = cerl_sets:union(Used0, cerl_sets:from_list(beam_ssa:used(I))), + Used = cerl_sets:del_element(Dst, Used1), + used_vars_is(Is, Used); +used_vars_is([], Used) -> + Used. + +%%% +%%% Common utilities. +%%% + +sub(#b_set{args=Args}=I, Sub) when map_size(Sub) =/= 0 -> + I#b_set{args=[sub_arg(A, Sub) || A <- Args]}; +sub(I, _Sub) -> I. + +sub_arg(#b_var{}=Old, Sub) -> + case Sub of + #{Old:=New} -> New; + #{} -> Old + end; +sub_arg(Old, _Sub) -> Old. + +rel2fam(S0) -> + S1 = sofs:relation(S0), + S = sofs:rel2fam(S1), + sofs:to_external(S). |